
Memory Protection at Option
Application-Tailored Memory Safety
in Safety-Critical Embedded Systems

–
Speicherschutz nach Wahl

Auf die Anwendung zugeschnittene Speichersicherheit
in sicherheitskritischen eingebetteten Systemen

Der Technischen Fakultät der
Universität Erlangen-Nürnberg

zur Erlangung des Grades

Doktor-Ingenieur

vorgelegt von

Michael Stilkerich

Erlangen — 2012

Als Dissertation genehmigt von
der Technischen Fakultät

Universität Erlangen-Nürnberg

Tag der Einreichung: 09.07.2012
Tag der Promotion: 30.11.2012

Dekan: Prof. Dr.-Ing. Marion Merklein
Berichterstatter: Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

Prof. Dr. Michael Philippsen

Abstract

With the increasing capabilities and resources available on microcontrollers, there is
a trend in the embedded industry to integrate multiple software functions on a single
system to save cost, size, weight, and power. The integration raises new requirements,
thereunder the need for spatial isolation, which is commonly established by using
a memory protection unit (MPU) that can constrain access to the physical address
space to a fixed set of address regions. MPU-based protection is limited in terms of
available hardware, flexibility, granularity and ease of use. Software-based memory
protection can provide an alternative or complement MPU-based protection, but has
found little attention in the embedded domain.

In this thesis, I evaluate qualitative and quantitative advantages and limitations of
MPU-based memory protection and software-based protection based on a multi-JVM.
I developed a framework composed of the AUTOSAR OS-like operating system CiAO
and KESO, a Java implementation for deeply embedded systems. The framework
allows choosing from no memory protection, MPU-based protection, software-based
protection, and a combination of the two. This decision can be made individually for
each protection realm in the system. For both MPU- and software-based protection,
the framework provides different trade-offs between the cost and the provided level of
protection.
To achieve the configurability of MPU-based protection, I use aspect-oriented

techniques to integrate the necessary changes to the operating system and the
application. The configurability of software-based protection is based on static
analyses in the Java compiler. The results of these analyses are also leveraged to
improve the effectivity of MPU-based protection by aiding to determine private
code and data items at a fine-grained level, showing significant improvements over
the mostly manual existing approach in CiAO. The framework is completed by an
extension that offers a soft-migration approach for existing applications.
At the example of the control software for a quadrotor helicopter, I evaluate the

cost of using Java instead of the spread C or C++ languages and the qualitative
and quantitative pros and cons of the different memory protection mechanisms. The
evaluation shows that a Java implementation tailored towards the application domain
can provide competitive performance to C and C++, but provides the added value of
comprehensive software-based memory safety. The comparison of MPU-based and
software-based protection showed that either can be more efficient depending on
the type of application. The existence of both approaches is justified, and the two
approaches complement each other in many aspects, which makes a combination of
the two feasible as well.

iii

Zusammenfassung

Zur räumlichen Isolation verschiedener Anwendungen auf einem Mikrokontroller
wird im Umfeld zutiefst eingebetteter, statisch-konfigurierter Systeme üblicherwei-
se eine Speicherschutzeinheit (MPU) eingesetzt. Diese beschränkt Speicherzugriffe
auf eine begrenzte Zahl von Adressbereichen. MPU-basierter Speicherschutz zeigt
jedoch Einschränkungen in den Bereichen der Hardwareauswahl, der Flexibilität und
Granularität des gebotenen Speicherschutzes sowie des Aufwands der Benutzung.
Softwarebasierte Verfahren bieten eine Alternative oder Ergänzung, haben bislang im
Bereich der eingebetteten Systeme jedoch kaum Beachtung gefunden.
Diese Dissertation betrachtet vergleichend die qualitativen und quantitativen Vor-

teile und Einschränkungen von MPU-basiertem Speicherschutz und Speicherschutz
basierend auf einer Multi-JVM. Aufbauend auf CiAO, einem Betriebssystem mit einer
AUTOSAR OS Schnittstelle, und KESO, einer Java Laufzeitumgebung für zutiefst
eingebettete Systeme, wurde ein Rahmenwerk entwickelt, welches die freie Wahl
zwischen beiden Verfahren sowie deren Kombination erlaubt. Diese Entscheidung
kann individuell für jeden Schutzraum im System getroffen werden. Das Rahmenwerk
unterstützt für beide Verfahren verschiedene Abstimmungsgrade zur Beeinflussung
des Verhältnisses von Kosten und gebotenem Schutzgrad.
Zur Realisierung des konfigurierbaren MPU-basierten Speicherschutzes wurden

aspektorientierte Techniken verwendet, um die notwendigen Anpassungen in das
Betriebssystem sowie die Anwendung einzubringen. Die Konfigurierbarkeit des soft-
warebasierten Schutzes basiert auf statischen Programmanalysen im Java-Übersetzer,
deren Ergebnisse auch zur Identifikation privater Programmteile und Datenstrukturen
verwendet wurden. Hierdurch konnte die Effektivität des MPU-basierten Speicher-
schutzes im Vergleich zum vorhandenen, größtenteils manuellen Ansatz in CiAO
deutlich gesteigert werden. Eine Erweiterung zur Unterstützung eines weichen Migra-
tionsansatzes für bestehende Anwendungen vervollständigt das Rahmenwerk.

Am Beispiel der Steueranwendung eines Quadrokopters wurden die Kosten für die
Nutzung von Java als Ersatz für die verbreiteten Sprachen C und C++ evaluiert,
sowie die qualitativen und quantitativen Vor- und Nachteile der verschiedenen Spei-
cherschutzverfahren untersucht. Die Ergebnisse zeigen, dass die Verwendung einer auf
die Anwendungsdomäne zugeschnittenen Java-Laufzeitumgebung keine Mehrkosten
im Vergleich zu C und C++ mitbringen muss, jedoch den Mehrwert der umfassenden
softwarebasierten Speichersicherheit bietet. Der Vergleich beider Speicherschutzver-
fahren ergab, dass jedes abhängig von den Anwendungseigenschaften das effizientere
sein kann. Beide Verfahren haben ihre Existenzberechtigung und ergänzen sich in
vielen Bereichen, so dass auch die Kombination sinnvoll sein kann.

v

Acknowledgments

My years at the FAU’s system software group as a research assistant were some of
the most fun yet. The product of those years – this thesis – would not have been
possible in this form without the support and help of my great colleagues, to whom I
want to express my gratitude.

My professor Wolfgang Schröder-Preikschat enables and supports his doctoral stu-
dents in pursuing their own research interests. It is the freedom and self-responsibility
he grants to his students that make his group such a great environment to work in.
Together with Jürgen Kleinöder, I organized the exercises accompanying the systems
programming lectures for some years; he enabled me to incorporate my own ideas
into the course contents and I enjoyed those years of teaching a lot.
Some of my colleagues and former students contributed to parts of this thesis:

Back when I was an undergraduate student, Christian Wawersich raised my interest
in embedded systems and safety and brought me into the KESO project. Daniel
Lohmann helped me throughout my research with invaluable discussions that often
provided me with new perspectives on my research topics. Peter Ulbrich is the head of
the I4Copter project; he not only provided me with the ideal evaluation scenario but
also spent many hours helping me adapting and porting it; unforgotten, he showed
very forgiving when I accidentally crashed the I4Copter into a building. Jens Schedel
ported the I4Copter software to use the AUTOSAR OS interface and thereby made it
usable for my setup. Michael Strotz implemented my ideas on gradual software-based
memory protection in the KESO project. Christoph Erhardt did outstanding work
on the compiler core; his work provided an important piece of infrastructure for my
thesis.
My wife Isabella supported and motivated me in the challenging phases of thesis

writing, proof-read and discussed with me the contents of this thesis.
Finally, I’d like to thank all my other colleagues that made working in the group

such a great time.

Erlangen, December 2012

vii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Electronic Control Units in the Automotive Industry 2
1.1.2 Paradigm Shift Towards an Integrated Architecture 3
1.1.3 New System-Software Requirements: Need for Isolation 3

1.2 Problem Statement and Proposed Solution 4
1.3 Broader Scope of this Work . 5
1.4 Structure of this Thesis . 6
1.5 Own Publications Related to this Thesis 7

2 State of the Art 9
2.1 Levels of Memory Protection . 9

2.1.1 Sandboxing . 9
2.1.2 Memory Safety . 10
2.1.3 Type Safety . 10

2.2 Comparison Criteria . 11
2.3 Hardware-Based Memory Protection Approaches 13

2.3.1 Coarse-Grained Approaches Without In-Memory Data Structures 13
2.3.2 Caching Approaches with In-Memory Data Structures 14
2.3.3 Discussion . 17

2.4 Software-Based Memory Protection Approaches 18
2.4.1 Instruction-Set-Architecture-Level Approaches 19
2.4.2 Compiler-Level Approaches . 21
2.4.3 Language-Level Approaches . 24
2.4.4 Discussion . 29

2.5 Decision for MPU-Based Protection and a Multi-JVM 33

3 Analysis: Application Model and Protection Levels 35
3.1 The AUTOSAR OS Application Model 35

3.1.1 Layers of Protection . 36
3.1.2 Required Isolation Properties 37
3.1.3 Graduations of Hardware-Based Memory Protection 38

3.2 The I4Copter Application . 39
3.2.1 Core Subsystems of the I4Copter Framework 39
3.2.2 Mapping to the AUTOSAR OS Application Model 42

ix

Contents

3.3 Model Refinement: Software-Isolated Components 43
3.4 Graduations of Software-Based Memory Protection 44

3.4.1 Memory-Protection Overhead Imposed by Java 44
3.4.2 Offloading Runtime Checks to the Hardware 47
3.4.3 Selective Omission of Runtime Checks 50
3.4.4 Impact Classification . 51

3.5 Chapter Summary . 56

4 Design: A Framework that Provides Memory Protection at Option 59
4.1 Selection of an AUTOSAR OS Implementation 60

4.1.1 CiAO Application Model . 60
4.1.2 Introduction to AspectC++ . 61
4.1.3 CiAO Build Process . 64
4.1.4 CiAO Components: Application Interface 65

4.2 Selection of a Multi-JVM . 66
4.2.1 J2ME Implementations . 66
4.2.2 Commercial JVMs for Embedded and Real-Time Systems . . . 67
4.2.3 Sun’s SquawkVM for Sensor Nodes 67
4.2.4 KESO . 67

4.3 Integration of KESO with CiAO . 71
4.3.1 CiAO Backend . 71
4.3.2 C++-Compatible Output . 72
4.3.3 MPU-based-Protection-Friendly Java Runtime Environment . . 73

4.4 Configurable MPU-Based Protection 74
4.4.1 Region Management . 74
4.4.2 Region Identification and Data Mapping 76
4.4.3 Configurable MPU-Context Switching Code 78

4.5 Determining Domain Reachability for Java Code 85
4.5.1 Overview of the Reachability Analyses in Jino 87
4.5.2 Domain Reachability Example 87
4.5.3 Reachability Results for the I4Copter Codebase 89

4.6 Configurable Software-Based Protection 89
4.6.1 Incorporating Memory Characteristics into the Compiler 91
4.6.2 Per-Application Configurability 92

4.7 Chapter Summary . 93

5 Component-Wise Soft Migration 95
5.1 Migration Granularity: Software Components 95

5.1.1 Considering CiAO and KESO as Component Systems 96
5.1.2 I4Copter Component Interfaces 96

5.2 Shared Memory Extension for CiAO 98
5.2.1 Definition of Shared Memory Areas 98
5.2.2 Shared Memory Placement . 99
5.2.3 Shared Memory Conclusions 104

x

Contents

5.3 Message Ports for CiAO . 105
5.3.1 Message Protocol . 106
5.3.2 Placement and Implementation 107
5.3.3 Implications of Read Protection 108
5.3.4 Variants . 108
5.3.5 Message Ports Conclusions . 109

5.4 Safe Java Interface . 109
5.4.1 KESO Abstractions for Accessing Raw Memory Areas 109
5.4.2 Using Memory-Mapped Objects to Resemble C Data Types . . 110
5.4.3 Possible Issues with Mapping C Types to Mapped Objects . . . 111
5.4.4 Raw Memory as a Base Abstraction 112

5.5 Port of the I4Copter Application . 112
5.6 Chapter Summary . 112

6 Quantitative Evaluation 115
6.1 Test Setup . 115

6.1.1 Evaluation Platform . 116
6.1.2 Used Compilers and Tools . 116

6.2 Test Applications . 116
6.2.1 I4Copter . 117
6.2.2 Collision Detector Benchmark Family 119

6.3 Metrics and Method of Measurement 120
6.3.1 Statically Determined Metrics 120
6.3.2 Runtime Measurements . 121

6.4 Cost of Using Java Instead of C or C++ 121
6.4.1 I4Copter . 122
6.4.2 Collision Detector . 133
6.4.3 Conclusions . 137

6.5 Microbenchmarks: Individual Costs of Basic Operations 137
6.5.1 Basic Protection Primitives . 138
6.5.2 Costs of Common System Operations 139
6.5.3 Conclusions . 140

6.6 Costs of Memory Protection in the I4Copter 140
6.6.1 Execution Times . 141
6.6.2 Memory Footprint . 146
6.6.3 Conclusions . 149

6.7 Chapter Summary . 150
6.7.1 Overhead of Using Java as a Language Compared to C/C++ . 150
6.7.2 Costs of Basic Protection Primitives 151
6.7.3 Comparison of Protection Mechanisms for an Application . . . 151

7 Summary, Conclusions, and Outlook 153
7.1 Summary . 153
7.2 Conclusions . 154

xi

Contents

7.3 Contributions . 155
7.4 Ideas for Future Work . 156

xii

List of Figures

2.1 Levels of Application of Software-Based Memory Protection 18

3.1 The AUTOSAR OS Application Model 36
3.2 Photo of the I4Copter, Version 2.4 (“Apollo”) 39
3.3 Subsystems and Data Exchange Paths in the I4Copter 40
3.4 Isolation Variants . 43
3.5 Example Address Space Utilizations 49

4.1 AspectC++ Syntax Example . 63
4.2 CiAO Build Process . 64
4.3 KESO: Architecture, Domains and Inter-Domain Communication . . . 69
4.4 KESO Build Process . 70
4.5 KESO and CiAO Combined . 72
4.6 Configuration-Independent Memory Layout (Data Only) 78
4.7 Protection Context Switching . 79
4.8 Domain-Specific Rapid Type Analysis and Reachability Analysis . . . 88

5.1 I4Copter Component Interfaces . 97
5.2 Shared Memory Placement by Overlapping Private Data Segments . . 101
5.3 Example: Shared Memory Dependencies Among OS-Applications . . . 103
5.4 Basic Message Port Implementation and Placement 108
5.5 Mapping C Data Types to KESO’s Memory-Mapped Objects 110

6.1 Flightcontrol: Execution Time Comparison C++ Versus Java 123
6.2 Coptercontrol: Execution Time Comparison C++ Versus Java 125
6.3 Signalprocessing: Execution Time Comparison C++ Versus Java . . . 126
6.4 SerialCom: Execution Time Comparison C++ Versus Java 128
6.5 Collision Detector: Distribution of Iteration Execution Times 134
6.6 Collision Detector: Execution Times for 100 Iterations 134
6.7 Correlation Between Heap Usage and Execution Time 135
6.8 Flightcontrol: Comparison of Protection Variants 142
6.9 Coptercontrol: Comparison of Protection Variants 143
6.10 Signalprocessing Comparison of Protection Variants 145
6.11 SerialCom Comparison of Protection Variants 147

xiii

List of Tables

2.1 Comparison of Memory Protection Mechanisms 32

3.1 Memory Protection Requirements from the AUTOSAR OS Specification 37
3.2 Control Flows’ Properties in the I4Copter 42
3.3 Checked JVM Instructions . 45
3.4 Frequency of Checked Instructions . 51
3.5 Impact Classification . 52

4.1 Data Region Definitions for Read-Write Protection 78
4.2 Domain Reachability of Types and Code in the I4Copter 90

5.1 Shared Memory Uses in the I4Copter 100
5.2 Shared Memory Placement in the I4Copter 100

6.1 I4Copter Memory Footprint: C++ Versus Java 129
6.2 Specialization Versus Generalization: I4Copter Gyroscope Driver . . . 131
6.3 CDx Footprint . 136
6.4 Costs of Basic Protection Primitives 138
6.5 System Operations’ Runtime with Different Levels of MPU Protection 139
6.6 I4Copter Memory Footprint: Different Memory Protection Variants . 148

xv

Listings

2.1 Deputy Annotations for memcpy() . 26
2.2 Unsound Type System Caused by Dangling References 29

3.1 Example: Array Access . 55

4.1 CiAO Component Definition . 65
4.2 Pointcuts of the Memory Protection Subsystem for Write Protection . 81
4.3 Aspect that Provides Privileged Mode Switching for System Services . 83
4.4 TC1796 Memory Characteristics Description 91

5.1 Shared Memory Definition . 99
5.2 Message Port Definition . 106

6.1 Shared Memory Access (Java Code) 132
6.2 Shared Memory Access (Generated C Code) 132

xvii

1
Introduction

1.1 Motivation

With eight billion units deployed in the year 2000, embedded microprocessors pose
the lion’s share of processors as opposed to 150 million general-purpose computers
sold in the same year [117]. An embedded system is a computer system developed
and deployed for a special purpose. Embedded systems are becoming increasingly
ubiquitous in our everyday lives and are found, for example, in household appliances
or cars.

Embedded systems are often part of a mass product and subject to an immense cost
pressure. Cost differences of few cents for a single unit accumulate to a considerable
amount for the whole of produced units. The microcontroller manufacturers commonly
offer a product line of derivates around a specific microcontroller core. The derivates
differ in features such as the amount of on-chip program and data memory, the
number of I/O pins or the availability of optional functional units such as a memory
protection unit (MPU) or communication interfaces such as CAN, SPI or UART.
As a concrete example, STMicroelectronics’ STM32F1 line of mainstream ARM
Cortex-M3 processors as of 2011 offers derivates with program flash from 16 KiB
to 1 MiB and RAM from 4 KiB to 96 KiB. The price range in this line for large
quantities ranges from 1.76e (STM32F100C4T6B, 16 KiB ROM, 4 KiB RAM) to
15.23e (STM32F103ZGT6, 1MiB ROM, 96 KiB RAM) at a large retailer1 – the
largest derivate is more than eight times the price of the smallest one.

1Prices from http://de.farnell.com with the highest listed high-quantity rebate, retrieved on Decem-
ber 13, 2011

1

1 Introduction

1.1.1 Electronic Control Units in the Automotive Industry

One industry where the electronic functionality has rapidly grown over the past
decade is the automotive industry. A 2006 article [20] talks about ten million lines of
code in a premium car, whereas a more recent Bosch article [78] already gives the
number of up to 100 million lines of code in a luxury car. These numbers show the
enormous growth of software in the automotive sector.

Embedded systems in a modern car take control of a wide-range of functionalities,
covering comfort functions such as the fully automatic control of the air conditioning
to safety-critical functions such as the anti-lock braking system (ABS) or the electronic
stability program (ESP). With the trend towards more fuel-efficient cars that require
sophisticated engine control and the introduction of electric cars, it is probable that
the significance of electronic functions and the amount of software will continue to
grow.
The automotive industry is vertically organized, that is, most of the development

is carried out by a multitude of component suppliers. Traditionally, the electronic
control units (ECUs) that implement electronic functions of a car have been shipped
as black boxes comprising both the hardware and the software to the car manufacturer
(OEM) [48]. The OEM then needed to integrate these black boxes by connecting
them through communication busses such as the controller-area network (CAN) to
form a cooperating network. In this federated architecture a dedicated microcontroller
exists for each electronic function. A modern mid-class car is equipped with about
80 ECUs [78]. With the current amount of ECUs and the trend towards increasing
electronic functionality, the federated architecture is running into a scalability problem
as the integration is becoming increasingly difficult for the OEM for multiple reasons.

Heterogeneity: The ECUs are provided by a multitude of component suppliers and
are heterogeneous in both hardware and software. Building a network of these
black boxes becomes increasingly difficult with higher numbers of ECUs.

Reliability: The connectors that network the different ECUs are known to be fault-
prone and a major cause of hardware failures.

Weight: The car wire harness by itself exceeds 100 kilograms in weight, comprising
a length of more than two kilometers of wires. The electronic control units add
additional weight. The increasing weight for cars of comparable class in recent
years conflicts with the goal of fuel-efficiency.

Space: The space behind the car interior linings and in the engine compartment is
limited.

Cost: Electronic components and software account for up to 40 percent of a car’s
production costs [20]. The price for copper has risen by more than 400 percent
in the past decade.

2

1.1 Motivation

1.1.2 Paradigm Shift Towards an Integrated Architecture

The automotive industry is undertaking various steps to address the above issues.
One is the attempt to substitute copper as the wire material for the cheaper and more
lightweight, but also less conductive, aluminum. The electrical differences between
the two materials raise new issues that need to be addressed. Also, while the material
transition lowers the weight and cost of the wire harness, the issues of requirement
for limited space and the high number of fault-prone connectors remain.
A more fundamental approach is the departure from the federated architecture

and a shift towards an integrated architecture, where multiple software functions are
co-located on a single, but more powerful ECU. This architecture scales better, as
more capable microcontrollers are developed in parallel to the increase of electronic
functionality that provide more resources at the same price and physical size. The
integrated architecture addresses many of the above issues: Two previously networked
components that are integrated on a single ECU can communicate without the need
for additional wires. The reduced amount of ECUs, wires and connectors reduce the
material cost and weight and space requirements and at the same time increase the
mechanic reliability of the electronic system.

1.1.3 New System-Software Requirements: Need for Isolation

With the shift to an integrated architecture, however, an important property of
the federated architecture gets lost. With a dedicated ECU for every software
function, each application executes in a physically isolated environment. A fault in
one component is thereby contained and cannot directly affect the other components
in the system. In addition, the faulty function can be identified relatively easy as
the black box does not behave correctly and the supplier can be notified. This
identification is important for both a quick resolution of the issue as well as for
possible liability claims that may have been raised by the malfunctioning component.
By co-locating multiple applications on a single microcontroller on top of an OS-

EK/VDX operating system [86] – the currently most-widely used operating system in
the automotive domain – these properties of fault containment and easy identification
of a malfunctioning component are lost, since OSEK/VDX does not provide any
means for the isolated execution of multiple applications. The shift towards an
integrated architecture therefore introduces new requirements for the system software,
most notably in the areas of temporal and spatial isolation. The automotive industry
reacted to the new requirements with the development of a new operating system
standard AUTOSAR OS [10]. The designated successor to OSEK/VDX provides
temporal isolation by enforcing execution time budgets, terminating tasks that exceed
their supposed worst-case execution time (WCET) in one job. This prevents that the
fault propagates to other applications by not leaving enough CPU time for the other
applications’ tasks to meet their deadlines. AUTOSAR OS also provides optional
support for hardware-based memory protection on microcontrollers that are equipped
with the needed memory protection unit. Memory protection provides the spatial

3

1 Introduction

isolation of the different applications, which ensures that a fault in one application
cannot corrupt the state of another application. In my thesis, I put the focus on the
issue of memory protection, but get back to the topic of temporal isolation where
close correlations exist.

1.2 Problem Statement and Proposed Solution

The hardware-based memory protection mechanism based on the use of an MPU is not
optimal for all applications. The first obvious reason is that the chosen microcontroller
needs to be equipped with an MPU, which is not the case for many low-cost chips.
From the STM32F1 line discussed above, only eleven of 94 derivates in the upper-
quarter price segment come with an MPU, of which the cheapest costs 11.76e
(STM32F103VFT6, 768 KiB ROM, 96 KiB RAM). The need for an MPU therefore
constrains the available choice to few higher-end derivates, which is problematic in
cost-sensitive application domains. Besides this economic downside, there are further
problematic aspects associated with spatial isolation established by an MPU with
respect to flexibility, the granularity of protection provided and the required developer
expertise.

An alternative to using a hardware unit to achieve spatial isolation is purely software-
based memory protection. There are various software-based techniques to establish
spatially isolated applications that address many of the drawbacks of using an MPU,
but none of these have so far considerably been adopted by the embedded industry.
Although software-based approaches provide benefits over MPU-based protection in
many aspects, they also have disadvantages in other aspects, for example execution
time overhead or less robustness with respect to transient hardware errors. A more
detailed discussion of the properties of different hardware- and software-based memory
protection techniques follows in Chapter 2.
With both hardware- and software-based mechanisms offering advantages over

the other in some aspects, it is not possible to generally choose one technique as
the superior one. The choice for a spatial isolation mechanism depends on many
factors, some of which depend on the application, such as the overhead that a
particular mechanism imposes for a particular application. In addition, even for a
given application, the choice for a spatial isolation mechanism may depend on external
factors, for example the same application might be deployed in different environments
with varying safety requirements or different degrees of electromagnetic interference
(EMI). There may also be constellations where a combination of hardware- and
software-based memory protection may be sensible or necessary to meet the given
safety requirements. To determine the best-suited option for a given scenario, not
only the qualitative aspects need to be considered but also the quantitative cost of
the different alternatives. The evaluation of the quantitative cost is only feasible if
switching between the alternatives is easily possible and can be performed for the
cost determination.
The aim of this thesis is to design, implement and evaluate a framework for the

4

1.3 Broader Scope of this Work

domain of safety-critical, deeply embedded systems that supports hardware-based
memory protection using an MPU and software-based memory protection based on the
type-safe language Java and a multi-JVM concept. The decision for these mechanisms
is explained in Section 2.5. The framework achieves the following objectives:

Fine-Grained Configurability: The framework allows selecting from hardware- and
software-based memory protection without needing to change the code of the
application, thereby allowing to easily switch to the best suited mechanism as
the external requirements or the characteristics of the application change. This
thesis also explores further graduations of the two mechanisms to allow a more
fine-grained trade-off between cost and the degree of protection provided.

Mixed-Mode Operation: To support the integration of applications with different
characteristics while using the best-suited memory protection mechanism for
each, the framework allows the coexistence and combination of different spatial
isolation mechanisms in one system configuration.

Soft Migration: A huge base of legacy code exists in the industry. Only a minor part
of the application code is newly developed for a new product, most is reused
from the existing code [48]. To make a transition to Java feasible, this thesis
explores the typical properties of deeply embedded applications. The developed
framework supports the reuse of portions of legacy code and the transition at a
manageable level, although not all the benefits of the framework are available
for legacy code parts.

Support Quantitative Evaluation: To support the identification of the best-suited
protection mechanism for a given application, the framework supports the
evaluation of the cost imposed by each mechanism. This is implicitly enabled by
the goal of configurability that easily allows switching between the mechanisms
to measure the cost imposed by each.

1.3 Broader Scope of this Work

Although the electronic control units in the automotive sector are used as a motivating
example in the previous section, the work presented in this thesis applies to many
other fields of embedded systems as well, whereby the market conditions and technical
requirements may vary moderately between the different fields. Mixed-criticality
systems where software components of differing safety-criticality are integrated on one
system in a manner that does not require the non-safety relevant parts to be verified
using the same time-consuming and costly processes as the safety-critical parts are
an active research topic in other fields such as aerospace as well. In fact, later in this
thesis an avionic application is used as a running example, mainly due to the lack of
availability of an equally comprehensive automotive application. The used hardware
and system software are the same as used in the automotive context, however, and

5

1 Introduction

the requirements of the application concerning resources and safety-criticality are
equally – if not more – stringent, than that of a safety-critical automotive component.

1.4 Structure of this Thesis

The remainder of this thesis is structured into the following chapters:

Chapter 2 presents and discusses properties of both hardware- and software-based
techniques for establishing spatial isolation. The discussion is concluded by
the choice of hardware-based protection using an MPU and software-based
protection on the base of a multi-JVM, which show to be the most suited for the
targeted domain of safety-critical embedded systems. In addition, Chapter 2
also reviews more broadly related approaches that aim at providing memory
safety or spatial isolation with a focus on the domain of embedded devices.

Chapter 3 analyzes which properties of spatial isolation are required – and which
are not – in the context of the safety-critical embedded field, and based on
these properties develops a suitable application and isolation model that defines
different levels of protection and lays the base for the developed framework.
In addition, an example application is introduced that is consistently revisited
throughout this thesis. Finally, I investigate how the two chosen isolation
mechanisms map to that model.

Chapter 4 develops the design and architecture of the framework. The focus in this
chapter is on the configurability that allows choosing between, mixing and
combining the two chosen isolation mechanisms in a single system.

Chapter 5 studies the step-wise migration on the basis of components to the developed
framework. To enable the interaction of legacy and migrated components, the
most widely spread communication idioms found in legacy embedded code are
identified and integrated into the framework.

Chapter 6 shows that the developed framework achieves the objective of allowing
the easy and direct comparison of the cost imposed by the different isolation
techniques by performing such a comparison at the example of the control
software of a quadrotor helicopter. In addition, I evaluate quantitative aspects
of the framework itself, including an evaluation of the overhead imposed by
using Java as a language instead of C or C++ for the targeted type of embedded
applications.

Chapter 7 wraps up the content of the thesis and concludes with the major findings
and contributions of the presented work, and discusses possible directions for
future work.

6

1.5 Own Publications Related to this Thesis

1.5 Own Publications Related to this Thesis
Parts of the ideas and results discussed in this thesis have previously been published.
The following is a list of these publications:

[114] M. Stilkerich, C. Wawersich, W. Schröder-Preikschat, A. Gal, and M. Franz. „OS-
EK/VDX API for Java.“ In: Proceedings of the Linguistic Support for Modern Operating
Systems ASPLOS XII Workshop (PLOS ’06). (San Jose, CA, USA). New York, NY,
USA: ACM Press, Oct. 2006, pp. 13–17. isbn: 1-59593-577-0. doi: 10.1145/1215995.
1215999

[124] C. Wawersich, M. Stilkerich, and W. Schröder-Preikschat. „An OSEK/VDX-Based
Multi-JVM for Automotive Appliances.“ In: Embedded System Design: Topics, Tech-
niques and Trends. (Irvine, CA , USA). IFIP International Federation for Information
Processing. Boston: Springer-Verlag, 2007, pp. 85–96. isbn: 978-0-387-72257-3

[111] M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. „Memory Protection at
Option.“ In: Proceedings of the 1st Workshop on Critical Automotive Applications:
Robustness & Safety. (Valencia, Spain). New York, NY, USA: ACM Press, 2010, pp. 17–
20. isbn: 978-1-60558-915-2. doi: 10.1145/1772643.1772649

[110] M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. „Gradual Software-Based
Memory Protection.“ In: Proceedings of the Workshop on Isolation and Integration for
Dependable Systems (IIDS ’10). (Paris, France). New York, NY, USA: ACM Press,
2010. isbn: 978-1-4503-0120-6

[119] I. Thomm, M. Stilkerich, C. Wawersich, and W. Schröder-Preikschat. „KESO: An
Open-Source Multi-JVM for Deeply Embedded Systems.“ In: JTRES ’10: Proceedings
of the 8th International Workshop on Java Technologies for Real-Time and Embedded
Systems. (Prague, Czech Republic). New York, NY, USA: ACM Press, 2010, pp. 109–
119. isbn: 978-1-4503-0122-0. doi: 10.1145/1850771.1850788

[36] C. Erhardt, M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. „Exploiting Static
Application Knowledge in a Java Compiler for Embedded Systems: A Case Study.“
In: JTRES ’11: Proceedings of the 9th International Workshop on Java Technologies
for Real-Time and Embedded Systems. (York, UK). New York, NY, USA: ACM Press,
2011, pp. 96–105. isbn: 978-1-4503-0731-4. doi: 10.1145/2043910.2043927

[112] M. Stilkerich, J. Schedel, P. Ulbrich, W. Schröder-Preikschat, and D. Lohmann. „Es-
caping the Bonds of the Legacy: Step-Wise Migration to a Type-Safe Language in
Safety-Critical Embedded Systems.“ In: Proceedings of the 14th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC ’11). (New-
port Beach, CA, USA). Ed. by G. Karsai, A. Polze, D.-H. Kim, and W. Steiner.
IEEE Computer Society Press, Mar. 2011, pp. 163–170. isbn: 978-0-7695-4368-0. doi:
10.1109/ISORC.2011.29

[118] I. Thomm, M. Stilkerich, R. Kapitza, D. Lohmann, and W. Schröder-Preikschat.
„Automated Application of Fault Tolerance Mechanisms in a Component-Based System.“
In: JTRES ’11: Proceedings of the 9th International Workshop on Java Technologies
for Real-Time and Embedded Systems. (York, UK). New York, NY, USA: ACM Press,
2011, pp. 87–95. isbn: 978-1-4503-0731-4. doi: 10.1145/2043910.2043925

[113] M. Stilkerich, I. Thomm, C. Wawersich, and W. Schröder-Preikschat. „Tailor-Made
JVMs for Statically Configured Embedded Systems.“ In: Concurrency and Computation:

7

http://dx.doi.org/10.1145/1215995.1215999
http://dx.doi.org/10.1145/1215995.1215999
http://dx.doi.org/10.1145/1772643.1772649
http://dx.doi.org/10.1145/1850771.1850788
http://dx.doi.org/10.1145/2043910.2043927
http://dx.doi.org/10.1109/ISORC.2011.29
http://dx.doi.org/10.1145/2043910.2043925

1 Introduction

Practice and Experience 24.8 (2012), pp. 789–812. issn: 1532-0634. doi: 10.1002/cpe.
1755

8

http://dx.doi.org/10.1002/cpe.1755
http://dx.doi.org/10.1002/cpe.1755

2
State of the Art

In this chapter, I present and discuss both established and academic techniques
to achieve memory protection suitable for achieving fault-containment for memory
access errors, and operating system architectures with protection facilities that build
upon these mechanisms. Concluding the discussion, I select one hardware- and one
software-based mechanism that I pursue further in this thesis.

2.1 Levels of Memory Protection
Memory protection can be applied at different degrees. Two basic levels that can
be distinguished are the sandboxed execution of untrusted code as opposed to the –
potentially trusted – execution of memory-safe code.

2.1.1 Sandboxing

The sandboxed execution of code focuses on faults in potentially untrusted code.
Sandboxing does not detect semantic errors in the executed code, such as out-of-
bounds array accesses (or, more generally, buffer overflows), use of uninitialized values,
or accesses to dead stack frames, except where these accesses would impact other
applications’ data. What faults are detected by a sandboxing approach varies for
different techniques. Some would, for example, detect memory access errors that
address unused portions of the address space, whereas others would silently ignore the
error. Another common trade-off is the detection of errors versus the simple masking.
In the former case, a memory access outside the memory area of the sandboxed
application raises an error, whereas in the latter case the sandbox merely ensures
that such accesses cannot happen, for example by applying a bitmask to all memory
addresses prior to dereferencing that ensures that the access is within the application

9

2 State of the Art

memory. The basic guarantee common to all sandboxing approaches is that memory
access errors of one software component do not affect the data of other software
components, which is sufficient to provide spatial isolation.

2.1.2 Memory Safety

As opposed to sandboxing, where executing the code in a controlled environment
contains the defects of potentially untrusted code, memory safety is a property of
code that guarantees that the code itself does not use memory in an unsafe way. The
term memory safety has often been used in the literature without a uniform definition
of the guarantees given by such code. One definition [3] given by Aiken, Fähndrich,
Hawblitzel, Hunt, and Larus (Microsoft Research) in the context of the Singularity
project is the following:

Memory safety ensures the validity of memory references by preventing
null pointer references, references outside an array’s bounds, or references
to deallocated memory.

Other projects that define approaches to produce memory-safe code may vary in
the safety properties provided. A common exclusion is the absence of references
to deallocated memory (that is, dangling pointers/references). In the discussion of
related approaches later in this chapter I point out what memory-safety properties a
particular approach has.
Memory safety by itself does not provide strict spatial isolation and ensure the

containment of logical faults, however, two memory-safe components can be spatially
isolated by eliminating shared data, given that the memory safety is complete with
respect to the above definition.

2.1.3 Type Safety

A property at the level of the programming language that is closely related to memory
safety is type safety. The same authors [3] as above define it as:

Type safety ensures that the only operations applied to a value are those
defined for instances of its type.

Concerning the memory accesses of a program, type safety provides many of the
properties of memory-safe code, for example, dangling references must not exist (or be
used) in a type-safe program. While null pointer dereferences or out-of-bounds array
accesses are commonly not considered to be type errors, these errors are practically
avoided (or detected) by any type-safe programming language (or its runtime system).
Thus in practice, the code generated from a program written in a type-safe language
is also memory safe, even though most type-safe languages need to check for some
error conditions at runtime.

10

2.2 Comparison Criteria

2.2 Comparison Criteria
In the following, I present both hardware- and software-based techniques to establish
memory protection and review their suitability for use in the domain of deeply
embedded, low-cost and real-time systems. My review takes the following criteria
into account, which are discussed in detail in the text and summarized in Table 2.1
on page 32. For space reasons, the criteria are abbreviated in Table 2.1. The criteria
are:

HW Req Hardware requirements of the approach, by availability in typical microcon-
trollers for the target domain.
‘ No special hardware needed
l Commonly available hardware needed
a Hardly existent hardware needed

Flex Flexibility and granularity of the protection, incorporating the size and provided
maximum number of memory regions protected.
‘ Granularity of language-level objects in sufficiently large numbers
l Coarse-sized regions in sufficiently large numbers
a Few, coarse-sized regions

Leg Code Effort needed to adapt legacy code, which is assumed to be present in the
form of C source code.
‘ No modifications necessary
l Moderate (up to 10 %) changes to existing code needed
a Considerable code refactoring or rewriting required (exceeding 10 %)

Cost Average cost in execution time or memory of using the protection approach in
relation to a plain C application that executes fully privileged. The higher of
the average CPU versus memory cost is considered.
‘ Negligible (up to 10 %)
l Moderate (up to 50 %)
a Intolerable (exceeding 50 %)
This classification is based on the spectrum of the actually published overheads
to provide a gross diversification. In cost-sensitive domains, added costs of up
to 50 percent are considered intolerable as well.

Fast IDC (Inter-Domain Communication) Supports fast communication among spa-
tially isolated protection domains. Shared memory areas are excluded from this
consideration, given that they present an exception to the isolation.
4 Supports fast IDC

11

2 State of the Art

6 Does not support fast IDC

N/A Not applicable, or no numbers published

EMC Robustness of the spatial isolation with respect to transient hardware faults,
for example bit flips in memory caused by electromagnetic interference. Rating
based on the protection-relevant context stored in memory.

4 Negligible risk, only few words of protection context in memory

6 Considerable amount of protection-related context in memory

Prot Level Level of protection provided, as discussed in Section 2.1

Pred Predictability of the mechanism, assessing its suitability for the use in real-time
systems. Based on whether the worst-case execution time of a program can
differ heavily from the average caused by external factors such as the presence
of other programs, particularly on the state of caches. Caches not related
to memory protection are not considered, as these need to be incorporated
independent of the protection technique.

4 The execution time is mostly independent of that of other programs.

6 Predicting the worst-case execution time of a program under the respective
protection approach either requires sophisticated analyses that are not
commonly available or yields impractically high worst-case estimates.

CPU Prot Whether the approach provides timing protection (that is, prevents monop-
olization of the CPU by one application)

TCB Size Size of the code base that needs to be relied on for the protection to work
correctly.

‘ Simple mechanism, typical implementations less than 100 lines of code

l Relies on a verifier that performs simple program analyses

a Requires the correct function of a full compiler or involves complex whole
program analyses

It should be noted that Table 2.1 is only meant to provide a coarse overview. The
ratings are not directly comparable for various reasons. Published results are based
on different test or benchmarks applications, often rooted in diverse target domains
and with differing characteristics. The coarse rating may also conceal large deviations,
for example relative costs of 60 percent and 1000 percent are both equally rated as
unacceptable. In few cases, no data is published for a particular criterion and the table
instead contains a personal estimate based on data of similar approaches. Nevertheless,
the overview should be sufficiently accurate to rate the various approaches.

12

2.3 Hardware-Based Memory Protection Approaches

2.3 Hardware-Based Memory Protection Approaches

Hardware-based memory protection mechanisms build on special hardware mecha-
nisms that check every memory access instruction for compliance with the memory
protection policy enforced by the particular unit. Commonly, read, write and exe-
cution permissions can be granted for portions of the memory. While the way the
memory is organized differs among the different approaches, there are some similarities
common to all implementations.

Although the memory accesses are fully checked by the hardware, software is always
needed that configures the protection hardware in a way that sets up the appropriate
memory access permissions for the currently executing code. This software is part of
the operating system. For the protection to be effective, the application that is subject
to memory protection should not be able to change the configuration of the protection
hardware1. The code responsible for managing the protection hardware thus needs
to be granted additional access privileges compared to the regular application code.
A processor that is equipped with memory protection hardware therefore needs to
provide at least two privilege levels, often referred to as the supervisor mode and
the user mode of the execution. Only code executing in supervisor mode is allowed
to modify the configuration of the protection hardware. In addition, the processor
needs an exception mechanism that can be used by the protection hardware to signal
violations of the configured protection concept, such as the attempt to execute a
privileged instruction from user mode or a memory access that violates the setup
protection, and enables handling of such error conditions by the privileged memory
management software. Finally, a mechanism for the controlled transition between the
privilege levels is needed. For the latter, most processors provide a distinct supervisor
call instruction that raises a special exception and transfers control to the operating
system.

2.3.1 Coarse-Grained Approaches Without In-Memory Data Structures

2.3.1.1 Region-Based Memory Protection Unit

A memory protection unit (MPU) establishes range-based memory protection. The
basic principle is that a number of address ranges (regions) of the physical address
space can be assigned particular access rights. Memory accesses are only allowed to
the defined regions with permissions appropriate for the respective access. Despite
sharing this simple principle, concrete implementations differ. For example, the
heterogeneous MPU of the Infineon Tricore TC1796 microcontroller provides two sets
of region registers, with two code and four data regions each. Execute permissions can
be granted only on code regions, whereas read and write permissions are only available
for data regions. If multiple overlapping regions contain an address, the combined

1Some approaches that target trusted – but potentially buggy applications – do deliberately not
prevent the applications from modifying the protection hardware, trading improved efficiency for
a slightly increased risk of memory corruption.

13

2 State of the Art

rights of all involved regions are effective for the address. The optional MPU of ARM
Cortex-M3 processors is a homogenous MPU that supports eight regions usable for
both code and data. However, whereas the Tricore’s MPU allows defining regions for
arbitrary ranges, the MPU of the Cortex-M3 requires regions to be of a size that is a
power of two with a minimum size of 32, and the start address of the region to be
aligned to its size. For overlapping regions, rights do not accumulate but the regions
are ordered and the first matching region according to that order is effective.

2.3.1.2 Segmented Memory

Segmented memory is similar to the region-based protection using an MPU in that
each segment is defined by a base address, a length and access rights, but segmented
memory additionally involves address translation. The hardware unit is called a
memory management unit (MMU) and may provide additional memory management
functionality beyond the scope of protection. The addresses used by the program
are offsets into a particular segment. On address translation, the offset is checked
against the segment’s length and the permissions of the segment are checked with the
type of memory access. If both tests succeed, the offset is added to the segment’s
base address to determine the physical memory address. In addition to the direct
translation, segmented memory can also be combined with paged memory.

2.3.2 Caching Approaches with In-Memory Data Structures

2.3.2.1 Page-Based Memory Management Unit

In a page-based memory organization, the address space is organized in pages of
a fixed size. Typical page sizes are in the range of 1–64 KiB. As with segmented
memory, the hardware unit is called an MMU and provides additional, non-protection
related functionality. The most notable one is address translation on a per-page basis.
The address mapping is defined in the page table, an in-memory data structure that
contains the physical address and permissions for each page, and possibly additional
attributes not related to memory protection. Commonly, a multi-level page table is
used to reduce the size of the page table. A page table is defined for each protection
realm. To avoid expensive memory lookups in the page table on each memory access,
the MMU is equipped with a fast, fully-associative cache that holds recently used
page table entries, the translation look-aside buffer (TLB). Typical TLB sizes are
in the range of up to 1024 entries. The optional MMU in the Tricore architecture
specifies a TLB with a capacity of 4–128 entries. Some MMUs handle a TLB miss
and the following page-table lookup in hardware (for example, x86), whereas others
(for example, Tricore) leave the management of the TLB to the operating system.

