
Using AOP to Develop Architectural-Neutral Operating System Components

Olaf Spinczyk and Daniel Lohmann
{os,dl}@cs.fau.de

Friedrich-Alexander-University Erlangen-Nuremberg, Germany
Department of Computer Science 4

Abstract

The architecture of an operating system, e.g. micro ker-
nel or monolithic kernel, is usually seen as something static.
Even during the long lasting evolution of operating system
code it is extremely hard and, thus, expensive to change the
architecture. However, our experience is that architectural
evolution is often required and an architecture-neutral way
to develop operating system components should be found.
After analyzing why architectural flexibility is so difficult to
achieve, we propose Aspect-Oriented Programming (AOP)
as a solution. An example from the PURE OS family,
which is implemented in an aspect-oriented programming
language called AspectC++, will demonstrate the useful-
ness of the approach, which allows to separate the code that
implements architectural properties from the core function-
ality.

1. Introduction

Several different operating system architectures have
been proposed in the past and will probably be proposed
in the future. All of them have their advantages and disad-
vantages. The selection of an operating system architecture
is made very early in the design process. It has a significant
impact on the resulting implementation as it influences syn-
chronization, protection boundaries, inter-component com-
munication, and many other important strategies and as-
pects. This impact on large fractions of the code makes it
difficult to modify architectural design decisions when the
requirements on the system change.

As an example consider the integration of multiproces-
sor (SMP) support in Linux. The first kernel release that
supported SMP hardware was version 2.0. However, it still
used the old system-wide locking scheme of earlier versions
and performed badly in SMP environments. The unavoid-
able switch towards a fine-grained locking strategy was the
trigger for costly and long-lasting architectural evolution.

Hundreds of device drivers, file systems, and other compo-
nents of the system had to be adopted. Now the 2.6 kernel
has fine-grained locking in almost all parts of the system,
but the process took several years to complete.

Our conclusion from this example is that architectural
properties must be better encapsulated to reach architectural
flexibility and thereby reduce the cost of architectural evo-
lution. New programming language concepts can help to
achieve this goal. Namely Aspect-Oriented Programming
is a promising approach for that purpose.

For several years it was not possible to implement an ef-
ficient operating system in an aspect-oriented manner due to
the lack of appropriate compiler support. With AspectC++1

[8], an aspect-oriented language extension to C++, our
group has developed an important tool that opens a large
area of research on aspects in system software. In the re-
maining sections of this paper we want to demonstrate that
with such a language an architecture-neutral development
of operating system components is realistic, which would
significantly reduce the costs of architectural evolution.

The outline of the paper is as follows. In section 2 we
discuss what ’makes’ the architecture of an operating sys-
tem and why it is so difficult to change it. In section 3
we will develop a concept to solve this problem based on
aspect-oriented programming language features. Section 4
then gives an example, which shows how the concept can be
applied in real world operating system code. At the end of
the paper we present related and future work and our con-
clusions.

2. Problem Analysis

Operating systems that are based on different architec-
tures do not necessarily differ in their provided functional-
ity. In fact it is how they provide this functionality what
differentiates them, for example:

1http://www.aspectc.org/

1

• How many processes or threads execute operating sys-
tem code at the same time?

• How do the system components interact with each
other, e.g. message-based or procedure-based?

• How are the components associated with protection
boundaries, e.g. address spaces?

• How does the system deal with interrupts?

These question are answered by architectural design deci-
sions that are based on (non-functional) requirements like
security, dynamic reconfigurability, robustness, etc. As an
example consider the requirement that the system should
react on interrupts as fast as possible. This requirement
will probably lead to the architectural design decision to
use fine-grained instead of coarse-grained interrupt syn-
chronization, because that reduces the interrupts latencies.

This interrupt synchronization example shows that the
questionhow some requirement is fulfilled is often domi-
nated by the aspectwheresomething is done. Here the se-
lection of code locations for calls to synchronization prim-
itives is responsible for the granularity. A lot of these loca-
tions, which are typically scattered across several parts of
the system, are affected if fine-granular synchronization is
implemented.