2.3.2.2 Mondrian Memory Protection

Mondrian [126] memory protection (MMP) is a hardware implementation that allows
defining memory access permissions at the granularity of single memory words. MMP

14

2.3 Hardware-Based Memory Protection Approaches

supports an arbitrary number of segments of variable length for that permissions
can be specified. The central data structure used by MMP is the permission table,
comparable to the page table used in page-based memory management, but restricted
to only contain protection-related data. Mondrian uses a two-stage cache concept: At
the first level, a so-called side-car register accompanies each of the processor’s address
registers. The side-car register caches the access permissions for the segment used in
the last memory access addressed using the respective address register. The second
level is the permissions lookaside buffer that caches entries of the permission table
similar to the TLB in MMU implementations, with a typical capacity of 64 or 128
entries. Based on Mondrian is Mondrix [127], a variant of the Linux kernel that uses
Mondrian to isolate kernel modules. Mondrian has so far only been implemented and
evaluated in simulators. For Mondrix, a modified version of the Bochs x86 simulator
was used.

2.3.2.3 UMPU: Software-Fault Isolation in Hardware

Kumar et al. presented a hardware extension [66] called UMPU to an AVR ATmega103
8-bit microcontroller that implements the runtime checks required for a software-based
fault isolation approach (Section 2.4.1.1), specifically Harbor [65], in hardware. The
mechanism supports one trusted and up to seven untrusted protection domains. A
part of the memory is reserved for the use by the untrusted domains and organized
in blocks of a fixed, configurable size. The authors used a block size of eight bytes
in their experiments. For each of these blocks, the domain ownership is tracked in
the memory map, an in-memory data structure containing four bits for each block.
To provide fault containment of memory access errors, the store instruction of the
processor is extended to check in the memory map whether the accessed block belongs
to the currently active domain, which is tracked in a separate processor register. To
enable inter-domain communication, each domain can statically export a jump table
of code entry points in a designated flash page. When another domain calls one
of the exported functions through the jump table, the active protection domain is
changed to that of the exporting domain and execution continues at the exported entry
point. Upon return, the previous domain is restored. For this, the call and return

instructions of the architecture have been modified. A single runtime stack is used for
all domains. The stack resides in a memory area that is not in the range managed
by the memory map. To avoid stack corruptions among domains, a separate stack
bound register is used, that contains the current lower limit of the upward-growing
stack. This bound is updated in the call and return instructions, and inspected by
the store instruction to avoid stack corruption. Return addresses are managed on a
separate safe stack to provide control flow integrity [1].
It is not entirely clear what happens if an illegal store operation is encountered.

This is an interesting issue as the AVR architecture does not provide a mechanism
for the processor to signal synchronous exceptions. The published text [66] suggests
that such illegal writes are simply not performed without signaling the exception
condition.

15

2 State of the Art

2.3.2.4 HardBound

HardBound [33] is a hardware extension to directly support fat pointers in the
processor. A fat pointer is a pointer enriched by the base address and the bounds of
the referenced object. HardBound is an academic project and has been evaluated by
extending the Simics [73] full system simulation of an x86 processor. The processor is
extended by a new unprivileged instruction setbound, which can be used to define
the base address and bounds information for an address stored in a register. The
processor subsequently checks all memory accesses to be within the bounds of the
used pointer. HardBound is a mechanism that works at the user-level and is not
sufficient for providing spatial isolation, as it does not provide full memory safety as
defined above (in particular, it is only safe in the absence of dangling pointers).
To store the bounds information for an address, HardBound uses two in-memory

data structures. The shadow space stores the base and bounds information for an
address in a separate memory region to retain the internal pointer representation for
compatibility reasons. The location where the base and bounds information for an
address are stored can be computed from the address value. HardBound assumes a
page-based address management that allocates pages for the shadow space on demand.
To avoid the allocation of a shadow space twice the size of the program’s data space,
HardBound manages a second in-memory data structure that contains a bit for each
memory word to mark whether the word contains a pointer, or not, the tag metadata
space. Fat pointer metadata in the shadow space is only allocated for pointers.
The fat pointer’s meta data not only needs to be accessed for every load or store

instruction, but also for many other CPU instructions to correctly propagate the
bounds information, for example in addition or subtraction instructions for supporting
pointer arithmetic. To reduce the number of memory accesses, HardBound implements
an additional first level cache, the tag metadata cache, to cache blocks of the tag space.
To further reduce the size of the shadow space, the authors present various alternative
approaches to compressed pointers, encoding bounds information for common object
in additional bits in the tag metadata space or unused bits in the pointer value itself.

The software must properly initialize the bounds information. In their experiments,
the authors of HardBound extended the C library’s dynamic allocation function
malloc() to properly set the bounds information. For statically allocated objects and
stack objects, a C compiler was modified to initialize the bounds whenever a pointer
to such an object is created. Propagation of the bounds information when passing
the pointer or doing pointer arithmetic is completely handled by the processor. The
authors performed an evaluation by counting the micro operations performed by
the CPU with and without the HardBound extension. The runtime overhead for a
benchmark suite is five to nine percent on average for different variants of compressed
pointers, with peaks of up to 23 percent for some applications. These numbers
assume that bound checking can be implemented in hardware without increasing the
time required for the affected processor instructions. An additional evaluation that
counts an additional micro operation for each bound check of an uncompressed pointer
increases the average runtime overhead by three to ten percent. The memory overhead

16

2.3 Hardware-Based Memory Protection Approaches

was compared by counting the number of pages allocated for the application. The
average overhead of additionally allocated pages is from ten to 55 percent on average
for different compression schemes, with up to 200 percent for some applications.

2.3.3 Discussion

None of the academic approaches is built into a commercially available processor.
MMUs are rarely found in embedded processors. Of the Tricore family, only the
TC1130 is equipped with an MMU [77]. The reasons are manifold: The MMU in
the ARM7TDMI processor increases its area tenfold and its power consumption
twofold [66]. The comprehensive in-memory data structures that hold the memory
access permissions result in vulnerability with respect to transient hardware errors that
can break address mappings and permissions. The cache used to achieve acceptable
runtime cost impairs the predictability and worst-case execution time analysis cannot
predict the cache states in the presence of multiple threads. Assuming a cache miss on
every memory access is impractically pessimistic. A case study [52] that investigates
several MMU designs finds that the overhead to the virtual memory system is in
the range of ten to 30 percent. The published runtime overheads for the scientific
approaches are in the same range. The in-memory data structures also add to the
memory footprint of the program, the more the finer the granularity of protection.
For HardBound, the reported memory overheads are up to 200 percent. It should be
noted that of the scientific approaches only UMPU was designed for the embedded
domain, albeit not for real-time applications.

From all hardware protection units, MPUs are the most common in processors for
the deeply embedded and real-time systems for their simple design and predictable
runtime behavior. Nevertheless, as outlined in Section 1.2, MPUs are not available in
the low-cost segments of microcontroller product lines. The limited number of regions
constrains the flexibility and may not be sufficient for all applications, especially if
the operating system grants temporary access to some memory areas in the course of
inter-domain communication such as messaging. The application needs to organize
its data physically grouped in memory to achieve a small number of memory regions,
which may require changes to legacy applications. The small number of regions may
also impair the ability to use special memory types (for example, fast but small on-chip
memory versus slower but larger external memory) for parts of its data if that required
an additional region that may not be representable in a static MPU configuration.
Execution time overhead occurs when the protection realm needs to be changed,
that is, when communicating with another software component or when invoking a
system call. The mechanism may therefore be expensive for communication-intensive
applications. Concerning the robustness with respect to transient hardware faults
(bit-flips), MPU protection is robust as the protection registers are normally hardened
against radiation. While the region settings for inactive tasks are stored as part of
the task context in RAM and thus subject to transient faults, the statistical risk of a
bit flip affecting a saved protection context is low and acceptable. MPU protection
does not introduce any source of indeterministic behavior and is thus suitable for the

17

2 State of the Art

Intermediate
Code

Machine Code

Source Code

Compiler

G
eneric Applicability

Ef
fic

ie
nc

y/
Le

ve
l o

f S
af

et
y

language level

compiler level

ISA level

Figure 2.1: Levels at the Software-Based Memory Protection Mechanisms Take Effect

use in real-time settings. An operating system can virtualize the MPU, simulating
an MPU with an (almost) arbitrary number of regions, which is for example done
by Hightec’s PXROS-HR operating system, allowing a more flexible MPU use by
the application. This virtualization comes at the price of reduced predictability and
potentially high overhead for certain usage patterns that collide with the operating
system’s region replacement strategy.
In a nutshell, MPUs are the only hardware memory protection units that are

reasonably available in low-cost microcontrollers. This is for good reasons, as MPUs
provide low-cost and low-overhead memory protection that is suited for cost-sensitive
markets. The simplistic design and the robustness with respect to transient hardware
faults make MPU-based protection easily verifiable and therefore a good choice
for safety-critical applications. Finally, the absence of caches and in-memory data
structures results in deterministic behavior that does not increase the complexity of
worst-case execution time analysis, thus MPUs meet the requirements of real-time
applications.

2.4 Software-Based Memory Protection Approaches
Software-based approaches provide memory-safe code to varying degrees without
requiring a hardware protection unit. The available software-based approaches are
manifold. Many approaches build on the same underlying concept, however. The
approaches can coarsely be classified by the level at that they provide memory
safety. Figure 2.1 shows these levels: Language-level approaches build on a safe
programming language that constructively provides memory safety at the source code
level. Following in the code generation process is one or more compilation processes.
Compiler-level approaches work on the intermediate representation of the compiler and
analyze and transform it in such a way that the output of the transformation is memory

18

2.4 Software-Based Memory Protection Approaches

safe. Though working on the compiler’s intermediate representation is theoretically
independent of the source-level programming language, the transformations commonly
assume certain properties that are implied by properties of the programming language,
or place other restrictions on the input code. The transformation may fail with the
rejection of the program if these expected preconditions are not met, or the analysis
fails to prove that the input meets the expected constraints. At the final stage,
a binary image containing executable machine code of the target instruction-set
architecture (ISA) is produced. ISA-level approaches transform a binary image in a
way that ensures memory safety.

The lower the level an approach hooks in the more general it can be applied.
While language-based approaches mandate the use of a particular programming
language, compiler-level approaches only require the use of a special compiler and
binary-level approaches are theoretically entirely independent of the used language
and toolchain. On the other hand, as source code is transformed to machine code,
with each step down the toolchain information is lost and fewer assumptions can be
made on properties of the program code without limiting generality. In the remainder
of this section, I discuss software-based approaches categorized by these three levels,
starting bottom up with binary level approaches.

2.4.1 Instruction-Set-Architecture-Level Approaches

2.4.1.1 Software-Based Fault Isolation

Software-based fault isolation (SFI) [122] provides sandboxing of application modules
by patching the binary code so that all critical machine instructions are replaced by a
more elaborate routine that checks whether the operation complies with the guaranteed
safety model before executing it. The original approach aimed at isolating closely
coupled software modules for which hardware-based memory protection incurred
too high cost, caused by the context switching overhead in frequent communication
between modules, for the example the sandboxed execution of third-party program
plugins. The common concept is that each isolated entity has own code and data
segments, and each critical operation (for example, store, jump) is patched to a
checked version.

The original implementation by Wahbe et al. [122] is actually a compiler approach,
as their prototype has been implemented by modifying the GCC compiler and therefore
benefits from extended code transformation capabilities available at that stage. The
motivation of the original approach is not to avoid the need for a hardware unit but
to avoid the communication cost implied by using it. Two mechanisms are discussed:
Segment matching detects faulty memory accesses by preceding each critical operation
with a check for the address. The implementation requires four reserved registers
that are not used by the normal application code and therefore a modified compiler.
Sandboxing only ensures that the target memory location is within the segment of
the running module by inserting code that patches the upper address bits to point to
the segment but without checking it, requiring only two dedicated registers.

19

2 State of the Art

In the embedded systems context, particularly the wireless sensor networks (WSN)
community has picked up SFI as a research topic. WSN nodes are typically equipped
with very small (for example, AVR 8-bit) microcontrollers that provide no hardware
support for memory protection or unprivileged execution modes.

The t-kernel [43, 44] provides CPU protection by preemption, horizontal memory
protection that protects the kernel’s data from being modified by a faulty application
module, and virtual memory with swapping of heap pages to external flash. In a
process called naturalization, the t-kernel patches the binary code of the application at
load time. All branch instructions are modified so that the naturalized code yields the
CPU to the t-kernel frequently. Three types of virtual memory are distinguished: stack
memory, which is contiguous and not swappable, physical address sensitive memory
(for example, memory mapped device registers) that is not relocatable, and heap
memory that is both swappable and relocatable. The application is rewritten so that
every memory access for that the address is not known at the time of naturalization
is rewritten to a branch. The target code first determines the type of memory region.
Stack accesses are directly executed. Heap accesses may require the page to be
swapped in. Finding the page entry takes linear time. The t-kernel supports a single
application with a single thread only. The reported overhead is 50 to 200 percent for
execution time, and six to nine times code size expansion.

XFI [37] targets the isolated execution of pluggable program extensions in the
form of relocatable library code. Example applications include kernel extensions
and browser plugins such as a JPEG decoder. XFI rewrites the binary and inserts
inline runtime checks that ensure control-flow integrity [1] and that the module only
accesses the memory segments as defined by the object file format with constraints
also defined in the object file. XFI uses a separate stack for data that is accessed via
pointers and a scoped stack with integrity properties that holds directly addressed
values and return addresses. On the host system, a simple verifier, which is the
only trusted component, checks with the help of debug information that the module
fulfills the properties mandated by XFI and contains the proper runtime guards. The
published execution time overhead is five to 200 percent, with code expansion of up
to four times for some benchmark applications.

Harbor [65] is an SFI approach targeted at WSN that supports the isolation of mul-
tiple application modules on top of the SOS [47] sensor node operating system. Harbor
rewrites binaries offline but verifies them at load time. Harbor is a pure-software
implementation of the UMPU [66] protection model presented in Section 2.3.2.3. The
rewriter adds a runtime check to each memory store and control flow transfer function
that performs the same checks as the extended hardware instructions in the UMPU.
Harbor only ensures spatial isolation; it does not prevent monopolization of the CPU
by a faulty application like t-kernel. The overhead reported in [65] is an 8 times
slowdown for an FFT application and a 13.3 times slowdown for a memory intensive
buffer writer application. Code size expands by 30 to 60 percent in the rewritten
application modules.

20

2.4 Software-Based Memory Protection Approaches

2.4.2 Compiler-Level Approaches

At the next higher level in the toolchain are memory-safety approaches that work
in the compiler. As opposed to the binary-level techniques, the source code of the
application is required but no particular programming language is presumed, although
all approaches place some constraints on the input code. An advantage over the
lower-level approaches is that at the compiler level the code can be transformed in a
more general and efficient way. A simple example is that introduced runtime checks
can be executed inline, which is only possible with limitations when transforming
binary code, since branch targets may move as code is inserted. Updating the branches
to work for the new targets is not always possible, especially for indirect (computed)
branches.

2.4.2.1 Software-Based Segment Protection

Software-based segment protection [104, 18] is a compiler approach that aims to
provide the same type of memory protection that a region-based MPU (Section 2.3.1.1)
provides without the need for a hardware protection unit. The published implementa-
tion transforms the static single assignment (SSA) [31] form of the Low Level Virtual
Machine (LLVM) [68] compiler framework. The transformation adds runtime checks
to memory accesses that ensure that the access is within the bounds of the segment
that it is intended to access. The intended segment is determined by a whole program
analysis that collects for each pointer access all terminating definitions of that pointer
value. For each terminating definition, the segment is known. For each possible
intended segment, a runtime check is inserted that checks whether the actual value
of the pointer is that of the corresponding definition and then checks whether the
pointer is within the bounds of the segments. The implementation contains some
optimizations to reduce the runtime check overhead, most notably an optimization
that moves checks out of loops where the pointer value within the loop depends on
the loop invariant only and the minimum and maximum possible values are checked
before entering the loop. For a range of embedded benchmarks, the approach shows
attractive cost of less than one percent runtime and four percent code size on average.

2.4.2.2 Fail-Safe C

Fail-Safe C [83] is a source-to-source compiler for ANSI C programs. It aims at
providing memory safety for C programs without requiring modification of the original
code. The transformed code contains runtime type information for all memory blocks
and uses fat pointers and fat integers to support conversion between pointers and
integers. Accesses to memory blocks are redirected to access methods specific to the
runtime type of the memory block. Fail-Safe C does not target embedded applications
and does not support low-level code that accesses memory areas not allocated by the
runtime environment. The execution time overhead exceeds 1000 percent for some
benchmarks. Numbers of the memory overhead have not been published, but the use
of fat representations for all pointer and integer values and the fallback to allocating

21

2 State of the Art

twice the requested memory if the runtime type of a dynamically allocated block of
memory cannot be statically determined suggest that the memory overhead may be
significant.

2.4.2.3 SoftBound

SoftBound [80] is a software implementation of the fat pointer approach realized in
hardware by HardBound discussed in Section 2.3.2.4. It is implemented as a pass
in the Low Level Virtual Machine (LLVM) [68] compiler framework and transforms
LLVM’s intermediate static single assignment (SSA) [31] representation. The code is
instrumented so that base and bounds information for every pointer are carried with
the pointer. These properties are carried in separate variables that are allocated to
registers by the LLVM compiler in the same manner as regular program variables. The
properties are initialized at malloc() call sites from the malloc() return value and the
passed size parameter, or at locations where a pointer is created by using the address
operator, where the size of the referenced object is used. The intermediate code
is instrumented so that the bounds information is propagated and adjusted during
pointer assignments and arithmetic, and checked whenever a pointer is dereferenced,
or passed as a function parameter (for the latter, procedure cloning [29] is used to
create a clone function with an interface extended to include the pointer metadata as
additional parameters is created). SoftBound also supports optional pointer narrowing
where bounds of a pointer are narrowed if a reference to a subobject is created, which
detects subobject overflows but breaks compatibility with some code patterns where
a structure field has an actual size larger than its declared size. When pointers are
loaded from or stored to memory, the base and bounds are stored in a separate data
structure. Load and store operations are instrumented so that the pointer metadata
is loaded and stored as well. The location of the metadata of in-memory pointers
is computable from the pointer value. SoftBound has published average runtime
overheads of 93 percent for checking both loads and stores or 54 percent for store-only
checking, and memory overhead of up to 300 percent (average 87 %) in the used
benchmarks.

2.4.2.4 CCured

CCured [81, 28] is an extension to the type system of C that categorizes pointers into
different kinds to achieve memory safety using a combination of static whole-program
analyses and runtime checks. Safe pointers point to a single memory object of a static
type and are not subject to pointer arithmetic. A Safe pointer always contains a valid
address to an object of its static type or null, and dereferences of Safe pointers imply
a null check. Seq (sequence) pointers are 3-word fat pointers that point to a memory
area containing an array of objects of a static type. Pointer arithmetic is allowed on a
Seq pointer and dereferencing the pointer incurs a bound check. Wild pointers are the
only type that can be used in arbitrary type conversions. Wild pointers are two-word
fat pointers that contain a type tag in addition to the pointer value itself. In addition,

22

2.4 Software-Based Memory Protection Approaches

the memory area that a Wild pointer points to needs to be tagged with the size of the
area and information that allows determining for each word in the area whether it is
a pointer or not. Dereferencing a pointer incurs a type check to determine whether
the Wild pointer actually contains a pointer value, and a bound check. For writes,
the tag data of the affected word needs to be updated additionally. CCured performs
a source-to-source transformation on C code and implements a static whole-program
analysis to infer the best-suited pointer types from the unmodified C program. To
reduce the number of expensive Wild pointers in the program, CCured supports a
form of physical subtyping [21, 102] to support common subtyping design patterns
found in C code of larger projects. Briefly formulated, a type T is considered a physical
subtype of another type S if the physical memory representation of S is a prefix of that
of T, distinguishing different CCured pointer types and non-pointer types. CCured
supports upcasts and checked downcasts in a physical subtype hierarchy through a
fourth Rtti fat pointer type that tracks the actual type of the pointee object. The
type is initially set when the Rtti is created from a Safe pointer (upcast) and checked
when cast back to a Safe pointer (downcast). CCured has been evaluated at the
example of server applications and kernel modules and shows overheads of up to 90
percent. A conservative garbage collector is suggested for applications that require
dynamic memory management.

2.4.2.5 Memory Safe C

Dhurjati et al. presented a series of compiler techniques to achieve a strong level of
memory safety for essentially a type-safe subset of the C language. The approach [34]
has been given no particular name but is for brevity referred to as MSC-GC (Memory
Safe C without Garbage Collection) on the basis of the paper title. The approach
provides a level of memory safety close to type safety for the proposed C subset except
that it fails to prevent the use of dangling pointers. The restrictions posed on C are
briefly:

• Casts to pointer types are only allowed between pointers to primitive types
where the pointee type of the target needs to be of smaller or equal size as the
pointee type of the source.

• Unions may only contain types that are cast-compatible.

• Array indices must be a restricted linear expression that involves the array’s
size, constants and, with limitations, symbolic values.

• Pointers to stack locations must not be stored in global variables, heap objects,
or be returned from a function.

• Pointers must be initialized before being first used. A use includes taking the
address of the pointer.

• Pointers to arrays must not be loaded from global variables or heap locations.

23

2 State of the Art

The main goals of the approach are to avoid runtime checks entirely and to allow
the manual deallocation of objects. To achieve this, a hardware protection unit and
a reserved address range that is at least the size of the largest individual object
are needed. The base of this address range is used as the null address and thus
dereferences of a null reference are expected to raise a hardware exception. The
approach combines several static analyses to check the safety of the program. A
conservative escape analysis is used to ensure that no dangling pointers to stack
locations are created. Global pointers, heap memory and local pointer arrays are
initialized with the null value to prevent the use of uninitialized pointers. Dangling
pointers to deallocated objects are not avoided but the compiler ensures that the use
of a dangling pointer is no memory safety concern. For this, the compiler transforms
the code so that all heap objects are allocated from type-homogeneous memory pools.
This is similar to region-based memory management as in Cyclone [53] or scoped
memory in real-time Java [55] in that the memory of a region is reclaimed at one time.
Pools differ from regions in that they contain only objects of a single type and that
reuse is possible within the lifetime of the pool. MSC-GC implements an automatic
pool allocation transformation that automatically determines the memory pools and
transforms malloc() and free() operations in the program to the corresponding pool
operations. Therefore, a dangling pointer to a de- and reallocated object may exist,
however, the reallocated object has the same type and therefore a memory safety
violation is not possible by using the dangling reference (although it represents a
semantic error). MSC-GC has been evaluated using 20 small- to mid-size programs.
Since MSC-GC does not use any runtime checks, the only runtime overhead is caused
by the initialization of pointer values and the use of pool allocation instead of the
regular heap allocation. The overhead is therefore negligible with maximums of seven
percent, however, the pool allocation limits memory reuse and causes increased RAM
usage of up to 44 percent in some cases. The required changes to the source code
of existing applications are also minor in the sub-percent range. The downsides of
the approach are that the analyses only work on single-threaded applications and
that programs that the compiler fails to prove safe are rejected. Of the 20 benchmark
applications, one failed the conservative escape analysis, and nine were rejected
because the array uses could not be proven within bounds. The latter shows that the
given restrictions on array indexing are too restrictive for many programs. Runtime
null checks could be used to eliminate the need for a hardware protection unit. The
ability to inject runtime bound checks is limited due to the absence of runtime array
bounds information and only possible where the compiler is able to infer a symbolic
expression to compute the array bounds from runtime state available in the local
scope of the array access.

2.4.3 Language-Level Approaches

Approaches on the language level fundamentally build on properties of the program-
ming language to achieve memory-safe code, although the compiler and possibly a
runtime system are involved in establishing and maintaining this property as well.

24

2.4 Software-Based Memory Protection Approaches

An obvious requirement for using language-level approaches is that the source code
must be available in the respective programming language, a considerable hindrance
if legacy code needs to be reused. As a result, besides the lower-level approaches
discussed before, a fair amount of research aims at retrofitting the programming
language most widely used in legacy code (that is, C) to achieve memory safety while
requiring only modest changes to existing code.

2.4.3.1 Retrofitted Unsafe Languages

Cyclone [53] is a safe dialect of C that uses a combination of intra-procedural analyses,
interface annotations and runtime checks to provide memory safety for C programs
with an acceptable adaption effort for legacy code. In addition to the standard
C pointer type, whose semantics are restricted, Cyclone introduces two additional
pointer types designated by extra type symbols in the source code. Regular C
pointers (*-pointer) cannot be used in pointer arithmetic and are null-checked on
access. Never-null pointers (@-pointers) must never hold a null value. This invariant
is checked when the pointer is initialized rather when it is dereferenced. This allows
propagating null checks up the call graph, ideally to the source definition to statically
verify the never-null property without a runtime check. The third pointer type
is three-word fat pointers (?-pointer) with bounds information, the only type that
may be used in pointer arithmetic and on that dereferencing incurs a bound check.
To avoid dangling pointers to deallocated memory regions, Cyclone disables the C
free() function completely and suggests the use of a conservative garbage collector
or alternatively provides memory regions as a concept to memory management. A
region is a portion of memory that is deallocated as a whole. A region may contain
objects of different types and with different allocation times, but all are deallocated
at once. Cyclone implements a static region analysis [42] that determines a region
for each pointer used in the program and raises a compile time error if a pointer
outlives its region (for example, if a pointer to a local variable is returned from a
function). Cyclone allows programmer-defined growable regions that open a new
scope and special variants of some C library functions (for example, malloc()) that
allocated from such regions instead of the heap. Adopting a program to use regions
to substitute for heap-based allocation can pose considerable reengineering overhead.
The effort of porting legacy applications to Cyclone requires about ten to 20 percent
of the source lines to be changed. The runtime overhead imposed by Cyclone is up to
185 percent, no numbers have been published concerning the effect on the memory
footprint.

Deputy [27] is a sound system of dependent types for C. The type system enables the
developer to define dependencies between program variables in the form of program
annotations. As an example, the standard C function memcpy() could be annotated as
shown in Listing 2.1. With the count(n) expression the programmer annotates that
the bounds of the destination pointer d is [d; d+n), and analogously for the source
pointer and the returned pointer. Deputy’s compiler checks that these constraints
hold and inserts runtime checks where the static analysis fails to prove the constraints.

25

2 State of the Art

void *count(n) memcpy(void *count(n) d,void *count(n) s,size_t n)

{

while(n --> 0) d[n] = s[n];

return d;

}

Listing 2.1: Deputy Annotations for memcpy()

To reduce the amount of annotations that need to be provided by the programmer,
Deputy infers missing annotations for local variables. In case the inference algorithm
fails Deputy raises a compile-time error and the programmer needs to manually add
the annotation. Similar to the never-null pointers in Cyclone, the expression of type
invariants at interfaces allows propagating the check of the invariant back to the
source without requiring an inter-procedural analysis. The compiler also checks (or
inserts appropriate runtime checks) that type invariants are not invalidated when
a variable that other types depend on is modified. Deputy does not check memory
deallocations and dangling pointers can impact the soundness of the dependent type
system. The required changes to the code of existing applications are reported to be
in the single percent range and therefore fewer than those required for Cyclone. The
runtime overhead for a variety of benchmarks is one to 98 percent. Deputy has been
used to implement memory-safe Linux device drivers in the SafeDrive [128] project
and is also the basis for a safe variant [30] of the sensor network operating system
TinyOS. To address the issue of dangling pointers, Deputy has been combined with
HeapSafe [40], a reference counting scheme to check the sound use of free at runtime,
but requires additional source code modifications and adds additional overhead (11 %
execution time, 13 % RAM on average).

2.4.3.2 Type-Safe Languages

Type-safe languages provide strong type safety by proper language design and a
supporting runtime environment. The key concept in a type-safe language to provide
memory safety is that of the unforgeable, strongly typed reference, which represents
a capability at the language level to access an area of memory in limited ways as
defined by the type associated with the reference. There may be additional memory
regions such as stack variables accessible to the program, but the management of such
areas is under full control of the runtime system. A combination of language design
and runtime checks ensures that the type safety is maintained. The types of runtime
checks needed depend on the actual language. Common checks include checks of
potentially unsafe type conversions (for example, downcasts), null reference checks
before dereference operations and array bound checks to avoid buffer overflows. While
null dereferences and out-of-bounds array accesses are not commonly considered as
type errors, failure to avoid these errors would normally affect the soundness of the
type system and need therefore be avoided.
Ada, C#, Java, Lisp, and Standard ML are some examples from the multitude of

26

2.4 Software-Based Memory Protection Approaches

programming languages providing strong type safety, and type safety is a property of
almost any new programming language that is being developed. In the embedded
context, type-safe languages have not broadly been adopted yet, compared to the
spread of C. Besides the existence of legacy code, type-safe languages face a conflict
between the language restrictions that make the language type safe and the ability to
write low-level programs such as device drivers, which is a common need in embedded
programs. Currently, Ada is probably the type-safe language that is most widely used
in embedded code, however, due to the higher availability of trained programmers
there is currently a shift towards Java in these communities [82].

Java has been widely adopted in many computing domains from server and desktop
applications down to less resource-constrained embedded systems such as mobile
phones and is nowadays part of most training or academic education programs that
teach software development. Java is backed by an active research community and
many efforts have been taken to overcome Java’s limitations with respect to resource-
constrained embedded systems. The real-time specification for Java (RTSJ) [55]
and more recently safety critical Java (SCJ) [60] define scheduling models, memory
allocation policies and execution models suited for using Java for real-time programs.
For the event-driven processing model of some real-time applications, a number of
alternate execution models [106, 107, 108, 9, 8] have been developed that better reflect
this execution model than the standard Java thread model.

Spatial Isolation Based on a Type-Safe Language Type-safe (or fully memory-safe)
code can easily be spatially isolated by eliminating access to shared data between the
isolated entities. In Java, such shared data is initially the static class fields, and during
runtime all objects exchanged through this channel. By eliminating or restricting
access to these shared fields, different application parts can easily be spatially isolated
from each other.
There have been several research projects that use a safe language as the base for

software-based spatial isolation. SPIN is a microkernel that supports the safe execution
of extensions written in Modula-3 in the kernel space. J-Kernel [49] and KaffeOS [12,
11] provide the isolation of subsystems in a single JVM process. Singularity [3, 51,
38] similarly provides software-isolated processes but is based on C#.

JX [41] provides first-class processes that are solely isolated by the type safety of
Java and the logical separation of the data structures. This architecture is also referred
to as a multi-JVM architecture, because as a result of the strict data separation each
isolated entity appears to be executing in a separate JVM. KESO [113] is a follow-up
project to JX that provides the multi-JVM architecture of JX for resource-constrained
embedded systems.

The Java Isolate API [56] defines a standard interface for isolating subsystems in a
JVM and is implemented by SquawkVM [103], a research VM by Sun that targets
resource-constrained devices such as Sun’s SPOT wireless sensor network motes.
Exotasks [9] allocate memory from a private heap and exchange data through

strongly typed data connections, which are defined in the form of an Exotask graph.

27

2 State of the Art

Data passed through such a connection is deep copied to the receiving Exotask.
Exotasks support a strong isolation model, which limits communication with other
Exotasks to the connections of the Exotask graph by disallowing writes on any
static fields while limiting read access to (recursively) final fields. The restrictions
are enforced by static analysis at initialization time. The usage restrictions with
respect to static fields are the main point where Exotasks contrast from a multi-JVM
architecture, in which the global state is maintained separately for each isolated
entity. The multi-JVM architecture is preferable in this aspect, as it does not require
non-standard Java applications and allows creating multiple isolated instances of one
application.

The Crux of Implicit Memory Management C uses manual deallocation for dy-
namic memory management, which poses the risk of dangling pointers. Dereferencing
of dangling pointers is a semantic error, and proving the absence of dangling pointer
use in the presence of explicit memory deallocation is extremely difficult [34]. List-
ing 2.2 shows a C++ code snippet that illustrates how a dangling pointer can void
the soundness of the type system. The classes MyInteger and MyString both contain a
single field, a primitive integer value in the former and a pointer field in the latter case.
Transferred to a type-safe language such as Java, instances of two equivalent Java
classes would have the same physical memory representation in many JVMs. The
example first allocates a MyInteger object and then explicitly deallocates it. The code
retains its now dangling pointer to the former MyInteger object, and then allocates a
new object of type MyString. The memory allocator might reuse the memory of the
previously freed MyInteger object. Given that the two classes have the same physical
representation, the code can now use the dangling pointer to create forged references.
The program is not type safe. While code analysis could easily detect the use of a
dangling pointer in the above example, such analyses rapidly gain complexity in the
presence of pointer aliases and concurrent threads.
For this reason, dangling references need to be avoided, which is usually achieved

by replacing explicit deallocation with implicit memory management (that is, garbage
collection). The previously discussed approaches to achieve memory safety for C
programs address this issue in various ways:

• Disabling free() entirely (Cyclone)

• Using a conservative garbage collector, that uses heuristics for the lack of
precise runtime type information to identify reference values in the program
state (CCured, Deputy)

• Providing alternate memory management techniques such as regions or memory
pools (Cyclone, MSC-GC)

Disabling deallocation entirely is a viable option for many embedded programs
that do not actually require dynamic memory management and only allocate memory
in the initialization phase, however, some programs may require dynamic memory

28

2.4 Software-Based Memory Protection Approaches

struct MyInteger { int value; };

// same physical representation as MyInteger

struct MyString { char *value; };

void danglingPtr() {

MyInteger *i = new MyInteger();

// explicit deallocation of i

delete i;

// memory of deallocated object may be reused

MyString *s = new MyString();

// use dangling pointer to access s->value as int

i->value = 42;

// s->value contains a forged reference of type char*
s->value[0] = ’a’;

}

Listing 2.2: Unsound Type System Caused by Dangling References

management. Conservative garbage collection [19] cannot reliably identify references
and memory and therefore give no guarantees that dead objects are deallocated,
which is an issue in safety-critical applications. The region-based techniques are
subject to usage restrictions that are not suitable for all memory usage patterns. The
region-based approaches furthermore postpone deallocation to the point where the
region is destroyed, which can lead to increased and possibly unacceptable memory
consumption for certain usage patterns.
The preferable memory management strategy therefore depends on the memory

usage behavior of the individual application. Java provides standardized mechanisms
for all of the above variants. The RTSJ defines immortal memory that exists
throughout the lifetime of the program, and scoped memory regions that are subject
to similar usage restrictions as Cyclone’s regions. As a type-safe language, Java also
supports precise garbage collection, and research on real-time garbage collection [4,
100, 90, 87, 88, 13, 15, 22, 54, 96] has brought up garbage collection techniques
that bound fragmentation and pause times and are suited for the use in real-time
applications.

2.4.4 Discussion

As raised in the opening of this section, there is a trade-off between reusability
of existing source or binary code and the cost and protection level provided. SFI
approaches are the most general ones but the provided safety level is limited to the
sandboxed execution of the application. At the same time, the overhead introduced
by patching all store instructions in binary code to call a runtime check routine is

29

2 State of the Art

simply unacceptable in cost-sensitive markets.
The compiler approaches focus on providing source code reusability and most

achieve memory safety at the level of application-level objects. Hooking into the
compiler as a transformation pass on the intermediate representation, the analysis
framework of the compiler can be utilized and runtime checks or pointer metadata
are subject to the same standard compiler optimizations as the application code,
resulting in a lower, but still considerable, overhead compared to the SFI techniques.
On the downside, some assumptions are made on the input code that may cause
the rejection of typical low-level embedded code. As an example, casting an integer
value to a pointer value is commonly forbidden, but this is a common operation
in driver code that accesses memory-mapped registers. Another example is the fat
integer representation in fail-safe C, which renders the approach unusable for low-level
programming.
The safe C dialects Cyclone and Deputy add programmer annotations to aid the

compiler in proving the memory safety of a program. By annotating parameters and
return types at interface definitions, many runtime checks can be omitted without
the need for whole-program analyses by transitively propagating safety checks to
the caller side, eventually reaching the source definition in many cases. None of the
retrofitted approaches provide a solution to the dangling pointer issue discussed in
Section 2.4.3.2 that preserves the original way of allocating and deallocating memory
using the malloc() and free() functions. As solutions, conservative garbage collection
or specialized forms of memory management that are not generally applicable are
provided.
Languages that are strongly type safe by design have concepts to reliably handle

this problem, for example by applying precise garbage collection. In addition, such
languages provide the highest level of memory safety, type safety at the semantic level
of the programming language. Concerning an existing C code base, however, moving
to a type-safe language means that the entire code needs to be rewritten. The effort
of such a rewrite depends on how different the targeted type-safe language is from C,
but it can be expected to be higher than adapting the code base to one of the safe C
dialects.

All software-based approaches are prone to electromagnetic interference by relying
on considerable amounts of protection-relevant data situated in RAM. In type-safe
languages, the protection relies on the integrity of reference values, array bounds and
runtime type information. Fat pointer approaches similarly rely on the integrity of
pointer properties. Even the more low-level SFI approaches base on an in-memory
permission table that is comparable in size to a page table.
The TCB size includes a compiler or sophisticated static analyses for all software-

based approaches except the ISA-level approaches, which only rely on a comparably
simple verifier. Such a verifier still exceeds the software portion of simple hardware-
based mechanisms.

30

2.4 Software-Based Memory Protection Approaches

CPU Protection in Software-Based Approaches
In the absence of an unprivileged processor mode, CPU protection can either be enabled
by ensuring that the application does not make uncontrolled use of privileged instructions
that disable the preemption mechanism of the operating system (for example, by disabling
the interrupt handling), or the application can be instrumented to regularly yield to
the operating system. Type-safe languages provide no mechanism to use privileged
instructionsa and therefore the absence of privileged instructions in the application code
is guaranteed. C provides an inline assembly mechanism to make use of such instructions,
and binary code may contain such instructions anyway. Depending on the target architec-
ture, however, the absence of privileged instructions in the application code may be easily
checkable by a simple verifier if the instruction set provides dedicated CPU instructions.
Such a verifier can then be used for any software-based approach. If this is not possible,
or the application is deliberately allowed to use privileged instructions, an instrumen-
tation approach as done in t-kernel can be used to ensure that the operating system is
invoked in statically bounded intervals. Such approaches can be used independent of
the respective protection mechanism. It should be noted that the unprivileged processor
mode could no longer guarantee CPU protection either, if the application is given access
to privileged instructions. Given that the application can contain low-level driver code
and interrupt service routines, this scenario is not unrealistic and OSEK/VDX provides
explicit operating system services to control the interrupt handling.

aAssuming that the runtime system does not provide explicit interfaces for that purpose.

31

2 State of the Art

H
W

R
eq

F
le

x
L

eg
C

od
e

C
os

t
Fa

st
ID

C
E

M
C

P
ro

t
L

ev
el

P
re

d
C

P
U

P
ro

t
T

C
B

Si
ze

M
P

U
l

a
l

‘
6

4
Sa

nd
bo

x
4

4
‘

Se
gm

en
ts

a
a

‘
‘

6
4

Sa
nd

bo
x

4
4

‘

P
ag

es
a

l
‘

l
6

6
Sa

nd
bo

x
6

4
l

M
on

dr
ia

n
a

‘
‘

l
6

6
Sa

nd
bo

x
6

4
l

U
M

P
U

a
‘

l
a

4
6

Sa
nd

bo
x

6
6

l

H
ar

dB
ou

nd
a

‘
‘

a
N

/
A

6
M
em

Sa
fe

6
6

a

t-
ke

rn
el

‘
a

‘
a

N
/

A
6

Sa
nd

bo
x

6
4

l

X
F

I
‘

a
‘

a
N

/
A

6
Sa

nd
bo

x
4

6
l

H
ar

bo
r

‘
a

‘
a

4
6

Sa
nd

bo
x

4
6

l

(W
ah

be
’s

)
SF

I
‘

a
‘

l
4

6
Sa

nd
bo

x
4

6
a

C
C

ur
ed

‘
‘

‘
a

N
/

A
6

M
em

Sa
fe

4
6

a

M
SC

-G
C

l
‘

l
l

N
/

A
6

M
em

Sa
fe

4
6

a

SW
Se

gm
en

t
P

ro
te

ct
io

n
‘

a
‘

‘
N

/
A

6
Sa

nd
bo

x
4

6
a

So
ft

B
ou

nd
‘

‘
‘

a
N

/
A

6
M
em

Sa
fe

4
6

a

Fa
il-

Sa
fe

C
‘

‘
l

a
N

/
A

6
M
em

Sa
fe

4
6

a

C
yc

lo
ne

‘
‘

l
a

N
/

A
6

M
em

Sa
fe

4
6

a

D
ep

ut
y

‘
‘

l
l

N
/

A
6

M
em

Sa
fe

4
6

a

T
yp

e-
Sa

fe
L

an
gu

ag
e

+
Is

ol
at

io
n

‘
‘

a
l

4
6

T
yp

eS
af
e

4
4

a

M
P

U
+

M
ul

ti
-J

V
M

l
‘

a
l

a
4

T
yp

eS
af
e

4
4

‘

Ta
bl
e
2.
1:

C
om

pa
ris

on
of

M
em

or
y
Pr

ot
ec
tio

n
M
ec
ha

ni
sm

s

32

2.5 Decision for MPU-Based Protection and a Multi-JVM

2.5 Decision for MPU-Based Protection and a Multi-JVM

Table 2.1 contains an overview of the rating criteria that I introduced in Section 2.2
for all presented memory protection approaches. From the discussed techniques, I
selected MPU-based protection and software-based memory protection on the basis of
a multi-JVM, which when combined provide fine-grained protection at the semantic
level of programming-language-level objects, robustness against transient hardware-
faults and a small TCB. What follows is a discussion of the reasons that led to this
decision.

For safety-critical applications deployed in environments prone to EMI, the robust-
ness of the approach with respect to EMI is crucial. Given the shrinking structure
sizes in hardware manufacturing, hardware becomes more prone to transient faults
caused by EMI and tolerating such faults will gain relevance in the future. As
shown in Table 2.1, only the two coarse-grained hardware protection approaches
of the ranged-based MPU and the segmented protection are robust in this aspect.
Safety-critical applications may also require a formal verification or other processes
to ensure the correct functioning of the protection system to sufficient certainty. Such
processes are more feasible for approaches that build on a small TCB than for those
that rely on the correct functioning of a complex software package. This is a second
aspect where MPU and segmented protection stick out. Of the two, however, only
MPUs are present in the low-cost embedded segment.

The protection provided by an MPU is coarse-grained and merely provides spatial
isolation. For a more fine-grained type of protection, and to provide the option
of memory protection for low-cost microcontrollers without an MPU, a software-
based approach can be used. The SFI approaches thereby provide little additional
protection properties over the MPU, and implementations for embedded systems
such as Harbor showed unacceptably high overheads. Language- and most compiler-
based techniques provide protection at the granularity of programming-language-level
objects. With the exception of type-safe languages, however, none of these approaches
addresses the issue of dangling pointers without requiring the use of specialized forms
of memory management, which requires experienced programmers, is not applicable
to all programs and may dramatically increase the memory requirements for certain
usage patterns. Type safety prevents semantic programming errors in addition to the
memory access errors prevented by memory-safe approaches. Finally, type safety is a
feature of most newly developed programming languages, so it can be expected that
such languages will also find their way to the deeply embedded domain in the long
run.
From the multitude of type-safe programming languages in circulation, Java is

attractive for a number of reasons. Firstly, the syntax of Java is very similar to that
of C++. Although the effort of porting C applications to Java is presumably higher
than the adaption to one of the safe C dialects, the syntactic similarity facilitates
this process. Due to the wide spread of Java in other computing domains and in
education, there is a high number of trained programmers available that has already
introduced a shift from Ada towards Java in the real-time systems domain [82]. A

33

2 State of the Art

great amount of research has led to standard programming interfaces for low-level
programming, and memory management and execution models suitable for using
Java in real-time systems. Safety-critical Java (SCJ) is in the progress of finalization
and includes a new verification-friendly execution model for Java. With KESO, a
multi-JVM for deeply-embedded system exists that supports the targeted devices and
provides a spatial isolation concept.

The bottom row of Table 2.1 shows the expected protection properties of combining
MPU protection with a multi-JVM such as KESO. Some factors, such as the cost,
accumulate negatively, whereas both approaches complement each other in other
aspects such as the protection flexibility and level of Java, combined with the small
TCB and the robustness with respect to EMI of the MPU. In the combination, the
MPU protection can be regarded as a simple and robust safety net that ensures fault
containment and compensates the TCB size and EMI vulnerability of the multi-JVM.
In Chapter 3, I will explore in more detail the synergies that one can benefit from by
combining MPU protection and a multi-JVM.

34

3
Analysis

Application Model and Protection Levels

In this chapter, I develop the application model of the framework. I begin with a
presentation and analysis of the protection model defined in AUTOSAR OS [10], a
model developed by a consortium formed of automotive suppliers and OEMs that
suits the requirements of this domain. Following, I introduce the I4Copter project,
which serves as a running example throughout the remainder of this thesis, and
how the I4Copter control software maps to the AUTOSAR OS model. I use this
model as a base for the framework and extend it to include software-based memory
protection and combinations of hardware- and software-based memory protection.
The AUTOSAR OS model includes optional graduations to vary the degree of memory
protection provided. I examine possible graduations for the software-based protection
based on the multi-JVM concept, and the cost and synergies of using a combination
of both mechanisms to isolate an application.

3.1 The AUTOSAR OS Application Model
AUTOSAR OS [10] defines an application model that includes MPU-based memory
protection with a mandatory base set of isolation guarantees and a set of optional
extensions that provide additional error detection. Figure 3.1 shows the AUTOSAR
OS application model, the possible isolation boundaries, and which parts are optional
(blue requirement boxes) and which are mandatory (red requirement boxes). Table 3.1
shows the requirements cited from the AUTOSAR OS specification [10].
The basic realms of spatial isolation are called OS-Applications in AUTOSAR

OS. The control flow abstractions provided by AUTOSAR OS are tasks, which are
comparable to the real-time threads in the real-time specification for Java (RTSJ), and

35

3 Analysis: Application Model and Protection Levels

kernel Data Code

trusted
application

Data

Code

Task T
Data

Stack

TCB

non-trusted
application

Data

Code

Task C
Data

Stack

kernel protection (w)
OS198

non-trusted
application

Data

Code

Task A
Data

Stack

Task B
Data

Stack

isolation of control flows (w)OS208

OS195

isolation of applications (wrx)OS207 OS355 OS026

OS027OS356

OS207 OS195/ mandatory/optional AUTOSAR OS requirement

protection boundary

Figure 3.1: The AUTOSAR OS Application Model

interrupt service routines, which are comparable to the asynchronous event handlers
defined by the RTSJ. Each control flow is statically assigned to an OS-Application
that defines its memory access permissions. Memory access control is based on the
different memory segments of an OS-Application. Each OS-Application can have a
private data segment, and each control flow has a stack and an optional private data
segment. For code, there exist both globally shared segments as well as private code
segments available to only one OS-Application.

3.1.1 Layers of Protection

AUTOSAR OS distinguishes trusted and non-trusted OS-Applications. Trusted OS-
Applications are not subject to memory access control and, together with the kernel,
form the trusted computing base (TCB) of the system. The main purpose of trusted
OS-Applications is to extend the functionality of the kernel with additional services.
Kernel protection is a mandatory requirement that defines that the data segments of
the trusted code base need to be protected against modifications from non-trusted
OS-Applications.

The next layer provides the actual spatial isolation of non-trusted OS-Applications.
Support for write protection, which prevents a non-trusted OS-Application from

36

3.1 The AUTOSAR OS Application Model

Kernel Protection
OS198 The Operating System module shall prevent write access to its own data sections

and its own stack from non-trusted OS-Applications.

Isolation of Applications
OS207 The Operating System module shall prevent write access to the OS-Application’s

private data sections from other non-trusted OS-Applications.
OS355 The Operating System module shall prevent write access to all private stacks of

Tasks/Category 2 ISRs of an OS-Application from other non-trusted OS-Applications.
OS356 The Operating System module shall prevent write access to all private data sections of

a Task/Category 2 ISR of an OS-Application from other non-trusted OS-Applications.
OS026 The Operating System module may prevent read access to an OS-Application’s data

section attempted by other non-trusted OS-Applications.
OS027 The Operating System module may provide an OS-Application the ability to protect

its code sections against executing by non-trusted OS-Applications.

Isolation of Control Flows
OS195 The Operating System module may prevent write access to the private data sections

of a Task/Category 2 ISR of a non-trusted application from all other Tasks/ISRs in
the same OS-Application.

OS208 The Operating System module may prevent write access to the private stack of
Tasks/Category 2 ISRs of a non-trusted application from all other Tasks/ISRs in the
same OS-Application.

Table 3.1: Memory Protection Requirements from the AUTOSAR OS Specification

writing to data segments of another OS-Application, is mandatory. In addition, the
operating system may prevent non-trusted OS-Applications from executing code
from other OS-Applications’ private code segments or from reading data from other
OS-Applications’ private data segments.
The third layer of isolation protects the control-flow-local data (that is, its stack

and optional local data segment) from being modified by other control flows of the
same OS-Application. This layer is fully optional and only comprises write protection.

3.1.2 Required Isolation Properties
The mandatory and optional requirements of the AUTOSAR OS model show, which
isolation properties the automotive industry considers as necessary, and which as
optional. To recapture the motivation: The main reason for spatial isolation in
mixed-criticality systems is the containment of faults. The establishment of write
protection that protects the data of the kernel and other applications from direct
modification by a non-trusted OS-Application provides containment of faults that
occur within the isolated non-trusted OS-Application.
Restricting code execution and read accesses to the private segments of an OS-

Application provides additional error detection capabilities: It detects certain cases

37

3 Analysis: Application Model and Protection Levels

where an OS-Application does not behave as expected, but does not otherwise
contribute to fault containment. Notably, the execution of arbitrary code does not
pose a problem as long as the data of the kernel and other OS-Applications is protected
from modification. Restricting read accesses has the additional property of hiding
possibly confidential data of an OS-Application, for example cryptographic keys.
This is a security feature, but normally not relevant for safety-motivated memory
protection, where no malicious applications are assumed in the system.

Permitting global read and execution permissions has several benefits. Global read
permissions enable the efficient implementation of unidirectional data flow among OS-
Applications and operating system services that only query the state of the operating
system. In addition, no additional MPU regions are required for code segments and
read-only data segments, leaving more regions available for memory regions that write
access should be granted for. As discussed in Chapter 2, MPU protection is bounded
by a fixed number of regions, and can provide memory protection in a predictable and
efficient manner only if the number of regions is sufficient for all data areas that an
OS-Application needs to access. Lastly, the enforced protection of control-flow-local
data can detect certain classes of errors, most notably stack overflows, but is not
needed for fault containment.

3.1.3 Graduations of Hardware-Based Memory Protection

The protection varies in the memory access types that are constrained (that is, read,
write and instruction fetch memory accesses) and the isolated entities. If MPU-
based protection is used, isolation of the trusted code (kernel protection) and write
protection are mandatory features, as the two provide the minimum base needed
for the reliable functioning of MPU protection. Application isolation would also
be mandatory according to the AUTOSAR OS requirements, but I opted to leave
it optional in my model because application scenarios exist that do not necessarily
require application isolation.

Kernel protection is sufficient for some scenarios where only the availability of the
infrastructure software needs to be ensured. An example is the protection of a boot
loader that allows replacing the installed application modules and therefore ensures
that a node does not become unreachable. One domain for such settings is wireless
sensor networks, where the nodes are often not physically accessible anymore after
having been deployed in the field and a failure of the infrastructure software would
mean that the node is lost. This problem can be solved by kernel protection, and the
t-kernel (Section 2.4.1.1) provided just this level of isolation for that target domain.

Restriction of read and instruction fetch accesses is an optional error detection
facility, as is the isolation of control-flow-local data. The latter is only feasible if
application isolation is also used.

38

3.2 The I4Copter Application

Figure 3.2: Photo of the I4Copter, Version 2.4 (“Apollo”)

3.2 The I4Copter Application
The I4Copter [120] is a quadrotor helicopter, an aircraft driven by two pairs of
oppositely-spinning rotors. Figure 3.2 shows a picture of the I4Copter. The I4Copter
is a suitable demonstrator application for a safety-critical, hard real-time system.
Quadrotor helicopters are simple in mechanics compared to regular helicopters, but
the four rotors are fixed and the aircraft can only be stabilized by varying the rotation
speeds of the rotors, requiring a fairly sophisticated controller to achieve a stable
flight behavior.
Figure 3.2 shows a photo of the I4Copter. It is based on an Infineon Tricore

TC1796 microcontroller (32-bit, 150 MHz, 2 MiB program flash, 64 KiB SRAM) with
a heterogeneous MPU providing two sets of memory protection regions, containing
two code and four data regions each. The used Hightec Easyrun board is equipped
with one MiB of persistent external MRAM. The I4Copter is controlled by a radio
remote control and additionally transmits monitoring and debugging data by wireless
LAN to a base station.

3.2.1 Core Subsystems of the I4Copter Framework
Figure 3.3 shows the five core subsystems of the I4Copter control software. The
dashed boxes depict one of the subsystems each. The shaded boxes within each
subsystem represent the control flows it contains, which are either tasks or interrupt
service routines (ISRs). The lines connecting the different subsystems show the data
exchange paths between subsystems. The five subsystems have the following function:

The Signalprocessing subsystem periodically collects the data of the sensors. The
I4Copter is equipped with a multitude of sensors: three gyroscopes to determine

39

3 Analysis: Application Model and Protection Levels

Ethernet

Flightcontrol

Ethernet
Task

Coptercontrol

Signalprocessing

SerialCom

SerialCom
Task

CopterControl
Task

CopterControl
Telemetry

Task

FlightControl
Task

FlightControl
Telemetry

Task

SignalProcessing
Task

SignalProcessing
Telemetry

Task

monitoring data

SPI device communication

steering data

sensor data

Radio
ISR

SPIError
ISR

SPI
ISR

Figure 3.3: Subsystems and Data Exchange Paths in the I4Copter

the angular position, an accelerometer that measures the proper acceleration,
a compass, two pressure sensors, and two proximity sensors to determine
the altitude above ground level utilizing either infrared or ultrasonic. The
Signalprocessing subsystem mainly comprises driver and filtering code for all
these sensors. Signalprocessing is periodically triggered every three milliseconds.

The Coptercontrol subsystem contains the main behavioral logic and mode man-
agement. Coptercontrol manages a global flight mode that is provided to
and affects the behavior of all other subsystems. The mode management is
implemented as a finite state machine. State transitions are triggered when
certain input data exceeds a configured threshold, or when a mode change
is suggested by another subsystem. In addition, Coptercontrol also manages
incoming steering commands, which can currently be given either by a radio
remote control or sent by wireless LAN. The driver for the radio remote is
also part of the Coptercontrol subsystem. The chosen steering commands are
provided to other subsystems. Finally, when the Coptercontrol subsystem de-
tects a connection loss to both remote control sources, it provides an emergency
mode management to bring the aircraft down. The Coptercontrol subsystem is
periodically triggered every 21 milliseconds.

The Flightcontrol subsystem contains the controllers that manage the flight behav-

40

3.2 The I4Copter Application

ior of the aircraft to different aspects. The controllers take as input the sensor
data provided by the Signalprocessing subsystem and the steering commands
provided by the Coptercontrol subsystem, and calculate as output the individual
thrust levels of the four rotors to reach the flight attitude aimed for. The core
controller is the flight attitude controller that stabilizes the aircraft. The second
controller, which is currently in experimental state, is the altitude controller
that aims to control the height of the aircraft, an otherwise manual process (for
example, it can keep the aircraft at its current height if no steering commands
to change the height are received). Both controllers are modeled using Simulink
MATLAB. The code is generated from these models using Simulink Real-Time
Workshop. Flightcontrol is periodically triggered every nine milliseconds.

The SerialCom subsystem serializes accesses to the SPI bus by other subsystems.
Currently, the Signalprocessing subsystem accesses the SPI bus to control SPI
attached sensors, and the Flightcontrol subsystem requires access to the SPI
bus to propagate the computed thrust levels to the engine controllers, which
are also attached to the SPI bus. SerialCom is triggered by events sent from
the client subsystems.

The Ethernet subsystem manages the reception and transmission of UDP packets.
Received packets contain remote control commands and are provided to the
Coptercontrol subsystem. Outgoing packets contain telemetry data of the
various subsystems that allow the base station to remotely monitor the internal
state of the different subsystems, for example as a debugging aid. Telemetry
data is collected periodically each 27 milliseconds by dedicated low-priority tasks
in the Coptercontrol, Flightcontrol and Signalprocessing subsystems. These
tasks collect the data for the respective subsystem and provide it to the Ethernet
subsystem, where the pieces are assembled to a network packet and transmitted.
The Ethernet subsystem does not contain a network protocol stack or interface
drivers. These facilities need to be provided by the operating system. The
Ethernet subsystem is triggered aperiodically1 by the operating system to handle
incoming packets, or by the other subsystems when telemetry data needs to be
transmitted.

Besides these core subsystems, there currently exist two additional optional sub-
systems. One allows controlling an optional camera that is movably mounted to
the aircraft. The second is in experimental state and aims at enabling the aircraft
to follow a preprogrammed waypoint plan in the form of GPS coordinates. These
subsystems are disabled in my evaluation configuration and not further considered in
this thesis.
Table 3.2 summarizes all control flows in the I4Copter application and also shows

the priorities and, for periodic tasks, the activation period. The priority space is
1The terms periodic and aperiodic are used here with respect to the activation type, not with respect
to the type of a possibly associated deadline as in aperiodic and sporadic tasks.

41

3 Analysis: Application Model and Protection Levels

Component Control Flow Priority Period

Coptercontrol
CopterControlTask 10 21 ms

CopterControlTelemetryTask 5 27 ms
Radio RX ISR 12 (IRQ) -

Ethernet EthernetTask 7 -

Flightcontrol FlightControlTask 12 9 ms
FlightControlTelemetryTask 4 27 ms

SerialCom
SerialComTask 15 -
SPI RX ISR 10 (IRQ) -
SPI Error ISR 11 (IRQ) -

Signalprocessing SignalProcessingTask 13 3 ms
SignalProcessingTelemetryTask 3 27 ms

Operating System Ethernet RX ISR 7 (IRQ) -

Table 3.2: Control Flows’ Properties in the I4Copter

divided into task level priorities and ISR level priorities. A higher priority number
represents a higher priority level, with ISR level priorities being above all priorities of
the task level. The Ethernet RX ISR technically belongs to the operating system,
but still needs to be considered as it affects the application schedule.

The I4Copter is not only interesting as an evaluation scenario for being a real-world
application (as opposed to a synthetic benchmark), but also because its subsystems
cover a quite broad range of code characteristics. While the Signalprocessing sub-
system consists mostly of low-level driver code, Flightcontrol contains higher-level
code that is computationally intensive in single-precision floating-point arithmetic.
Coptercontrol has a mixed code-base containing a driver and a state machine. Finally,
the SerialCom and Ethernet subsystems contain little internal logic and are relatively
communication-intensive with other subsystems and the operating system.

3.2.2 Mapping to the AUTOSAR OS Application Model

The I4Copter has an operating system abstraction layer that allows it to run on
Hightec’s PXROS-HR [94] and operating systems implementing the AUTOSAR OS
interface2. In both cases, each of the I4Copter’s subsystems is placed in a memory
protection realm. In the case of AUTOSAR OS, each of the subsystems is mapped to
a non-trusted OS-Application.

2In its current state, the I4Copter still requires the operating system to provide a messaging
mechanism that is not part of the AUTOSAR OS standard.

42

3.3 Model Refinement: Software-Isolated Components

TrustedApp

trusted,
full memory access

HWP-App

isolated by MPU

SWP-App

memory-safe code

HWP+SWP-App

memory safe code,
isolated by MPU

closely-coupled, memory-safe components,
sharing one MPU isolation realm

SWP-Comp A SWP-Comp B

Figure 3.4: Isolation Variants

3.3 Model Refinement: Software-Isolated Components

I have so far introduced the protection model of AUTOSAR OS that defines trusted
OS-Applications, which are not subject to any memory access restrictions, and non-
trusted OS-Applications, whose memory accesses are constrained to their local data
segments by employing an MPU. The type of memory accesses that are constrained
always comprise store accesses to warrant fault containment, and optionally loads and
instruction fetches to provide additional error detection or protection of confidential
data for security-relevant applications.
A straightforward approach to extend this model by software-based memory pro-

tection would be to use the entity that defines hardware-based memory protection
realms, that is non-trusted OS-Applications, for software-based protection realms as
well. As discussed in Section 2.5, however, MPU-based protection is rather coarse-
grained and data exchange among isolated entities may incur the overhead of context
switches. Consequently, it can be expected that closely coupled software components
are placed in the same OS-Application. On the other hand, language-based memory
protection is very flexible at the granularity of objects, and data can principally be
exchanged without requiring an OS-level context switch. Following the conclusion
in Section 2.5 that the MPU can provide a robust safety net for software-isolated
components, I add the entity of software-isolated components to the model, which are
assigned N:1 to OS-Applications. This model is similar to the protection model in
Singularity [3], where also multiple software-isolated processes can be contained in
one hardware-isolated process. In the example of the I4Copter application, different
drivers in the Signalprocessing subsystem could be placed in different software-isolated
components, or the telemetry tasks could be placed in a different component than the
task performing the main function of a subsystem to protect the core functionality of
a subsystem from faults in the telemetry task.
Figure 3.4 shows the possible isolation variants in this model, and also introduces

the notation to indicate a particular type of isolation used in other figures. The first
two types represent the application types present in AUTOSAR OS, unconstrained
trusted applications and MPU-protected non-trusted applications, indicated by the

43

3 Analysis: Application Model and Protection Levels

solid box border. The third type is a software-isolated component mapped 1:1 to an
OS-Application, that is memory-safe code, indicated by the shaded background, not
constrained by an MPU. The fourth type combines a memory-safe component with
an MPU-isolated OS-Application. The fifth variant finally shows an N:1 mapping of
multiple memory-safe components in the same MPU-isolated OS-Application.

3.4 Graduations of Software-Based Memory Protection

Section 3.1 introduced AUTOSAR OS’ application model and the variability that
it defines with respect to its MPU-based memory protection features, which allow
to increase the memory protection coverage at the cost of increased overhead and
reduced flexibility. For example, enabling the restriction of read accesses increases the
level of memory protection, as it enables the detection of unexpected read accesses,
most likely program bugs, or allows applications to hide confidential data from other
applications. It comes at the cost of increased overhead, as read-only system services
(for example, get the identifier of the currently running task) now need a context
switch to privileged mode as state-changing system services do. Or, as another
example, protecting task-local data such as the task stacks from modification by other
tasks in the same OS-Application, adds the ability to detect errors, such as stack
overflows, but requires an additional region per task, which is not available anymore
for other OS mechanisms such as shared memory areas. This constrains the flexibility
of the configuration, and may even render it unfeasible for some applications.
In this section, I explore how a similar trade-off between the costs imposed to

enforce memory protection and the coverage of the protection can be achieved for
the software-based part of my framework, the memory protection based on the type
safety of Java and the isolation established by a multi-JVM concept. To begin, I first
discuss what overhead that is introduced by Java can be attributed to memory safety.

3.4.1 Memory-Protection Overhead Imposed by Java

The variability choices provided for MPU-based protection are not directly transfer-
able to Java. A sandboxing approach applies an external barrier to an otherwise
unconstrained program. This barrier can be moved (between the kernel and the
OS-Applications, between the OS-Applications, between the tasks within an OS-
Application) and its permissiveness can be varied (to constrain only writes, or to
additionally constrain load operations or instruction fetches). For memory-safe code
on the basis of a type-safe language, however, the safety is established at the level of
the language, based on types and references. Types eventually define how the different
fields of a memory fragment holding an instance of that type can be accessed. The
typed reference defines where the application can access the memory. The created
instances of types (objects) and the references that exist in the application form an
object graph, in which the nodes represent objects and the directed edges represent
references residing in a field of the originating object and referring to the pointee

44

3.4 Graduations of Software-Based Memory Protection

Operation Bytecode Instructions

null Checks
Load Instance Field getfield

Store Instance Field putfield

Invoke Instance Method invokeinterface, invokespecial, invokevirtual
Read Array Length arraylength

Load Array Element [abcdfils]aload
Store Reference-Array Element [abcdfils]astore

Throw Exception athrow

Array-Bound Checks
Load Array Element [abcdfils]aload
Store Array Element [abcdfils]astore

Subtype Checks
Cast Reference to Subtype checkcast

Store Array Element aastore

Negative Array Size Checks
Create New Array anewarray, multianewarray, newarray

Division by Zero Checks
Integer Division idiv, ldiv

Integer Remainder irem, lrem

Table 3.3: Checked JVM Instructions

object. The object graph is rooted in external3 reference fields. In Java, these
fields are static fields of classes and slots on the stack. A Java application can only
access memory in these root areas and of the objects contained in its object graph.
The memory safety relies on the consistency of the object graph and control flow
integrity [1]. The spatial isolation in a multi-JVM builds on the invariant that the
root areas and object graphs of the isolated entities are disjoint.

These properties are largely established by the design of the language or checked by
the compiler ahead of time. The runtime overhead that can be attributed to memory
safety is all code, data and execution time that are spent at runtime on retaining the
integrity of the object graph and the control flow. In Java, these are the following:

Safe Deallocation For applications that require the dynamic allocation and deal-
location of memory, a safe deallocation mechanism is required to avoid the
creation of dangling references. As discussed in Section 2.4.3.2, this requires
either the use of specialized memory management mechanisms such as scopes,
or a garbage collector. For the former, the runtime overhead depends on the
respective technique. The RTSJ’s scoped memory areas, for example, restrict
the use of references to such areas and require additional runtime checks to

3External with respect to the object graph, as these fields are not part of any object.

45

3 Analysis: Application Model and Protection Levels

enforce these restrictions. A garbage collector needs the ability to traverse
the object graph at runtime, which means that it needs to be able to identify
the root reference nodes, reference fields within objects, reference values on
the stacks of active tasks and possibly also reference values contained only
in processor registers. The root reference fields and reference fields within
objects can normally be made processible by the garbage collector by a reference
grouping scheme and a suitable object layout, for example a bidirectional object
layout as proposed by Sable VM [39]. A grouping scheme can also be utilized for
the reference variables in a stack frame, but the garbage collector still needs the
ability to traverse the different frames on the stack. To enable this, a common
portable technique is to manage the stack frames in a linked list as originally
proposed by Henderson [50]. Such additional runtime data structures add to
the memory usage and execution time spent on maintaining the data structure
at runtime.

Runtime Type Information Checked downcasts (that is, casts to a subtype of the
declared type of the source reference) require the ability to identify the specific
type of an object at runtime, and the ability to determine whether it is a
subtype of the target type of the downcast. Array accesses may need to be
bound checked, for which the size of the array needs to be available at runtime.
The type of an object and the array size are typically stored with the object in
a header area, which adds overhead to the storage size of the object. Further
runtime type information, for example dispatch tables for dynamically bound
method invocations, are not related to the memory safety, but rather are cost
paid for the amenities of object-oriented programming. Similar runtime type
information is, for example, also used for virtual method calls in the unsafe
C++ language.

Runtime Checks Some Java operations cannot always be proven safe by the ahead-
of-time compiler and therefore need to be checked at runtime. Table 3.3 shows
the checked operations of the JVM, except for checks and exceptions related to
Java monitors and dynamic class linking, both of which are not relevant in this
work. These checks increase the code size of the program, add to the execution
time, and, as discussed above, may require runtime type information that also
increases the memory use.

Dynamic deallocation of heap memory is a feature that is often deliberately not
utilized by applications developed for a safety-critical or a hard real-time context, as
it introduces new issues such as external fragmentation that the developer needs to
cope with. A common alternative approach is the use of application-level pools of
homogeneous objects, which avoids the fragmentation issue. If a garbage collector
is needed for some reason, however, the runtime data structures required to scan
the object graph are fully needed. The Java runtime environment can still perform
steps to reduce the runtime overhead added by these data structures by incorporating
knowledge on the system model. For the general runtime type information, the

46

3.4 Graduations of Software-Based Memory Protection

principle is grossly the same. A compiler can tailor the required data structures to
the application, for example by choosing the smallest possible data types for the
runtime data for that the covered value range is still sufficient for the application.
Runtime checks on the other hand can pose a notable overhead in code size and

also execution time if occurring in hotspots. A decent compiler can eliminate runtime
checks for operations where a static analysis proves the check to always succeed.
The null checks do normally not require specific analyses but are eliminated by the
standard dead-code elimination that incorporates the results of a data-flow analysis.
Static bound-check elimination techniques are well researched [74, 45, 63]. Such
analyses are simple and effective in a local scope, for example multiple operations on
a reference in the same basic block or procedure. In an inter-procedural scope, the
effectiveness of such static analyses depends on the assumptions that the compiler
is able to make. A just-in-time compiler can utilize its volatile runtime state for
effective optimizations, but as this state changes (for example, as a new class is loaded)
assumptions made may become invalid and a recompilation is needed. Just-in-time
(JIT) compilation is, however, problematic in hard real-time systems for the effect
on deterministic execution and the jitter that JIT compilation has. Although some
JIT compilers can be tuned for better determinism (for example, IBM Websphere
Real Time allows to side-step JIT compilation in a low-priority thread), the reached
level of determinism (that is, the accuracy of the WCET bounds) is not as high as
that provided by an ahead-of-time compiler. For resource-constrained systems, an
additional issue is the resource consumption of the JIT compiler, which exceeds most
common applications for such platforms in complexity and resource use. Ahead-of-time
compilation therefore is a more attractive choice, but for an ahead-of-time compiler
a closed-world assumption is needed to be able to effectively utilize whole-program
static analyses.
In the following, I discuss two approaches to complement static analyses. The

first approach is to offload runtime checks to hardware exception mechanisms. This
approach does not change the behavior of the program. For the second approach, I
examine the necessity of the most common Java runtime checks with respect to the
memory safety of the program, and how runtime checks can be selectively omitted
while still providing the minimum needed isolation guarantee of fault containment.
This approach departs from the Java Virtual Machine specification and reduces a
type-safe program to a memory-safe one, at the benefit of reduced runtime overhead.

3.4.2 Offloading Runtime Checks to the Hardware

Many larger microcontrollers come with a trap system that can detect and signal
certain error conditions in the execution of a program. In this section, I analyze
which of the common runtime checks could principally be performed in hardware.
A simple case of a runtime check that is usually also performed by the hardware is
the detection of a division by zero (given that the instruction set provides a division
instruction). Therefore, if a JVM operation that is normally guarded by a runtime
check triggers a hardware exception if the checked condition is not met, the software

47

3 Analysis: Application Model and Protection Levels

check can be omitted and the hardware exception can be leveraged to trigger the
runtime exception. This saves both the code required by the runtime check as well as
the time spent on executing it4. In this section, I discuss which mechanisms could be
used. The concrete application to Java bytecode operation follows in Section 3.4.4.

3.4.2.1 Access Errors to Unmapped Addresses

A particularly useful hardware exception mechanism is errors that are raised by the
processor for accesses to address regions that are not backed by memory or mapped
otherwise, for example bus access errors. Especially for microcontrollers with an
address width of 32 bits, it is very common that large parts of the address space are
unused, as the examples in Figure 3.5 illustrate. It shows the used (colored) and
unused (white) portions of the address spaces of three microcontrollers. The shown
memory maps show the designated address ranges. What is actually used depends on
the actual configuration, for example optional external memories. I have included a
real configuration with each example.

Infineon Tricore TC1796 On the TC1796 microcontroller [116], more than 75
percent of the address space is reserved. On any Tricore derivate, the initial eight
bytes of the address space are generally reserved and the MPU provides a dedicated
trap (memory protection NULL trap) for accesses to this region. This is similar to
many other architectures and is for the reason that the address 0 is commonly used
as a reserved address value. In addition, the entire lower two GiB of the address
space are reserved on the TC1796 microcontroller, since these are used on processors
of the line that are equipped with a memory management unit (MMU). Consequently,
without any MPU configuration, memory accesses to the lower two GiB of the address
space trigger a trap.

ARM Cortex-M3 On the ARM Cortex-M3 processor, the lower 512 MiB of the
address space are mapped read-only to the program flash. Following is 512 MiB
reserved for internal SRAM. Current implementations are equipped with memories
that only back a small fraction of these designated address regions, for example
Atmel’s AT91SAM3U [6] line is currently equipped with at most 256 KiB of program
flash and 48 KiB of SRAM.

Atmel AVR ATmega128 Atmel’s AVR microcontrollers are 8-bit processors with an
address width of 16 bits. One of the largest derivates of this line is the ATmega128 [7]
(4 KiB SRAM, 128 KiB Flash), which is commonly found on sensor nodes such as
the Crossbow MICA2. The AVR is an example of a processor without reserved
regions in address space. Despite the address space being entirely used, the external

4The exception case will normally be slower when triggered by a hardware exception compared
to a software check. As the name implies, however, exceptions are not considered to occur in
the intended course of the program execution, so offloading the check to hardware optimizes the
common case of a succeeding check.

48

3.4 Graduations of Software-Based Memory Protection

reserved

2 GiB 4 GiB2.5 GiB 3.4 GiB
(a) Infineon Tricore TC1796. Example Configuration: Infineon Triboard TC1796,
4 MiB Flash, 1 MiB SRAM

Code SRAM Periph
erals Ext. RAM Ext. Device vendor

reserv.

512 MiB 1 GiB 1.5 GiB 2.5 GiB 3.5 GiB 4 GiB
(b) ARM Cortex-M3. Example Configuration: Atmel AT91, SAM3U: 256 KiB
Flash, 48 KiB SRAM

Regs Int. RAM Ext. RAM

256 B 4351 B 64 KiB
(c) Atmel ATmega128 Dataspace. Example Configuration: Crossbow MICA2: 4
KiB internal, no external RAM

Figure 3.5: Example Address Space Utilizations. White areas are unused, colored
areas used regions of the address space. In an actual configuration, the
regions reserved for external memories can be further reduced to the
actual memory available in that setting.

RAM portion is commonly not fully utilized (for example, on the MICA2 there is no
external RAM at all). AVR processors do not have a hardware exception mechanism.
Writes to unmapped regions of the address space have no effect. It is therefore not
possible to offload runtime checks to the hardware on AVR processors. The unused
regions can still be helpful for the selective omission of runtime checks discussed in
Section 3.4.4.

3.4.2.2 Utilizing an Unused MPU

For microcontrollers where the address space does not provide sufficient unused
regions or an appropriate exception mechanism, for example microcontrollers with
an address width of 16 bits, an MPU that is not used can be leveraged to achieve
an identical behavior5. To achieve this, the MPU is statically configured to restrain
memory accesses to the mapped regions of the address space, or only those regions
that are used by all applications and the operating system. A requirement is that the
MPU can be activated for code running in privileged mode. This is the case on the

5If the MPU isolation is used the checks can equally be shifted to the MPU, but the overhead of
MPU-based isolation would also apply.

49

3 Analysis: Application Model and Protection Levels

Infineon Tricore TC1796. The result is that a hardware exception is triggered on any
access to unused address ranges.

3.4.3 Selective Omission of Runtime Checks

Offloading runtime checks to hardware exceptions allows saving the code and execution
time of certain runtime checks without changing the behavior of the program or
impacting its safety. Such hardware mechanisms are, however, not always available.
In this section, I discuss a further step that can either be used in addition to hardware
exceptions, or by itself if hardware exceptions are not available. Contrary to the
previous approach, I now also consider a reduction of the provided safety level of the
application traded for reduced code size and execution time overhead.
By omitting runtime checks based on criteria such as the type of the check and

the bytecode instruction that triggers the check, a partially checked, gradually safe
program can be generated. At the extreme side, all checks can be omitted, resulting in
a program that does not suffer any overhead penalties but still benefits from increased
dependability due to the checks successfully performed ahead-of-time compared to
a program written in an unsafe language. Such a configuration would be a basis
for a trusted application or a purely MPU-isolated application from the variants in
Figure 3.4. A gradual selection can be based on the following criteria:

• The concrete microcontroller used in a mass product is usually the cheapest
suited one from a line of functionally equivalent microcontrollers that scale in
resources and price. However, even after choosing the smallest model from the
line that still fulfills the requirements, the available resources are never utilized
by 100 percent. Individual runtime checks need very little resources, but each
check contributes to the dependability of a program. The spare resources on
such a microcontroller can therefore be used to increase the dependability by
adding a selected set of runtime checks to the application.

• The consequences of an omitted runtime check that would have failed are not
the same for all checks. Depending on the type of check and the checked
instruction, one can categorize the checks into those that only have a local
impact on the current OS-Application and those with global impact. I highlight
these differences using the example of the two most common types of runtime
checks in Section 3.4.4.

• Bugs are not equally distributed over the code. According to McConnell [75],
80 percent of the bugs are within 20 percent of the software modules. Examples
for software modules that may be more prone to faults than others are new
software modules, which may be more likely to contain bugs than established
existing software modules that have been used and tested by a broad user base
for a longer time period, or software modules containing low-level code, for
example device drivers. Software modules containing bugs are likely to contain

50

3.4 Graduations of Software-Based Memory Protection

Operation I4Copter CDj 1.2 GNU Classpath 0.98
Load Primitive Field 860 1851 42545
Load Reference Field 1152 2408 98235

Store Field 782 1637 44411
Load Primitive Array Element 154 317 8263
Load Reference Array Element 20 451 9399

Store Array Element 360 662 73443
Store Reference Array Element 7 259 38443

Read Array Length 72 452 6946
Invoke Instance Method 2521 13754 292829

Throw Exception 132 605 15911
Cast Reference to Subtype 72 649 20007

Create New Array 45 190 7119
Integer Division/Remainder 39 200 2201

Null Checks 6060 22137 591982
Array-Bound Checks 534 1430 91105

Subtype Checks 79 908 58450
Negative Array Size Checks 45 190 7119

Division by Zero Checks 39 200 2201

Table 3.4: Frequency of Checked Instructions

further bugs, so runtime checks should preferably be added to such modules to
help finding these bugs.

3.4.4 Impact Classification

A self-evident criterion to classify the safety value of runtime checks is the severity
of the impact that the absence of such a check may cause to the system. In this
section, I create a classification based on this criterion for the two most common
types of runtime checks, null checks and array-bound checks. Table 3.4 shows how
often the checked JVM instructions from Table 3.3 appear in three code bases. The
first is the Java port of the I4Copter. CDj [61] is a benchmark application from the
domain of real-time and embedded systems. Both of these applications are from the
embedded domain and have different code characteristics than Java programs from
other domains such as desktop or server environments. To complete the picture, I
also added the numbers for a standard Java class library, GNU Classpath. While
the standard class library shows a heavier use of downcasts than the embedded
applications, the overall picture shows that null and bound checks are by far the
most frequent check types for all three applications. I split safety checks into the
following two groups, which I refer to as the impact class of a certain check:

Local Impact The omission of a check with the impact class local may result in a
malfunctioning of the OS-Application in the context of which the check would
normally have raised an exception. This defect does, however, not affect other
OS-Applications.

51

3 Analysis: Application Model and Protection Levels

Operation Impact Class HW Offloading
TC1796 AT91SAM3U ATmega128

null Checks
Instance Field
load reference global 4 4 6

load primitive local 4 4 6

store local/global 4 4 6

Array Operations
load reference global 4 4 6

load primitive local 4 4 6

store local/global 4 4 6

get length local 4 4 6

Method Invocation
dynamic binding global 4 4 6

static binding global å local å local 6

Array-Bound Checks
null array analogue to missing null check 6 6 6

valid array
store global 6

load analogue to missing null check 6 6 6

Table 3.5: Impact Classification

Global Impact The omission of a check with the impact class global may result in a
malfunctioning of OS-Applications other than the one in the context of which
the check would normally have raised an exception. The consequences of the
defect may not be contained within the faulty OS-Application.

Omitting all checks of impact class local still retains fault containment and the
spatial isolation of OS-Applications, a degree of protection comparable to the one
provided by hardware-based memory protection with the help of an MPU.

Table 3.5 summarizes the results that I elaborate on in the remainder of this section,
grouped by the type of runtime check. The first column contains a general description
of the operation that causes the check; column two shows the impact class of the check;
the last three columns show whether the check may be offloaded to the hardware for
the three example platforms. In the following, I separately consider load, store and
method invocation operations. I assume static knowledge of the address space layout
of the target platform as with the three examples in Figure 3.5.

3.4.4.1 Predicting the Affected Memory Range

There are no wild pointers in type-safe languages. References or pointer values always
point to an existing object, with the exception of one special null reference. This
special value introduces the need to null-check operations on an object reference.
If such a check is omitted, an illegal access takes place at a particular offset from

52

3.4 Graduations of Software-Based Memory Protection

the null reference. The actual address value of the null reference is known to and
controlled by the compiler. It can principally be an arbitrary value that is known
to never collide with a reference to a valid object. It is, however, common practice
to use address 0 for the null reference. In contrast to unsafe languages, the absence
of wild pointers enables to predict the affected address regions to a certain range.
Knowing the target address of an operation is crucial for both determining if a check
on a memory operation can be offloaded to hardware and determining the check’s
impact class.
Most such accesses address a fixed offset from the base address. This offset is

statically known for each individual null check and the target address can exactly be
predicted. These operations are accesses to instance fields and object header fields (for
example, the array length or the runtime type). The maximum offset of an instance
field depends on the number and types of members of the used Java classes, but is
usually small in the area of approximately 20 bytes.
Operations that access array elements use a possibly computed index. The exact

value set that this index may take at runtime may not be determinable at compile
time. The largest possible offset is the size of the array’s data type (which is statically
known for each individual check site) times the maximum array index. While the
Java Virtual Machine specifies array indexes of 32-bit signed integer data type, a Java
implementation may provide the option to the programmer to choose a smaller data
type, which would reduce not only the size of the array header but also the memory
range off the null address that could be affected by a store following an omitted null

check.

3.4.4.2 Load Operations

For load operations, the data type of the loaded value makes the difference between
local and global impact. While the erroneous load of a primitive value only affects the
computations of the running OS-Application (local impact), interpreting a random
value as a reference introduces wild pointers and breaks the consistency of the object
graph (global impact). Subsequent operations on a wild reference may affect data of
other OS-Applications.

If the target address of the load operation can be predicted to be part of an address
range where a read access triggers a hardware exception, it can be offloaded to the
hardware. In the examples, this works on the TC1796 with its initial two GiB of
reserved address space. On the Cortex-M3, it only works if the null address value if
moved to an unmapped block. On the AVR, checks cannot be offloaded for the lack
of a hardware exception mechanism.

3.4.4.3 Store Operations

For store operations, the target memory regions that could be modified by the store
operation determine whether the operation may affect the memory of other OS-
Applications. In a system that constructively isolates OS-Applications by means

53

3 Analysis: Application Model and Protection Levels

of software-based memory protection, the data of different OS-Applications is not
necessarily physically separated from each other, but may, for example, be allocated
from a common heap.
If an illegal store happens at an address that belongs to an unused portion of the

address space, it does not corrupt data of the OS-Application (or, cause other defects,
such as a reconfiguration of a hardware device if device registers were mapped to the
affected address) and I consider the impact being of class local. On the other hand, if
the store affects a used portion of the address space, the effect depends on the type
of data stored there. Giving an answer to this question—if possible at all—would be
a very tedious task, so I assume a global impact in such cases.

Reference Validity Checks The impact class for any null check of an instance store
operation can be statically determined for each individual check by cross-checking
with the address space of the target platform whether the destined address is within
the used address space or not. Table 3.5 contains the impact class local/global for
this operation category because the impact class depends on the target address space,
the value of the null reference and the offset of the respective field. If a store to the
affected address is discarded the impact is local. If the hardware raises an exception
the check can be offloaded. For instance fields, it is very likely that a reserved block
of sufficient size for the largest offset can be found. For arrays, it depends on the size
of the array index. With a 16-bit index, which should be sufficient on the presented
example platforms, given the typically available amount of RAM, a reserved block
can be found on the 32-bit processors. For the AVR, a 16-bit index can still cover
the entire address space. An 8-bit index, on the other hand, may not be sufficient for
some applications.
It may, however, not be necessary to determine the affected memory range for an

array store operation this way. Listing 3.1 shows a C code example for the operations
that a JVM may perform internally to process an array store operation for an array of
integers. The defined int_array_t type shows how an integer array might internally
be represented in memory, while the iastore procedure contains the code for the store
operation, including the null and bound checks that precede the actual operation.
The bound check performs another dereference of the array reference to read the array
length. Just like an instance field, the length field is stored at a fixed and known
offset from the base reference. For a null array reference and an address space where
the length field is in an unmapped address region, chances are good that reading
the field would either raise a hardware exception or return the value 0. The value 0
would cause a failure of the bound check for all non-zero-size arrays. For zero-size
arrays, the store would be redirected to a small and constant offset, similar to an
instance field access.

Array-Bound Checks The impact of an omitted bound check is mostly the same
as omitting the associated null check, with one exception: a missing bound check
on an array store operation to a valid array certainly affects valid application data,

54

3.4 Graduations of Software-Based Memory Protection

typedef struct {

object_hdr_t header;

int32_t length;

// actually data[length]

int32_t data[1];

} int_array_t;

void iastore(int_array_t *arr, int32_t index, int32_t value) {

// null check

if(arr == NULL)

throw_nullpointer_exception();

// bound check

if(index < 0 || arr->length <= index)

throw_array_index_out_of_bounds_exception();

arr->data[index] = value;

}

Listing 3.1: Example: Array Access

since the access does not happen relative to the null address but to the address of
the array, which lies within the application heap. The bound check of an array store
operation is thus more important than the null reference portion and should not be
omitted. Keeping the bound check may also support a safe null check omission on
array store operations as discussed above.

3.4.4.4 Instance Method Invocations

Instance method invocations are the third type of operation that requires a null

check. The cases of static and dynamic binding have to be considered separately.
For a statically bound method call, the object reference is not dereferenced during

the call. A JVM can normally assume the this reference to be null-checked at the call
site, and therefore does not need to null-check dereferences of the this reference. To
allow the omission of the check, the compiler must be aware that it cannot assume the
this reference to always be valid in an instance method. The behavior will still not
comply with the JVM specification, as a method can be invoked on a null reference,
but it is not an issue for the program’s memory safety. Consequently, the omission of
the null check can generally have the union of effects6 of all the other null checks
and thus belongs to the impact class global. If all other types of null checks can be
offloaded to the hardware (or are done in software), the impact of omitting the null

check is additionally reduced to local.
With dynamic binding, the address of the called candidate is determined at runtime

from the actual type of the object. The type is read from the object header, similar
6Excluding array operations, as the this reference is never an array reference.

55

3 Analysis: Application Model and Protection Levels

to the array length that is read during a bound check. In the case of a null reference,
an unknown, possibly random, value is interpreted as the type and used to lookup
the method implementation, resulting in a loss of control flow integrity. However, if
the type read were a predictable value (for example, 0), one could benefit from this
knowledge by pointing this slot of the dispatch table to an error handler to detect the
error, trading a few bytes of RAM for the saved execution time. If reading the type
from a null reference triggers a hardware exception, the check can be offloaded to
the hardware. Statically bound method calls do not dereference the target reference
during the call.

3.4.4.5 Summary

In this section, I presented a classification of runtime checks that allows to reduce
the overhead caused by runtime checks while still retaining a memory-safe (but not
type-safe) program. To implement the classification, the compiler needs to be aware
of the address space layout and memory bus behavior of the target. How well the
approach is applicable depends on the characteristics of the target platform. For load
operations, primitive values can generally be treated to have a local impact. For
store operations, an unused address range of sufficient size is needed, to that store
operations do not have a side effect, or raise a hardware exception. The position of
this range in the address space is principally not relevant, as the compiler should
be able to freely choose an address value for the null reference, however, there may
be technical reasons that require the use of the value 0. I presented three example
platforms, including a small 8-bit microcontroller. A sufficiently sized address region
is available in all of these platforms, assuming that the null reference address can be
freely chosen by the compiler and that the internal data type used for array indexing
is reduced to a size that is sufficient for the typically available amounts of memory.
In addition, I discussed how hardware exception mechanisms could be used to

offload runtime checks to the hardware without added cost as long as the execution
stays free of exceptions. This feature removes the runtime and code overhead of
qualifying checks without changing the functional behavior of the program.