Operating system implementations were in many cases
used for several decades. During this time the requirements
on the system evolve. Often the reason is that there is an
enormously fast evolution of the supported hardware plat-
forms. This was the case in the Linux example, which was
mentioned in the introduction. Also the application profile
might change over the years. For instance, an ongoing trend
in the Linux area is to support real-time applications.

Changes in the requirements make it hard to findthe
right operating system architecture at the beginning of the
design process, thus architectural evolution is often un-
avoidable. However, the modification of architectural prop-
erties is hard and costly to implement.

3. Language Support

Single properties of a software that affect large fractions
of the program code, like the architectural design decisions
discussed in the last section, are often calledcrosscutting
concerns. Their existence has a negative impact on the
maintainability and reusability of code. AOP [5] is a con-
cept that tries to reduce these problems by providing pro-
gramming language elements that allow themodular im-
plementation of crosscutting concerns. The approach fol-
lowed in this paper is to apply these language elements in
the development of an operating system to reduce the costs
of architectural evolution.

AspectC++ [8] is an aspect-oriented derivate of C++.
By presenting the most important language features of As-
pectC++ the following paragraphs will introduce the lan-
guage and the AOP concept at the same time.

The most important language feature to modularize a
crosscutting concern is thepointcutconcept. A pointcut is
a set of points in the code (so calledjoin points), which are
affected by the same crosscutting concern. In AspectC++
these sets can be defined in a very flexible way by using a
declarative language consisting of predefined pointcut func-
tions, wildcards for matching names, and algebraic opera-
tions to combine pointcuts. For example, if the concurrent
execution of certain functions has to be avoided, some syn-
chronization object must be acquired before and released
after the execution of these functions. The relevant points
in the code can be identified by the following pointcut defi-
nition:

pointcut funcs() =
execution ("void enqueue(Node*)") ||
execution ("Node *dequeue()");

Here the pointcutfuncs() is the union of all executions of
enqueue() anddequeue() in the whole system.

It is then possible to define some action that should be
executed when any of the join points in the pointcut is
reached at run time. This is achieved with a so calledadvice
definition as shown here:

aspect MutexSync {
...
Mutex _m;
advice funcs(): before () {

_m.lock();
}
advice funcs(): after () {

_m.unlock();
}

};

The first advice definition means thatbefore the body of
any function described byfuncs() is executed the mu-
tex object_m should be locked. Consequently the second
advice definition ensures that the mutex object is unlocked
againafter the critical section is left. Both advice defini-
tions are encapsulated in a named modular unit, which is an
aspect. Besides the advice definitions aspects can, similar
to classes, store and manage state information (the mutex
variable_min the example), which is also accessible by the
advice code bodies. The compiler is responsible for the in-
vocation of the advice code from the specified join points. It
is not necessary to call the synchronization primitives from
anywhere outside this aspect.

The AspectC++ language provides many more language
elements. We have omitted explanations of all these fea-
tures here to focus on the goal of our approach: The pre-
sentedMutexSync aspect is a minimal example that shows

2

how aspects can encapsulate knowledge aboutwheresome-
thing has to be done in the system (pointcut definitions) and
whatexactly should be done (advice definitions).

Our approach is to use these mechanisms to implement
the code that results from architectural design decisions.As
these decisions also consist of awhereandwhat, we assume
that AOP can help to modularize the implementation of ar-
chitectural OS properties. This could be the key to architec-
tural flexibility, which would allow static configuration and
easy evolution of the OS architecture.

4. Example: PURE Device Drivers

This section provides an example that demonstrates how
AOP enables system developers to write their device driver
code in an architecture-neutral way. The example is taken
from the PURE operating system family2 [2], which aims
to support applications in the area of deeply embedded sys-
tems by providing fine-grained configuration capabilities.
These configuration capabilities even include the configura-
bility of certain architectural properties at compile time [1].
Here we will concentrate on the synchronization and con-
currency aspect of device drivers.

PURE device drivers are designed as fine-grained hierar-
chies of C++ classes. In our new AOP-based implemen-
tation, a driver itself does not contain any code for syn-
chronization or creation of new threads. All this is done
by external aspect definitions, which may be statically con-
figured. The external synchronization aspects are based on
a library of reusableabstractaspects, which implement dif-
ferent synchronization strategies. These abstract aspects de-
fine pure virtual pointcutsfor the synchronization points.
This means that the decisionwherethe mechanism is ap-
plied is postponed until a derived concrete aspect redefines
the pure virtual pointcuts. The aspect library itself only de-
fineswhat should happen if certain synchronization points
are reached.