3.5 Chapter Summary
In this chapter, I developed the protection model for my framework. As a starting
point, I used the mandatory and optional memory protection requirements from
AUTOSAR OS, which have been developed by the automotive industry considering
the requirements of this application domain and can be expected to gain wide practical
relevance in the coming years. I adopted these requirements as the variation features
for MPU-based memory protection in my framework. I extended the protection model
to include type-safe Java components at a finer granularity than the MPU-isolated
OS-Applications. These components can be mapped N:1 to OS-Applications to isolate
them in a shared OS-Application from the rest of the system by means of an MPU,
whereas the components among each other are isolated by the type safety of the

56

3.5 Chapter Summary

component code and the logical separation of their data implemented on the basis of
a multi-JVM concept. Finally, I extended the protection model with the possibility
of offloading runtime checks to the hardware to reduce the cost of software-based
protection qualifying platforms, and a selective runtime check omission that reduces
the cost of software-based protection at the cost of rendering a type-safe component
to a memory-safe one.

57

4
Design

A Framework that Provides
Memory Protection at Option

In this chapter, I develop the design and implementation of a framework that imple-
ments the protection model from Chapter 3.

To begin, I choose an AUTOSAR OS implementation and a multi-JVM around
which the framework will be built. I opted for an explicit separation of the operating
system and the JVM, which facilitates the integration of native C or C++ applications.
The ability to integrate native applications supports the soft migration from existing
application code, one of the objectives set in Section 1.2. I chose an AUTOSAR OS for
the operating system since the hardware-based part of the protection model is largely
adopted from the AUTOSAR OS protection concept; consequently an AUTOSAR
OS implementation already implements a good portion of the required functionality.
Following the selection, I discuss how the AUTOSAR OS and the multi-JVM are
combined to form the basis of the framework, which I extend to support the missing
features of the protection model. I discuss how the configurability of both MPU-based
and software-based protection is implemented.

The outcome of this chapter is a framework that supports the full protection
model for Java applications, and additionally supports running Java applications
side-by-side with native applications, although isolated with interaction limited to
the basic activation and notification services provided by AUTOSAR OS.

59

4 Design: A Framework that Provides Memory Protection at Option

4.1 Selection of an AUTOSAR OS Implementation

To avoid unnecessary implementation effort, I attempt to find a suitable existing
AUTOSAR OS implementation to provide a base operating system and ideally a
partial implementation of the MPU-based part of the protection model. A hard
criterion for my selection is the availability of the source code of the AUTOSAR OS
implementation, for the ability to adapt and extend it to my needs without limitations.
Additionally, the implementation should be easily extendable, configurable and support
memory protection.

My search for an open-source AUTOSAR OS implementation yielded three candi-
dates: Arctic Core [5] is an open-source AUTOSAR platform that is available under
both the GPL and a commercial license model. Trampoline [16] is a noncommercial
open-source implementation that in its current1 beta version 2.0b49 supports the
AUTOSAR OS 3.1 interface. CiAO [70] is an academic research operating system
with the primary design goal of achieving a high-level of fine-grained configurability in
even fundamental architectural properties by applying aspect-oriented programming
principles [62], based on AspectC++ [105]. CiAO implements large parts of the
AUTOSAR OS API, including memory and timing protection.

Arctic Core does currently not provide support for memory protection, but both
Trampoline and CiAO do. With respect to configurability and extensibility, Trampo-
line follows a traditional approach common to many OSEK/VDX and AUTOSAR OS
implementations: A code generator creates a tailored OS variant from the information
contained within the application description. In the case of trampoline, its gener-
ator GOIL reads a configuration file in the OSEK implementation language (OIL)
format [84]. AUTOSAR OS uses an XML-based configuration format with similar
content. GOIL is based on templates and similar in use to C-preprocessor-based
configuration. CiAO, on the other hand, has been built with fine-grained config-
urability as a first-class design goal; it achieves separation of concerns and avoids
code tangling by applying aspect-oriented programming. Compared to Trampoline,
CiAO is configurable at a finer-grained level. In addition to the information contained
within the system configuration file, CiAO uses Kconfig, the configuration tool of the
Linux kernel, to provide fine-grained configuration of the operating system. Another
advantage of CiAO is that it supports the Infineon Tricore architecture, which is used
on the I4Copter. I therefore select CiAO as the AUTOSAR OS implementation to
be used in my implementation, as it provides support for the Tricore architecture,
including memory protection, and for its configurable and extensible architecture.

4.1.1 CiAO Application Model

CiAO implements the application model of AUTOSAR OS with some extensions.
Trusted and non-trusted OS-Applications form the protection realms. To communicate
between applications, CiAO provides a synchronous remote procedure call (RPC) [17]

1Current as of April, 19 2012.

60

4.1 Selection of an AUTOSAR OS Implementation

mechanism, trusted functions and non-trusted functions. Only trusted functions are
specified in the AUTOSAR OS specification [10].

Trusted functions are functions exported by a trusted OS-Application to be called
from other (trusted or non-trusted) OS-Applications. A trusted function is executed
in privileged, trusted context. With this mechanism, trusted OS-Applications can
extend the system services with additional functionality. The non-trusted functions
supported by CiAO are the natural extension of trusted functions to non-trusted
OS-Applications. A non-trusted OS-Application can export non-trusted functions
that can be called from other (trusted or non-trusted) OS-Applications. A non-
trusted function is executed in the unprivileged protection context of the exporting
OS-Application.

4.1.2 Introduction to AspectC++
To understand the following sections on the implementation of configurable hardware-
based memory protection in CiAO, a basic understanding of the concepts and terms
of AspectC++ [105] is required. In this section, I give an introduction to AspectC++.
The introduction is not complete and limited to the elements of AspectC++ that
are used in the following sections. A comprehensive description of AspectC++ is
available in the AspectC++ language reference [121].
AspectC++ extends C++ by aspect-oriented programming [62]. AspectC++ pro-

vides a static aspect weaver, which performs a source-to-source transformation of a
C++ code base, applying a collection of aspects to the target code base to produce
the woven output code base. The woven source code is then compiled by a standard
C++ compiler. The key concepts in AspectC++ are join points, pointcuts and advice.
A join point is a specific position in the static structure of the program or the dynamic
control flow, at which a program transformation defined by a piece of advice can be
applied.

4.1.2.1 Pointcuts and Join Points

A pointcut describes a set of join points in the form of a declarative pointcut expression
in the join point description language of AspectC++. There are two types of pointcuts,
name pointcuts, given as match expressions, and code pointcuts, given as pointcut
expressions composed of pointcut functions that are applied to name pointcuts.

A match expression is a pattern string that is matched with identifiers of the target
program such as class or function names. A match expression may contain wildcard
operators (%, ...) for parts of the identifier, parameter lists and return types of
methods. For example, the match expression

pointcut pcFoo() = "int foo%(...)";

matches all functions whose name starts with foo and that return an integer,
irrespective of the parameter list. AspectC++ allows to name pointcut expressions by
declaring a pointcut. In the above example, a pointcut pcFoo is declared as a name
for the example match expression.

61

4 Design: A Framework that Provides Memory Protection at Option

Pointcut functions provide the set of code join points in the control flow of the
program that match a provided match expression. The following pointcut functions
are used in the following sections:

• call(): Provides the set of all call sites to functions matched by the provided
name pointcut.

• execution(): Provides the set of all bodies of the functions matched by the
name pointcut.

• within(): Provides all code join points within the bodies of the methods matched
by the provided name pointcut.

The following example shows a use of the call() pointcut function on the pcFoo()
pointcut declared above, which provides the code join points for all call sites to the
functions in the pcFoo() pointcut:

call(pcFoo())

In addition, AspectC++ provides standard set operations that can be applied to
sets of join points:

• Unions (operator ||)

• Intersections (operator &&)

• Complements (operator !)

In the following example, the intersection operation is used to limit the join points
from the previous example to those calls that are not within the body of the bar()

function:
call(pcFoo()) && !within("void bar()")

4.1.2.2 Advice Code

A piece of advice defines a code transformation that is applied to a set of code
join points, described by a pointcut expression. An example of a possible code
transformation is the execution of the advice code in addition to (or instead of) the
code join point (for example, a call to a method or the body of a method). An aspect
is a program artifact similar to a C++ class, which encapsulates pointcut expressions
and advice.

4.1.2.3 AspectC++ Syntax Example

To illustrate the syntax, a simple AspectC++ example of a complete aspect is shown
in Figure 4.1. The aspect encloses all calls to functions named Act() between a pair
of enterTrusted() and leaveTrusted() operations.

62

4.1 Selection of an AUTOSAR OS Implementation

#include <os/mp/MPU.h>

aspect TrustAct {

pointcut pcAct() = “% Act(...)”;

advice call(pcAct()) : around() {
enterTrusted();
tjp->proceed();
leaveTrusted();

}
};

aspect name pointcut code pointcut advice type

advice advice body

Figure 4.1: AspectC++ Syntax Example

The example shows an aspect TrustAct with a single piece of advice. It declares a
name pointcut pcAct, whose match expression matches all Act() functions in the code
base, regardless of the parameter list and return types (using the % and ... wildcard
operators). The advice code is applied to all calls to an Act() function, described by
using the call() pointcut function on the previously declared pcAct name pointcut.
The shown advice code is of the around advice type, which replaces the original code
join point with the advice body. AspectC++ does, however, expose the context of the
affected join point. By calling the method proceed() on the variable tjp ("this join
point"), which represents the affected join point, the original code of the join point
can be invoked from anywhere within the advice body. In addition to the around

advice type, there are the before and after advice types, which execute the advice
code preceding or following the code of the affected code join point.

4.1.2.4 AspectC++-Prepared Codebase of CiAO

The target code base for the AspectC++ weaver does normally not need to be specially
prepared, because the join points are specified declaratively. CiAO, however, has been
designed to be easily adaptable by applying aspects, and therefore provides a code
base with a particularly rich set of join points to aid the application of aspects. One
of CiAO’s concepts is explicit join points, empty methods that are called at certain
interesting stages of the kernel. They serve the sole purpose of providing a join point
for advice code. An example of such an explicit join point is after_CPUReceive(),
which is called whenever a new task has been dispatched and allows aspects to extend
the context switch with additional functionality [71].

63

4 Design: A Framework that Provides Memory Protection at Option

AspectC++,
C++ Compiler

CiAO
Configurator

CiAO
Generators

Application Source Code
(C++)

System Definition
(XML)

OS Configuration
(Kconfig)

CiAO Source Base
(AspectC++)

Tailored CiAO Source Code
(AspectC++)

Binary Image
(ELF)

Generated Bindings
(AspectC++)

CiAO
Application

Loadable and Executable
Application

Figure 4.2: CiAO Build Process

4.1.3 CiAO Build Process

A CiAO application consists of the application’s C++ source code, an AUTOSAR
OS system definition in XML format, and an operating system configuration created
with the Linux kernel’s configuration tool Kconfig. The system definition defines
the instances of AUTOSAR OS system objects (OS-Applications, tasks, etc.), their
properties and relations between each other (for example, which task belongs to which
OS-Application). The OS configuration defines the feature spectrum supported by
the CiAO operating system.
Figure 4.2 shows a slightly simplified version of CiAO’s build process. A custom

Kconfig backend reads the OS configuration and creates a CiAO variant that consists
of the base system and a selection of aspects that implement the additionally needed
functionality selected in the OS configuration. A set of code generators, which are
part of the generated OS variant, generate application-specific bindings and OS data
structures tailored to the application. The bindings consist of generated pointcut
expressions that are used by the aspects of the CiAO variant. As an example,
the generated bindings comprise pointcut expressions that match interrupt service
routines provided by the application, used to bind these handlers to the interrupt
vector entries, or pointcuts that define which artifacts of the application code belong
to which OS-Application, or which code artifacts are trusted code and which are
not. In Section 4.4, I explain in more detail how configurable MPU-based memory

64

4.1 Selection of an AUTOSAR OS Implementation

#include "app/componentheader.h"

// definition of component "SerialCom"

CIAO_COMPONENT (SerialCom)

public:

// task entry function for task "SerialComTask"

static void functionTaskSerialComTask();

// ISR entry function for ISR "SPIRXISR"

static void functionISRSPIRXISR();

// can be called as non-trusted functions

void service();

// this (non-trusted) function does only read state

void ro_service() const;

};

Listing 4.1: CiAO Component Definition

protection is realized in CiAO.
Finally, the static aspect weaver AspectC++ applies the aspects to the source code

of the operating system and the application. The woven source code is then compiled
by a standard C++ compiler and linked to an image that is ready to be loaded to
the target and executed.

4.1.4 CiAO Components: Application Interface

For CiAO applications, the definition of the OS-Applications is a decision that is
taken by the system integrator. The memory protection realms do not manifest in the
source code. At the system integration stage, OS-Applications are composed of CiAO
components, technically realized as C++ classes, which are assigned to exactly one OS-
Application each. Tasks and ISRs are implemented by components. Listing 4.1 shows
an example of a component definition, which contains the most important elements
of CiAO’s component interface. The macro CIAO_COMPONENT opens a class header and
defines a basic set of functionality offered by all CiAO components. Components are
statically instantiated by CiAO’s build system. The defined SerialCom component
provides the implementation for a task SerialComTask and an ISR SPIRXISR.
The entry functions of tasks and ISRs need to follow a predefined naming scheme.
Every task entry function is composed of the prefix functionTask followed by the
name of the task. ISR entry functions use the prefix functionISR. Trusted and
non-trusted functions are exported implicitly. All public methods of the component
can be invoked from other OS-Applications as a trusted or non-trusted function. The
call is treated as a (non-)trusted function call if the caller and callee components
do not belong to the same OS-Application. An exported function can be declared
const to denote that it does not change the state of the component. CiAO’s memory
protection subsystem can leverage this information to avoid a memory protection
context switch if only write protection is selected.

65

4 Design: A Framework that Provides Memory Protection at Option

4.2 Selection of a Multi-JVM

Just as with the AUTOSAR OS implementation, I build on an existing Java Virtual
Machine (JVM) implementation to avoid unneeded work. The JVM implementation
needs to fulfill similar criteria as the AUTOSAR OS implementation: The source code
must be available, it should support spatial isolation, and it should be able to adapt the
functionality provided by the JVM to scale to the requirements of a given application.
Particularly, it should be possible to disable expensive mechanisms such as garbage
collection if not needed. The JVM should target embedded systems: It should have
been designed to economically use constrained resources such as CPU time, RAM
and ROM. Following my discussion of Java compilation and execution strategies from
Section 3.4.1, it should support ahead-of-time compilation, as just-in-time compilers
require complex infrastructure, which exceeds most typical applications for the target
domain in resource requirements, and are hardly predictable. Interpreters on the
other hand impose high execution time overhead and still require a more complex
runtime environment than ahead-of-time compiled code. To support low-level code,
the JVM should implement the raw memory API defined in the RTSJ, or provide
a similar interface that provides such functionality. Finally, the JVM would ideally
allow using an external operating system for the scheduling of its threads. This
simplifies the integration with an AUTOSAR OS and native applications running on
top of it.

The available JVM implementations for embedded (in the sense of special purpose)
systems and real-time systems are manifold, but many of these implementations have
not been designed for resource-constrained targets. I restrict my following discussion
to implementations that have been designed for resource-constrained systems.

4.2.1 J2ME Implementations

The most widely spread Java platform for embedded systems is the Java 2 Micro
Edition (J2ME) [67]. J2ME defines two scalability concepts, configurations and profiles.
Configurations define the feature set of the JVM targeting a specific class of devices,
for example, a configuration typically defines a minimum amount of memory that
needs to be available. There are currently two standard configurations, the Connected
Limited Device Configuration (CLDC) [57], and the Connected Device Configuration
(CDC) [58]. Orthogonally to configurations, J2ME defines different profiles targeting
a particular application domain and mostly define the available APIs suited for the
respective target domain. An example of a widespread profile is the Mobile Information
Device Profile (MIDP) [59], designed for mobile devices such as cellphones or PDAs.
Of the two configurations, CLDC targets more resource-constrained devices (min.
160 KiB ROM, 32 KiB RAM).

The main issue with J2ME is that it has been designed for a purpose that is different
to that of my framework. It provides a portable and safe execution platform for
potentially untrusted code. As a consequence of the portability, the code is distributed
in the form of bytecode and interpreted or compiled just in time, and the feature

66

4.2 Selection of a Multi-JVM

set provided by the JVM is fixed as defined by the configuration. Since the code
is potentially untrusted, verification of the bytecode on the target is additionally
required, and low-level programming is not possible for security reasons. In contrast, I
am looking for a JVM that can be tailored to a set of known, trusted (but potentially
buggy) applications.

4.2.2 Commercial JVMs for Embedded and Real-Time Systems
Aicas’ JamaicaVM [101], Aonix’ PERC Pico [98] and Fiji Systems Inc.’s FijiVM [89]
are commercial JVM implementations for resource-constrained real-time systems.
All of them support ahead-of-time compilation, real-time garbage collection, and
either provide support for the RTSJ or implement proprietary APIs with similar
functionality. From the available information material, none of these JVMs supports
spatial isolation, and the source code is not available. It is also unclear to what extent
these JVMs can be tailored for a specific application and what the minimum resource
requirements for the simplest configuration are.

4.2.3 Sun’s SquawkVM for Sensor Nodes
SquawkVM [103] is a research project originally by Sun Microsystems of a JVM for
embedded systems, primarily Sun Spot wireless sensor nodes (180 MHz ARM920T, 4
MiB ROM, 512 KiB RAM). SquawkVM is available open source, supports ahead-of-
time compilation, and spatial isolation through the Java Isolate API [56]. SquawkVM
can either be used as a JVM on a desktop operating system (Windows, Mac OS X or
Linux), or run on bare hardware without an underlying operating system (currently
on ARM-based microcontrollers). SquawkVM therefore poses a promising candidate.
The downsides are that it does not run on top of AUTOSAR OS, only supports ARM
microcontroller platforms, and that it can only be coarsely tailored to an application.

4.2.4 KESO
KESO [123, 113] is an academic multi-JVM implementation for OSEK/VDX platforms.
In addition to spatial isolation, KESO supports ahead-of-time compilation of Java
bytecode to C code, optional low-latency garbage collection, a raw memory API
similar to the one in the RTSJ and an own additional mechanism of memory-mapped
objects for low-level programming, and maps Java threads to tasks of the underlying
OSEK/VDX operating system. KESO has been designed for static embedded systems
and consequently does not provide support for dynamic class loading. What is special
about KESO is that a tailored JVM is created when compiling the applications.
KESO’s compiler jino runs whole-program analyses to gather the set of features
required by the application from the program code, and automatically tailors the
JVM at a fine-grained level to the requirements of the application. This is in stark
contrast to the execution model of J2ME: KESO does not provide a portable platform
for the execution of unknown applications, but a tailored platform for the execution
of known applications. This tailoring enables KESO to provide a broad spectrum of

67

4 Design: A Framework that Provides Memory Protection at Option

JVM features while at the same time being able to provide a very lightweight runtime
environment for applications that require few of these features2.
Since KESO fulfills most of the requirements, it is the most suited candidate for

my framework. It integrates well with OSEK/VDX operating systems, to which
AUTOSAR OS is largely backwards compatible. KESO generates C code at its
backend, which allows it to be easily extended to support new target platforms, as
KESO itself is mostly platform independent. Most importantly, however, is that
KESO adapts itself very closely to the requirements of the used application. This
will allow me to evaluate the cost of software-based memory protection with little
distortion by unneeded JVM features, particularly when comparing to the original C
version of a program ported to Java. In the following, I will briefly introduce KESO’s
application model and build process, before I discuss the integration with CiAO in
Section 4.3.

4.2.4.1 KESO Application Model

The architecture of a KESO system is shown in Figure 4.3. The system is structured
in multiple domains, which pose the realms of isolation. Since KESO is based on
OSEK/VDX, whose threading and synchronization facilities it utilizes, it uses the
OSEK/VDX terms of tasks, resources and events instead of the corresponding Java
terms threads and monitors3. To the application, each domain appears to be a JVM
of its own, with a separate instance of the static class fields and a separate object
heap, hence the term multi-JVM architecture. Domains provide spatial isolation,
established as discussed earlier by retaining disjoint object graphs and static fields.
Each OSEK/VDX system object is assigned to a domain. Each control flow executes
in the context of a domain, in which it accesses that domain’s instance of static fields
and heap. KESO not only logically but also physically separates the heaps of the
different domains. This allows statically partitioning the memory so that each domain
can access a guaranteed amount of memory regardless of the amount of allocations
within other domains. The memory management strategy can be chosen on a per-
domain basis. KESO currently provides three memory management schemes: a simple
bump-pointer constant-time allocation scheme without deallocation, a throughput
optimized stop-the-domain garbage collector and an incremental low-latency garbage
collector4. Choosing the allocation strategy per domain allows restricting garbage
collection to those domains that continuously allocate memory during their execution.

Inter-Domain Communication For communication among domains, KESO provides
a synchronous remote procedure call mechanism that is similar to Java remote method

2For a portable execution platform, a feature set that is appropriate for all targeted applications has
to be predetermined and supported by the runtime environment, even if it executes an application
that does not use most of these features.

3KESO does not currently support Java monitors as defined in the JVM specification [69], but
instead provides an API to the native synchronization and notification facilities of OSEK/VDX.

4A survey over automatic memory management schemes is available in a publication [125] by Paul
Wilson.

68

4.2 Selection of a Multi-JVM

Peripheral Device Access
(KNI)

Domain A

Static Fields

Microcontroller

OSEK/VDX OS

Domain B

OSEK API (KNI)

Control Flows

TaskA1 ISR1TaskA2

System Objects

TaskA1

TaskA2

Alarm1

Resource1

Heap

P

Heap

S
Portal Service

Figure 4.3: KESO: Architecture, Domains and Inter-Domain Communication

invocation [95], so-called portals5. The portal mechanism enables a task in one domain
to invoke a method on a service object within a service domain by invoking a method
on a proxy object (the portal) in its own domain. Data can be passed between the
caller domain and the service domain as parameters to the portal call, and via the
call’s return value. To retain disjoint object graphs, object references must not cross
domain boundaries through this mechanism. Instead, KESO creates a deep copy of
the referenced part of the object graph on the service domain’s heap, and replaces
the reference with a reference to the clone. The same happens for returned values.
KESO provides mechanisms to restrict what is deep-copied during a portal call. Deep
copying is also used in the message channels defined by the Java Isolate API [56]
and is a consequence of the logical heap separation. It is somewhat problematic, as
it implies the need for garbage collection, because allocation happens during each
call. For portal calls that take and return only primitive values, this problem does
not occur. For the duration of the portal call, the calling control flow is temporarily
migrated to the service domain to execute the service. This ensures that the portal
mechanism does not interfere with the OSEK/VDX scheduling.

Low-Level Interface To program low-level code such as device drivers, KESO
provides a raw memory API similar to the one specified in the RTSJ. This API can
be used to enable Java code to access device-registers mapped to a special address
range in the address space. Accessing a raw memory area is similar to accessing
an array of primitive data, including bound checks for accesses to the area. For a

5The term portal was adopted from JX [41], on which KESO is conceptually based, and originates
from OPAL [23].

69

4 Design: A Framework that Provides Memory Protection at Option

OSEK/VDX
Application

KESO
Application

Application Source Code
(C)

OSEK/VDX System Definition
(OIL)

Application Code
(Java Bytecode)

jino

System Definition
(KESORC)

OSEK/VDX
build process

Figure 4.4: KESO Build Process

higher-level API, KESO supports an own concept that allows mapping Java objects
to a raw memory area and to access the elements of the raw memory area by named
fields. The concept is similar to hardware objects [97]. Using memory-mapped objects,
the programmer of low-level code gets a similar experience to using C structures for
accessing memory areas.
For low-level code that needs functionality beyond accessing raw memory regions,

KESO provides a lightweight native interface (KNI). KNI pursues an aspect-oriented
concept. KNI provides an API that allows a KNI plugin to affect the code generation
of the compiler at certain points in the call graph or to extend classes with additional
fields. A KNI plugin is exposed to the full internal API of jino, which renders the
mechanism very powerful. KESO’s raw memory API, memory-mapped objects and
OSEK/VDX interface are all implemented as KNI plugins. Code generated using the
KNI is potentially unsafe and the interface should therefore be used with care. In
practice, I have not encountered an application that needed a custom KNI plugin
beyond what is provided with KESO.

4.2.4.2 KESO Build Process

KESO’s compiler jino creates an OSEK/VDX application, which can be used like a
native application in the build process of the respective OSEK/VDX implementation.
The build process is shown in Figure 4.4. The KESO application is provided in the form
of Java bytecode and a system definition text file. The Java bytecode can be generated
from Java source code by using a regular Java compiler. The system definition file
contains the definitions of the used OSEK/VDX system objects (tasks, etc.) along
with their properties (for tasks, for example the priority and entry functions), the
definitions of the KESO entities (domains, portals and services), and the mapping of
OSEK/VDX system objects to domains. The KESO application is then compiled by
jino to an OSEK/VDX application, consisting of a system definition file in OIL format

70

4.3 Integration of KESO with CiAO

and the application C source code. The generated C source code not only contains
the translated source code of the application, but also a Java runtime environment
that is tailored towards the given application. The generated OSEK/VDX application
can be used as input to the OSEK/VDX-implementation-specific build process for
further processing to an executable image.

4.3 Integration of KESO with CiAO
KESO contains backends for different OSEK/VDX implementations. Common to
all backends is that the produced output is the application translated to C source
code and a system definition in OIL format. Since CiAO is an AUTOSAR OS-like
operating system and not an OSEK/VDX implementation, integrating KESO with
CiAO requires some changes to KESO beyond the addition of a new backend. The
main steps towards an integrated toolchain as shown in Figure 4.5 are:

• Generate a system definition in AUTOSAR XML format

• Integrate the application model of AUTOSAR OS into KESO

• Output C++ code

• Adapt the runtime environment to support MPU-based memory protection

4.3.1 CiAO Backend

The new backend for CiAO emits an XML system definition in the format required
by CiAO. To support a soft migration and a side-by-side operation of Java and
native C++ applications, the system definition of KESO comprises both the Java
and native C++ parts of the system. This allows KESO to fully generate the XML
system definition at its backend. More importantly, it makes KESO’s compiler jino
aware of all operating system objects (OS-Applications, tasks, resources, etc.), which
enables jino to support basic interaction between Java applications and native C++
applications, for example activating native C++ tasks or setting events for such tasks
from Java application code.
To support CiAO, KESO needs to be extended to support AUTOSAR OS as the

underlying operating system. AUTOSAR OS is a superset of OSEK/VDX considering
the functionality that affects KESO. The main change required to enable KESO
to run on top of AUTOSAR OS is the extension of its application model by the
OS-Applications of AUTOSAR OS. In Section 3.3, I opted for an N:1 mapping of
KESO domains to OS-Applications. I extended KESO’s application model by the
OS-Application container, to one of which each domain must be assigned. The
system definition contains the OS-Application definitions and mappings for native
application parts. This allows jino to fully generate the system definition for CiAO. In
addition, jino’s awareness of the OS-Application allows it to extend its language-based

71

4 Design: A Framework that Provides Memory Protection at Option

CiAO
Application

KESO
Application

Application Code
(Java Bytecode)

jino

System Definition
(KESORC)

AspectC++,
C++ Compiler

CiAO
Configurator

CiAO
Generators

Compiled from Java:
Application Source Code

(C++)
System Definition

(XML)
OS Configuration

(Kconfig)

CiAO Source Base
(AspectC++)

Tailored CiAO Source Code
(AspectC++)

Binary Image
(ELF)

Generated Bindings
(AspectC++)

Loadable and Executable
Application

Native C++:
Application Source Code

(C++)

Figure 4.5: KESO and CiAO Combined: KESO generates CiAO applications that
are no different to CiAO than native CiAO applications.

service protection to handle operating system objects that are contained in native
OS-Applications. Finally, jino needs the knowledge on the OS-Applications and the
mapping of domains to OS-Applications to assist CiAO in employing MPU-based
memory protection for Java applications. As shown in Figure 4.5, jino generates parts
of the bindings for AspectC++. I discuss this in more detail in Section 4.6.

4.3.2 C++-Compatible Output

KESO generates C code at its backend, whereas the CiAO toolchain requires the
applications to be written in C++. While C++ is for the most part a superset of
C, there are some important incompatibilities. As an example, KESO widely used
designated initializers for the static initialization of data structures of the runtime
environment and statically allocated objects. The C code generated by KESO
therefore cannot be compiled with the C++ compilers used in CiAO’s toolchain.
While it would be possible to compile the application parts generated by KESO with
a C compiler, and combine them with the native C++ parts at the link stage, this

72

4.3 Integration of KESO with CiAO

approach would eliminate the possibility to transform the KESO-generated parts
using AspectC++, and thereby prohibit the use of aspects that affect parts of the
application code. A true C++ backend on the other hand would mean a significant
implementation and future maintenance effort, without providing a benefit that would
compensate the effort. I therefore opted to adapt KESO’s C backend so that the
emitted code complies with the common subset of ISO C90 and C++. The minimum
C++-specific requirements that CiAO puts on its applications (Section 4.1.4) are
handled in the CiAO backend (for example, all task and ISR entry functions need to
be member of a C++ class).

4.3.3 MPU-based-Protection-Friendly Java Runtime Environment

KESO has originally been developed targeting OSEK/VDX systems. MPU-based
memory protection was not considered, and consequently KESO’s runtime environment
is not prepared to support MPU-based protection. To support MPU-based protection,
the Java runtime environment needs to arrange its runtime state in a manner that
allows reducing the number of MPU ranges needed to grant access to the needed
regions to a minimum. KESO used to organize data by kind, and used arrays to
create multiple instances of domain-specific state such as the static fields. I adapted
KESO to instead organize its data by the following groups:

Read-only data structures shared by multiple domains comprise for example the
runtime type information on all classes and the dispatch table.

Domain-specific data structures include the heaps and static fields for each domain
and related management data. For each domain, an own group for the domain-
specific data is created.

Shared data writable from multiple domains is currently limited to the identifiers
of the currently running task and the currently active domain. With hardware-
based protection, such state must not be modifiable from non-trusted application
code.

The actual placement of data in memory is managed by CiAO, however, jino assists
CiAO by avoiding data belonging to different of the above groups to reside within a
single object-file-level data item. In addition, jino marks the data items with their
group by assigning them symbol names that follow a naming scheme mandated by
CiAO, encoding the destined OS-Application or that the item belongs to the kernel
realm. CiAO can use the information to group the data with data from an identical
category in CiAO, so that no additional MPU regions are needed. Read-only shared
data is placed in a memory region that is not writable to any OS-Application. If
supported by the target platform, such data can also be placed in flash memory, which
is normally a less limited resource than RAM. Domain-specific data structures are
mapped to the private data segment of the containing OS-Application. Mutable state
of the Java runtime environment that is accessible by multiple domains is limited

73

4 Design: A Framework that Provides Memory Protection at Option

to two identifiers that are only modified when a task switch occurs. KESO uses the
privileged hook routines provided by AUTOSAR OS to perform this state change.
CiAO can therefore group this state with similar state of its kernel.

4.4 Configurable MPU-Based Protection

In this section, I present how configurable MPU-based memory protection is achieved
in CiAO. CiAO already offers configurable MPU-based memory protection [72]. For
my framework, I modified and extended the existing work to suit my requirements.
To implement MPU-based memory protection, three problems need to be solved.

Firstly, the memory regions that each application needs to access at runtime need
to be determined. Secondly, the region for each data item in the code base must be
identified and assigned to the respective region. Thirdly, the infrastructure code for
maintaining and switching memory protection contexts according to the configured
protection coverage needs to be added to the code base. Each of these steps varies
depending on the configured type of memory protection.

4.4.1 Region Management

As discussed in Chapter 2, I aim for a static management of the MPU regions to achieve
a predictable and low-overhead behavior of the memory protection subsystem. Trusted
OS-Applications and the kernel are not subject to memory protection and therefore
need not be considered for the region management. For non-trusted applications, the
accessible data should be grouped in memory according to the access rights mandated
by the configured protection model to minimize the number of needed MPU regions,
as the number of regions supported by the MPU is limited.
The basic set of regions needed to implement the protection model of AUTOSAR

OS is:

• CCode: Shared code that is directly executable by all OS-Applications. An
example of such shared code is functions of the standard C library. If execution
protection is not used, this region spans the entire code space.

• AppCode: Code that is private to the active non-trusted OS-Application. Only
needed if execution protection and application isolation are enabled.

• CRData: Shared data that is read-only accessible by all OS-Applications.
Examples are string constants, or, for KESO’s runtime environment, the dispatch
table and the runtime type information table. If read protection is not enabled,
this region spans the entire data space.

• AppData: Private data segment of the active non-trusted OS-Application,
readable and writable. Only needed if application isolation is enabled.

74

4.4 Configurable MPU-Based Protection

• TStack: Stack of the active control flow, readable and writable. Needed only
if control-flow isolation is enabled, or if non-trusted functions or non-trusted
ISRs are used.

These regions are the minimum needed set to fully support the protection model,
however, an actual application may need additional regions for shared data areas,
temporarily accessible memory areas or to access memory-mapped device registers.
In addition, it may be sensible to split some of the above basic regions into multiple
subregions, for example to place part of the code or data in special memory types
such as fast on-chip memories.

On the heterogeneous MPU of the Tricore TC1796, the above base regions occupy
both code regions and three of the four data regions. On the homogeneous MPU of
the ARM Cortex-M3, five of eight regions are needed in the common case. In some
special situations, code and data regions can be merged on a homogeneous MPU.
Firstly, if only write protection is required, CCode and CRData can be merged
to a single region that provides read and execute permissions on the entire address
space. Secondly, if the code resides in the same memory as the data, the CCode
and the CRData can be merged on a homogeneous MPU, as well as AppCode and
AppData. It is more common, however, that the code resides in Flash ROM and not
in the data RAM.

Stateful Library Functions

A problem arises with stateful functions of the C library such as strtok(). For the
correct isolation, the different OS-Applications would need to have an own instance
of the state each. In a system with a single shared address space, separate instances
of the library state require a C library prepared for this situation. At the least, the
library must not use absolute addressing to access the mutable state. Some C libraries
provide solutions to this problem, for example, the Redhat newlib library groups
all library state in a compound object and provides a global pointer variable that
points to the currently active instance of the library state. The operating system
can allocate an instance of the library state per OS-Application (or per task/ISR,
to additionally provide reentrancy), and set the global pointer variable to point to
the correct instance as part of the OS-Application or task switch. A problem with
this solution is that the full mutable state is grouped in the compound structure,
and the structure is fully allocated even if only a single element of it is used. The
size of the structure is 892 bytes in newlib 1.12.0 for the Tricore architecture, which
ships with the Hightec Tricore Toolchain 3.4.6. With separate instances for each
OS-Application or control flow, the sizes of these instances accumulate to a notable
amount considering the available memory in embedded systems. To avoid this often
unneeded memory consumption, CiAO does not support the use of stateful library
functions. Instead, the applications must use the reentrant versions of the library
functions (for example, strtok_r()), for which the caller provides an instance of the
needed state.

75

4 Design: A Framework that Provides Memory Protection at Option

4.4.2 Region Identification and Data Mapping

With the needed regions determined, the data must be arranged in memory to form
these contiguous regions. The placement of data in memory is commonly performed by
a linker. For a static embedded system, a static link-and-load approach is reasonable,
where all of the linking steps are performed ahead of time.

4.4.2.1 Linking Process Overview

The linker combines a group of object files produced by the compiler to an output
file, in this case a linked object file that contains a memory image that can be loaded
into the memory of the target. Each object file consists of different sections that
contain data items categorized by purpose. For example, code (functions) is commonly
contained in the .text section, initialized static data in the .data and uninitialized
(or 0-initialized) data in the .bss section. In addition, there may be special-purpose
sections such as .rodata containing read-only data items that enable the linker to
place the contained items in special memories if appropriate. Each function or static
data item is identified by a symbol (symbolic name), which is usually derived from
the object’s identifier at the programming language level. Each object file additionally
contains a symbol table that lists the symbols defined by the object file and unresolved
references to symbols used within the object file.
During the linking process, symbol references among the different input object

files are resolved so that no more unresolved references remain. The code and data
items from the input object files are mapped to sections in the output object file.
In the simple case, the output sections are produced by merging the corresponding
sections of the input files, but many linkers can be provided with a linker script to
customize this mapping process. The linker script defines at the granularity of the
different code and data items to which section in the output object file each will be
mapped. In the binding phase, the runtime memory address of each output section
is determined, and therefore an address value is bound to each symbol. Finally, the
linker updates symbol references (for example, load, store or branch instructions or
data initializations depending on a symbol value) to contain the value bound to the
symbol (relocation).

4.4.2.2 Data-to-Application Mapping

To instruct the linker to group data items belonging to the same MPU region in
memory, the issue of identifying the destination region for each data item needs to be
solved. There are different approaches to achieve this, each of which places certain
structural requirements on the application.

Delegate to the developer One approach is to delegate the task of grouping the data
and defining the regions to the developer. In practice, the developer could place
all the data belonging to the private data region of an OS-Application in an
aggregate data structure at the programming language level. The corresponding

76

4.4 Configurable MPU-Based Protection

region would then just contain a single data item at the linker level. Hightec’s
PXROS-HR [94] follows this approach. Whenever instantiating a task, the
programmer explicitly needs to provide the memory ranges for all regions
accessible to that task. In the I4Copter, a single aggregate data structure is
used for each task, and a region is defined that spans the address range occupied
by this aggregate data structure.

Mapping based on object-file sections or symbol names An alternative approach
is to predefine an application structure that reflects the different protection
realms in the application structure and enables a differentiation at the linking
stage. This is either possible by completely separating the compilation units, so
that each compilation unit (object file) of the application contains code or data
items that belong to exactly one application and can be mapped section-wise
to regions. Or, at a finer-grained level, a naming convention for language-level
identifiers that reflects in the symbol names can be utilized, for example based
on C++ namespaces. The mapping is then based on the symbolic names of the
data items rather than the compilation unit, therefore data items belonging to
different OS-Applications can be contained in the same object file.

The first approach leaves more freedom to the application developer, but also all
the work including handling the physical arrangement of the data in memory. CiAO
follows the second approach, based on its system-integration-level mapping of CiAO
components (Section 4.1.4) to OS-Applications. The mapping works based on the
symbol names and is independent of the compilation units.

4.4.2.3 Configuration-Independent Memory Layout

CiAO provides a generator that produces a linker script file from the system definition.
The linker script contains detailed instructions for the linker on how to perform the
mapping process of input data items to the output sections of the produced image.
The memory layout follows the different granularity levels that the protection is
available for. This memory layout is suitable for any of the configuration variants.

Figure 4.6 shows the layout of the data memory. The code memory is correspond-
ingly organized, or merged with the data if code and data reside in the same memory.
Figure 4.6 also shows the additional symbols that are defined by the linker script at
the region boundaries, and are used by the operating system code to determine the
region boundary addresses that match the chosen configuration. At the first level,
the trusted items, non-trusted items and shared read-only items are separated from
each other. The kernel code uses known C++ namespaces, the code and data for
each application can be identified based on the symbol name as described above. Any
items that cannot be assigned to either an OS-Application or the kernel are considered
shared library items that are readable or executable by any OS-Application, but
not writable. This coarse grouping is sufficient to realize kernel protection. For
the isolation of OS-Applications, the non-trusted portion is further structured to
contain groups per OS-Application. The portion for each OS-Application contains

77

4 Design: A Framework that Provides Memory Protection at Option

Kernel Data

TD
AT
A_
ST
AR
T

N
T
A
P
P
2
_
D
A
T
A
_
E
N
D
,

N
T
D
A
T
A
_
E
N
D

Trusted Applications Non-Trusted ApplicationsShared RO-Data

TA
PP
1_
ST
AC
KS
_S
TA
RT
,

T1
_S
TA
CK
_S
TA
RT

TD
AT
A_
EN
D,
 C
RD
AT
A_
ST
AR
T

CR
DA
TA
_E
ND
,
NT
DA
TA
_S
TA
RT

NT
AP
P1
_S
TA
CK
S_
ST
AR
T,

T4
_S
TA
CK
_S
TA
RT

T1 St
ac

k

T2 St
ac

k TApp1
Data T3 St

ac
k TApp2

Data T4 St
ac

k NTApp1
Data T5 St

ac
k NTApp2

Data

T1
_S
TA
CK
_E
ND
,

T2
_S
TA
CK
_S
TA
RT

T2
_S
TA
CK
_E
ND
,

TA
PP
1_
DA
TA
_S
TA
RT

TA
PP
1_
DA
TA
_E
ND
,

TA
PP
2_
ST
AC
KS
_S
TA
RT
,

T3
_S
TA
CK
_S
TA
RT

T3
_S
TA
CK
_E
ND
,

TA
PP
2_
DA
TA
_S
TA
RT

T4
_S
TA
CK
_E
ND
,

NT
AP
P1
_D
AT
A_
ST
AR
T

NT
AP
P1
_D
AT
A_
EN
D,

NT
AP
P2
_S
TA
CK
S_
ST
AR
T,

T5
_S
TA
CK
_S
TA
RT

T5
_S
TA
CK
_E
ND
,

NT
AP
P2
_D
AT
A_
ST
AR
T

Figure 4.6: Configuration-Independent Memory Layout (Data Only)

Kernel Protection
CRData CRDATA_START CRDATA_END

AppData NTDATA_START NTDATA_END

Application Isolation
CRData CRDATA_START CRDATA_END

AppData NTAPPx_STACKS_START NTAPPx_DATA_END

Control-Flow Isolation
CRData CRDATA_START CRDATA_END

AppData NTAPPx_DATA_START NTAPPx_DATA_END

TStack Ty_STACK_START Ty_STACK_END

Table 4.1: Data Region Definitions for Read-Write Protection

the private code and data segments, and the stacks of all tasks that belong to the
respective OS-Application. If only application isolation is used, a single region can
span the private data segment and the task stacks of the respective OS-Application.
If control-flow isolation is additionally used, one region is needed for the private data
segment of the OS-Application and an additional region for the stack of the task.
Table 4.1 shows the used data region boundaries for a configuration with both read
and write protection for the three levels of isolation.

4.4.3 Configurable MPU-Context Switching Code

Having identified the regions required for the configured MPU protection variant and
arranged and grouped all data items to reside in the proper region, the prerequisites
with respect to the data representation for applying MPU-based memory protection
are fulfilled. To make the protection functional, the base operating-system code has
to be extended with the functionality to enable and switch the memory protection
mode that corresponds to the active protection realm, which is either the kernel or

78

4.4 Configurable MPU-Based Protection

App1 App2

CiAO Kernel

ActivateTask()

Task1()
Task2()

ISR()Service()

WaitEvent()
GetTaskID()

dispatch()

function()protection realm function call example
control flowjoin point, element of

∈ pointcut

∈ pcToOS

∈ pcInOS

∈ pcDispatch ∈ pcDispatch

∈ pcToOS
 ∩ asConstServices

∈ pcToOS

∈ pcInOS

INTERRUPT
∈ pcISRs

∈ pcInOS
 ∩ asConstServices

Figure 4.7: Protection Context Switching (compare [72])

an OS-Application.
Figure 4.7 shows an example control flow that passes through different protection

realms. The example contains three protection realms, the two non-trusted OS-
Applications App1 and App2, and the CiAO kernel. App1 contains one task Task1
and exports a non-trusted function Service(). App2 contains one task Task2 (of
higher priority than Task1) and an interrupt service routine ISR().
Initially, Task1 executes in the context of OS-Application App1. Task1 invokes

the system service ActivateTask() to activate the higher-priority Task2. For the
execution of the system service ActivateTask(), the protection context changes to
the privileged kernel. Since the activated Task2 is of higher priority, control is
transferred to it in the protection context of OS-Application App2. Task2 then
invokes the non-trusted function Service() exported by OS-Application App1. The
non-trusted function is executed in the protection context of the exporting OS-
Application, wherefore Task2 is temporarily migrated to the protection context of
App1. Upon return of the non-trusted function, Task2 executes back in the context
of App2, and is then preempted by an interrupt service routine that belongs to the
same OS-Application. The ISR queries the identifier of the currently running task.
After completion of the ISR, Task2 resumes execution and blocks by invoking the
WaitEvent() system service. The control returns to Task1.