Figure 1 on the following page shows the PURE imple-
mentation of the MutexSync strategy and depicts how the
abstract (what) and concrete (where) aspect definitions af-
fect on the component code, a floppy driver class.

The abstract aspectMutexSync defines two pure vir-
tual pointcuts,classes() and funcs() . The point-
cut classes() is aimed to define the set of classes that
should be synchronized by this strategy. It is used in the
following advice definition to insert a new data member
_mof type Mutex in each of these classes. As in the ex-
ample above, the pointcutfuncs() is used to define the
functions that need to be synchronized. The AspectC++
function tjp->that() returns a pointer to the object on

2PURE systems can be configured and downloaded from
http://www.pure-systems.com/ .

which the function is executed. It is used in the advice bod-
ies to access the mutex data member that was introduced
into these classes.

The concrete aspectFloppySync derives from the ab-
stract library aspect and redefines the pointcuts, thereby
establishing the link between the abstract synchronization
strategy and the join points in the component code, where
the aspect code has to be applied. The pointcut expres-
sion execution(“% FloppyDriver::% (...)”) uses
wildcards (%, ...) to match theexecutionsof all functions of
classFloppyDriver .

Besides theMutexSync aspect, the PURE synchroniza-
tion library provides mechanisms according to the first
and second readers/writers scheme, the producer/consumer
model, etc. There are also similar aspects, which rely on the
blocking semantics ofsend() andreceive() primitives
for inter-process communication as synchronization model.
For instance, the abstractServerSync aspect shown in fig-
ure 2 on page 5 illustrates how mutual exclusion on the
same component code can be achieved with a single server
thread that sequentially processes requests. The server
thread is implemented by the classActionServer . All
ActionServer instances are active objects with their own
thread of control, which executes the functionrun() . This
function implements the job processing loop.

ServerSync defines so calledaroundadvice. Around
advice is not executed before or after, butinsteadof the
original call. In the advice code the AspectC++ func-
tion tjp->action() is used to obtain a so calledac-
tion object. This object can be used to continue the inter-
cepted action (the call) later or in a different environment.
Here the address of the action object is given to the server
thread in the driver instance that was the target of the call
(tjp->target()). The thread on the server side then uses
the passed action object to continue the call operation by
invoking action->trigger() .

Again, this synchronization strategy is applied to our
floppy driver by deriving a concrete aspectFloppySync .
The pointcut expressioncall(“% FloppyDriver::%

(...)”) && !within(“FloppyDriver”) matches all
calls to functions of classFloppyDriver that are not lo-
cated inside ofFloppyDriver itself. In other words: all
points where the driver component is invoked from other
components. Note that the synchronization advice is now
given to the caller side (call pointcuts), while it was given
to the callee side (executionpointcuts) in theMutexSync

example.
With aspects like this we have reached a very high level

of abstraction. Simply changing theFloppySync aspect is
sufficient to associate a server thread with each floppy driver
and use message-based instead of procedure-based commu-
nication. By choosing other base aspects, several drivers
could share the same mutex object, or the aspect could be

3

Figure 1. Applying the MutexSync mutual exclusion strategy to an OS component

omitted at all if the driver is reused in a single-threaded en-
vironment. Even though the presented example was sim-
plified and many important AspectC++ features were not
mentioned, we are optimistic that it nevertheless showed the
high flexibility and value of the approach.

5. Conclusions and Future Work

This paper presented our approach to encapsulate code
that implements architectural properties of operating sys-
tems with aspects. This helps to cope with architectural evo-
lution, architectural design decisions loose their strategic
character, and even the configuration of architectural prop-
erties becomes feasible in the context of operating system
families or construction kits.