In the basic CiAO configuration without memory protection, calls to system services
of the kernel or to services of other OS-Applications are no different from regular
function calls. The compiler may even inline a system call into the application code
if appropriate. With memory protection enabled, switches of the protection context
(that is a change of the processor privilege mode or the MPU configuration) become
necessary as the control flow proceeds across the boundary of the active protection
domain.

79

4 Design: A Framework that Provides Memory Protection at Option

CiAO achieves configurability by means of aspect-oriented programming (AOP),
where the core functionality is extended with optional features by applying aspects.
In the following, I discuss how the basic CiAO code base providing no memory
protection is successively extended to provide the different levels of MPU-based
memory protection. The first step is to define pointcut expressions that match the
join points where a change of the memory protection context occurs. The second step
is to define the appropriate advice code to transform the join points to include the
memory protection context switch.

4.4.3.1 Pointcuts and Generated Bindings

The pointcuts defined for the memory protection subsystem are shown in Listing 4.2.
The example in Figure 4.7 shows, in which of these pointcuts each of the protection
domain crossing code join points is contained. The shown pointcuts are for a
configuration with write protection only, wherefore read-only system services and
(non-)trusted functions declared const are excluded from the pointcuts that match
the protection domain crossings. For a configuration that additionally uses read or
execution protection, this optimization is not applied.
For the operating system, all system services of the public API are known and a

pointcut expression explicitly matching each service can be created, as shown in the
(incomplete) definition of the asServices pointcut. The entry functions of tasks and
ISRs need to follow a defined naming scheme (Section 4.1.4) and can therefore also
be matched by the static match expressions pcStartFuncs and pcISRs.

Pointcut expressions to match code join points for transitions between different OS-
Applications (for trusted and non-trusted functions) depend on the CiAO components
defined by the application and their assignment to OS-Applications. As this infor-
mation varies, the pointcut expressions cannot be defined statically but are instead
generated from the system definition file. Pointcut expressions are generated for each
individual OS-Application, matching the methods of all components that are assigned
to the respective OS-Application (pcApplicationApp1 and pcApplicationApp2). In
addition, pointcuts that aggregate all trusted and all non-trusted OS-Applications
are generated (pcTrustedApps and pcNonTrusted).
Based on these name pointcuts, pointcut expressions that match code join points

at that the different protection domain transitions are initiated can be created. For
system services, the pointcut pcInOS comprises the implementations of all public
system services themselves, whereas the pointcut pcToOS comprises the calls to system
services from non-trusted OS-Applications. A discussion of these two alternatives
follows in Section 4.4.3.2.

4.4.3.2 Kernel Protection and Trusted Functions

The most basic memory protection level provided by CiAO is kernel protection, where
only the trusted protection realm containing the kernel and trusted OS-Applications
and the non-trusted protection realm with the non-trusted OS-Applications exist.

80

4.4 Configurable MPU-Based Protection

////////// OS INTERFACE POINTCUTS

// contains all system services

pointcut asServices() = "% AS::ActivateTask(...)"

|| "% AS::WaitEvent(...)"

|| "% AS::GetTaskID(...)";

// contains all read-only system services

pointcut asConstServices() = "% AS::GetTaskID(...)";

////////// APPLICATION POINTCUTS

pointcut pcConstMethods() = "% ...::%(...) const";

// entry functions

pointcut pcStartFuncs() = "void ...::functionTask%()";

pointcut pcISRs() = "void ...::functionISR%()";

// per-OS-Application pointcuts (generated)

pointcut pcApplicationApp1() = "% App1Component::...::%(...)";

pointcut pcApplicationApp2() = "% App2Component::...::%(...)";

// aggregate trusted/non-trusted pointcuts (generated)

pointcut pcTrustedApps() = "";

pointcut pcNonTrusted()= pcApplicationApp1()||pcApplicationApp2();

pointcut pcNonTrustedISRs() = pcISRs() && pcNonTrusted();

////////// PROTECTION-DOMAIN CROSSING POINTCUTS

pointcut pcOS() = asServices() && !asConstServices();

pointcut pcInOS() = execution(pcOS());

pointcut pcToOS() = call(pcOS() && within(pcNonTrusted());

// trusted and non-trusted function calls (generated)

pointcut pcToApplicationApp1() = call(pcApplicationApp1()

&& !within(pcApplicationApp1()));

pointcut pcToApplicationApp2() = call(pcApplicationApp2()

&& !within(pcApplicationApp2()));

pointcut pcToN() = pcToApplicationApp1() || pcToApplicationApp2();

pointcut pcToT() = call("");

pointcut pcNtoT() = pcToT() && within(pcNonTrusted())

&& !call(pcConstMethods());

pointcut pcNtoN() = pcToN() && within(pcNonTrusted())

&& !call(pcConstMethods());

pointcut pcTtoN() = pcToN() && within(pcTrustedApps())

&& !call(pcConstMethods());

Listing 4.2: Pointcuts of the Memory Protection Subsystem for Write Protection.
If read or execute protection is additionally enabled, read-only system
services and (non-)trusted functions are not excluded in the respective
pointcut definitions.

81

4 Design: A Framework that Provides Memory Protection at Option

Kernel protection requires the following basic operations:

• enterTrusted(): Switches the processor to supervisor mode and disables the
memory protection unit.

• leaveTrusted(): Leaves the trusted protection realm by switching the processor
to user mode and enabling the memory protection unit.

• exportStack(func): Explicitly sets up the TStack region to provide access
to the remaining unused portion of the currently active stack, and executes
the provided function. On return of the function, the previous stack region is
restored. This operation is intended to provide non-trusted ISRs and non-trusted
functions with a runtime stack.

As all non-trusted OS-Applications belong to the same protection realm in this
setting, the same MPU regions are used for all applications. To enable kernel
protection, the leaveTrusted() operation needs to be invoked whenever the trusted
domain is left, and conversely enterTrusted() needs to be invoked at all join points
where a transition to trusted context happens:

Task Dispatch Upon dispatch of a task in a non-trusted OS-Application, privileged
mode needs to be left (pointcut pcDispatch, not shown in Listing 4.2).

Non-Trusted ISRs When entering an ISR, processors typically switch to privileged
mode. Upon activation of an ISR that belongs to a non-trusted OS-Application,
privileged mode must be left, and reentered before returning from the ISR
(pointcut pcNonTrustedISRs). In addition, a stack for the execution of the ISR
must be made available by the exportStack() operation.

Non-Trusted Functions Privileged mode needs to be left when calling a non-trusted
function from a trusted OS-Application, and reentered on return (pointcut
pcTtoN).

Trusted Functions Privileged mode needs to be entered when calling a trusted
function from a non-trusted OS-Application, and left on return (pointcut
pcNtoT).

System Services When calling a system service from a non-trusted OS-Application,
privileged mode needs to be entered for the call, and left before returning to
the application (pointcut pcInOS or pcToOS, see below).

Pointcuts for all affected code join points are contained in Listing 4.2, except for the
task dispatch, for which CiAO already provides a pointcut. Listing 4.3 exemplarily
shows the advice code that implements the switch to privileged mode for system
services. The advice code uses the execution code join point, which weaves within the
body of the system service as opposed to the call site. The advice code is therefore

82

4.4 Configurable MPU-Based Protection

aspect os_mp_Trusted {

advice pcInOS() : around() {

bool istrusted = true;

if(! isTrustedMPU()) {

istrusted = false;

enterTrusted();

}

// execute the original code join point

tjp->proceed();

if(!istrusted) {

leaveTrusted();

}

}

};

Listing 4.3: Aspect that Provides Privileged Mode Switching for System Services

independent of the calling context, and therefore needs to consider both trusted and
non-trusted calling OS-Applications. This is implemented by a runtime check of the
active privilege level of the caller. The privilege mode switches are only carried out if
the caller executes in non-trusted context.

Exposure of the Privilege-Mode Switching Operations The presented implementa-
tion directly exposes the enterTrusted() operation to the application. A non-trusted
OS-Application can use the operation anytime to elevate its privilege level. This
may seem problematic at first, but is tolerable in an environment in that memory
protection is used for safety, not security, purposes. The applications are assumed to
not behave maliciously, are well known and the binary code can be statically checked
to not contain the processor instruction that initiates the transition to trusted context.
Most processors provide a designated system call instruction that triggers a dedicated
trap to handle the system call. The enterTrusted() operation compiles to exactly
this instruction. The trap handler disables the memory protection subsystem and
resumes the caller in trusted execution context. When compiling the application code
without the memory protection aspects, there should be no occurrences of the system
call CPU instruction in the code of the resulting binary.

The more traditional approach is a dynamically bound system call, where the ID of
the targeted system call is provided in addition to the parameters to the trap handler.
The main advantage of retaining the static binding is that a uniform system call
mechanism can be used for configurations with and without memory protection. In
addition, the static binding is also slightly more efficient.

83

4 Design: A Framework that Provides Memory Protection at Option

Call-Side versus Callee-Side Weaving AspectC++ can apply code transformations
either at call sites (call join points) or within the method bodies (execution join
points). Weaving at the call sites has the advantage that the respective context of
each call site can be incorporated, whereas weaving in the method body avoids code
duplication. The trade-off is similar to the decision on whether a method should be
inlined or not.
Concerning the weaving of protection context switches, call-side weaving (pcToOS

pointcut) allows a static distinction of trusted and non-trusted callers. Trusted callers
are not affected at all, and non-trusted callers do not require the runtime check for
the current privilege level that is shown in Listing 4.3. The enterTrusted() and
leaveTrusted() operations consist of only few CPU operations, thus the effect on
code size is little6. Call-side weaving is therefore preferable to realize kernel protection,
and CiAO originally used call-side weaving instead of the method-body-side variant
shown in Listing 4.3.

When porting the I4Copter software from its original operating system PXROS-HR
to CiAO, however, a technical issue with call-side weaving appeared. The C++ parser
of AspectC++ has problems with parsing template definitions and additionally does
not support weaving within template code. While CiAO has been developed to work
around these issues, the I4Copter code widely uses templates and cannot be parsed
by AspectC++. Method-body-side weaving transforms the system call code within
the operating system code and does not require weaving within the application code,
evading this problem. I therefore added method-body-side weaving as an alternative
to the call-side weaving, and will use it in the remainder of this thesis and particularly
within the evaluation as call-side weaving does not currently work with the I4Copter
code.

4.4.3.3 Application and Control-Flow Isolation

For kernel protection, all non-trusted applications share an identical MPU config-
uration. The MPU regions therefore only needed to be initialized once on startup.
Transitions between trusted and non-trusted protection contexts are realized by en-
abling and disabling the memory protection unit. To isolate different non-trusted OS-
Applications, a different set of regions is needed for each non-trusted OS-Application,
and a new basic operation setMPUForApplication(ToApp) is introduced that configures
the MPU regions to reflect the access permissions of the given OS-Application. The
base implementation of setMPUForApplication() only changes the region used for the
private code and data segment of the OS-Application (AppCode and AppData).
The region for the shared read-only data (CRData) is identical for all non-trusted
OS-Applications and needs not be changed. The base functionality is extended by
further aspects to change additional regions as required by the configured functionality,
for example to properly set the stack region (TStack) if control-flow isolation is
enabled.

6On the Tricore architecture, the enterTrusted() operation consists of a single instruction, and the
leaveTrusted() operation consists of five instructions.

84

4.5 Determining Domain Reachability for Java Code

The setMPUForApplication() operation needs to be issued at the following join
points:

Task Dispatch Upon dispatch of a task in a non-trusted OS-Application, the MPU
region needs to be configured for the OS-Application in the context of that the
dispatched task currently executes (pointcut pcDispatch).

Non-Trusted ISRs Upon activation of an ISR in a non-trusted OS-Application, the
protection context of the interrupted control flow needs to be preserved. The
MPU is reconfigured to the OS-Application the ISR belongs to. Upon ter-
mination of the ISR, the preserved protection context is restored (pointcut
pcNonTrustedISRs).

Non-Trusted Functions Upon start of a non-trusted function, the protection context
that the running task executes in needs to be preserved. The calling protection
context is saved on the stack and the MPU is reconfigured to match the context
of the application exporting the non-trusted function. On return of the non-
trusted function, the preserved protection context is restored (pointcut union of
pcTtoN and pcNtoN). With the isolation of non-trusted applications, non-trusted
functions additionally require the exportStack() operation to provide the non-
trusted function with access to the remaining portion of the runtime stack of
the calling task, which it could otherwise not access from within the context of
the callee application.

Trusted Functions On call of a trusted function from a non-trusted OS-Application,
the protection context of the caller needs to be preserved before entering trusted
execution mode. Upon return from the trusted function, the original context is
restored (pointcut pcNtoT).

4.4.3.4 Mapping Portals to Non-Trusted Functions

KESO’s portal mechanism is very similar to non-trusted functions in CiAO. A portal
call in the presence of hardware-based memory protection requires the same changes
to the MPU configuration that a non-trusted function requires. KESO needs to
additionally update the identifier of the currently active domain and set a mark on
the stack that tells the garbage collector that the following stack partition belongs
to a different domain. KESO generates pointcut definitions that identify the portal
proxy methods. The CiAO aspects for non-trusted functions can be applied to these
pointcuts.

4.5 Determining Domain Reachability for Java Code
For Java applications, the same principle issue of grouping code and data to consecutive
memory regions for each OS-Application needs to be solved as for native CiAO
applications. KESO’s domain concept greatly simplifies the issue for data items,

85

4 Design: A Framework that Provides Memory Protection at Option

however. With the physical separation of the heaps and static fields, the domain-
specific data can easily be identified and colocated in a consecutive memory region for
each domain, fitting the memory layout required by CiAO. Hardware-based memory
protection with respect to read and write accesses can thus easily be supported by
KESO.

To support execution protection, the code of applications and libraries needs to be
identified to belong to a particular domain (and consequently an OS-Application),
or to be shared code. Execution protection is a measure that allows the detection
of additional errors in the program execution, but it is not needed to provide fault
containment. For example, an overflow of a stack-allocated array (in a C application)
could corrupt the return address, and upon return from the function the execution
would resume at the corrupted address. With execution protection, the error would
be detected unless the corrupted address still points to the executable code regions of
the active OS-Application. The distinction of shared functions and private functions
needs not be optimal, but the more precise the assignment of private functions to
private data segments is, the more effective execution protection will be in detecting
violations of the control-flow integrity.

In CiAO, the assignment of private code to OS-Applications is performed explicitly
by the system integrator at the granularity of C++ classes that are assigned to
OS-Applications. Any code that is not explicitly assigned to an OS-Application this
way, and that is not in the known namespaces of the kernel code, is treated as shared
code. This approach works well for small applications. With the port to CiAO of
the I4Copter as the first larger CiAO application, however, the manual partitioning
turned out to be tedious for the multitude of C++ classes, and the assignment unit
of C++ classes showed to be too coarse grained, as functionality of many classes is
frequently used by multiple OS-Applications. The consequence was that the code
assignment was practically limited to the classes containing the entry functions of the
control-flows of the respective OS-Applications, and the remaining code was treated
as shared code. This effectively constrains execution protection to the boundary
between kernel and application code.
With the whole-program static analyses performed by jino, an automated and

finer-grained solution is viable, which has the major benefit that no changes to KESO’s
programming model are needed and existing KESO applications can benefit from
hardware-based memory protection without changes to the existing code. The idea
is to identify for each basic block the set of domains from that it is reachable. For
the problem of determining Java methods exclusively used from one domain and
those shared by two or more domains, the set of domains from that each method is
reachable is that of the method’s entry basic block. This information is, however,
valuable for other problems and optimizations as well, for example:

• Static service protection enforcement: Service protection means that the pa-
rameters to certain system services are restricted to subsets that depend on the
calling OS-Application. For example, a task may activate a task in a different
OS-Application only if the system definition explicitly allows it to do so. With

86

4.5 Determining Domain Reachability for Java Code

reachability information at the basic block level, dynamic parameter checks
can partially be replaced by compile time checks. In addition, inconsistencies
between the code and the system definition can partially be detected at compile
time.

• Absolute addressing of static fields: As discussed earlier, static fields need to
be accessed by an indirection to enable shared code between multiple domains.
This indirection can be removed if the access is within a basic block that is
reachable from a single domain only.

• Per-application configurability of software-based protection (Section 4.6.2)

4.5.1 Overview of the Reachability Analyses in Jino

The core of jino’s middle end is an iterative SSA-based [31, 109] work-list algorithm
that combines data-flow and 0CFA [99] control-flow analysis. To determine the
domain reachability for each basic block, the middle end was adapted to separately
process and collect the information for each domain. A key issue to achieve a
satisfactory level of preciseness in determining the reachable code for each domain is
the devirtualization [2, 115] (that is, the static binding) of virtual method calls, given
that all regular method calls are virtual in Java.

The devirtualization of a virtual method call is possible if the runtime type of the
target reference can be determined at compile time specifically enough, so that only a
single candidate method remains in the resulting class sub hierarchy. Jino combines
two analyses to statically determine the type. The first is a data-flow analysis, which
propagates the types from allocation sites to all variables in the program. Where paths
with differing types flow together, the most-specific common supertype is remembered
for the variable. The second analysis is a rapid type analysis [14] (RTA), which
determines the set of live types for each domain, based on all allocation operations in
the reachable code of the respective domain. The analyses affect each other and are
applied iteratively. The actual set of type candidates for a virtual method call site is
determined by removing from the class sub hierarchy determined by the data-flow
analysis all classes, which are not in the set of allocated types as determined by
the RTA, except for those that implement a method candidate not overridden in an
instantiated subclass. A class hierarchy analysis [32] of the remaining sub-hierarchy
determines the possible candidate methods. If the result is a single method, the call
can be statically bound.
A detailed description of the static analyses in jino is available in the dissertation

of Christian Wawersich [123]; the redesign of the analyses to independently process
the different domains is covered in Christoph Erhardt’s diploma thesis [35].

4.5.2 Domain Reachability Example

Figure 4.8 shows a simple example that illustrates the reachability information
collected by jino. The example contains a configuration with two domains, each

87

4 Design: A Framework that Provides Memory Protection at Option

class A {

static int fooOrBar(A inst,

boolean runFoo) {

if(runFoo)

return inst.foo();

return inst.bar();

}

int foo() { return 1; }

int bar() { return 3; }

}

class B extends A {

int foo() { return 2; }

int bar() { return 2; }

}

class C extends A {

int foo() { return 3; }

int bar() { return 1; }

}

(a) Class Hierarchy

B
Inst: { Dom1 }

 int foo(): Live { Dom1 }
 int bar(): Live { }

C
Inst: { Dom2 }

 int foo(): Live { }
 int bar(): Live { Dom2 }

A
Inst: { }

 int fooOrBar(): Live { Dom1, Dom2 }
 int foo(): Live { }
 int bar(): Live { }

Task1
Inst: { Dom1 }

 void run(): Live { Dom1 }

Task2
Inst: { Dom2 }

 void run(): Live { Dom2 }

(b) Code and Type Reachability

// belongs to Domain Dom1

class Task1 {

void run() {

A.fooOrBar(new B(),true);

}

}

(c) Task 1 Entry (Domain Dom1)

// belongs to Domain Dom2

class Task2 {

void run() {

A.fooOrBar(new C(),false);

}

}

(d) Task 2 Entry (Domain Dom2)

Figure 4.8: Domain-Specific Rapid Type Analysis and Reachability Analysis

88

4.6 Configurable Software-Based Protection

containing one task. The code base contains a simple class hierarchy consisting of
the class A, which implements the two instance methods foo() and bar(), and two
subclasses of A, B and C, which override the two methods with own implementations.
In addition, the A has a static method that either calls foo() or bar() on a provided
instance. The first task calls this method with an instance of B and asks it to call
foo(), the second task calls it with an instance of C and asks it to call bar().

Figure 4.8(b) shows the results of the reachability analysis for this example at the
class and method level. For each class, the set of domains, in which instances of
the class exist, is collected (Inst). For each method, the set of domains from that
the method is reachable is collected (Live). Initially, jino knows from the system
definition that Task1/Task2 are instantiated from only Dom1/Dom2, and that the
task entry methods run() are respectively reachable. Both entry functions invoke
A.fooOrBar(), which consequently is reachable from both domains at the method
granularity. At the basic block level, however, the if-case of the method body is only
reachable from Dom1, whereas the implicit else-case is reachable only from Dom2.
This information, together with the information that B/C are only instantiated from
Dom1/Dom2 enable jino to devirtualize the two method calls and identify a single
live candidate for foo() and bar().
Concerning the problem of identifying private and shared code, Task1.run() and

B.foo() can be mapped to the private code segment of the OS-Application that
Dom1 is assigned to, and respectively Task2.run() and C.bar() for Dom2. Only
A.fooOrBar() is put into the shared code segment. The other candidates are dead
code and eliminated.

4.5.3 Reachability Results for the I4Copter Codebase

Table 4.2 shows the results of the domain reachability analyses for the Java port of the
I4Copter application. The numbers include all used Java library code. The majority
of methods and basic blocks can be identified to be reachable from a single domain
only. Consequently, 64 % of the methods can be placed in the private code segments
of the respective OS-Application. As a further measure to reduce the amount of
code in the shared code segment, a part of the methods reachable from only two
domains could be placed in an overlapping part of the two domains’ private code
segments. However, given the low amount of methods that are reachable from exactly
two domains, I have not further pursued this technique for the placement of methods
in this thesis.

4.6 Configurable Software-Based Protection

The graduations for software-based protection developed in Section 3.4 are based on
the selective omission of runtime checks. I categorized the most-common runtime
checks into the impact classes local and global. Only the checks of the impact class
global are required to retain the spatial isolation of software-isolated applications.

89

4 Design: A Framework that Provides Memory Protection at Option

Domain Classes Methods BBs
FlightControl 36 (6, 17 %) 76 (27, 36 %) 952 (607, 64 %)
CopterControl 68 (11, 16 %) 166 (40, 24 %) 1190 (612, 51 %)

SerialCom 30 (3, 10 %) 78 (30, 38 %) 339 (241, 71 %)
SignalProcessing 91 (33, 36 %) 232 (103, 44 %) 2068 (1463, 71 %)

Ethernet 31 (9, 29 %) 56 (27, 48 %) 291 (222, 76 %)
(a) Instantiated Classes and Reachable Methods and Basic Blocks per Domain. The numbers
in brackets show the amount exclusively used by the respective domain.

of domains Classes Methods BBs
1 62 (52 %) 227 (63 %) 3145 (84 %)
2 13 (11 %) 52 (14 %) 225 (6 %)
3 25 (21 %) 55 (15 %) 325 (9 %)
4 7 (6 %) 13 (4 %) 35 (1 %)
5 13 (11 %) 12 (3 %) 26 (1 %)

Total 120 359 3756
(b) Distribution of Classes and Basic Blocks

Table 4.2: Domain Reachability in the I4Copter Application for Allocated Classes,
Reachable Methods and Basic Blocks (BBs)

The cost of software-based memory protection can be reduced by omitting runtime
checks. Firstly, static analyses can prove the checked condition to always hold at
compile time, and therefore safely eliminate the runtime check. Secondly, I discussed
how the memory characteristics of the target system, optionally with the help of
a memory protection unit, could be leveraged to offload some runtime checks to
hardware exception mechanisms. Both techniques achieve a reduction of code size
and execution time without impairing the safety of the program. Thirdly, the runtime
checks with local impact can be omitted for a further cost reduction, at the price
of losing the detection of some memory access errors that only affect the containing
program. Finally, the remaining checks of the global impact class can be omitted.
The result is an unsafe program similar to a program written in a language such as C.
The program can be isolated using hardware mechanisms, or be accepted as part of
the trusted computing base.
For the offloading of runtime checks to the hardware, jino needs to be aware of

the memory characteristics and memory bus behavior of the target platform. This
information may also allow more runtime checks to be assigned to the impact class
local. With this knowledge, the compiler can perform the impact classification and
omit runtime checks according to the configured safety level, by applying the rules
from Section 3.4. For the mixed-mode operation of software- and hardware-isolated
applications, this configuration should be possible on a per-domain basis in KESO. In
the following, I present how the memory characteristics are provided to jino and how
the individual configurability of the level of software-based protection on the basis of
domains is enabled.

90

4.6 Configurable Software-Based Protection

MemoryDescription {

accessing 0x0 to 0x7 generates a MPN trap

accessing 0x8 to 0x7fffffff generates a bus error

reserved_virtual_address_space = {

origin = 0;

length = 0x80000000;

read = "trap";

write = "trap";

}

accessing 0xf8800000 to 0xffffffff generates a bus error

reserved_space_high = {

origin = 0xf8800000;

length = 0x07800000;

read = "trap";

write = "trap";

}

}

Listing 4.4: TC1796 Memory Characteristics Description

4.6.1 Incorporating Memory Characteristics into the Compiler
To provide the memory characteristics and memory bus behavior to jino, KESO’s
configuration was extended by a new block MemoryDescription, which defines the
memory characteristics for different regions of the address space. Listing 4.4 shows
the most important address regions for the memory description for the TC1796
microcontroller.

For each defined region, the start address (origin), length, and the behavior of load
(read) and store (write) instructions targeting addresses within the region are defined.
Possible behaviors are:

Regular An address region backed by memory or mapped to device registers, which
may be accessible to an OS-Application. The compiler makes no assumptions
on the region, except that load accesses to the region do not cause side effects.
For loads, the compiler assumes that random values are returned. For stores,
the compiler assumes that the region holds data that must not be modified in
an uncontrolled manner. This is also the default for all regions that are not
explicitly defined in the memory description.

Trap An access of the respective type targeting an address within the region is
signaled by a hardware exception.

Volatile (loads only) Load accesses targeting an address within the region provide
random values and may additionally cause side effects. An example is a memory-
mapped shift register through which a hardware buffer can be accessed, and
where reading the register removes a value from the buffer.

91

4 Design: A Framework that Provides Memory Protection at Option

Const (loads only) A load access targeting an address within the region reads a
compile-time constant value. This setting is provided with a byte string, which
is repeated by the compiler to the size of the region. An example where this
setting is usable is vendor reserved address regions, which often simply read as
zero (as specified in the processor manual).

Ignore (stores only) A store to the addresses within the region has no effect. This
setting is mainly useful on processors without a hardware exception mechanism,
for example the AVR architecture.

The memory description is provided with KESO for supported targets. It is part
of the regular application configuration file. The developer can either include the
descriptions provided with KESO, or easily define a custom memory description for
a particular development board. The memory description needs not be complete.
For jino, it is sufficient to know a region of sufficient size to that accesses trigger a
hardware trap, or to that store accesses are ignored. The region definitions for the
TC1796 processor shown in Listing 4.4 are sufficient for jino for the currently applied
rules.

4.6.2 Per-Application Configurability

To support a mixed-mode operation as motivated in Section 1.2, where different
spatial isolation schemes can coexist in a system configuration, the configuration of
software-based protection needs to be possible on a per-domain basis. In combination
with the possibility to disable and enable hardware-based memory protection by
setting OS-Applications as trusted or non-trusted, all isolation variants (as developed
in Section 3.3) can be realized and coexist side-by-side.
The software-based protection in my implementation is enabled, disabled, and

graduated by varying the amount of runtime checks in the generated application code.
For differing configurations for different applications, jino needs to identify the domain
that a checked operation is reachable from and compile the code according to the
setting made for this domain. The reachability analyses outlined in Section 4.5 provide
this information at the granularity of basic blocks and enable jino to differentiate the
runtime check emission at this granularity level.

4.6.2.1 Shared Code: Specialization versus Generalization

An obvious issue that arises is basic blocks that are reachable from multiple domains
with differing settings for the level of software-based protection. For the I4Copter
application, 16 % of the basic blocks are reachable from two or more domains7.
There are two principal approaches to handle this situation, specialization and

generalization. With specialization, different variants of the containing method of
the basic block could be created, each of which reflects one of the participating

7That is, jino was not able to prove the contrary.

92

4.7 Chapter Summary

settings. With generalization, the safest of all participating settings could be used
to compile the basic block. The compiled basic block is safe to use in all settings.
Specialization may save execution time in domains with less strict protection settings,
but on the other hand increases the code size and has further implications on the
runtime environment. Specialization introduces new method candidates that need to
properly be selected. Dynamically bound calls need changes to the dynamic dispatch
mechanism, for example dispatch tables that are (partially) domain specific.
In my current implementation, I opted for the approach of generalization for its

simplicity. Basic blocks that are reachable from multiple domains are compiled using
the safest from the set of protection settings in question. It is questionable whether
the execution time saved by specialized method variants weighs in for the added
footprint and increased complexity of the runtime environment. I have not addressed
this question in my thesis.

4.6.2.2 Incorporating Combined Protection

The system definition provided to KESO contains information on which domains
are mapped to a hardware-isolated OS-Application. This knowledge can be utilized
by jino in combination with a memory description that defines the address regions
destined for regular memory. This may allow the omission of additional runtime
checks on platforms, where no reserved region of sufficient size to that accesses trigger
a hardware exception exists.

4.7 Chapter Summary
In this chapter, I presented the core of my framework composed of the AUTOSAR OS-
like operating system CiAO and the self-tailoring multi-JVM KESO. CiAO provides
the MPU-based protection part of the protection model developed in Chapter 3,
and KESO implements software-based isolation for Java applications. I presented a
toolchain in that the applications output by KESO are indistinguishable to CiAO from
native C++ applications for CiAO, and therefore no special KESO support needed
to be added to CiAO. This approach additionally enables the coexistence of Java
applications and native C++ applications. I adapted KESO’s runtime environment
to support MPU-based protection. Most notably, I reorganized the data structures of
the runtime environment so that data that belongs to different domains is never part
of a single data structure.
I presented how the configurable MPU-based protection is realized in CiAO. The

approach is aspect-oriented. Join points in the code at that a change of the protection
context takes place are described by pointcut expressions. These pointcut expressions
are used in aspects that can be accumulated to provide the memory protection variants
of the protection model matching the configuration.

At the programming interface, CiAO defines a component-based application model
that maps to C++ language constructs. The protection realms are defined indepen-
dently of the code by assigning components (C++ classes) to OS-Applications. I

93

4 Design: A Framework that Provides Memory Protection at Option

discussed the practical shortcomings of the approach that showed up when adapting
the I4Copter application to this component model. In particular, the static parti-
tioning of the code base at the granularity of C++ classes turned out to be tedious,
and the class granularity too coarse grained. As a consequence, I pursued a different
automated approach based on static code reachability analyses in jino, which showed
to be able to determine a single domain for the larger part of the I4Copter code
base and generates according pointcut expressions for CiAO’s memory protection
subsystem. I showed how the same analyses are used to provide per-application
configurability of the software-based isolation provided by KESO.
At this point, the framework is complete for Java applications that use KESO’s

native portal mechanism to communicate. The framework fulfills the goals of fine-
grained configurability and the mixed-mode operation of different spatial isolation
mechanisms (Section 1.2). It also enables the coexistence of native CiAO applications
side-by-side with the Java applications, but communication is limited to the basic
activation and notification services provided by the operating system. In particular,
no mechanism to exchange data between native applications and Java applications
has been defined so far. In the following chapter, I introduce such communication
mechanisms with the aim of providing a soft migration strategy.

94

5
Component-Wise Soft Migration

The framework developed in Chapter 4 provides configurable memory protection with
variable protection degrees for applications and application components with differing
characteristics and requirements, but requires the applications to be written in Java.
Java currently is, however, rather exotic in the domain of statically configured, deeply
embedded systems. On the other hand, a huge base of legacy code predominantly
written in C exists. Abandoning or porting all the existing code is not feasible for
both cost and time reasons. In this chapter, I present an extension to the framework
that allows the interaction of native C or C++ components with Java components,
isolated in separate OS-Applications. The extension enables the co-existence and
cooperation of C or C++ applications with Java applications. In addition, it provides
the possibility of a component-wise migration from C or C++ to Java, to open the
full spectrum of software-based memory protection to these application parts.
In the following, I first discuss why software components pose a well-suited unit

for a soft-migration approach, and why CiAO and KESO both can be considered
component systems. The main part of the chapter is concerned with the presentation
of system abstractions that enable the cooperation of C or C++ and Java components.
Based on these abstractions, I conducted a full, component-wise port of the I4Copter
C++ application to Java.

5.1 Migration Granularity: Software Components
A software component [76] encapsulates a set of related software functions and
interacts with other software components by well-defined interfaces. Key properties of
software components are the reusability in multiple contexts and the replaceability by
other software components that implement the same interface. Software components
have long existed and are a well-established software structuring technique. Because of

95

5 Component-Wise Soft Migration

the strong encapsulation and the property of replaceability, they pose an appropriate
granularity for a soft-migration approach.
With software components as the migration unit, different migration approaches

are possible. For example, individual components can be ported to Java and be
used as a replacement for the original component in combination with the other
legacy components. Or, alternatively, existing components can be retained and
continued to be used, and only newly developed software components are added as
Java components. In the long run, the legacy components can be gradually phased
out.

5.1.1 Considering CiAO and KESO as Component Systems

Both CiAO and KESO are component systems. In CiAO, a component is represented
as a C++ class, where the public interface of the C++ class represents the interface
of the component, implicitly exported as an external interface to other components as
(non-)trusted functions. In KESO, a domain can be considered a component, whose
interface consists of the interfaces of the exported services.

To enable the communication of native CiAO components with Java components, a
bridge between KESO’s portal mechanism and CiAO’s (non-)trusted functions could
be created. Interface description languages provide a language-independent way to
describe a component interface. Based on such a language-independent description,
data conversion code could be generated that converts the passed data items from
the data representation of C++ to Java’s representation and vice versa.
RPC-like interfaces such as portals and (non-)trusted functions are, however, not

commonly found in operating systems for my target domain and therefore are of
limited use to provide a soft-migration path for legacy components that do not use
such interfaces. Therefore, I have not pursued this approach and instead focused on
two more common communication mechanisms, shared memory and message ports.
In this chapter, I present how I extended CiAO and KESO by these communication
mechanisms to enable the data exchange between native and Java components.

5.1.2 I4Copter Component Interfaces

The I4Copter software is based on the CoSa (Component architecture for Safety-
critical embedded systems) framework, a user-level component framework, which
provides a uniform C++ API for exchanging and sharing data among components, the
so-called connectors. The framework provides two implementations of the connector
API, one that is mapped to the mailbox messaging mechanism of the PXROS-HR
operating system, and one that merely passes a pointer to an area of shared memory.
Message channels can be established dynamically in PXROS-HR, whereas CiAO’s
static model requires all communication channels to be explicitly defined in the
system definition at system creation time. The shared memory areas in the CoSa
framework are not known to the operating system. PXROS-HR leaves the definition
of the protection regions to the application, and the I4Copter application is developed

96

5.1 Migration Granularity: Software Components

Signalprocessing

Ethernet

SerialCom

Flightcontrol

Coptercontrol

Global
Mode

Basic
Sensor

Data

BLCtrl to SPI

SPI to BLCtrl

Steering Data

SPI to PwrSw

FC Mode

PwrSw to SPI

FC Telemetry

SPI to PwrSw

SPI to BLCtrl

PwrSw to SPI

BLCtrl to SPI

FC Telemetry

SPI to ADXL345

SPI to MK3Mag

SPI to TLV5618

ADXL345 to SPI

MK3Mag to SPI

TLV5618 to SPI

SPI to ADXL345

SPI to MK3Mag

SPI to TLV5618

MK3Mag to SPI

TLV5618 to SPI

SP Mode

Sensor Data

Steering Status

ADXL345 to SPI

Ethernet RemCtrl

CC TelemetryCC Telemetry

SP Telemetry SP Telemetry

ReceiverSender

message port
component

shared memory
read-only
access

read-write
access

Figure 5.1: I4Copter Component Interfaces

to work with write-only protection and assumes global read permissions for all
applications. All shared memory regions in the I4Copter have a single producer
component, that accesses the shared memory area in read-write mode, and one or
more consumer components that can only read from the shared memory area. The
shared memory area is located in the private data segment of the producer component.
The consumers are provided with a pointer by the CoSa API, and can read from the
shared memory area because global read access is presumed.
For the strictly static model of CiAO, I extracted the component interfaces from

the code of the I4Copter application, that is, the existing shared memory regions
and message channels, and which components use which of these communication
channels, and in which role (producer or consumer of a shared memory region, sender
or receiver of a message connection). The result is depicted in Figure 5.1. I extended
CiAO with suitable shared memory and messaging mechanisms to enable the I4Copter
software to run on top of CiAO, and developed a safe Java API that enables Java
applications to utilize these mechanisms. I present these extensions in the remainder
of this chapter. Based on these extensions, I ported the I4Copter software component
by component to Java. The outcome is a C++ and a Java variant of each component,
which can be combined arbitrarily to a fully functioning control software.

97

5 Component-Wise Soft Migration

5.2 Shared Memory Extension for CiAO

A shared memory area is a typed area of memory that is made accessible to multiple
components; a global variable that is accessed by multiple components is an implicit
form of shared memory. A shared memory area is accessed using regular memory
operations. The operating system only ensures that the authorized components
are able to access the shared memory area. As opposed to the message-based
communication, no particular access protocol is defined for the use of shared memory.

Shared memory is a controversially viewed mechanism, because it implies a number
of issues: Since the shared memory area is accessible from multiple components at
the same time, the accesses must be synchronized as required on the application level.
The implicit use of shared memory weakens the encapsulation of components. Still,
shared memory is found in many existing applications (for example, use of global
variables by multiple components), and to support a soft migration I include an
explicit form of shared memory in the extension of my framework. In the following, I
present the shared memory extension.

5.2.1 Definition of Shared Memory Areas

Shared memory regions are globally defined in the system definition, and so are the
uses and access modes on the shared memory area. This form of shared memory
is explicit, because all uses are documented in the system definition and therefore
are a visible part of the component interface. Listing 5.1 shows an excerpt from a
KESO system definition for one shared memory area in the I4Copter application.
Each shared memory area is described by the following attributes:

• A system-widely unique name that identifies the shared memory area. This
name is used in the C++ and Java programming interfaces to access the shared
memory area from the program code.

• A C data type for the memory area.

• Optionally, the filename of a C header file containing the definition of the
type. Shared memory instances are statically allocated in a generated separate
compilation unit, wherefore the type definition must be available. The infor-
mation could also be used to create a Java version of the type for the use with
memory-mapped objects in KESO, but this process is currently manual.

In addition to the global definition, each component1 that accesses a shared memory
region must declare this use in the system definition, including the information on
whether the shared-memory area is accessed read-only or read-write.

1Shared memory uses are declared at the domain level in KESO and at the level of OS-Applications
in CiAO.

98

5.2 Shared Memory Extension for CiAO

System(I4Copter) {

SharedMemory(SteeringData) {

ctype = "basicFlightCtrlData_t";

cheaderfile = "FlightControlData.h";

}

Domain(CopterControl) {

UseSharedMemory = SteeringData {

mode = "rw";

}

}

Domain(FlightControl) {

UseSharedMemory = SteeringData {

mode = "r";

}

}

}

Listing 5.1: Shared Memory Definition

5.2.2 Shared Memory Placement

The operating system has to ensure that the components that declared the use of
a shared memory region are able to access the shared memory region at runtime.
In Chapter 2, I decided against a virtualization of the MPU regions, which makes
memory regions accessible on demand but suffers from predictability issues. To avoid
the need for an extra MPU region for each shared memory area that a component
needs to access, the shared memory areas should be placed in an address region that
is already accessible, if possible.

5.2.2.1 Common Case: No Read Protection, Single Writer

For the common case of write-only protection and shared memory areas with a single
writer component, this task is simple. The shared memory area is placed within the
private data segment of the producer component’s OS-Application. With global read
access, it is automatically readable by all reader components.

My current prototype only covers this case. Nevertheless, I discuss the ramifications
with respect to the region requirements for settings where hardware-based read
protection or multiple writer components are used. My discussion assumes the
following simplifications, which do not cause a loss of generality:

• Uses of a shared memory area by trusted OS-Applications are ignored, since
trusted OS-Applications are able to both read and write a shared-memory area
without special arrangements.

99

5 Component-Wise Soft Migration

Ethernet Coptercontrol Flightcontrol Signalproc.
S1 Ethernet RemCtrl read-write read-only
S2 Steering Status read-write read-only
S3 Global Mode read-write read-only read-only
S4 Steering Data read-write read-only
S5 FC Mode read-only read-write
S6 Basic Sensor Data read-only read-only read-write

S7 SP Mode read-only read-writeSensor Data

Table 5.1: Shared Memory Uses in the I4Copter

Ethernet Coptercontrol Flightcontrol Signalprocessing
S1 S2 S3 S4 S5 S6 S7

Table 5.2: Shared Memory Placement in the I4Copter

• Shared memory areas with identical participants and use pattern can be treated
as a single area and be co-located in memory.

5.2.2.2 Read Protection

If read protection is enabled, the reading components of a shared-memory area must
be provided with read access to the shared memory area. As all private data regions
(AppData, TStack) provide read-write access, but there is no private data region
that provides read-only access, it is sensible to co-locate the shared memory region
with the private data of the writer component. Therefore, the use of hardware-based
read protection in combination with shared memory requires an additional MPU
region in the reader components for each shared-memory area.

As an example, I illustrate the additionally required MPU regions to enable shared
memory use in the presence of hardware-based read protection in the I4Copter.
Table 5.1 summarizes all shared memory uses from the I4Copter application, as shown
in Figure 5.1. For brevity, the shared memory areas are enumerated from S1–S7. S7
comprises the two areas SP Mode and Sensor Data, which were grouped according
to the above simplification for their identical uses. The shared memory regions are
placed next to the private data segment of the respective writer component, as shown
in Table 5.2. With this placement, the following additional regions are needed to
enable read access:

• Coptercontrol, three additional read-only regions
– start(S1) – end(S1)

100

5.2 Shared Memory Extension for CiAO

N
TA
pp
1

St
ac
ks NTApp1

Data N
TA
pp
2

St
ac
ks NTApp2

DataSh
ar
ed

M
em

or
y

AppData(NTApp1)
AppData(NTApp2)

AppData(NTApp1) AppData(NTApp2)

Application
Isolation

Control-Flow
Isolation

Figure 5.2: Shared Memory Placement by Overlapping Private Data Segments

– start(S5) – end(S5)

– start(S6) – end(S7)

• Flightcontrol, two additional read-only regions

– start(S3) – end(S4)

– start(S6) – end(S6)

• Signalprocessing, one additional read-only region

– start(S2) – end(S3)

The region assignment already includes an optimization that subsumes multiple
neighbored shared memory areas in a single region, for example S6 and S7 for
the Coptercontrol component. The example illustrates that hardware-based read
protection for the I4Copter is not possible on the Tricore TC1796 processor, where up
to three of the total four data regions are already being used by the base configuration
(Section 4.4.1), but providing read access to the shared memory areas would require
up to three additional MPU regions. For the message-based communication discussed
below, which is used by all components, additional regions may be required to provide
temporary memory access at runtime.

5.2.2.3 Multiple Writers

The placement becomes more complicated if multiple writers exist for a shared memory
area. For two writers, the occupancy of an additional MPU region can be avoided
by placing the shared memory area between the two private data segments of the
writing non-trusted OS-Application, and having the private data segment regions
overlap on the shared memory area, as shown in Figure 5.2. It is discernible in the
lower part of the figure that the technique can only be applied in the absence of
control-flow isolation with the current memory layout; if control-flow isolation is
enabled, a separate region (TStack) is used to grant access to the stack, and the
AppData region does not include the task stacks and therefore cannot be extended

101

5 Component-Wise Soft Migration

to include a shared memory area shared with the preceding application2. For more
than two writers, it is inevitable to use additional regions for all but possibly two
writers, for which the overlapping placement can be used.

To utilize the overlapping technique, a linear order of arrangement needs to be found
for the OS-Applications. This can be well visualized in an undirected graph, in which
the vertices are OS-Applications and the edges labeled with a shared memory area
indicate that two OS-Applications both write to that shared memory area. Figure 5.3
shows a fictive example in this graph form (the situation of multiple writers for one
shared memory area does not occur in the I4Copter). A linear application order for
the placement of the private data region in memory can be derived from the graph
when it meets the following properties:

1. no more than one edge with a particular label

2. acyclic

3. all vertices are of degree two or less

The graph can be transformed to meet the above properties by allocating extra
MPU regions to the applications. Figures 5.3(b)–5.3(d) show how this is performed
for the example graph.

1. Unique Edge Labels Shared memory areas with three or more writers lead to
multiple edges with the same label in the graph. The overlapping technique can
only be applied for two writers (that is, one edge). By assigning one of the writer
OS-Applications an extra MPU region to access the shared memory area, n´ 1 edges
with the shared memory area’s label can be removed from the graph for a shared
memory area accessed by n writers. The remaining uses correspond to an area with
n´1 writers. The step can be repeatedly applied until only two writers remain. In the
example, the area S6 is accessed by three writers, one of which needs to be assigned
an MPU region to access the area. When choosing the OS-Application to receive an
MPU region, it should be avoided to reduce the degree of one of the participating
vertices below two, since this may eliminate a possible use of region overlapping. In
the example, the region can either be assigned to App4, App5 or App7. Choosing
App4 would reduce its degree to one. For the other two candidates, the choice
may depend on other criteria such as the already used extra regions or the need
for temporary regions (for example, some OS-Applications may use message-based
communication, others may not). In the example, I assigned an extra region to App7
to access the area S6. The resulting graph is shown in Figure 5.3(b). After all edge
labels are unique, multiple edges between the same two nodes can be merged, as the
represented shared memory areas can be placed next to each other and be treated as
a single one, corresponding to the second of the simplifications from Section 5.2.2.1.

2The memory layout could, however, be easily modified to place the stacks separately from the
private data segments in the case of control-flow isolation to solve the applicability issue, but the
memory layout would no longer be uniform for all configuration options.

102

5.2 Shared Memory Extension for CiAO

App1 App2

App3

App4

App6

App5

App7

S1

S2

S3

S4

S5

S6 S6

S6App8

S7

(a) Initial State

App1 App2

App3

App4

App6

App5

App7

S1

S2

S3

S4

S5

S6

App8

S7

S6

(b) Unique Edge Labels

App1 App2

App3

App4

App6

App5

App7

S1

S2

S3

S5

S6

App8

S7

S4+6

(c) Cut Cycles

App1 App2

App3

App4

App6

App5

App7

S1

S2

S3

S5

S6

App8
S4+6S7

(d) Reduce Vertices’ Degrees Greater than Two

App1 App8 App2 S1 App3 S7 S2 App4 S6 S4 App5 S3 App6 App7S5

b1
e1,
b8

e8,
b2 b3 e2 b4 e3 e4b5 b6 b7e5 e6 e7

S4+6S7

AppData(Appx) spans [bx ; ex]

(e) Application Order, Shared Memory Placement and Extra Regions

Figure 5.3: Example: Shared Memory Dependencies Among OS-Applications

103

5 Component-Wise Soft Migration

2. Cut Cycles Cycles in the graph represent a shared-memory use constellation that
cannot be solved by a linear order and overlapping private data regions. To resolve
the situation, the cycle needs to be cut by realizing the shared memory access using
an extra MPU region for one of the OS-Applications in the cycle. In Figure 5.3(b),
there is a cyclic constellation between the OS-Applications App5–App7. Any of these
three candidates can be chosen to remove one of the edges to break the cycle. In the
example, App7 poses the best candidate and was chosen. It already has an extra
MPU region to the shared memory area S6; after removing the edge S4, the degree of
App5 is reduced to two, and therefore the area S6 can be placed in an overlapping
region between App4 and App5. Cutting the edge S4 leaves the shared memory
area S4 in the private data segment of App5, where it can be placed next to S6, and
the already used extra region can be expanded to span both shared memory areas,
avoiding the need for an additional region. Figure 5.3(c) shows the situation after
the cycle has been cut by removing the edge S4.

3. Reduce Vertices’ Degrees To Two Finally, in the acyclic graph with unique
edge labels, the degree of all vertices with a degree higher than two needs to be
reduced to two. In Figure 5.3(c), only App3 has a degree higher than two. Any of the
edges that include App3 can be removed by assigning an extra MPU region to either
App3 or the OS-Application at the other end of the edge to enable access to the shared
memory area represented by the edge. In the example, it does make no difference
which edge is removed, and which of the two OS-Applications is assigned the extra
region. In other constellations, factors such as the degree of the OS-Application on the
other end of the edge, mergeability with already assigned extra regions (as in the cycle
cut), or the differing needs of different OS-Applications for leftover temporary regions
may be incorporated in the decision. In Figure 5.3(d), the edge S7 was removed and
App8 was assigned an extra region to access S7, which will be placed with the private
data of App3.
The graph in Figure 5.3(d) fulfills the required properties to read a suitable

application order. Each path through the graph shows a series of OS-Applications
that should be placed in the order corresponding to the path in memory. Figure 5.3(e)
shows one possible application order and shared memory placement for the example.
It also shows the ranges for the AppData region of each OS-Application, and for the
two assigned extra regions.

5.2.3 Shared Memory Conclusions

For the simple case of a single writer and in the absence of read protection, shared
memory can be combined well with a static MPU region definition that provides the
using OS-Applications with permanent access to the shared memory areas. Although
I have not implemented the placement of shared memory and the region determination
for the situations of read protection or multiple writers, the above discussion shows
that these can quickly render a static region definition impractical. I showed that read
protection for the shared memory constellation in the I4Copter application cannot

104

5.3 Message Ports for CiAO

be realized using a static region assignment with the four available data regions of
the Tricore TC1796. This only leaves the options of MPU virtualization – with the
intrinsic impact on predictability and execution time overhead – or changes to the
interfaces of the application components.
Read protection is a not essential feature to provide spatial isolation and fault

containment and only enhances the capability of detecting errors in the program.
Software-based protection provides read protection at no additional cost, and can
be used in place of hardware-based read protection to avoid the issue. This is in
line with my argument in Section 2.5 to use MPU-based protection as a safety net
for the safety-relevant parts, and to leverage the enhanced but not safety-critical
error-detection facilities of the Java language and the multi-JVM concept.

For the case of multiple writers to a shared memory area, I sketched a technique that
avoids the occupancy of extra MPU regions for the case of two writers by overlapping
the private data regions of the two writing OS-Applications. The approach determines
a suitable application order and assigns extra regions to access shared memory where
it cannot be solved by overlapping data regions. It must be noted that such an
application ordering may be in conflict with other goals that also require a particular
application order. For example, on the Cortex-M3 microcontroller, MPU regions need
to be of a size that is a power of two, and the start address needs to be aligned by the
size of the region. To minimize the external fragmentation caused by these hardware
requirements, CiAO implements an algorithm that orders the applications so that the
external fragmentation is minimized. The results of this ordering are likely to conflict
with the results of the placement that aims at reducing the number of needed MPU
regions to access shared memory areas.

5.3 Message Ports for CiAO
Messages are a data-flow-oriented3 approach for communicating among different
protection realms in a system, or even on different systems in a network. As opposed
to shared memory, sending and receiving messages requires the use of primitives
provided by the operating system. Messaging mechanisms are found in many systems;
examples in my target domain are OSEK COM [85] and the mailboxes in PXROS-
HR [94].

For my framework, I designed a simple message mechanism for the communication
among OS-Applications on a single node, although the mechanism could be extended
to inter-node communication without changing the programming interface, and hence
the application code. My message mechanism is optimized for the common case of
write-only protection, for which it provides copy-free messaging without the need
of protection context switches for the basic variant. The message mechanism is
non-blocking and unidirectional, with an asymmetric relationship of the sender side
and the receiver side. I refer to these two ends of a message port as the sender port
and the receiver port. Message ports are 1:1 communication links; for each message

3As opposed to control-flow-oriented remote procedure call mechanisms.

105

5 Component-Wise Soft Migration

System(I4Copter) {

Domain(CopterControl) {

SenderPort(EnginePowerSwitchSPICom) {

ctype = "spiDeviceData_t";

cheaderfile="System/CommonFiles/SPIDeviceData.h";

msgcount = "2";

}

}

Domain(SerialCom) {

ReceiverPort(EnginePowerSwitchSPICom) { }

}

}

Listing 5.2: Message Port Definition

port, there exists exactly one sender and one receiver port. Messages are received at
the receiver port in sending order. All messages on a message port are of the same
data type, and the number of concurrently live messages is statically limited for each
message port.
Message ports communication links are statically defined in the system definition

as shown in Figure 5.2. Each message port is defined by a system-widely unique
name. For each message port, there must be one definition of a sender port and
a corresponding receiver port, which are defined at the level of KESO domains
or CiAO OS-Applications. The named sender and receiver ports are part of the
external component interface. The ctype and cheaderfile attributes correspond to
the respective shared memory attributes and define the type of message of the message
port. The msgcount attribute defines the capacity of messages of the message port,
that is, the maximum number of messages that can exist on the message port at a
time.

5.3.1 Message Protocol
The use of message ports follows a predefined protocol. At the sender-port side, the
following operations are provided:

• allocate(): Allocates a message buffer. The operation returns null if no more
message buffers are available. On success, access to the allocated message buffer
is granted to the caller and a handle to the message buffer is returned. The
message buffer can now be filled with the message data to be sent.

• send(): Transmits a message. Messages on a sender port are transmitted in the
order of allocation, that is, if the caller currently holds references to multiple
message buffers of the same sender port, the buffer that was first allocated is
used for the transmission. After transmitting the message, the sender must
no longer access the buffer. The operation does not block. There is currently

106

5.3 Message Ports for CiAO

no way for the sender to check if a specific message has been received; such a
primitive could be easily provided with the current implementation, however.

At the receiver-port side, the following operations are defined:

• receive(): Receives a message from the receiver port. The operation returns
null if no unreceived messages are available at the receiver port. On success,
the reader is granted read-only access (optionally, read-write access) to the
message, and the operation returns a handle to the message.

• release(): Releases the oldest received message and makes the message buffer
available for allocate() operations on the associated sender port. After releasing
a message, the caller must no longer access the message buffer.

• peek(): Checks if one or more messages are available for reception on the
receiver port, without changing the state of the receiver port.

The lifetime of a message starts with its allocation by the allocate() operation at
the sender port, and ends with the messages destruction, which is carried out by the
release() operation at the receiver side. The capacity of a message port bounds the
number of life messages on a message port at a time.

As opposed to shared memory areas, which are concurrently accessible by multiple
components, the message protocol ensures that any message is accessible by a single
component only at a given time, as the sending and receiving phase do not overlap in
a message’s lifetime. The compliance to the message protocol is not enforced in the
most basic message port variant, but available at additional cost as an option.

5.3.2 Placement and Implementation
The message port implementation is based on a simple bounded-buffer design, where
the data structures of the bounded buffers are split to form the sender port and
receiver port. The split is performed so that no data item of the bounded buffer needs
to be written by both the sender and receiver side. Figure 5.4 shows the separation
and placement of the data structures. The message pool that contains the message
buffers and the position of the sender are stored with the sender; only the position of
the receiver is stored with the receiver port. To distinguish the situations of a full
and an empty pool, a simple trick is used to avoid the maintenance of a separate fill
variable that needs to be writable by both the sender and the receiver: The index
variables of the receiver and the sender count to twice the size of the pool. The pool
is empty when both indexes are equal; when the pool is filled completely, the distance
of the two indexes is equal to the capacity of the pool. To access messages in the
pool, a modulo operation by the capacity of the pool is applied to the reader or writer
index to compute a valid index into the message pool.

The data structure split allows the use of the message mechanism without the need
of protection context changes in a system where the memory protection policy only
restricts write accesses. Because the sender port data structures are placed in the

107

5 Component-Wise Soft Migration

sender port
placed with sender component

message_pool writer_index

receiver port
placed with receiver component

reader_index

Conditions
msgcount := capacity of message_pool

reader_index, writer_index ∈ [0; 2 * msgcount)

pool empty ⇔ reader_index == writer_index

pool full ⇔ ｜writer_index - reader_index｜== msgcount

Figure 5.4: Basic Message Port Implementation and Placement

private data segment of the sender component’s OS-Application, the sender has write
access to all message buffers in the pool and the writer index into the buffer. To check
the condition of a full buffer, the sender only needs to read the index of the reader
component. Conversely, the reader component only needs write access to the reader
index. Read access to the messages in the pool is possible without further action.

5.3.3 Implications of Read Protection

If the protection policy includes read protection, the allocate(), receive(), peek()
and release() operations become privileged operations. The allocate() operation
reads the buffer index of the receiver side to determine whether the message pool
contains free message buffers. The receive() and peek() operations likewise read the
position of the sender to determine whether the message pool contains unreceived
messages. To enable the receiver component to read received messages, at least one
temporary MPU region is required. The access is granted in receive() and revoked
in the release() operation, which need to execute in privileged context to be able to
perform these operations.

5.3.4 Variants

The basic message port variant has the restrictions that the message protocol is not
enforced on the sender side, and that the receiver only gets read-only access to the
memory of received messages. Both of these restrictions are for efficiency reasons,
as they enable to perform all operations of the message protocol without requiring
a change to the memory protection context. At the price of losing this efficiency
benefit, I provide two options that can be individually enabled for each message port
if desired:

108

5.4 Safe Java Interface

Enforced Message Access Revocation on send() This option enforces the revoca-
tion of access to a sent message according to the global memory protection
setting. If only write protection is used, the sender loses write access to the
message, if read protection is additionally used, the sender also loses read access
upon send. The option is realized by placing the sender port in a separate
memory region that is not part of any OS-Applications memory. Access to
the message is explicitly enabled by using a free temporary MPU region in the
allocate() operation, and revoked upon send() by releasing the MPU region.

Write Access to Received Messages For receiver ports for that the application re-
quires write access to the received messages, this option uses a spare temporary
MPU region to enable write access to the region in the receive() operation.
Write access is revoked in the release() operation by releasing the MPU region.
This option does not add additional cost if read protection is enabled in the
global memory protection setting.

5.3.5 Message Ports Conclusions
The presented message ports provide a very basic, but efficient way of inter-domain
communication. The above protocol is suited for the periodic polling of receiver ports
for new messages in a time-triggered system. The basic primitives could be extended
by a user-level library that provides a blocking variant of the receive() operation,
particularly useful to event-triggered systems. The library only needed to provide
wrappers around the receive() and send() operations, which use the AUTOSAR OS
WaitEvent() primitive to block on empty receiver ports, and the SetEvent() primitive
in the send() operation to notify and wake a blocked receiver. Another conceivable
extension is the provision of 1:N message ports, which could internally be mapped to
N 1:1 links, hidden behind the same programming interface. For the I4Copter, the
basic primitives showed to be sufficient, wherefore I have not currently implemented
any extension to the basic mechanism.

5.4 Safe Java Interface
The presented interfaces for shared memory and message ports are both C++ pro-
gramming interfaces. The C++ API simply provides the address to the shared
memory area or the messages of a message port in the form of a typed pointer. To
enable the interaction with Java components, a Java interface is required that provides
Java components with safe access to shared memory areas and messages. Since these
memory areas are no regular Java objects managed by the Java runtime environment,
regular Java references are not suited for this purpose.

5.4.1 KESO Abstractions for Accessing Raw Memory Areas
KESO provides the abstractions of raw memory and memory-mapped objects for
the purpose of accessing non-managed memory areas. Raw memory allows accessing

109

5 Component-Wise Soft Migration

typedef struct {

private:

float distance_m;

bool reliable;

public:

inline bool getReliable() {

return reliable;

}

// ... more getters/setters ...

} proximityData_t;

(a) C++ Definition

import keso.core.*;

final class proximityData_t

implements MemoryMappedObject {

private MT_FLOAT distance_m;

private MT_BOOLEAN reliable;

public boolean getReliable() {

return reliable.get();

}

// ... more getters/setters ...

}

(b) Java Definition

Figure 5.5: Example: Mapping C Data Types to KESO’s Memory-Mapped Objects

a non-managed area similar to an array of primitive data. The raw memory has a
base address and a size, and all accesses incorporate an offset into the area and a
data type (such as 8/16/32-bit integer or float) to read from the offset. Computed
offsets may be used, and accesses are subject to bound checking as are regular arrays.
Memory-mapped objects, on the other hand, allow the definition of a Java class with
special fields that are mapped to off-heap locations. Besides these special fields, the
Java class can contain all elements of a regular Java class, including heap-allocated
fields. The mapped fields of a memory-mapped object are mapped to a base address.
The size of the mapped area is defined by the number and size of the individual
mapped fields, and the offset of a mapped field to the base address is determined by
the sizes of previously declared mapped fields in the class definition. For accesses to
mapped fields, a statically known offset is used. Therefore, a bound check is only
required when initially establishing the mapping, to check whether the target memory
area is of sufficient size for all mapped fields, or not.

5.4.2 Using Memory-Mapped Objects to Resemble C Data Types

Memory-mapped objects are a suitable abstraction to recreate the memory layout
of a C data structure in the Java code. Figure 5.5 shows the C++ original and
the equivalent memory-mapped KESO class for the proximity sensor data in the
I4Copter. To distinguish mapped fields from heap-allocated fields, the mapped fields
are not declared using the standard primitive types but specially treated memory
types provided by KESO’s class library as a match for various primitive data types.
For example, there are types for integer values of varying sizes (for example, MT_U32
and MT_U16), floating point values or a type that matches the C++ bool type. Each
of the types defines getters and setters to read or write suitable Java primitive values
to mapped fields. There are also read-only variants of all memory types, which lack

110

5.4 Safe Java Interface

the modifying methods, and gap-filling types of various sizes that can be used to fill
gaps in the memory layout.
While accesses to mapped fields appear to be virtual method calls at the source

code level and the Java bytecode level, the virtual methods of memory types are
specially treated by jino, and the fields are directly accessed without incurring a
method call in the generated output. For memory-mapped objects with no heap state,
jino may even be able to entirely avoid the allocation of an object instance, if it is
able to statically determine the base address of the mapping for all possible uses of
the object. This works particularly well if the memory-mapped object is created and
used only in a local scope that it does not escape, for example within a single method.

5.4.3 Possible Issues with Mapping C Types to Mapped Objects
When creating a class with memory-mapped fields that resembles a C data type,
one may stumble across some constructs that cannot directly be mapped with the
currently provided feature set of KESO’s memory-mapped objects. These are:

Nesting of Memory-Mapped Classes KESO does not currently support the nesting
of classes with memory-mapped fields to create a new memory-mapped class. This
situation occurs with C structures that contain fields that are themselves of a structure
type. The proximityData_t type from Figure 5.5 is actually part of an aggregate type
basicSensorData_t that subsumes the sensor data of all sensors and is used as the
type of the Sensor Data shared memory area from Figure 5.1. The issue can be
manually worked around by manually expanding the fields of the member classes into
the aggregate class. This solution may require fields to be renamed to avoid name
clashes (for example, if a nested type is included multiple times in the aggregate type,
as is the case when there are multiple instances of a specific sensor type), and implies
that the aggregate type needs to be kept in sync with the member types manually.

Union Types C supports untagged union types, which provide differently typed
views on the same piece of memory. A common use of union types in embedded
programming is types for device registers consisting of multiple sub values, where a
union type can provide a convenient way to both access the register as a whole as
well as accessing sub values of the register by name without requiring manual bit
operations. There is currently no way to resemble union types with memory-mapped
objects other than creating specialized variants for the needed combinations. In
the I4Copter application, union types do not appear in the data structures used for
messages and shared memory areas, and therefore this issue does not occur.

Mapped Array Fields Possibly the most severe restriction is that currently no arrays
of mapped fields can be defined to match arrays in the original C data type. In the
I4Copter, such arrays occur for example in the spiDeviceData_t type, which is used
as the message type of all message ports to the SerialCom component, and which
contains an array of eight bytes to hold the actual payload to transmit over the SPI

111

5 Component-Wise Soft Migration

bus to the slave device. An array of n elements cannot simply be mapped to n simple
fields of the element type, since simple fields need to be accessed by their individual
names and cannot be accessed using a computed index, for example to iterate all
array elements in a loop.

5.4.4 Raw Memory as a Base Abstraction

These shortcomings of KESO’s memory-mapped objects are planned to be resolved
in a future release. In the current state, particularly the missing support for mapped
array fields prevented me from choosing memory-mapped object as the immediate
data access mechanism for the KESO interfaces to the shared memory and message
port mechanisms of CiAO. Instead, I used the more generic raw memory abstraction
discussed above, which makes it possible to access shared memory areas and messages
using computed offsets. It is still possible to use memory-mapped objects, because
raw memory areas can be used as a target area to establish a memory-mapped object.
It is even possible to use memory-mapped objects to access the simple fields of a
shared memory area or a message, and to use the raw memory abstraction only to
access those parts of the area which require computed offsets.

5.5 Port of the I4Copter Application

I practically tested the feasibility of the soft-migration approach at the example of the
I4Copter application, which I ported component by component to Java. The C++
and Java implementations of the different components can be arbitrarily combined and
produce a functioning system. The component granularity showed to be a significant
facilitation for porting a larger piece of software such as the I4Copter application.
Firstly, a newly ported component can be combined and tested with the existing
components that are known to work. This reduces the scope of possible errors and
aids debugging. Secondly, it allows the early evaluation of the ported component to
determine the quantitative impact of the change of the programming language on the
component.

5.6 Chapter Summary

In this chapter, I presented an extension of my framework that supports the soft
migration of a C or C++ application to Java at the migration granularity of software
components. I chose software components as the migration unit for they have been
a well-established technique in software development for many years, and their
properties of encapsulation and replaceability make them a well-suited migration
unit. Both CiAO and KESO can be considered component systems, in which the
(non-)trusted functions in CiAO and the portal mechanism in KESO represent the
external component interfaces. Instead of building my soft-migration approach on
these control-flow-oriented communication mechanisms, which are little spread in the

112

5.6 Chapter Summary

domain of deeply embedded systems, I extended CiAO by the more commonly used
communication idioms of shared memory and message-based communication.

The shared memory and message mechanism I designed are optimized for a protec-
tion policy that only includes hardware-based write protection, which is the needed
minimum to provide fault containment. This basic protection policy can be well
supported by a message mechanism without strict enforcement of the protocol and
shared memory with a single writer, without requiring the use of additional MPU
regions. I also discussed the implications of more comprehensive memory protection
policies (read and execute protection) for shared memory and message ports and
more general use scenarios (shared memory with multiple writers, enforced message
protocol) with respect to the use of the available MPU regions. The conclusions are
that such extensions of the basic protection quickly lead to MPU region requirements
that exceed the typically available number of regions; for the I4Copter application on
the Tricore TC1796 microcontroller, I showed that shared memory regions cannot be
made available by a static MPU configuration in the presence of read protection. It
is therefore feasible to utilize MPU protection at the basic level needed to provide
fault containment; more comprehensive – but not safety-critical – coverage such as
read protection can be well provided by software-based protection.

113

6
Quantitative Evaluation

The framework presented in the previous chapters fulfills the first three goals set in
Section 1.2: It provides fine-grained configurability for both hardware- and software-
based memory protection, allows different protection realms of the application software
to be established by different protection mechanisms, and, with the extension from
Chapter 5, provides a soft-migration path for existing code at a manageable granularity.
In this chapter, I address the fourth goal, the easy quantitative evaluation of the
imposed protection cost for a given application. In addition, I also evaluate different
aspects of the framework itself. The questions that the evaluation in this chapter
addresses are:

• What is the overhead of using Java instead of C or C++ in static embedded
applications? (Section 6.4)

• What is the individual cost of the basic primitives and operations needed to
enforce memory protection? (Section 6.5)

• Does the framework fulfill the goal of supporting the easy quantitative com-
parison of hardware- versus software-based memory protection for a given
application? (Section 6.6)

6.1 Test Setup

Before I address these questions, I describe the test setup, the applications used for
the evaluation, and the metrics and method of measurement.

115

6 Quantitative Evaluation

6.1.1 Evaluation Platform
The target platform for all tests is the Tricore TC1796 microcontroller. The microcon-
troller is equipped with 48 KiB program scratchpad memory and two MiB of program
flash as code memories, and 56 KiB local data RAM and 64 KiB of internal SRAM
as data memories. My evaluation board is an Infineon Triboard TC1796, which is
equipped with one MiB of external SRAM.
For my macrobenchmarks, the CPU is run at the maximum possible clock of 150

MHz, with a 75 MHz system clock. For the microbenchmarks, I use a slower CPU
clock of 50 MHz, which allows running the system clock at the same frequency as
the CPU and enables more precise runtime measurements using the system timer.
Except for CDx, all benchmarks are executed from the internal first level memories.
This minimizes the impact of memory access latencies on the measurements. CDx

has memory requirements that exceed the internal memories and is executed from
the external memory. The 16 KiB instruction cache of the TC1796 is enabled in all
my measurements.

6.1.2 Used Compilers and Tools
The following tools and options are used in the I4Copter experiments and microbench-
marks:

• CiAO, subversion revision 1666 (2012-07-01)

• KESO, subversion revision 2853 (2012-07-01), with the following additional
compiler options:
– omit_fields: Removes unused static fields to reduce the data memory

consumption.
– production: Removes verbose exception messages to reduce the footprint.

• AspectC++ 1.1, AG++ 0.8 (2012-03-02)

• Hightec Tricore toolchain 3.4.6 (based on GCC 3.4.5)

The used test applications are available in the CiAO (C++ variants) and KESO
(Java variants) repositories. Except where otherwise noted above, the compiler options
used are those in the build files found with the applications in the above repositories.
The CDx measurements are based on an earlier version and taken from a published
paper [113].

6.2 Test Applications
The main application used in my evaluation is the already introduced control software
of the I4Copter. It is an example of a hard real-time application that does not require
dynamic memory allocation (and therefore garbage collection) and uses few of Java’s

116

6.2 Test Applications

high-level language features. For my comparison of C and Java, I complement the
I4Copter application with the Collision Detector [61] Java benchmark, which does
dynamic memory allocation and utilizes more of Java’s features, such as generic
collection types.

6.2.1 I4Copter

For the I4Copter, the original C++ version and my Java port are used. The Java port
is very closely oriented at the original code to ensure comparability. Two examples
for C constructs that could not directly be mapped to Java code are stack-allocated
objects and template classes. Stack allocation has been substituted for heap allocation
in my Java port; to avoid the need for a garbage collector, all heap allocations are
performed in the initialization phase; references to the objects are retained throughout
the entire runtime of the program. Templates are widely used in the I4Copter for
the static configuration, for example in hardware driver classes. Since most of these
templates take parameters of primitive types, they cannot be mapped to Java generics.
Instead, I created classes that contain the template parameters as regular object
fields. Consequently, where multiple parameter sets for a template class are used
in the I4Copter, a generic version for all parameter sets exists in my Java port,
whereas in the C++ variant a specialized variant is generated for each parameter set.
When the template is only instantiated with a single set of parameters, the compiler
optimizations in jino will create a similarly specialized variant for this parameter set.

6.2.1.1 Reproducible Test Runs

The code paths executed in the different subsystems depend on the operating mode
of the I4Copter. The operating mode is globally provided by the Coptercontrol
subsystem, although the Flightcontrol and Signalprocessing subsystems influence the
decision by suggesting changes of the operating mode. To allow the comparison of
execution times of different variants, it is therefore required that all variants execute
with the same input data.

Since operational mode changes are mostly triggered by input data, such as sensor
values exceeding a certain threshold or specific remote control commands entering
the system, running two variants in sequence will never result in the same internal
application flow. To work around this issue, I created standalone variants of the four
most interesting components (Coptercontrol, Flightcontrol, SerialCom and Signalpro-
cessing), which can be provided with sensor and steering data logged during a flight.
These standalone variants can be executed multiple times with the same recorded
input data, resulting in identical application flows.

I instrumented the drivers for the analog-to-digital converters and the radio remote
control. The values are logged and replayed directly at the source where read from
the hardware devices. The remainder of the measured code remains unaffected. Input
read from shared memory areas or received from message ports is also logged and
replayed. Each standalone setting contains the regular main task, with instrumented

117

6 Quantitative Evaluation

hardware drivers as described above, and a second task that updates the input data
for the main task by updating the shared memory areas or sending the appropriate
messages. The two tasks run alternatingly, so that after each job of the measured
task the input data is updated with the next set of logged data. The logged data and
measured times are placed in the external RAM. The measured times are downloaded
from the target using the debug connection after the benchmark has been fully
executed.

6.2.1.2 Evaluated Application Parts

For the static evaluation of the memory footprint, I use the original and uninstru-
mented images of the software. For the execution time measurement, I only evaluate
the runtimes of the Coptercontrol, SerialCom, Signalprocessing and Flightcontrol
subsystems. The Ethernet subsystem is mostly concerned with copying data to the
network protocol stack. The evaluated parts are all that is needed to operate the
aircraft. The evaluated parts perform the following operations:

Coptercontrol consists of two main parts, a state machine that manages the global
operation mode of the aircraft, and the driver for the radio remote control. The
task is activated periodically each 21 milliseconds. It reads the frames received from
the radio remote control since the last execution, sensor values such as the battery
voltage, and the possible operational mode suggestions from the Flightcontrol and
Signalprocessing components. The state machine that determines the operational
mode is then executed and may change the operational mode based on the input data.
The state machine includes emergency mode management that handles situations
such as the loss of connection to the remote control or low battery voltage.

Flightcontrol consists mainly of the flight attitude controller that computes the en-
gine thrust levels with a period of nine milliseconds. An execution of the Flightcontrol
task consists of three phases. In the first one, the input data for the controller (steering
commands and sensor values) are read from the corresponding shared memory areas
and copied into the controller. In the second phase, the controller is executed. In the
third phase, the new thrust levels are sent to the engine controllers as messages to
the SerialCom subsystem.

Signalprocessing collects and preprocesses the values from the sensors with a period
of three milliseconds. The sensor values are published to other components by copying
the values to shared memory areas. In addition, the Signalprocessing subsystem
contains a state machine that manages a local mode, based on the state of the
different sensor drivers. This mode is the basis for suggested global operational mode
transitions. This state machine mainly covers the initialization and calibration phases
of the sensors and ensures that no flight mode is entered before all sensors have
finished initialization and calibration.

118

6.2 Test Applications

SerialCom collects messages, writes the content to the SPI bus, and sends the answer
of the SPI slave device back to the sender of the original message. The interaction
with the SPI bus contains some active wait loops and is otherwise dependent on the
slave device. For my standalone benchmark, I removed the SPI bus portions from
the component. What remains is the code that sends and receives messages. The
standalone variant can therefore also be considered a benchmark of the message port
performance.

6.2.2 Collision Detector Benchmark Family

As an example of a more fully-fledged Java application I use Collision Detector
(CDx) [61], an open-source benchmark family that is available in a C (CDc) and a
Java (CDj) version with almost equivalent algorithmic behavior. This benchmark
complements the I4Copter with its quite diverse code characteristics and more dynamic
nature. It is one of few available benchmarks for real-time Java that also comes in a C
variant for comparison. The benchmark has gained some acceptance in the real-time
Java community [89, 91, 93, 46].

The core of the CDx benchmark is a periodic task that detects potential aircraft
collisions from simulated radar frames. A collision is assumed whenever the distance
between two aircraft is below a configured proximity radius. The detection is performed
in two stages: In the first stage (reducer phase), suspected collisions are identified in the
two-dimensional space ignoring the z coordinate (altitude) to reduce the complexity
for the second stage (detector phase), in which a full three-dimensional collision
detection is performed (detected collisions). A detailed description of the benchmark
is available in [61]. Since CDj allocates temporary objects and uses collection classes
of the Java library, it requires the use of a garbage collector in KESO.

6.2.2.1 Benchmark Version

I use version 1.2 of the CDj benchmark and a bug-fixed version of the CDc version
1.2 benchmark. The modifications that I made to CDc are the following:

• Use the same hash function for two-dimensional vectors as CDj

• Remove duplicate collisions in the detector’s result set as CDj does

• Fixed a bug in the hash map implementation where a hash key collision was
not detected correctly while adding a new element to the map and the existing
element was consequently replaced in the map

With my changes, both CDj and CDc compute the same amount of suspected and
detected collisions. This is not the case with the released version of the benchmark.
Since the runtime of the different iterations is heavily influenced by the number
of suspected and detected collisions, the execution times of CDc and CDj are not
comparable without the above modifications.

119

6 Quantitative Evaluation

6.2.2.2 Used CDx configuration

The CDx benchmark supports different configurations for different runtime environ-
ments. The radar frames may be generated online, synchronously or concurrently to
the detector, by a separate air traffic simulator task. For avoiding any dependencies
between the detector and the air traffic simulator tasks, the radar frames can also
be pre-simulated and stored in a buffer of sufficient size. For the Tricore TC1796
platform, I can neither use an online simulation of the air traffic using the air traffic
simulator nor pre-generate the frames due to memory constraints. Instead, I use
a simplified online radar frame computation that is included in the C version of
the benchmark. This configuration is labeled on-the-go frame generation in the
benchmark. I transferred this frame computation to CDj .

My benchmark configuration uses six airplanes. I run the collision detector on 10,000
radar frames (that is, 10,000 iterations). The collision detector task is periodically
released with a period of 40 milliseconds. CDj contains two additional tasks, which
mainly perform initialization work and output the benchmarks results upon completion
of the benchmark. Both of these tasks are blocked during the entire execution of the
benchmark. The garbage collector task is configured with the lowest priority in the
system and uses the slack time for garbage collection that the detector task leaves in
each period. I run the benchmark with both garbage collection strategies in KESO,
and without a garbage collector to get an impression of the allocation overhead when
using a garbage collector compared to the fast bump-pointer allocation provided by
the pseudo-static allocator.

6.3 Metrics and Method of Measurement

In this section, I present the metrics used to assess the cost of a test candidate, and
how I determine these metrics. Some metrics are determined from the static program
image; others are dynamically determined during the execution of the candidate.
For the latter, the candidates need to be modified to contain additional code that
carries out the measurement. This modification naturally affects the results of the
measurement. I instrument the application code so that this impact is kept at a
minimum. Normally, the measured code sections are only modified to contain a short
code fragment in the beginning and at the end that takes a snapshot of the system
time. For statically determined metrics, I always use a program image that does not
contain the modifications needed for the runtime measurements.

6.3.1 Statically Determined Metrics

The following metrics are determined statically from a program image, using the nm,
size and objdump utilities of the GNU binutils tool collection.

• Code size: Size of the text section, which contains all executable code.

120

6.4 Cost of Using Java Instead of C or C++

• Initialized data, except if initialized to zero: Size of the data section, which
contains all statically allocated data items that are initialized with values other
than zero.

• Uninitialized data or data initialized with zero: Size of the bss section, which
contains statically allocated data items that are initialized to zero. At the
programming-language level, static data items that are not initialized also end
up in this section.

6.3.2 Runtime Measurements

At runtime, I determine the execution times for portions of the code and the maximum
amount of dynamically allocated memory:

• Execution time: I determine the runtimes of the measured code sections by
reading the value of the Tricore’s free-running system timer immediately before
and after the measured code section, and compute the difference. In my setup,
the system timer counts at the maximum possible frequency of 75 MHz. The
timer value is stored in a 56-bit register. I only use the lower 32 bits of the
register to determine the value using a single read access. At 75 MHz, these 32
bits are capable of capturing intervals of up to approximately 57 seconds, which
is sufficient for all measured code sections. Since the system timer only counts
at half of the CPU frequency, an inaccuracy of one cycle exists. This inaccuracy
is insignificant for all my measurements and within the measurement precision.

• Heap usage (CDx only): For the CDx benchmark, I determine the amount of
heap used during an iteration, by reading the amount of free heap memory
before and after the measured code section. Since garbage collection in KESO
is only performed during slack time, no heap memory is reclaimed during the
measurement and therefore the difference of the taken values is the amount
of memory allocated from the heap during the measurement. The I4Copter
only allocates heap objects during the initialization phase; therefore this metric
is not of interest. The heap is included in the uninitialized data section and
thereby accounted for.

6.4 Cost of Using Java Instead of C or C++

In this section, I determine the overhead caused by using Java as a programming
language in place of C++, without assessing the cost for memory protection. The
cost for memory protection is separately evaluated in Section 6.6 for the I4Copter,
using only the Java variant without the impact of implementation differences and
differences in programming languages. Hardware-based memory protection is enabled
(control-flow isolation, write-only protection) in all measurements within this section.

121

6 Quantitative Evaluation

6.4.1 I4Copter

6.4.1.1 Execution Time

The results of the execution time comparison are shown in Figure 6.1 (Flightcontrol),
Figure 6.2 (Coptercontrol), Figure 6.3 (Signalprocessing) and Figure 6.4 (SerialCom).
Each figure contains histograms of the execution times of the C++ and the unsafe
Java variant, a line diagram that shows, for an excerpt of 100 iterations, how the
execution of the C++ and the Java code correlates, and a table with the worst
observed execution time, the median of the measured execution times, and the
relative overhead to the C++ version. In this section, I focus on the comparison
of the unsafe Java version with the C++ version, as these differences reflect the
programming language differences. I postpone the discussion of the overhead caused
by runtime checks to Section 6.6.

A commonality that can be observed for all components is the strong correlation of
the execution times of the individual iterations. The execution times of the different
jobs are almost constant in all components. In the Coptercontrol component, there
are some peaks in the graph, which are caused by state transitions of the internal
state machine. Because all variants process the same input data, these peaks occur
in the same iteration for each variant. In the Flightcontrol component, the execution
time variances of the Java variant do not quite match those of the C++ variant.
The reason here is that the Java variant uses the C math library only for expensive
operations (for example, the computation of the arc sine), but uses KESO’s internal
math functions for simpler operations (for example, floor or sine). The runtime of
these operations partly depends on the input values, and the algorithmic behavior
differs from the versions in the C library, wherefore the variations in the execution
time do not correlate. Considering the total execution time of the controller, however,
these variations are minor. The strong correlation shows that the use of Java does
not introduce indeterministic behavior. With the exception of the garbage collectors,
allocation operations from garbage-collected heaps and portal calls that require the
cloning of parts of the object graph, none of which are used in the I4Copter, all of
KESO’s internal operations are of constant complexity.

Flightcontrol A job of the Flightcontrol task can be divided into three phases: In
the input phase, the input data (steering commands and sensor data) are copied
from shared memory areas to the controller. In the controller phase, the controller is
executed. Finally, the new thrust levels determined by the controller are actuated to
the engine controllers by sending messages to the SerialCom component.

In the input and output phases, the Java version needs approximately 1.5x (input,
0.85 versus 1.25 microseconds) and 2x (output, 6.5 versus 13.6 microseconds) the
time compared to the C++ version. This is due to the use of the Java compatibility
interface to the shared memory and message mechanisms, which are more expensive
in use than their native C++ counterparts. I discuss this in more detail below. The
execution time of the Flightcontrol task is, however, dominated by the controller phase,

122

6.4 Cost of Using Java Instead of C or C++

 1

 10

 100

 60 80 100 120 140 160 180 200

N
u
m

b
e
r

o
f

R
u
n
s

(l
o
g
a
ri

th
m

ic
 s

ca
le

)

execution time (µs)

(a) C++

 1

 10

 100

 120 125 130 135 140 145 150 155 160

N
u
m

b
e
r

o
f

R
u
n
s

(l
o
g
a
ri

th
m

ic
 s

ca
le

)

execution time (µs)

(b) Java (unsafe)

 150

 155

 160

 165

 170

 175

 180

 185

 190

 0 20 40 60 80 100

e
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

data set

C++
Java-Unsafe

(c) Correlation of 100 Executions

Worst Median
C++ 183.9 µs 177.3 µs

Java-Unsafe 156.5 µs (-14.9 %) 152.4 µs (-14.1 %)
(d) Execution Times (% overhead to C++)

Figure 6.1: Flightcontrol: Execution Time Comparison C++ Versus Java

123

6 Quantitative Evaluation

wherefore these differences are insignificant in the total execution time of the task. In
the controller phase, the Java port outperforms the original variant by 14.1 %. The
major reason for the faster execution is the more efficient implementations of simple
operations of the math library in the KESO class library than their counterparts
in the C library, which above were already identified as being responsible for the
execution times of the Java and C++ versions not strictly correlating. KESO can be
configured to use the C math library for all operations in the Math class, in which
case the controller shows a very similar behavior to the C++ version.
As a side note, the original variant of the Java controller outperformed the C++

controller by approximately 30 %. Investigating the differences, I found that the
C++ version used the double precision variants for some math operations instead
of the single precision variants (fmod() and fabs() instead of fmodf() and fabsf()),
although the controller operates in single precision. Besides the more expensive
operations, this also caused the conversion of the parameters to double precision and
the conversion of the return value to single precision. In the Java version, the single
precision parameter caused the automatic selection of the single precision variants. I
changed my Java port to explicitly cast the input values at the affected operations to
double precision to show the same behavior.

Coptercontrol The Coptercontrol task processes incoming commands from the radio
control and runs through a simple state machine. Depending on the reached state,
the task activates the beeper or changes the state of the four signal LEDs to give
audible or visual feedback to the user. The regular peaks in the processing graph
represent jobs, in which the state of the LEDs was changed. In flight mode, which I
used in the simulation, the I4Copter shows an LED blink pattern, which is discernible
in the regularly recurring peaks in the execution time graph.

The Java variant is 8.6 % slower in the median than the C++ variant. Considering
the absolute difference of 0.5 microseconds, the effect is minor. The causes are some
missing opportunities for inlining in the Java code of a method used to calculate
the port and pin number from a GPIO pin number. The method is called with
constant pin numbers and the computation could be carried out at compile time,
which is what happens in the C++ version. Most of the shared memory accesses in
the Coptercontrol are optimized by jino to be as efficient as their C++ counterparts.
Other minor factors are the more efficient representation of aggregate data structures
in C++, which are represented as pointer-linked separate objects in Java that require
some additional instructions to access nested objects.

Signalprocessing The Signalprocessing task periodically activates the device drivers
for the different sensors, performs simple preprocessing and filtering and makes the
current sensor values available to the other components in shared memory areas. In
my standalone component, only the three gyroscope drivers are enabled. In the used
version of the I4Copter software, these are the only sensor values that influence the
flight attitude controller. The Signalprocessing component also contains an internal

124

6.4 Cost of Using Java Instead of C or C++

 10

 100

 1000

 5.55 5.6 5.65 5.7 5.75 5.8

N
u
m

b
e
r

o
f

R
u
n
s

(l
o
g
a
ri

th
m

ic
 s

ca
le

)

execution time (µs)

(a) C++

 1

 10

 100

 1000

 6.05 6.1 6.15 6.2 6.25 6.3 6.35 6.4 6.45 6.5

N
u
m

b
e
r

o
f

R
u
n
s

(l
o
g
a
ri

th
m

ic
 s

ca
le

)

execution time (µs)

(b) Java (unsafe)

 5

 5.5

 6

 6.5

 7

 0 20 40 60 80 100

e
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

data set

C++
Java-Unsafe

(c) Correlation of 100 Executions

Worst Median
C++ 5.8 µs 5.6 µs

Java-Unsafe 6.5 µs (11.9 %) 6.1 µs (8.6 %)
(d) Execution Times (% overhead to C++)

Figure 6.2: Coptercontrol: Execution Time Comparison C++ Versus Java

125

6 Quantitative Evaluation

 1

 10

 100

 1000

 10000

 12 12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14

N
u
m

b
e
r

o
f

R
u
n
s

(l
o
g
a
ri

th
m

ic
 s

ca
le

)

execution time (µs)

(a) C++

 1

 10

 100

 1000

 10000

 13 13.2 13.4 13.6 13.8 14 14.2 14.4 14.6 14.8 15

N
u
m

b
e
r

o
f

R
u
n
s

(l
o
g
a
ri

th
m

ic
 s

ca
le

)

execution time (µs)

(b) Java (unsafe)

 12

 12.5

 13

 13.5

 14

 0 20 40 60 80 100

e
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

data set

C++
Java-Unsafe

(c) Correlation of 100 Executions

Worst Median
C++ 13.9 µs 12.5 µs

Java-Unsafe 14.9 µs (7.0 %) 13.6 µs (8.8 %)
(d) Execution Times (% overhead to C++)

Figure 6.3: Signalprocessing: Execution Time Comparison C++ Versus Java

126

6.4 Cost of Using Java Instead of C or C++

mode state machine, but it is only relevant during the initialization and calibration
phases of the I4Copter.