Our experience from the PURE project is that many ar-
chitectural aspects can be implemented with our AspectC++
language and compiler. However, a successful extensive en-
capsulation of system properties by aspects rises and falls
with the design quality of the functional components. To
reveal the full power of our approach, OS-components need
to be designed “aspect-aware” from beginning. That is, fol-
low strict naming rules, provide a fine-grained functional
separation of concerns and clearly specify pre-/ and post-
conditions around potential join points. Because of its fine-
grained organization, PURE was a very good test system to
examine our approach. However, PURE was never designed
with aspects in mind. This led to limitations in the over-

all applicability of aspects. In theCiAO3 project[6] we are
now developing a new operating system family, based on
AOP techniques “from scratch” . The ambitious end goal of
CiAO is to provide customization ofall fundamental archi-
tectural properties. For instance, a monolithic kernel, micro
kernel, or library OS version should be generated from the
same OS component sources.

.

6. Related Work

Only a few other papers have been published about
aspect-oriented programming in the operating systems do-
main. For instance, in the a-kernel project a prototyped
AOP extension for the C programming language4 was
used to improve the modularity of prefetching code in the
FreeBSD kernel [3]. Netinant et al. proposed a framework
for the aspect-oriented construction of operating systems
[7]. While both contributions show the big potential of AOP
for operating systems, their focus was not on the evolution
or configuration of architectural properties.

A remarkable paper about the THINK framework de-
scribes how operating systems with different architectures
can be constructed from architecture-neutral components

3CiAO is Aspect-Oriented
4This language, AspectC, is not to be confused with AspectC++, par-

ticularly as at the time of this writing there is still no compiler available for
it.

4

Figure 2. Applying ServerSync mutual exclusion strategy to an OS component

[4]. THINK uses special “binding components” to manipu-
late the component interaction. However, THINK was de-
veloped on the base of a binary component model (COM),
which we considered too heavy weight for the deeply em-
bedded target domain of PURE andCiAO. Furthermore, as-
pects provide many more kinds of join points than just com-
ponent boundaries and can therefore lead to a much higher
level of flexibility. This flexibility is a chance and a risk at
the same time, which we are going to explore.

References

[1] D. Beuche, A. A. Fröhlich, R. Meyer, H. Papajew-
ski, F. Schön, W. Schröder-Preikschat, O. Spinczyk, and
U. Spinczyk. On architecture transparency in operating sys-
tems. InProceedings of the 9th ACM SIGOPS European
Workshop “Beyond the PC: New Challenges for the Operat-
ing System”, pages 147–152, Kolding, Denmark, Sept. 2000.

[2] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-
Preikschat, O. Spinczyk, and U. Spinczyk. The PURE fam-
ily of object-oriented operating systems for deeply embedded
systems. InProceedings of the 2nd IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing
(ISORC’99), pages 45–53, St Malo, France, May 1999.

[3] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using As-
pectC to improve the modularity of path-specific customiza-
tion in operating system code. InProceedings of the Joint
European Software Engineering Conference (ESEC) and 9th

ACM SIGSOFT Internation Symposium on the Foundations of
Software Engineering (FSE-9), 2001.

[4] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller. THINK:
A software framework for component-based operating system
kernels. InProceeding of the 2002 USENIX Technical Con-
ference, pages 73–86. USENIX Association, June 2002.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In M. Aksit and S. Matsuoka, editors,Proceedings of the
11th European Conference on Object-Oriented Programming
(ECOOP ’97), volume 1241 ofLecture Notes in Computer
Science, pages 220–242. Springer-Verlag, June 1997.

[6] D. Lohmann and O. Spinczyk. Architecture-Neutral Operat-
ing System Components. In19th ACM Symposium on Oper-
ating System Principles (SOSP’03), WiP session, 2003.

[7] P. Netinant, C. A. Constantinides, T. Elrad, and M. E. Fayad.
Supporting aspectual decomposition in the design of oper-
ating systems. InProceeding of the 3rd ECOOP Work-
shop on Object-Orientation and Operating Systems (ECOOP-
OOOSWS’2000), pages 38–46. Universidad de Oviedo, June
2000. ISBN 84-8317-222-4.

[8] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. As-
pectC++: An aspect-oriented extension to C++. InPro-
ceedings of the 40th International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS Pacific
2002), pages 53–60, Sydney, Australia, Feb. 2002.

5