The Java variant of the Signalprocessing component with 8.8 % shows the highest
overhead in comparison to the original C++ variant of all measured components.
The cause of this overhead is the use of a generic driver class in the Java variant
for all analog-to-digital converter channels, where the C++ version uses template
specialization for the static configuration of the different device drivers. Particularly
the base driver for the analog-to-digital converters is a code hotspot. In the specialized
variant, some computations that depend on the template parameters can be performed
at compile time, which are computed at runtime in the generic Java code. Because
these additional computations are needed for every used analog-to-digital converter
channel, the runtime computations cause a notable overhead compared to the C++
version.

SerialCom The SerialCom component is mostly sending and receiving messages.
The message primitives dominate the execution time. The Java version is 3.8 %
slower than the C++ variant due to the overhead of the Java API to the message
port mechanism.

6.4.1.2 Memory Footprint

Table 6.1 shows the footprints of the three variants for the complete system. All three
images are standard configurations of the I4Copter software without any modifications.
The bss section includes the stacks of the different application tasks. The C++ and
Java variants are configured to use the same stack sizes for the various tasks.

All sections are further categorized into the following categories:

CiAO Code and data belonging to the CiAO operating system. These data items are
identified based on the namespaces used by the operating system (hw, os and
ipstack).

KESO Code and data that can be attributed to KESO’s runtime environment, such
as the memory management routines and the dispatch table.

By OS-Application The code and data that can be identified as private items only
used by a single OS-Application. The information that is also available to
the memory protection subsystem is used for the categorization. For the C++
application, the information is solely based on the information provided in
the system configuration file. For the Java applications, the output of the
reachability analysis is used. Statically allocated objects of the KESO runtime
(for example, proxy objects to shared memory areas or message ports) are also
assigned to the respective OS-Application that uses the objects.

Shared Application items that are identified to be used by multiple applications. For
the C++ application, only application hook routines specified in the configu-

127

6 Quantitative Evaluation

 100

 1000

 10000

 6.82 6.84 6.86 6.88 6.9 6.92 6.94 6.96 6.98

N
u
m

b
e
r

o
f

R
u
n
s

(l
o
g
a
ri

th
m

ic
 s

ca
le

)

execution time (µs)

(a) C++

 100

 1000

 10000

 7.12 7.14 7.16 7.18 7.2 7.22 7.24 7.26 7.28

N
u
m

b
e
r

o
f

R
u
n
s

(l
o
g
a
ri

th
m

ic
 s

ca
le

)

execution time (µs)

(b) Java (unsafe)

 6.6

 6.8

 7

 7.2

 7.4

 0 20 40 60 80 100

e
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

data set

C++
Java-Unsafe

(c) Correlation of 100 Executions

Worst Median
C++ 6.9 µs 6.9 µs

Java-Unsafe 7.2 µs (3.8 %) 7.2 µs (3.8 %)
(d) Execution Times (% overhead to C++)

Figure 6.4: SerialCom: Execution Time Comparison C++ Versus Java

128

6.4 Cost of Using Java Instead of C or C++

bss data text

CiAO 2047 (13.9 %) 537 (5.7 %) 16218 (20.5 %)
CopterControl 850 (5.8 %) 2144 (22.8 %) 332 (0.4 %)

Ethernet 5472 (37.2 %) 24 (0.3 %) 362 (0.5 %)
FlightControl 1714 (11.6 %) 2138 (22.8 %) 320 (0.4 %)

InitTask 128 (0.9 %) 0 (0.0 %) 118 (0.1 %)
SerialCom 520 (3.5 %) 360 (3.8 %) 854 (1.1 %)

SignalProcessing 2962 (20.1 %) 2320 (24.7 %) 290 (0.4 %)
Shared 0 (0.0 %) 0 (0.0 %) 294 (0.4 %)
Other 1036 (7.0 %) 1873 (19.9 %) 60178 (76.2 %)
Total 14729 9396 78966

(a) C++

bss data text

CiAO 2047 (13.0 %) 549 (5.2 %) 16282 (26.4 %)
KESO 44 (0.3 %) 320 (3.0 %) 298 (0.5 %)

CopterControl 1305 (8.3 %) 2436 (23.0 %) 5690 (9.2 %)
Ethernet 5648 (35.8 %) 194 (1.8 %) 2166 (3.5 %)

FlightControl 1925 (12.2 %) 2388 (22.5 %) 5452 (8.9 %)
InitTask 128 (0.8 %) 28 (0.3 %) 118 (0.2 %)

SerialCom 640 (4.1 %) 728 (6.9 %) 2862 (4.6 %)
SignalProcessing 4017 (25.5 %) 2696 (25.5 %) 10870 (17.7 %)

Shared 0 (0.0 %) 84 (0.8 %) 4240 (6.9 %)
Other 12 (0.1 %) 1169 (11.0 %) 13596 (22.1 %)
Total 15766 10592 61574

(b) Java (unsafe)

Table 6.1: I4Copter Memory Footprint: C++ Versus Java (sizes in bytes, % of the
total section)

129

6 Quantitative Evaluation

ration are attributed to this section. For Java applications, the results of the
reachability analysis are used.

Other Everything left that does not fall into any of the above categories, for example
functions of the C library or platform support of the compiler. The items in
this category are treated in the same way as shared items by the system. I
differentiate them here to show what could actually be identified as really shared
data items, and what could just not be automatically assigned. No functions
from a Java application are ever assigned to this category.

The size of CiAO is dominated by the network protocol stack. It can be seen that
the runtime environment of KESO is very low in code and data memory requirements.
Since the Java port does not use garbage collection, which is the most complex part
of KESO’s runtime environment, it only contains a very simple allocator. The data
memory used by KESO is dominated by the dispatch table (316 bytes) and an index
that maps CiAO task identifiers to Java Thread objects (41 bytes). The class store
that contains runtime type information was completely dropped by the linker because
there exist no references in the code. The code of the runtime environment comprises
mainly the allocators and exception handling routines.

Looking at the assignment of the application code and data to the private memories
of the different OS-Applications, it is obvious that the manual code partitioning
approach on the granularity of classes used by CiAO is too coarse-grained and
elaborate for the developer. The original C++ variant of the I4Copter is almost
entirely considered shared code, except for the entry functions of the different control
flows. With the analyses-based approach in KESO, on the other hand, all but
6.9 % of the application code could be uniquely identified as being used by a single
OS-Application only. For the application data, only 0.4 % of the application items
need to be considered shared data. This is, of course, a direct consequence of the
multi-JVM architecture in KESO, where all data is strictly separated. The shared
items represent constant, statically allocated objects, which are shared by multiple
domains – a controlled exception to the rule of the absence of shared references
in different domains that KESO makes for select objects such as string constants.
With these precise identification of private code and data items, read and execution
protection are possible with high effectiveness.
The data and bss sections of the Java version are 9.3 % larger than those of the

C version. This is partially caused because the bss section includes the heaps of
the respective domain, each of which exceeds the actual memory requirements by a
threshold of 100–200 bytes. In addition, Java objects are slightly larger than C++
objects, because they carry runtime type information (4 bytes per regular object, 8
bytes per array on the Tricore architecture). Other reasons for additional memory
requirements are the separate instances of static fields in each domain (80 bytes per
domain) and the less efficient representation of aggregate complex types as multiple
linked objects.

In the code size, the unsafe Java version is 22 % smaller than the C++ version. This
can almost completely be ascribed to the static configuration using templates, which

130

6.4 Cost of Using Java Instead of C or C++

Driver Java C++
Analog-to-Digital Converter Base Driver 798 0 (inlined)

Type 1 Gyroscope Driver 370 1130
Type 2 Gyroscope Driver (Variant 1) 520 2018
Type 2 Gyroscope Driver (Variant 2) n/a 2008

Gyroscope Aggregation Driver 736 692
Total 2424 5848

Table 6.2: Specialization Versus Generalization: Gyroscope Driver in the I4Copter
(sizes in bytes)

causes a separate variant of all template methods for each parameter combination.
In the execution time of the Signalprocessing task, this specialization showed to
be beneficial for the execution time; the increased code size is the downside of this
specialization.

6.4.1.3 Discussion of the Major Factors of Diversity

In the comparison of the C++ and the unsafe Java variant, I identified the following
aspects to cause the main differences in the resource requirements, which I now discuss
in more detail.

Static Configuration via Templates In the Signalprocessing task, it was observable
that the Java variant performed slower, but also was considerably smaller in code size.
The reason for this is the broad use of C++ templates for the static configuration
of device drivers throughout the I4Copter, resulting in specialized variants of the
respective base abstraction classes.
An example in the codebase is the gyroscope driver. The I4Copter is equipped

with three gyroscopes of two types. In total, these gyroscopes are connected to eight
analog-to-digital converter channels of the microcontroller, each of which is driven by
a specialized driver variant. Table 6.2 shows the code size for the generated variants.
In total, eight specialized variants of the analog-to-digital converter base driver and
two variants of the type 2 sensor drivers exist in the C++ version. The code of the
base driver is inlined into the gyroscope drivers. It is discernible that the specialized
variants of the base driver are smaller than the generic variant in the Java port –
otherwise, the gyroscope drivers would be significantly larger in size. Still, the driver
code for the gyroscopes in the C++ variant is 2.4x the size of the generic Java variant.
This scheme is found for all driver code in the I4Copter.

The specialized variants are smaller and more efficient than the generic variant
because the code can be simplified based on the actual values of the template
parameters at compile time. In the analog-to-digital converter base driver, for example,
the IO port and pin for the channel are computed from the channel number. This
channel number is constant in the specialized variants, which causes the computation
to be carried out at compile time.

131

6 Quantitative Evaluation

static final int OFS_MYFIELD = 12;

static int accessSHM() {

RawMemory shm = SharedMemoryService.getSharedMemoryByName("MySHMArea");

int value = shm.get32(OFS_MYFIELD);

return value;

}

Listing 6.1: Shared Memory Access (Java Code)

jint accessSHM() {

// the null check was eliminated by static analyses

KESO_CHECK_BOUNDS(sizeof(basicFlightCtrlData_t), 15);

jint value = *(volatile jint *) ((char *) &MySHMArea_SharedMemory + 12);

return value;

}

Listing 6.2: Shared Memory Access (Generated C Code)

Compatibility Interface to Access Shared Memory and Message Ports The second
aspect where the Java version showed notable overhead over the C++ version is the
Java interface to CiAO’s shared memory and message port mechanisms, which is
based on RawMemory objects. In the C++ version, shared memory areas are directly
accessed, whereas RawMemory introduces an indirection, null checks and bound checks.

To optimize accesses to shared memory areas and message ports, jino attaches the
name of the shared memory area or the message port to the data flow information
when a RawMemory object is initially retrieved from these interfaces. Listing 6.1 shows
what such a code snippet could look like in the Java code for the access to a shared
memory area. Raw memory areas are often accessed using a constant offset, 12 in the
example. Listing 6.2 shows the code that jino generates for this access in the optimal
case, with the following optimizations applied:

• The null check required on the RawMemory object was eliminated. This is
possible if the call to the getSharedMemoryByName() service is reachable only
from domains that are allowed to access the shared memory area specified in
the parameter string1. In this case, getSharedMemoryByName() is known to never
return null.

• Jino cannot directly eliminate the bound check, because it does not know the
size of the shared memory area. It can, however, aid an optimizing C compiler
in removing the check, if the C data type of the area is known for the object:
Instead of reading the size of the shared memory area from the RawMemory object,
the sizeof operator is used to insert the area size as a compile time constant
into the check. If the offset is also known, the C compiler removes the check.

1This string always needs to be a compile time constant, it does not exist at runtime.

132

6.4 Cost of Using Java Instead of C or C++

• Finally, if the exact shared memory area is known, the generated code accesses
the shared memory directly, avoiding the indirection over the RawMemory object.

When shared memory areas are used in a local scope as in the example, the access to
shared memory is no more expensive than in a native C application. If the RawMemory

object escapes the local scope, the optimizations that can still be applied depend
on where the object is stored. In many cases, the optimizations can still be applied
in this case. For messages, only the sizeof trick is used. Allocating or receiving a
message can always return a null reference. While the indirection over the memory
object could be avoided by combining the RawMemory object and the message buffer in
a single structure, allowing to access the message buffer relative to the reference to
the RawMemory object, this is not currently implemented.

6.4.2 Collision Detector
The second example application is CDx, an embedded real-time Java benchmark,
which is more dynamic than the I4Copter. The shown numbers for the Java variants
include runtime safety checks.

6.4.2.1 Execution Times

Figure 6.5 shows the distribution of execution times over the 10,000 iterations of the
collision detector for CDc and the two garbage-collected KESO variants. CDj is 6 %
faster than CDc in the median execution time when using the stop-the-world garbage
collector (GC), despite the overhead of runtime checks, virtual method calls and
overhead to maintain the runtime data structures of the runtime environment such as
the linked stack frames [50]. The observed worst-case time is, however, 17 % higher
than that of CDc. The incremental collector has a higher overhead for the mutator
(6 % on average, 30 % in the observed worst case), which is caused by the added
overhead of write barriers and due to the complex linked list implementation used
to manage the free memory that allows a list traversal to be interrupted by higher-
priority mutators. Disabling the synchronization code in the incremental collector
shows indeed a very similar allocation performance to that of the stop-the-world GC.
Figure 6.6 shows a more detailed view on the execution time correlation of the

different versions for the first 100 detector iterations. To determine the cost caused
to the mutator by the use of the GCs, I also started the test with a version that
does not use a GC; it runs out of memory after 24 iterations. The graph shows a
clear correlation between the execution times of the C and the Java version of the
benchmark, although the observed execution time peaks tend to be stronger in the
Java version (hence the relatively higher observed worst-case overhead), while CDj

tends to have a better baseline performance. The execution time of the detector
task varies mainly depending on the number of suspected collisions that are detected
in the reducer phase. More suspected collisions require more computations in the
following detector phase and also more memory allocations. Comparing the pseudo-
static allocation variant that provides short, constant allocation times and does not

133

6 Quantitative Evaluation

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r o

f I
te

ra
tio

ns
 (l

og
ar

ith
m

ic
 s

ca
le

)

execution time (ms)

(a) CDc

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r o

f I
te

ra
tio

ns
 (l

og
ar

ith
m

ic
 s

ca
le

)

execution time (ms)

(b) Stop-the-World GC

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r o

f I
te

ra
tio

ns
 (l

og
ar

ith
m

ic
 s

ca
le

)

execution time (ms)

(c) Incremental GC

Worst Median
CDc 23 ms 16 ms

Stop-the-World GC 27 ms (17 %) 15 ms (-6 %)
Incremental GC 30 ms (30 %) 17 ms (6 %)

(d) Execution Times (% overhead to CDc)

Figure 6.5: Collision Detector: Distribution of Iteration Execution Times

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

ex
ec

ut
io

n
tim

e
(m

s)

iteration

Incremental GC
CDc

Stop-the-World GC
Pseudo-Static Allocation

Figure 6.6: Collision Detector: Execution Times for 100 Iterations

134

6.4 Cost of Using Java Instead of C or C++

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

ex
ec

ut
io

n
tim

e
(m

s)
heap usage (kiB)

(a) CDc

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 40 45 50 55 60 65 70 75 80 85

ex
ec

ut
io

n
tim

e
(m

s)

heap usage (kiB)

(b) Stop-the-World GC

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 40 45 50 55 60 65 70 75 80 85

ex
ec

ut
io

n
tim

e
(m

s)

heap usage (kiB)

(c) Incremental GC

Figure 6.7: Correlation Between Heap Usage and Execution Time

require the maintenance of linked stack frames, with the garbage-collected variants
shows, that the mutator overhead caused by using a GC is significant. Figure 6.7
shows that there is an almost linear correlation between the execution time and the
amount of memory allocated by the corresponding iteration. On the other hand, CDc

uses malloc() for memory allocation, which has an allocator with linear allocation
complexity as well, and is additionally penalized by free() operations that are not
done in the Java code. It is particularly notable that CDc allocates less memory
during the iterations and that the variance in the amount of memory allocated during
the different iterations is significantly less than in CDj (5.5 KiB in CDc vs. 40 KiB in
CDj). The cause for this is that CDc and CDj turned out to be quite different in their
allocation behavior: While CDc preallocates most of the memory (378 KiB in the
used configuration), CDj ’s allocation is driven by the actual demand. As a concrete
example, CDc preallocates a configurable number (default 300) of array-backed lists
with a fixed size (statically configured to the anticipated maximum, default 300),
prior to the first iteration. CDj on the other hand allocates these lists as required
in each iteration. Furthermore, CDj uses Java’s standard collection classes, which
have a smaller initial capacity (array list: 10 elements) and are enlarged on demand.
This explains that CDc has an overall smaller allocation amount measured during the
individual iterations, since most of the needed memory is preallocated, as well as the
higher variance in the amount of allocated memory of CDj , which allocates memory
as required by each individual iteration.

135

6 Quantitative Evaluation

CDx Variant text data bss

CDc 39194 2075 930307
Pseudo-Static Allocation 46422 1820 827647

Stop-the-World GC 50450 1880 833140
Incremental GC 56506 1890 833136

Table 6.3: CDx Footprint (sizes in bytes)

The pseudo-static allocation variant shows that the peaks in the execution time
tend to be higher relative to the baseline performance for the Java version even when
using fast bump-pointer allocation, wherefore the higher execution time variance
(Figure 6.5) is apparently not caused by memory allocations. While other Java-specific
overheads such as safety checks and virtual method calls occur more often in iterations
with more suspected collisions, separate measurements (not depicted) showed that
the overhead caused by safety checks is minor for this benchmark. I could trace
the causes for CDj having a better baseline performance but suffering more from
collision intensive iterations to some algorithmic differences in the two versions of the
benchmark: The used hash map implementations differ. CDc uses a linked hash map
that allows a faster iteration of the map’s elements. Also, the Java hash map has an
initial capacity of 11 buckets (load factor 0.75) whereas the C version starts with a
capacity of 1024 buckets (load factor 1). While the initial allocation of the large hash
map may be more expensive and penalize CDc in iterations with few or no collisions,
the Java version will need to reallocate and rehash the map for frames with more
collisions. Another source of added overhead is a hotspot method that is only called
in the detector phase (that is, if suspected collisions are present). In this method,
four vectors are cloned (that is, allocated and copied) needlessly, whereas the CDc

just uses the vectors by reference (CDj could do so as well). These differences in the
two benchmarks explain the causes of the higher execution time variance of CDj .

6.4.2.2 Footprint

Table 6.3 shows the footprint of the different variants. In the code size, the Java code
is 18 % larger than CDc. Besides CDj containing some additional code surrounding
the benchmark that is not part of CDc, the Java version’s text section contains the
dispatch table (3.7 KiB) and the type information table (900 bytes), which account
for most of the differences. The garbage-collected variants additionally contain the
code for the respective GC, which adds approximately four KiB to the text section.
The incremental GC besides having a more complex implementation of the actual
collector also introduces write barriers in the application code. The initialized data
use is similar for all variants. Slight differences in the CDj variants are caused by
differences in the management data of the different heap implementations. As to the
uninitialized data (bss), the C version required a heap of 900 KiB whereas the CDj

versions were only given a heap of 800 KiB size. At runtime, most of the heap space
is preallocated by CDx for storing the benchmark results. CDj has at most 326 KiB

136

6.5 Microbenchmarks: Individual Costs of Basic Operations

of heap space left when the detector starts.

6.4.3 Conclusions

The comparison of the C and C++ variants of CDx and the I4Copter with the
Java variants shows that KESO is able to offer competitive performance. In the
CDx benchmark, the whole-program analyses performed by jino are able to more
than compensate the overheads of Java, such as dynamic method binding, short-
lived objects, and the maintenance of runtime data structures that enable garbage
collection. Even for a fully static application as the I4Copter, the overheads of using
Java (without runtime safety checks) are below 10 %. These were mainly caused
by the use of generic driver code where the C++ version used specialized variants
derived from C++ templates (trading faster execution time for increased code size),
and the overhead of Java interfaces to the shared memory and messaging mechanisms
of CiAO.

Concluding, Java can offer comparable performance as C or C++, but heavily relies
on a good compiler and a slim runtime environment to be able to do so. C and C++
provide the programmer with more explicit control over the language features used
by the program, which in Java often are under control – and cost therefore depends
on the quality – of the compiler. For example, in C++, the use of dynamically bound
methods is explicit and can fully be avoided by the programmer. In Java, on the
other hand, most instance method calls are dynamically bound, and the quality of
the compiler’s devirtualization has a high impact on the efficiency of the resulting
program.
Jino has improved a lot in the area of static program analyses and compiler

optimizations in the last years, but there is still room for further improvement. One
such area of improvement is the native interfaces. For example, RawMemory objects
are currently not as well handled by the static analyses as regular Java arrays. This
also reflects in the performed benchmarks, where applications that make little use of
the native interfaces (Flightcontrol and CDj) showed better performance than those
with a higher use of these mechanisms.

6.5 Microbenchmarks: Individual Costs of Basic Operations

In this section, I evaluate the cost of the different base primitives used to enforce
memory protection. I also measure the runtime of some common operations of the
CiAO operating system in the presence of different levels of hardware-based memory
protection. The actual cost for an application depends on the extent to that the
respective primitives and operations occur in the application code, which varies from
application to application. In Section 6.6, I investigate the effects at the example
of the I4Copter application. For these measurements, the system timer runs at the
same 50 MHz frequency as the CPU. The measured values are cycle accurate.

137

6 Quantitative Evaluation

CPU Time Code Size RAM Accesses
(cycles) (bytes)

null Check 1 8 0
Bound Check 5 14 1

Type Check (Specific) 4 14 1
Type Check (Range) 8 8 1

enterTrusted() 26 4 3
leaveTrusted() 3 20 0

Table 6.4: Costs of Basic Protection Primitives (TC1796, 50 MHz)

6.5.1 Basic Protection Primitives

Table 6.4 shows the cost of the different basic protection primitives. For software-
based protection, these are the most commonly encountered runtime checks. For
hardware-based protection, these are the operations that switch the execution context
to trusted mode and back to non-trusted mode. Code and data are run from internal
scratchpad memories of the CPU, which can be accessed in a single cycle. For
each operation, I also provide the number of bytes added for each operation to the
application code, and the number of load or store accesses to the memory that occur
in the respective operation. If the data resides in external memory, these operations
require more CPU cycles. It should also be noted that the actual code generated
for a check depends on the C compiler and the context in which the check occurs.
Deviations from the values in Table 6.4 are therefore possible. Still, the values provide
a sufficiently accurate indicator of the cost of the respective operation.

6.5.1.1 Runtime Checks

All runtime checks consist of a condition that is checked and a call to an error handler
if the condition fails. The shown execution times are for the case where the check
succeeds. KESO emits hints that tell the C compiler that the success case is expected
for the check. For the Tricore architecture, the C compiler consequently selects a
conditional 16-bit forward branch instruction, which according to the static branch
prediction of the Tricore architecture does not cause a pipeline stall in the case that
the branch is taken.
For a null check, the by far most frequent runtime check, a single conditional

branch instruction is often sufficient. The reference is loaded for the checked operation
anyway. With the Tricore’s branch prediction, the cost in the success case is a single
CPU cycle. For bound checks, different variants exist in KESO, depending on whether
the size or the used index is already known statically. The bound check measured
in Table 6.4 is a generic one, where neither the used index nor the array size are
statically known. The size of the array commonly needs to be loaded from RAM.
The cost for the check is five cycles. The third type of check is a type check, which

138

6.5 Microbenchmarks: Individual Costs of Basic Operations

Task Task NTF NTF
Activation Switch Invoke Return

No Protection 71 181 10 1
Kernel Protection 120 240 101 61

Application Isolation 120 286 111 78
Control-Flow Isolation 120 298 95 64

Table 6.5: Runtime of System Operations with Different Levels of MPU Protection
(CPU cycles, TC1796, 50 MHz)

occurs on downcasts in the class hierarchy, for example, or implicit with the use of
Java generics. There are two kinds of type checks in KESO. The first one checks for
a specific type, which corresponds to an integer comparison. This check is selected by
jino if the target type contains no further (instantiated) subtypes. The second kind
checks for a range of subtypes, which with KESO’s class numbering scheme requires
integer comparisons with a lower and an upper bound. This code is not inlined,
wherefore the more expensive check adds less code to the program than the check
for a specific subtype. The runtime cost is four cycles for the fast variant and eight
cycles for the generic one. In both cases, the type identifier needs to be read from
memory. The identifier of the target type or the target range’s bounds are statically
known and inserted as constants into the code.

6.5.1.2 Protection Mode Switch Operations

The lower part of Table 6.4 shows the cost for CiAO’s primitives to enter and leave
trusted protection context. The enterTrusted operation consists of a single syscall

CPU instruction at the call side, which triggers a trap. The trap handler switches
the region set of the Tricore MPU to the supervisor mode region set2 and returns to
the caller. The total cost of the operation is 26 cycles. The return to non-trusted
context does not require a trap and costs only three cycles.

6.5.2 Costs of Common System Operations

Hardware-based memory protection also increases the cost of many system operations
(Section 4.4). Table 6.5 shows the runtime of some common operations in CiAO with
differing levels of memory protection.

The first is a call to the ActivateTask() service without triggering a task switch. In
the presence of memory protection, this service is wrapped with enterTrusted() and
leaveTrusted() operations. These operations do not vary with the differing protection
level; the cost for the system service increases by 51 cycles (69 %). This may be
surprising because the combined cost of enterTrusted() and leaveTrusted() is only

2On the Tricore, the MPU is active even in supervisor mode.

139

6 Quantitative Evaluation

29 cycles according to Table 6.4. The difference is caused by the code transformations
applied by the AspectC++ weaver, which are not fully optimized by GCC.
The second column shows the cost of a task activation followed by a task switch.

The measured time interval is from the call to ActivateTask() to the first instruction
of the activated task. If there is only kernel protection, besides the task activation
itself becoming more expensive (as above), the scheduler must check on dispatch of a
task whether the application of that task is trusted, or not. For application isolation
and control-flow isolation, the MPU regions need to be additionally set up for the
target application. With control-flow isolation, more regions are needed than for
application isolation, wherefore the task switch is slightly more expensive. In total,
the overhead for a task switch with memory protection ranges from 59 cycles (33 %)
to 117 cycles (65 %).
The last two columns show the cost for the invocation of a non-trusted function,

and the return from a non-trusted function. For the invocation, the time from the
call to the non-trusted function to the first instruction of the non-trusted function
is measured. For the return, the time from the last instruction of the non-trusted
function to the instruction following the non-trusted function call in the caller OS-
Application is measured. Besides switching to the memory protection context of the
respective target OS-Application, the unused portion of the task stack needs to be
made available in the callee OS-Application (Section 4.4). For a non-trusted ISR,
similar actions are taken on entry and exit. Compared to a regular function call in
the absence of memory protection, the costs increase up to a factor of eleven for
the invocation, and a factor of 78 for the return. The reason why the overhead is
smaller with control-flow isolation is that handling the stack region is cheaper with
control-flow isolation, where a separate region is used for the stack anyway. With
lower isolation levels, enabling access to the task stack is a special case that requires
some additional instructions.

6.5.3 Conclusions
Protection mode changes in the presence of hardware-based memory protection
showed to increase the cost of different system operations significantly. In comparison,
the costs for the common runtime checks of Java are rather low. While protection
mode switches with hardware-based protection occur only when the control-flow needs
to cross the boundary of its protection context, however, the runtime checks with
software-based protection are spread throughout the application code and commonly
occur at much higher frequency. The actual overhead thus strongly depends on the
respective application. In the next section, I analyze the actual overhead for an
application at the example of the I4Copter.

6.6 Costs of Memory Protection in the I4Copter
While microbenchmarks provide a measure for the cost of individual system operations,
they are of limited significance for an actual application. Cost differences of an order

140

6.6 Costs of Memory Protection in the I4Copter

of magnitude as seen for non-trusted function calls, for example, may be acceptable
to an application if such operations rarely occur. On the other hand, individually
inexpensive operations such as bound checks may turn out to significantly increase the
execution time if occurring in hotspots. In this section, I compare the costs of using
hardware-based protection, software-based protection, and the combination of the
two for the four components in the I4Copter software. The baseline of the comparison
is a configuration that uses neither hardware- nor software-based protection.
For this comparison, I only use the Java port of the I4Copter components. The

code of all variants is therefore identical, except for the changes imposed by the
respective protection mode. The configuration of hardware-based memory protection
is identical to my previous setting in the language comparison (write-only protection,
control-flow isolation), except for the message ports. Message ports in this section
use the variants where hardware-based protection ensures that messages can only be
written between the receive() and release() primitives on the receiver side, and the
allocate() and send() operations on the sender side. These four primitives therefore
become operations that trigger changes to the MPU configuration.

6.6.1 Execution Times

The results of the execution time comparison are shown in Figure 6.8 (Flightcontrol),
Figure 6.9 (Coptercontrol), Figure 6.10 (Signalprocessing) and Figure 6.11 (SerialCom).
Each figure contains a line graph that shows the correlation of execution times for
100 iterations and a table with the worst observed execution time and the median of
execution times, including the relative overhead over the baseline of an unprotected
execution. The third table shows the number of null, bound and type checks in
the variants with software protection, split into checks that need to be performed
at runtime and those that could be performed at compile time and are therefore
not contained in the generated code anymore. These check numbers represent the
static number of checks in the image, not the actual number that each of these checks
is triggered at runtime. They provide a basic measure for the expected cost for
software-based protection for the respective part, and in particular show to what
extent jino was able to prove checks to always succeed at compile time.

6.6.1.1 Flightcontrol

In the Flightcontrol task, one message is received and one message is sent in each
iteration. In addition, there is one call to SetEvent(). These are all operations for
which hardware-based protection incurs additional cost. For software-based protection,
more than 95 % of the runtime checks of each category could be proven to succeed
by jino at compile time. In total, the protection cost is low for both hardware- and
software-based protection in relation to the total execution time of the component.

141

6 Quantitative Evaluation

 150

 152

 154

 156

 158

 160

 0 20 40 60 80 100

e
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

data set

No Protection
Hardware Protection
Software Protection

Combined Protection

(a) Correlation of 100 Executions

Worst Median
No Protection 155.4 µs 151.4 µs

Hardware Protection 158.6 µs (2.1 %) 154.4 µs (2.0 %)
Software Protection 156.9 µs (1.0 %) 152.9 µs (1.0 %)

Combined Protection 160.1 µs (3.0 %) 155.8 µs (2.9 %)
(b) Execution Times (% overhead to no protection)

Runtime Ahead-of-Time Success Total
null checks 52 (4 %) 1120 (96 %) 1172

bound checks 6 (2 %) 270 (98 %) 276
type checks 0 0 0

(c) Runtime Checks

Figure 6.8: Flightcontrol: Comparison of Protection Variants

142

6.6 Costs of Memory Protection in the I4Copter

 6

 6.2

 6.4

 6.6

 6.8

 7

 0 20 40 60 80 100

e
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

data set

No Protection
Hardware Protection
Software Protection

Combined Protection

(a) Correlation of 100 Executions

Worst Median
No Protection 6.5 µs 6.1 µs

Hardware Protection 6.5 µs (0.4 %) 6.1 µs (0.4 %)
Software Protection 6.6 µs (1.6 %) 6.1 µs (1.1 %)

Combined Protection 6.6 µs (2.1 %) 6.2 µs (1.5 %)
(b) Execution Times (% overhead to no protection)

Runtime Ahead-of-Time Success Total
null checks 44 (3 %) 1230 (97 %) 1274

bound checks 54 (31 %) 120 (69 %) 174
type checks 0 0 0

(c) Runtime Checks

Figure 6.9: Coptercontrol: Comparison of Protection Variants

143

6 Quantitative Evaluation

6.6.1.2 Coptercontrol

In Coptercontrol, the used system services per iteration are principally identical to
the Flightcontrol task. Messages are sent and received to change the power state of
the engine controllers. This power state is, however, only changed in the initialization
phase and during emergency shutdown. Since my measurements only simulate flight
mode, no messages are sent or received in the measured code. The added cost for
hardware-based protection is therefore only caused by the single call to SetEvent()

and is negligible (0.4 %) in relation to the total execution time. For software-based
protection, jino was not able to eliminate a considerable number of bound checks at
compile time; none of these checks occurs in a hotspot location, however, so the total
relative overhead of software-based protection is little (1.1 %).

6.6.1.3 Signalprocessing

The Signalprocessing component with 9.5 % shows the highest overhead of all compo-
nents for software-based protection. I could identify two bound checks in a hotspot
code location that are the source for the largest part of this overhead. The bound
checks occur in the prefiltering code that is used for most analog-to-digital converter
channels. The code computes the average sensor value of a per-channel configurable
number of last samplings of the channel. These numbers are kept in an array, which
is read and updated on each sampling. Jino is currently only able to optimize bound
checks if the size of the array is a compile time constant. It is not currently able to
evaluate dependencies between the used index and a non-constant array length. For
example, a loop such as the following is commonly used to iterate an array:

for(int i=0; i<array.length; i++) { // array is of type int[]

array[i] = 0;

}

Jino can only eliminate the bound check required for the array store operation in
the above example if array.length is a compile-time constant for all arrays that the
reference could possibly point to. In the analog-to-digital converter prefiltering code,
the length of the array is constant for each channel, but not the same for all channels.
Consequently, jino fails to remove these bound checks. With these two bound checks
manually removed, the overhead of software-based protection drops to 1.5 %. This
example shows how few checks in hotspot locations can incur a significant overhead
for the program.
Hardware-based protection should not incur any overhead to the Signalprocessing

component. My standalone variant only contains the gyroscope drivers, which do
not use the message port mechanism. There are also no other system calls affected
by hardware-based protection in the measured code. Yet the measurement shows
an overhead of 0.8 % for hardware-based protection. A comparison of the generated
machine code shows no differences in the measured functions. The difference is within
the accuracy of the measurement.

144

6.6 Costs of Memory Protection in the I4Copter

 13

 13.5

 14

 14.5

 15

 15.5

 16

 0 20 40 60 80 100

e
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

data set

No Protection
Hardware Protection
Software Protection

Combined Protection

(a) Correlation of 100 Executions

Worst Median
No Protection 14.9 µs 13.5 µs

Hardware Protection 14.9 µs (0.3 %) 13.6 µs (0.8 %)
Software Protection 16.1 µs (8.6 %) 14.8 µs (9.5 %)

Combined Protection 16.2 µs (9.1 %) 14.8 µs (10.0 %)
(b) Execution Times (% overhead to no protection)

Runtime Ahead-of-Time Success Total
null checks 24 (3 %) 836 (97 %) 860

bound checks 44 (49 %) 46 (51 %) 90
type checks 0 0 0

(c) Runtime Checks

Figure 6.10: Signalprocessing Comparison of Protection Variants

145

6 Quantitative Evaluation

6.6.1.4 SerialCom

The SerialCom standalone component is essentially a benchmark of the messaging
performance. The runtime of the task with hardware-based protection is three
times the runtime of the task without hardware-based protection. This is fully a
consequence of the overhead added to enforce the message protocol, which adds
overhead to all message primitives except for peek(). Without enforcement of the
protocol, the message mechanism is completely orthogonal to hardware-based memory
protection, and hardware-based memory protection can be used without added cost
for the SerialCom component. The software-protected variants only include a few
null checks, which are negligible in relation to the total execution time. The slight
speedup that the software-protected variant shows over the unprotected variant is
within the accuracy of the measurement.

6.6.2 Memory Footprint

Table 6.6 shows the effect on the footprint of the program for the different protection
variants. The used images are the standard images of the I4Copter software, not the
standalone variants. The shaded cells in Table 6.6(b) and Table 6.6(c) highlight the
differences to the unprotected variant.

6.6.2.1 Hardware-based Protection

The numbers for hardware-based protection (Table 6.6(b)) differ from those of the
unsafe Java variant in the language comparison (Table 6.1(b)) because the former
uses enforcement of the message protocol, whereas the latter uses the simple message
port variant without enforcement. In the operating system, hardware-based memory
protection introduces new data structures for the management of OS-Applications
and extends existing ones such as the task control blocks with, for example, the
mapping to the respective OS-Application or task-specific memory regions. In total,
the data memory requirements for the CiAO OS itself increase by 198 bytes (8 %)
in the I4Copter. The code of the OS is extended by the MPU driver, and various
operations of the OS, such as the context switch, are extended to switch the memory
protection context. With the callee-side weaving (Section 4.4.3.2), the application
interface to system services is also extended to include privilege mode changes on the
OS side. In total, the code of the OS grows by 830 bytes (5 %).

The code of KESO’s runtime environment increases by 72 bytes (32 %) because it
contains a call to CiAO’s ShutdownOS() service in the error handling routines, which
is extended by the memory protection aspects and inlined in KESO’s code.
In the application data, a shift of data from the private application categories to

the other category stands out. The reason for this shift is the use of the protocol-
enforcing message ports, for which the pool with the message buffers is stored outside
the private data segments of the OS-Applications and message buffers are only
temporarily made available to the OS-Application between the allocate()/send()
and the receive()/release() pairs. The total data consumption remains the same.

146

6.6 Costs of Memory Protection in the I4Copter

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

e
xe

cu
ti

o
n
 t

im
e
 (

µ
s)

data set

No Protection
Hardware Protection
Software Protection

Combined Protection

(a) Correlation of 100 Executions

Worst Median
No Protection 7.2 µs 7.2 µs

Hardware Protection 22.7 µs (216.3 %) 22.7 µs (216.7 %)
Software Protection 7.2 µs (-0.4 %) 7.2 µs (-0.2 %)

Combined Protection 23.0 µs (219.7 %) 22.9 µs (219.9 %)
(b) Execution Times (% overhead to no protection)

Runtime Ahead-of-Time Success Total
null checks 28 (37 %) 48 (63 %) 76

bound checks 0 (0 %) 6 (100 %) 6
type checks 0 0 0

(c) Runtime Checks

Figure 6.11: SerialCom Comparison of Protection Variants

147

6 Quantitative Evaluation

bss data text

CiAO 2034 (12.9 %) 364 (3.5 %) 15228 (25.9 %)
KESO 44 (0.3 %) 320 (3.1 %) 226 (0.4 %)

CopterControl 1305 (8.3 %) 2436 (23.4 %) 5314 (9.0 %)
Ethernet 5648 (35.9 %) 194 (1.9 %) 2030 (3.4 %)

FlightControl 1925 (12.2 %) 2388 (22.9 %) 5352 (9.1 %)
InitTask 128 (0.8 %) 28 (0.3 %) 68 (0.1 %)

SerialCom 640 (4.1 %) 728 (7.0 %) 2536 (4.3 %)
SignalProcessing 4017 (25.5 %) 2696 (25.9 %) 10406 (17.7 %)

Shared 0 (0.0 %) 84 (0.8 %) 4122 (7.0 %)
Other 12 (0.1 %) 1169 (11.2 %) 13596 (23.1 %)
Total 15753 10407 58878

(a) No Protection

bss data text

CiAO 2047 (13.0 %) 549 (5.2 %) 16058 (23.1 %)
KESO 44 (0.3 %) 320 (3.0 %) 298 (0.4 %)

CopterControl 1305 (8.3 %) 284 (2.7 %) 5870 (8.4 %)
Ethernet 5648 (35.8 %) 194 (1.8 %) 2644 (3.8 %)

FlightControl 1925 (12.2 %) 236 (2.2 %) 5632 (8.1 %)
InitTask 128 (0.8 %) 28 (0.3 %) 118 (0.2 %)

SerialCom 640 (4.1 %) 344 (3.2 %) 4934 (7.1 %)
SignalProcessing 4017 (25.5 %) 352 (3.3 %) 11046 (15.9 %)

Shared 0 (0.0 %) 84 (0.8 %) 9342 (13.4 %)
Other 12 (0.1 %) 8201 (77.4 %) 13596 (19.6 %)
Total 15766 10592 69538

(b) Hardware Protection

bss data text

CiAO 2034 (12.9 %) 364 (3.5 %) 15228 (24.5 %)
KESO 44 (0.3 %) 320 (3.1 %) 306 (0.5 %)

CopterControl 1305 (8.3 %) 2436 (23.4 %) 5702 (9.2 %)
Ethernet 5648 (35.9 %) 194 (1.9 %) 2494 (4.0 %)

FlightControl 1925 (12.2 %) 2388 (22.9 %) 5632 (9.1 %)
InitTask 128 (0.8 %) 28 (0.3 %) 68 (0.1 %)

SerialCom 640 (4.1 %) 728 (7.0 %) 2952 (4.7 %)
SignalProcessing 4017 (25.5 %) 2696 (25.9 %) 11190 (18.0 %)

Shared 0 (0.0 %) 84 (0.8 %) 5044 (8.1 %)
Other 12 (0.1 %) 1169 (11.2 %) 13596 (21.9 %)
Total 15753 10407 62212

(c) Software Protection

Table 6.6: I4Copter Memory Footprint: Different Memory Protection Variants
(sizes in bytes, % share of the total section)

148

6.6 Costs of Memory Protection in the I4Copter

The code size for the application code increases by 9758 bytes (33 %), caused by the
inlined use of system services affected by the memory protection aspects. The high
overhead is mainly caused by the protocol-enforcing message ports as a consequence
of the size increase of the individual primitives, multiplied by template specialization
(14 variants) and inlining. This effect is the same to what I earlier observed with the
static driver configuration based on C++ templates in the I4Copter application.

In total, the data memory consumption increases by 185 bytes (less than 1 %), and
the code size increases by 18 %.

6.6.2.2 Software-based Protection

For software-based protection, the data memory use does not change. Only the code
is expanded with the runtime checks. The size of the KESO runtime increases by
80 bytes, caused by the function that performs type-range checks. The size of the
application code increases by 3254 bytes (11 %).

In total, the data memory consumption is unaffected and the code size increases by
3334 bytes (6 %) compared to the unprotected variant. The overhead could be further
reduced with the graduations of software-based protection presented in Section 4.6.
By offloading checks to the hardware, the total size can be shrunk to 61454 bytes,
reducing the code size overhead to 4 % without reducing the level of protection
provided. Reducing the level of protection to fault-containment further shrinks the
code to 61300 bytes; this small gain does, however, hardly compensate the loss in the
provided protection level.

6.6.3 Conclusions

The comparison of the cost of memory protection in the I4Copter showed mixed
results for different components. In the Flightcontrol and Coptercontrol tasks, the
cost for both hardware- and software-based memory protection is very low. Given the
low cost in execution time of 2.9 % in Flightcontrol and 1.5 % in the Coptercontrol
added by combining hardware- and software-based protection, this combination
seems feasible. In the other two components, the picture was more diverse. In
the Signalprocessing component, the runtime cost of software-based protection was
relatively high with 9.5 %, mainly a consequence of jino not being able to statically
eliminate bound checks where the index correlates to an array length that is not a
compile-time constant. Hardware-based protection, on the other hand, incurred no
further cost. The SerialCom component showed the inverse picture: Hardware-based
protection triples the execution time of the task, which is caused by the heavy use
of the expensive messaging mechanism. Software-based protection is very low in
overhead in the component, on the other hand. It should be pointed out, however,
that the cost of hardware-based protection could be reduced to a similar level as in
the other components by using the simple message port variant that does not enforce
the message protocol.
In the footprint, the effect on the RAM usage was insignificant. With respect to

149

6 Quantitative Evaluation

code size, however, software-based protection added significantly less (6 %) to the code
than hardware-based protection (18 %). This is not least due to the runtime check
elimination of jino, which showed to be highly effective throughout all components.
Except for the SerialCom component, more than 95 % of the null checks could be
proven to succeed at compile time. Even the elimination of bound checks with the
deficiencies described above is fairly effective for a static embedded application like
the I4Copter. The RawMemory objects used to access memory-mapped registers, shared
memory areas or messages are commonly of a fixed and known size, even though
jino has to resort to the sizeof trick for the latter two. The used indexes – with few
exceptions – are also compile time constants or can be identified to be within a safe
value range. Due to this high effectiveness, the overhead of software-based protection
is low and I therefore did not analyze the further potential of gradual software-based
protection in detail – the possible gains are little.

6.7 Chapter Summary
In this chapter, I evaluated quantitative aspects of my framework and addressed the
remaining open goal of the support for an easy quantitative evaluation of memory
protection costs for a given application.

6.7.1 Overhead of Using Java as a Language Compared to C/C++
The first question addressed by the evaluation is the overhead imposed by using Java
as a language instead of the more spread C and C++ languages. I used two diverse
applications from the domain of embedded real-time applications to evaluate this
aspect: On the one end is the I4Copter as a very static application that includes
low-level driver code, uses the shared memory and message port facilities to interact
with C++ components and uses no dynamic memory allocation. On the other end of
the spectrum is CDx, which in its Java variant uses many of Java’s high level features,
including garbage collection.
In these comparisons, the code produced by jino showed competitive performance

for (mostly) pure Java applications – CDj and the Flightcontrol component of the
I4Copter performed better than their C++ counterparts, mainly a result of the whole-
program analyses performed by jino. In the I4Copter components that use low-level
memory interfaces, the Java variants showed higher execution times, mainly caused
by the overhead of the native interface abstractions, but also by the consequences
of the generalization approach used in Java and the specialization approach used in
C++ (templates). Yet the overhead stayed below 10 % in the median of execution
times for these components. The code size showed the downside of the specialization,
where the Java variant of the I4Copter was more than 20 % smaller than the C++
variant. The data use of the Java variant increased over the C++ version. The main
cause is KESO’s multi-JVM concept, which replicates the static fields, and proxy
objects for low-level memory accesses. The single domain CDj application showed no
overhead in data use to the C version CDc.

150

6.7 Chapter Summary

The bottom line of these comparisons is that Java can offer competitive performance
to C++ in the field of static embedded applications. In particular, the comparison
straightens some common misbeliefs on Java: Firstly, the Java versions showed
to behave as deterministic as the C++ versions. Secondly, KESO’s self-tailoring
approach [113] showed how small the size of the Java runtime environment can be for
applications that do not use most of Java’s features – in the I4Copter, KESO’s runtime
environment is below 500 bytes respectively in code and data. On the other hand,
the self-tailoring approach does not impose as strict fixed limits as other approaches,
for example J2ME configurations. Features such as garbage collection are available
for applications such as CDj that actually need these features, but only paid for if
actually used.

6.7.2 Costs of Basic Protection Primitives

The second question addressed is the cost of the individual basic protection primitives.
To answer this question, I conducted microbenchmarks on the cost in code size and
data use of the individual software- and hardware-based protection primitives. I also
investigated the cost added to internal operating system operations such as a context
switch in the presence of different levels of hardware-based memory protection, an
aspect that is not measured in my later application benchmarks anymore. Summarized,
the software-based protection primitives showed to be far less expensive than the
hardware-based ones, but can be expected to occur in higher volumes in the code of
an actual application. This aspect is addressed by the third question.

6.7.3 Comparison of Protection Mechanisms for an Application

In the third part, I practically evaluated if the framework meets the goal of providing
support for the quantitative evaluation of the protection cost for a specific application
by performing such an evaluation on the I4Copter. To enable comparability of the
execution times down to the level of the individual jobs of each task, I created
standalone variants of each task that could be run with logged input data to achieve
reproducible executions. For a practical estimate of the cost of memory protection,
however, such a detailed job-by-job comparison is not required to determine the cost
of memory protection. In such cases, the framework freely allows to switch between
different memory protection variants and measure the cost. I therefore believe that
the framework fulfills this goal.
The case study on the I4Copter also showed the cost of hardware-based versus

software-based memory protection for a static embedded real-time application. For
two components, both protection variants showed little overhead and could be used in
combination with added cost below 3 %. For the other two components, one showed
to be cheaper with hardware-based protection, whereas the other showed significant
overhead (200 %) with hardware-based protection. The first was caused by bound
checks in a hotspot location that could not be eliminated at compile time by jino.
The second was mainly caused by the protocol-enforcing message variants.

151

6 Quantitative Evaluation

Summarized, the evaluation showed that MPU-based protection can provide a basic
level of fault-containment at very little cost. Enforcing more elaborate policies such
as the message protocol quickly results in increased cost, however. Software-based
protection is much more flexible in this regard. Although software-based protection
theoretically incurs a high number of runtime safety checks, jino showed that the
largest part of these checks can be eliminated at compile time, particularly in static
applications such as the I4Copter.

152

7
Summary, Conclusions, and Outlook

In this thesis, I developed a framework that allows to choose between hardware- and
software-based memory protection for the domain of statically-configured, deeply-
embedded systems. The main goal was to show the limitations of the widely-adopted
memory protection based on the use of an MPU, and to investigate software-based
protection as both an alternative and a complement that is better suited for many
applications. The developed framework provides an infrastructure to easily switch
and combine these mechanisms, evaluate the quantitative cost of each for a given
application, and based thereon supports the decision making for the best suited
memory protection mechanism.

7.1 Summary

This work was motivated by the recent trends in the automotive – or more generally
the embedded – industry to integrate multiple software-functions on a single control
unit, raising among other requirements the need for spatial isolation. With the
AUTOSAR OS specification, the automotive industry included region-based memory
protection as a requirement for hardware platforms. MPU-based protection is, however,
not optimal for all application scenarios. Besides limiting the hardware options in
cost-sensitive markets to the higher-end derivates of microcontroller product lines,
MPU-based protection is subject to limitations imposed by the small number of
available memory regions. Software-based memory protection provides benefits over
hardware-based protection in many aspects, but has so far received little attention
in this application domain. This issue motivated this thesis, in which I aimed to
show the potential of software-based protection as an alternative or a complement to
hardware-based protection.

153

7 Summary, Conclusions, and Outlook

I performed a thorough review of the state of the art in both hardware- and software-
based memory protection with the goal to select two mechanisms, one hardware- and
one software-based one, that complement each other so that the strengths of each
address deficiencies of the other. A combination of the two is therefore able to provide
a comprehensive level of memory protection. The two mechanisms that I opted for
are MPU-based protection and a language-level approach based on the type-safe Java
language in combination with a multi-JVM architecture.
Based on the configurable operating system CiAO and the multi-JVM KESO, I

composed a framework that fulfills the following goals:

Fine-grained Configurability: For both hardware- and software-based protection,
the framework supports varying cost versus protection-level trade-offs, including
completely disabling either mechanism. For hardware-based protection, I used aspect-
oriented programming to integrate the necessary operations into the OS and the
application to establish the configured level of memory protection. For software-based
protection, the configurability is based on the static analyses in jino.

Mixed-Mode Operation: The type of memory protection can be individually se-
lected for each protection realm. Thereby, the best suited mechanism can be used
for each application in the system, or even for different components of the same
application.

Soft Migration: The framework requires the applications to be written in Java to
utilize the full feature spectrum. Because Java is not widely adopted, I developed
an extension of the framework by communication mechanisms that enable Java
components to interact with C or C++ components. These interfaces enable a soft
migration of existing code to Java on a per-component basis. I practically tested
this soft migration approach at the example of a control application for a quadrotor
helicopter.

Support Quantitative Evaluation: With the possibility to change the memory
protection policy by simply adapting the system configuration, it is easy to evaluate
the quantitative cost imposed by different memory protection policies for a given
application, aiding the decision for the best-suited mechanism from a cost perspective.

7.2 Conclusions
The following are the main conclusions that can be drawn from the findings made in
this thesis:

MPU-based Protection is Inflexible and does not come for free: In this thesis,
I opted for a very static variant of MPU-based protection to provide a safety net for
protection in the areas where software-based protection has deficiencies. This basic

154

7.3 Contributions

implementation can be complemented by software-based protection. My implementa-
tion and system abstractions are designed according to this principle, resulting in
a highly efficient basic protection level provided by MPU-based protection. I did,
however, also show the limitations of this basic protection. My analysis of the region
requirements of shared memory areas with multiple writers or in the presence of read
protection showed that this simple mechanism quickly becomes unfeasible. A more
dynamic access granting to shared memory would be possible, however, my evaluation
of the protocol-enforcing message ports showed that such more elaborate policies can
lead to significant cost for MPU-based protection.

Managed Languages Facilitate MPU-Based Protection: MPU-based protection
has strict requirements on the physical locations of data items in memory. C and C++
provide a large degree of freedom to the developer in how data is represented; this also
means, however, that the full responsibility of appropriately arranging the data stays
with the developer. The I4Copter application showed that this task is tedious and only
the minimum required effort was taken to enable hardware-based memory protection.
In a managed language such as Java and a multi-JVM concept with strict separation
of the data of different applications, the data representation required to enable
MPU-based protection can be carried out by the compiler automatically, without
requiring the developer to structure the application according to the requirements of
MPU-based protection.

Java can be as Efficient as C/C++: It is still a widely-spread preconception
that Java is prohibitively expensive for the use in resource-constrained embedded
systems. My evaluation of both a fully static and a more dynamic application from
this target domain showed, that a suitable Java implementation can be as efficient as
C/C++. The key technologies for achieving competitive performance in this domain
are ahead-of-time compilation, JVM-tailoring to achieve a slim runtime that fits the
feature requirements of the application, and incorporation of the system model into
the compiler.

7.3 Contributions
This thesis advances the state of the art in several aspects, which are summarized in
the following:

• The first framework that provides the choice between and the combination of
memory protection based on an MPU and software-based memory protection

• The control-flow-specific static analyses, which provide the infrastructure for
the configurability of software-based protection levels down to the granularity
of basic blocks, and the automatic identification of private application code
and data that vastly increases the effectiveness and usability of hardware-based
memory protection in CiAO

155

7 Summary, Conclusions, and Outlook

• A soft migration strategy to help clear the hurdle of existing legacy code, a
major barrier to the introduction of modern languages in the embedded domain

• The easy evaluation of the cost imposed by hardware- versus software-based
memory protection, enabled by making the change of memory protection policies
a matter of adapting the configuration

• The first comparison of MPU- versus software-based memory protection for a
real-world safety-critical real-time application, which shows the practicability
of software-based protection and the use of Java as a language in this domain

• Advances to the KESO project; to the best of my knowledge, KESO is the
smallest and most resource-efficient JVM for embedded systems. KESO evolved
to an open-source project and is freely available to the research community.

7.4 Ideas for Future Work
I conclude this thesis with some sketches of possible future work.

Hardening of the JVM Against Transient Faults One drawback of memory safety
based on the use of Java is its susceptibility to transient hardware faults [24, 25]. Since
the memory safety relies on the integrity of references in the object graph, bit errors
in reference values and type identifiers have the potential to compromise the memory
safety of the program, and cause the error to spread to other protection realms. Other
parts of the Java runtime environment, for example the garbage collector, rely on the
consistency of the object graph as well.

With shrinking structure sizes, soft errors can be expected to become more frequent
in the future [79]. Chen at. al [26] proposed a fault-tolerant JVM, but their technique
requires a memory management unit, which is not commonly available in deeply
embedded systems. An alternative could be purely compiler-based techniques to
replicate critical data structures (for example, triple each reference) or to use unused
bits (for example, the least-significant bits in references are often clear for alignment
reasons) to store parity information. There are many interesting open questions to
be addressed, for example when to check the consistence of a reference to achieve an
acceptable trade-off of cost and dependability.

Automated Replication of Application Parts Similar to the previous idea of hard-
ening the Java runtime system, the application or critical parts of the application
itself can be hardened against soft errors. A common software-based technique is
triple-modular redundancy (TMR), where three instances of the critical part of the
application are executed with identical input data and a majority voter decides over
the results to detect the correct result and failed replicates. While the topic of TMR
has been well-researched, a multi-JVM such as KESO provides the infrastructure to
deal with a number of commonly encountered problems in an automated way: The

156

7.4 Ideas for Future Work

domains with fully separated data and clearly defined external interfaces pose a suited
unit for automatic replication and recovery on failure. A commonly encountered
problem with TMR is the deterministic execution of the replicas, which is complicated
by the use of non-idempotent operations. This problem exists in Java as well, but
any source of indeterminism requires the use of interfaces provided by the runtime
environment, which can be helpful in finding checkpointing locations. Some other
sources of indeterminism within the application, for example reading memory that
has not been initialized, do not exist in Java. Finally, the JVM has all the runtime
state that is needed to fully automatically recover a faulty domain from the state of
a consistent one, or compare to not only vote over the immediate results but over
the entire state of the replicate. While there are many open questions, the available
information on the structure of the application state provides promising potential to
advances in this area.

Use of Runtime Data Structural Information There are other areas where the
ability to inspect the structure of the application state is helpful. For example, there
are different scenarios in the domain of wireless sensor networks where the application
state needs to be identified and replicated. Such situations can occur when updating
the software of a sensor node without losing precious state built over a period of
time, or when migrating functionality to a different node, for example because the
current one is running out of battery power. KESO is small enough to run on such
platforms and has been successfully used on tiny 8-bit AVR microcontrollers with less
than one KiB of RAM. A main problem when trying to preserve or move the state of
the application is the identification of pointer values, which may need to be adjusted
when the state is moved in memory. Commonly, the task of saving and restoring
the state is delegated to the application. With KESO, all the required information
needed to perform this operation automatically is available.

Better Java Support for Embedded Programs Java has originally not been de-
signed for embedded systems and lacks some desirable features for this domain. The
real-time specification for Java (RTSJ) [55] brought advances in this area, but open
issues still remain. I sketch two ideas where Java could be improved to make it a
better candidate for embedded programming.

One issue is that there is no way of defining a constant object, most notably arrays
of constant data, in Java. Java only allows references to objects be declared as non-
modifiable (final), but not the objects themselves. Better support for such objects
has many advantages: On some architectures, such objects could be stored in ROM to
save precious RAM. Even if this is not possible, the code size of the program can be
reduced if such constant objects are statically allocated – for an array that is initialized
with a static initializer of constant values, the Java compiler creates code in the class
initializer (or constructor) that initializes the object. This code is much less compact
than the actual data itself. Korsholm [64] presented an annotation-based approach
to address this problem. In the static target environment for KESO, however, such

157

7 Summary, Conclusions, and Outlook

objects could be identified fully automatically by the compiler, wherefore the expected
gains can be expected to exceed those of a manual approach.

A second issue is creating temporary objects without the need for a garbage collector.
For reasons of cost and determinism, it is often desirable to avoid the need for garbage
collection. A safe equivalent to allocating such temporary objects on the stack would
be desirable. While the RTSJ defines a conceptually similar concept, scoped memory,
these memory areas impose restrictions on the use of references to such areas, which
make the use difficult and error-prone. Compliance to the rules is checked at runtime
and adds new exceptions, which are undesirable in a safety-critical system. An
alternative, which is also supported by KESO, is performing a static escape analysis
on instantiated objects, and allocating them on the stack if the reference does not
escape the local scope. The problem is that the programmer does not reliably know
whether the compiler will allocate a particular temporary object on the stack. A
simple and pragmatic solution to this issue could be an annotation that enables the
programmer to mark objects that must be allocated on the stack. If the escape
analysis fails to prove the stack allocation to be safe, the compiler can raise an error.
This simple approach would enable programmers to confidently allocate temporary
objects on the stack without introducing any new runtime overhead or exceptions,
yet the approach can be expected to be sufficient for most common cases.

158

Bibliography

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. „Control-Flow Integrity:
Principles, Implementations, and Applications.“ In: Proceedings of the 12th
ACM Conference on Computer and Communications Security (CCS ’05).
(Alexandria, VA, USA). New York, NY, USA: ACM Press, 2005, pp. 340–353.
isbn: 1-59593-226-7. doi: 10.1145/1102120.1102165 (cited on pages 15, 20,
45).

[2] G. Aigner and U. Hölzle. „Eliminating Virtual Function Calls in C++ Pro-
grams.“ In: Proceedings of the 10th European Conference on Object-Oriented
Programming (ECOOP ’96). (Linz, Austria). London, UK: Springer-Verlag,
1996, pp. 142–166. isbn: 3-540-61439-7 (cited on page 87).

[3] M. Aiken, M. Fähndrich, C. Hawblitzel, G. Hunt, and J. Larus. „Deconstructing
Process Isolation.“ In:MSPC ’06: Proceedings of the 2006 Workshop on Memory
System Performance and Correctness. (San Jose, CA, USA). New York, NY,
USA: ACM Press, 2006, pp. 1–10. isbn: 1-59593-578-9. doi: 10.1145/1178597.
1178599 (cited on pages 10, 27, 43).

[4] A. W. Appel, J. R. Ellis, and K. Li. „Real-Time Concurrent Collection on
Stock Multiprocessors.“ In: Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’88). (Atlanta,
GA, USA). New York, NY, USA: ACM Press, 1988, pp. 11–20. doi: 10.1145/
53990.53992 (cited on page 29).

[5] Arctic Core: Open Source AUTOSAR platform. Homepage. http://arccore.
com/, visited 2012-03-12 (cited on page 60).

[6] AT91SAM ARM-based Flash MCU, SAM3U Series. 6430E–ATARM–29-Aug-
11. Atmel Corporation. Aug. 2011 (cited on page 48).

[7] ATmega128 8-bit AVR Microcontroller with 128KBytes In-System Programmable
Flash. Rev. 2467X–AVR–06/11. Atmel Corporation. June 2011 (cited on
page 48).

[8] J. Auerbach, D. F. Bacon, R. Guerraoui, J. H. Spring, and J. Vitek. „Flexible
Task Graphs: A Unified Restricted Thread Programming Model for Java.“ In:
Proceedings of the 2008 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES ’08). (Tucson, AZ, USA).
New York, NY, USA: ACM Press, 2008, pp. 1–11. isbn: 978-1-60558-104-0.
doi: 10.1145/1375657.1375659 (cited on page 27).

159

http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1178597.1178599
http://dx.doi.org/10.1145/1178597.1178599
http://dx.doi.org/10.1145/53990.53992
http://dx.doi.org/10.1145/53990.53992
http://arccore.com/
http://arccore.com/
http://dx.doi.org/10.1145/1375657.1375659

Bibliography

[9] J. Auerbach, D. F. Bacon, D. Iercan, C. M. Kirsch, V. T. Rajan, H. Röck,
and R. Trummer. „Low-Latency Time-Portable Real-Time Programming with
Exotasks.“ In: ACM Transactions on Embedded Computing Systems (TECS)
8.2 (2009), pp. 1–48. issn: 1539-9087. doi: 10.1145/1457255.1457262 (cited on
page 27).

[10] AUTOSAR. Specification of Operating System (Version 5.0.0). Tech. rep.
Automotive Open System Architecture GbR, Nov. 2011 (cited on pages 3, 35,
61).

[11] G. Back and W. C. Hsieh. „The KaffeOS Java Runtime System.“ In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 27.4 (2005),
pp. 583–630. doi: 10.1145/1075382.1075383 (cited on page 27).

[12] G. Back, W. C. Hsieh, and J. Lepreau. „Processes in KaffeOS: Isolation,
Resource Management, and Sharing in Java.“ In: 4th Symposium on Operat-
ing System Design and Implementation (OSDI ’00). (San Diego, CA, USA).
Berkeley, CA, USA: USENIX Association, 2000, pp. 333–346 (cited on page 27).

[13] D. F. Bacon, P. Cheng, and V. T. Rajan. „The Metronome: A Simpler Approach
to Garbage Collection in Real-Time Systems.“ In: Proceedings of the OTM
Workshops: Workshop on Java Technologies for Real-Time and Embedded
Systems. (Catania, Sicily). Ed. by R. Meersman and Z. Tari. Vol. 2889. Lecture
Notes in Computer Science. Springer-Verlag, Nov. 2003, pp. 466–478 (cited on
page 29).

[14] D. F. Bacon and P. F. Sweeney. „Fast Static Analysis of C++ Virtual Function
Calls.“ In: ACM SIGPLAN Notices 31.10 (1996), pp. 324–341. issn: 0362-1340.
doi: 10.1145/236338.236371 (cited on page 87).

[15] H. G. Baker. „The Treadmill: Real-Time Garbage Collection without Motion
Sickness.“ In: ACM SIGPLAN Notices 27.3 (1992), pp. 66–70. issn: 0362-1340.
doi: 10.1145/130854.130862 (cited on page 29).

[16] J.-L. Béchennec, M. Briday, S. Faucou, and Y. Trinquet. „Trampoline: An
OpenSource Implementation of the OSEK/VDX RTOS Specification.“ In:
IEEE Conference on Emerging Technologies and Factory Automation, 2006.
ETFA ’06. (Prague, Czech Republic). Washington, DC, USA: IEEE Computer
Society Press, Sept. 2006, pp. 62–69. isbn: 0-7803-9758-4. doi: 10.1109/ETFA.
2006.355432 (cited on page 60).

[17] A. D. Birrell and B. J. Nelson. „Implementing Remote Procedure Calls.“ In:
ACM Transactions on Computer Systems 2.1 (Feb. 1984), pp. 39–59. issn:
0734-2071. doi: 10.1145/2080.357392 (cited on page 60).

[18] S. Biswas, T. Carley, M. Simpson, B. Middha, and R. Barua. „Memory
Overflow Protection for Embedded Systems Using Run-Time Checks, Reuse,
and Compression.“ In: ACM Transactions on Embedded Computing Systems
(TECS) 5 (4 Nov. 2006), pp. 719–752. issn: 1539-9087. doi: 10.1145/1196636.
1196637 (cited on page 21).

160

http://dx.doi.org/10.1145/1457255.1457262
http://dx.doi.org/10.1145/1075382.1075383
http://dx.doi.org/10.1145/236338.236371
http://dx.doi.org/10.1145/130854.130862
http://dx.doi.org/10.1109/ETFA.2006.355432
http://dx.doi.org/10.1109/ETFA.2006.355432
http://dx.doi.org/10.1145/2080.357392
http://dx.doi.org/10.1145/1196636.1196637
http://dx.doi.org/10.1145/1196636.1196637

Bibliography

[19] H.-J. Boehm and M. Weiser. „Garbage Collection in an Uncooperative En-
vironment.“ In: Software: Practice and Experience 18.9 (1988), pp. 807–820.
issn: 0038-0644. doi: 10.1002/spe.4380180902 (cited on page 29).

[20] M. Broy. „Challenges in Automotive Software Engineering.“ In: Proceedings
of the 28th International Conference on Software Engineering (ICSE ’06).
(Shanghai, China). New York, NY, USA: ACM Press, 2006, pp. 33–42. isbn:
1-59593-375-1. doi: 10.1145/1134285.1134292 (cited on page 2).

[21] S. Chandra and T. Reps. „Physical Type Checking for C.“ In: Proceedings of the
1999 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering. (Toulouse, France). PASTE ’99. New York, NY, USA:
ACM Press, 1999, pp. 66–75. isbn: 1-58113-137-2. doi: 10.1145/316158.316183
(cited on page 23).

[22] Y. Chang and A. Wellings. „Hard Real-Time Hybrid Garbage Collection with
Low Memory Requirements.“ In: Proceedings of the 27th IEEE International
Symposium on Real-Time Systems (RTSS ’06). (Rio de Janeiro, Brazil). Wash-
ington, DC, USA: IEEE Computer Society Press, Dec. 2006, pp. 77–88. isbn:
0-7695-2761-2. doi: 10.1109/RTSS.2006.25 (cited on page 29).

[23] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. „Sharing and
Protection in a Single-Address-Space Operating System.“ In: ACM Transactions
on Computer Systems 12.4 (1994), pp. 271–307. doi: 10.1145/195792.195795
(cited on page 69).

[24] D. Chen, A. Messer, P. Bernadat, G. Fu, Z. Dimitrijevic, D. J. F. Lie, D.
Mannaru, A. Riska, and D. Milojicic. „JVM Susceptibility to Memory Errors.“
In: Proceedings of the 1st Java Virtual Machine Research and Technology
Symposium. (Monterey, CA, USA). Berkeley, CA, USA: USENIX Association,
Apr. 2001, pp. 67–78. isbn: 1-880446-11-1 (cited on page 156).

[25] G. Chen, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J.
Irwin. „Analyzing Heap Error Behavior in Embedded JVM Environments.“ In:
Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS ’04). (Stock-
holm, Sweden). New York, NY, USA: ACM Press, 2004, pp. 230–235. isbn:
1-58113- 937-3. doi: 10.1145/1016720.1016775 (cited on page 156).

[26] G. Chen and M. Kandemir. „Improving Java Virtual Machine Reliability
for Memory-Constrained Embedded Systems.“ In: Proceedings of the 42nd
annual Design Automation Conference. (Anaheim, CA, USA). DAC ’05. New
York, NY, USA: ACM Press, 2005, pp. 690–695. isbn: 1-59593-058-2. doi:
10.1145/1065579.1065761 (cited on page 156).

[27] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C. Necula. „Dependent
Types for Low-Level Programming.“ In: ESOP. Ed. by R. D. Nicola. Vol. 4421.
Lecture Notes in Computer Science. Heidelberg, Germany: Springer-Verlag,

161

http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1145/1134285.1134292
http://dx.doi.org/10.1145/316158.316183
http://dx.doi.org/10.1109/RTSS.2006.25
http://dx.doi.org/10.1145/195792.195795
http://dx.doi.org/10.1145/1016720.1016775
http://dx.doi.org/10.1145/1065579.1065761

Bibliography

2007, pp. 520–535. isbn: 978-3-540-71314-2. doi: 10.1007/978-3-540-71316-
6_35 (cited on page 25).

[28] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer. „CCured
in the Real World.“ In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’03). (San Diego,
CA, USA). New York, NY, USA: ACM Press, 2003, pp. 232–244. isbn: 1-
58113-662-5. doi: 10.1145/781131.781157 (cited on page 22).

[29] K. D. Cooper, M. W. Hall, and K. Kennedy. „Procedure Cloning.“ In: Proceed-
ings of the 1992 International Conference on Computer Languages. (Oakland,
CA, USA). Washington, DC, USA: IEEE Computer Society Press, Apr. 1992,
pp. 96–105. doi: 10.1109/ICCL.1992.185472 (cited on page 22).

[30] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr. „Efficient Memory
Safety for TinyOS.“ In: Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems. (Sydney, Australia). New York, NY,
USA: ACM Press, 2007, pp. 205–218. isbn: 978-1-59593-763-6. doi: 10.1145/
1322263.1322283 (cited on page 26).

[31] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
„Efficiently Computing Static Single Assignment Form and the Control Depen-
dence Graph.“ In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 13.4 (Oct. 1991), pp. 451–490. doi: 10.1145/115372.115320 (cited
on pages 21, 22, 87).

[32] J. Dean, D. Grove, and C. Chambers. „Optimization of Object-Oriented Pro-
grams Using Static Class Hierarchy Analysis.“ In: Lecture Notes in Computer
Science 952 (1995), pp. 77–101 (cited on page 87).

[33] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. „HardBound:
Architectural Support for Spatial Safety of the C Programming Language.“
In: Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’08). (Seattle,
WA, USA). New York, NY, USA: ACM Press, 2008, pp. 103–114. isbn: 978-1-
59593-958-6. doi: 10.1145/1346281.1346295 (cited on page 16).

[34] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. „Memory Safety Without
Garbage Collection for Embedded Applications.“ In: Transactions on Embedded
Computing Systems 4.4 (1 Feb. 2005), pp. 73–111. issn: 1539-9087. doi: 10.
1145/1053271.1053275 (cited on pages 23, 28).

[35] C. Erhardt. „A Control-Flow-Sensitive Analysis and Optimization Framework
for the KESO Multi-JVM.“ Diplomarbeit. Friedrich-Alexander University
Erlangen-Nuremberg, Mar. 2011 (cited on page 87).

162

http://dx.doi.org/10.1007/978-3-540-71316-6_35
http://dx.doi.org/10.1007/978-3-540-71316-6_35
http://dx.doi.org/10.1145/781131.781157
http://dx.doi.org/10.1109/ICCL.1992.185472
http://dx.doi.org/10.1145/1322263.1322283
http://dx.doi.org/10.1145/1322263.1322283
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/1346281.1346295
http://dx.doi.org/10.1145/1053271.1053275
http://dx.doi.org/10.1145/1053271.1053275

Bibliography

[36] C. Erhardt, M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. „Exploit-
ing Static Application Knowledge in a Java Compiler for Embedded Systems:
A Case Study.“ In: JTRES ’11: Proceedings of the 9th International Workshop
on Java Technologies for Real-Time and Embedded Systems. (York, UK). New
York, NY, USA: ACM Press, 2011, pp. 96–105. isbn: 978-1-4503-0731-4. doi:
10.1145/2043910.2043927 (cited on page 7).

[37] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. „XFI:
Software Guards for System Address Spaces.“ In: 7th Symposium on Operating
System Design and Implementation (OSDI ’06). (Seattle, WA, USA). Berkeley,
CA, USA: USENIX Association, 2006, pp. 75–88. isbn: 1-931971-47-1 (cited
on page 20).

[38] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and S.
Levi. „Language Support for Fast and Reliable Message-Based Communication
in Singularity OS.“ In: Proceedings of the ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006 (EuroSys ’06). (Leuven, Belgium). New
York, NY, USA: ACM Press, 2006, pp. 177–190. isbn: 1-59593-322-0. doi:
10.1145/1217935.1217953 (cited on page 27).

[39] E. M. Gagnon and L. J. Hendren. „SableVM: A Research Framework for the
Efficient Execution of Java Bytecode.“ In: Proceedings of the 1st Java Virtual
Machine Research and Technology Symposium. (Monterey, CA, USA). Berkeley,
CA, USA: USENIX Association, Apr. 2001, pp. 27–40. isbn: 1-880446-11-1
(cited on page 46).

[40] D. Gay, R. Ennals, and E. Brewer. „Safe Manual Memory Management.“
In: ISMM ’07: Proceedings of the 5th International Symposium on Memory
Management. (Montreal, Quebec, Canada). New York, NY, USA: ACM Press,
2007, pp. 2–14. isbn: 978-1-59593-893-0. doi: 10.1145/1296907.1296911 (cited
on page 26).

[41] M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. „The JX Operating
System.“ In: Proceedings of the 2002 USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, June 2002, pp. 45–58. isbn: 1-
880446-00-6 (cited on pages 27, 69).

[42] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
„Region-Based Memory Management in Cyclone.“ In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’02). (Berlin, Germany). New York, NY, USA: ACM Press, 2002,
pp. 282–293. isbn: 1-58113-463-0. doi: 10.1145/512529.512563 (cited on
page 25).

[43] L. Gu and J. A. Stankovic. „t-kernel: A Naturalizing OS Kernel for Low-Power
Cost-Effective Computers.“ In: Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05). (Brighton, UK). New York, NY,
USA: ACM Press, 2005. isbn: 1-59593-079-5. doi: 10.1145/1095810.1118588
(cited on page 20).

163

http://dx.doi.org/10.1145/2043910.2043927
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1145/1296907.1296911
http://dx.doi.org/10.1145/512529.512563
http://dx.doi.org/10.1145/1095810.1118588

Bibliography

[44] L. Gu and J. A. Stankovic. „t-kernel: Providing Reliable OS Support to
Wireless Sensor Networks.“ In: Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems. (Boulder, CO, USA). New York, NY,
USA: ACM Press, 2006. isbn: 1-59593-343-3. doi: 10.1145/1182807.1182809
(cited on page 20).

[45] R. Gupta. „A Fresh Look at Optimizing Array Bound Checking.“ In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’90). (White Plains, NY, USA). PLDI ’90. New
York, NY, USA: ACM Press, 1990, pp. 272–282. isbn: 0-89791-364-7. doi:
10.1145/93542.93581 (cited on page 47).

[46] G. Haddad, F. Hussain, and G. T. Leavens. „The Design of SafeJML, a
Specification Language for SCJ with Support for WCET Specification.“ In:
JTRES ’10: Proceedings of the 8th International Workshop on Java Technolo-
gies for Real-Time and Embedded Systems. (Prague, Czech Republic). New
York, NY, USA: ACM Press, 2010, pp. 155–163. isbn: 978-1-4503-0122-0. doi:
10.1145/1850771.1850793 (cited on page 119).

[47] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. „A Dynamic
Operating System for Sensor Networks.“ In: Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services (MobiSys ’05).
(Seattle, WA, USA). New York, NY, USA: ACM Press, June 2005, pp. 163–176.
isbn: 1-931971-31-5. doi: 10.1145/1067170.1067188 (cited on page 20).

[48] B. Hardung, T. Kölzow, and A. Krüger. „Reuse of Software in Distributed
Embedded Automotive Systems.“ In: Proceedings of the 4th ACM Conference
on Embedded Software (EMSOFT ’04). (Pisa, Italy). New York, NY, USA:
ACM Press, Sept. 2004, pp. 203–210 (cited on pages 2, 5).

[49] C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu, and T. von Eicken. „Imple-
menting Multiple Protection Domains in Java.“ In: Proc. of the 1998 USENIX
Annual Technical Conference. 1998, pp. 259–270 (cited on page 27).

[50] F. Henderson. „Accurate Garbage Collection in an Uncooperative Environ-
ment.“ In: ISMM ’02: Proceedings of the 3rd International Symposium on
Memory Management. (Berlin, Germany). New York, NY, USA: ACM Press,
2002, pp. 150–156. isbn: 1-58113-539-4. doi: 10.1145/512429.512449 (cited on
pages 46, 133).

[51] G. C. Hunt and J. R. Larus. „Singularity: Rethinking the Software Stack.“
In: ACM SIGOPS Operating Systems Review 41.2 (2007), pp. 37–49. issn:
0163-5980. doi: 10.1145/1243418.1243424 (cited on page 27).

[52] B. L. Jacob and T. N. Mudge. „A Look at Several Memory Management Units,
TLB-Refill Mechanisms, and Page Table Organizations.“ In: Proceedings of
the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VIII). (San Jose, CA, USA). New

164

http://dx.doi.org/10.1145/1182807.1182809
http://dx.doi.org/10.1145/93542.93581
http://dx.doi.org/10.1145/1850771.1850793
http://dx.doi.org/10.1145/1067170.1067188
http://dx.doi.org/10.1145/512429.512449
http://dx.doi.org/10.1145/1243418.1243424

Bibliography

York, NY, USA: ACM Press, 1998, pp. 295–306. isbn: 1-58113-107-0. doi:
10.1145/291069.291065 (cited on page 17).

[53] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang.
„Cyclone: A Safe Dialect of C.“ In: Proceedings of the 2002 USENIX Annual
Technical Conference. Berkeley, CA, USA: USENIX Association, 2002, pp. 275–
288. isbn: 1-880446-00-6 (cited on pages 24, 25).

[54] M. S. Johnstone. „Non-Compacting Memory Allocation and Real-Time Garbage
Collection.“ Supervisor: Paul R. Wilson. PhD thesis. 1997. isbn: 0-591-77415-1
(cited on page 29).

[55] JSR 1: Real-time Specification for Java. Sun Microsystems JCP. Palo Alto,
CA, USA, May 2006. url: http://jcp.org/en/jsr/detail?id=1 (cited on
pages 24, 27, 157).

[56] JSR 121: Application Isolation API Specification. Sun Microsystems JCP. Palo
Alto, CA, USA, June 2006. url: http://jcp.org/aboutJava/communityprocess/
final/jsr121/ (cited on pages 27, 67, 69).

[57] JSR 139: Connected Limited Device Configuration 1.1. Sun Microsystems
JCP. Palo Alto, CA, USA, Mar. 2003. url: http://jcp.org/aboutJava/
communityprocess/final/jsr139/ (cited on page 66).

[58] JSR 218: Connected Device Configuration (CDC) 1.1. Sun Microsystems JCP.
Palo Alto, CA, USA, Aug. 2005. url: http://www.jcp.org/en/jsr/detail?
id=218 (cited on page 66).

[59] JSR 271: Mobile Information Device Profile 3. Sun Microsystems JCP. Palo
Alto, CA, USA, Dec. 2009. url: http://www.jcp.org/en/jsr/detail?id=271
(cited on page 66).

[60] JSR-302: Safety Critical Java Technology Specification (Version 0.78). Oracle
JCP. San Francisco, CA, USA, Oct. 2010. url: http://jcp.org/en/jsr/
detail?id=302 (cited on page 27).

[61] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek. „CDx: A
Family of Real-Time Java Benchmarks.“ In: JTRES ’09: Proceedings of the 7th
International Workshop on Java Technologies for Real-Time and Embedded
Systems. (Madrid, Spain). New York, NY, USA: ACM Press, 2009, pp. 41–50.
isbn: 978-1-60558-732-5. doi: 10.1145/1620405.1620412 (cited on pages 51,
117, 119).

[62] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. „Aspect-Oriented Programming.“ In: Proceedings of the 11th
European Conference on Object-Oriented Programming (ECOOP ’97). Ed. by
M. Aksit and S. Matsuoka. Vol. 1241. Lecture Notes in Computer Science.
Springer-Verlag, June 1997, pp. 220–242 (cited on pages 60, 61).

165

http://dx.doi.org/10.1145/291069.291065
http://jcp.org/en/jsr/detail?id=1
http://jcp.org/aboutJava/communityprocess/final/jsr121/
http://jcp.org/aboutJava/communityprocess/final/jsr121/
http://jcp.org/aboutJava/communityprocess/final/jsr139/
http://jcp.org/aboutJava/communityprocess/final/jsr139/
http://www.jcp.org/en/jsr/detail?id=218
http://www.jcp.org/en/jsr/detail?id=218
http://www.jcp.org/en/jsr/detail?id=271
http://jcp.org/en/jsr/detail?id=302
http://jcp.org/en/jsr/detail?id=302
http://dx.doi.org/10.1145/1620405.1620412

Bibliography

[63] P. Kolte and M. Wolfe. „Elimination of Redundant Array Subscript Range
Checks.“ In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’95). (La Jolla, CA, USA). PLDI
’95. New York, NY, USA: ACM Press, 1995, pp. 270–278. isbn: 0-89791-697-2.
doi: 10.1145/207110.207160 (cited on page 47).

[64] S. Korsholm. „Flash Memory in Embedded Java Programs.“ In: JTRES ’11:
Proceedings of the 9th International Workshop on Java Technologies for Real-
Time and Embedded Systems. (York, UK). New York, NY, USA: ACM Press,
2011, pp. 116–124. isbn: 978-1-4503-0731-4. doi: 10.1145/2043910.2043930
(cited on page 157).

[65] R. Kumar, E. Kohler, and M. Srivastava. „Harbor: Software-based Memory
Protection for Sensor Nodes.“ In: IPSN ’07: Proceedings of the 6th International
Conference on Information Processing in Sensor Networks. (Cambridge, MA,
USA). New York, NY, USA: ACM Press, 2007, pp. 340–349. isbn: 978-1-59593-
638-X. doi: 10.1145/1236360.1236404 (cited on pages 15, 20).

[66] R. Kumar, A. Singhania, A. Castner, E. Kohler, and M. Srivastava. „A System
for Coarse Grained Memory Protection in Tiny Embedded Processors.“ In:
Proceedings of the 44th annual Design Automation Conference. (San Diego,
CA, USA). New York, NY, USA: ACM Press, 2007, pp. 218–223. isbn: 978-1-
59593-627-1. doi: 10.1145/1278480.1278534 (cited on pages 15, 17, 20).

[67] J2ME Building Blocks for Mobile Devices — White Paper on KVM and the
Connected, Limited Device Configuration (CLDC). May 2000. url: http:

//java.sun.com/products/cldc/wp/KVMwp.pdf (cited on page 66).
[68] C. Lattner and V. Adve. „LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation.“ In: Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04). (Palo Alto, CA,
USA). Washington, DC, USA: IEEE Computer Society Press, Mar. 2004 (cited
on pages 21, 22).

[69] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. 2nd. The
Java Series. Addison-Wesley, 1999. isbn: 0-201-43294-3 (cited on page 68).

[70] D. Lohmann, W. Hofer, W. Schröder-Preikschat, J. Streicher, and O. Spinczyk.
„CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained
Embedded Systems.“ In: Proceedings of the 2009 USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, June 2009, pp. 215–228.
isbn: 978-1-931971-68-3 (cited on page 60).

[71] D. Lohmann, O. Spinczyk, W. Hofer, and W. Schröder-Preikschat. „The
Aspect-Aware Design and Implementation of the CiAO Operating-System
Family.“ In: Transactions on AOSD IX. Ed. by M. Haupt and E. Wohlstadter.
Lecture Notes in Computer Science. (To Appear). Springer-Verlag, 2012, pp. 1–
49 (cited on page 63).

166

http://dx.doi.org/10.1145/207110.207160
http://dx.doi.org/10.1145/2043910.2043930
http://dx.doi.org/10.1145/1236360.1236404
http://dx.doi.org/10.1145/1278480.1278534
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://java.sun.com/products/cldc/wp/KVMwp.pdf

Bibliography

[72] D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, and W. Schröder-Preikschat.
„Configurable Memory Protection by Aspects.“ In: Proceedings of the 4th
Workshop on Programming Languages and Operating Systems (PLOS ’07).
(Stevenson, WA, USA). New York, NY, USA: ACM Press, Oct. 2007, pp. 1–5.
isbn: 978-1-59593-922-7. doi: 10.1145/1376789.1376794 (cited on pages 74,
79).

[73] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.
Hogberg, F. Larsson, A. Moestedt, and B. Werner. „Simics: A Full System
Simulation Platform.“ In: IEEE Computer 35.2 (Feb. 2002), pp. 50–58. issn:
0018-9162. doi: 10.1109/2.982916 (cited on page 16).

[74] V. Markstein, J. Cocke, and P. Markstein. „Optimization of Range Checking.“
In: Proceedings of the 1982 SIGPLAN symposium on Compiler construction.
(Boston, MA, USA). SIGPLAN ’82. New York, NY, USA: ACM Press, 1982,
pp. 114–119. isbn: 0-89791-074-5. doi: 10.1145/800230.806986 (cited on
page 47).

[75] S. McConnell. Code Complete. Second. Microsoft Press, 2004. isbn: 0-7356-
1967-0 (cited on page 50).

[76] M. D. McIlroy. „Mass-Produced Software Components.“ In: Proceedings of
the 1st International Conference on Software Engineering. (Garmisch Pat-
tenkirchen, Germany). 1968, pp. 88–98 (cited on page 95).

[77] Microcontroller Pocket Guide. Infineon Technologies AG. St.-Martin-Str. 53,
81669 München, Germany, Feb. 2010 (cited on page 17).

[78] J. Mössinger. „Software in Automotive Systems.“ In: Software, IEEE 27.2
(Mar. 2010), pp. 92–94. issn: 0740-7459. doi: 10.1109/MS.2010.55 (cited on
page 2).

[79] S. Mukherjee. Architecture Design for Soft Errors. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2008. isbn: 978-0-12-369529-1 (cited on
page 156).

[80] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. „SoftBound: Highly
Compatible and Complete Spatial Memory Safety for C.“ In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’09). (Dublin, Ireland). New York, NY, USA: ACM
Press, 2009, pp. 245–258. isbn: 978-1-60558-392-1. doi: 10.1145/1542476.
1542504 (cited on page 22).

[81] G. C. Necula, S. McPeak, and W. Weimer. „CCured: Type-Safe Retrofitting of
Legacy Code.“ In: POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. (Portland, OR, USA).
New York, NY, USA: ACM Press, 2002, pp. 128–139. isbn: 1-58113-450-9.
doi: 10.1145/503272.503286 (cited on page 22).

167

http://dx.doi.org/10.1145/1376789.1376794
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1145/800230.806986
http://dx.doi.org/10.1109/MS.2010.55
http://dx.doi.org/10.1145/1542476.1542504
http://dx.doi.org/10.1145/1542476.1542504
http://dx.doi.org/10.1145/503272.503286

Bibliography

[82] K. Nilsen. „Ada-Java Middleware for Legacy Software Modernization.“ In:
JTRES ’10: Proceedings of the 8th International Workshop on Java Technolo-
gies for Real-Time and Embedded Systems. (Prague, Czech Republic). New
York, NY, USA: ACM Press, 2010, pp. 85–94. isbn: 978-1-4503-0122-0. doi:
10.1145/1850771.1850785 (cited on pages 27, 33).

[83] Y. Oiwa. „Implementation of the Memory-Safe Full ANSI-C Compiler.“ In:
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’09). (Dublin, Ireland). New York, NY,
USA: ACM Press, 2009, pp. 259–269. isbn: 978-1-60558-392-1. doi: 10.1145/
1542476.1542505 (cited on page 21).

[84] OSEK/VDX Group. OSEK Implementation Language Specification 2.5. Tech.
rep. http://portal.osek- vdx.org/files/pdf/specs/oil25.pdf, visited
2009-09-09. OSEK/VDX Group, 2004 (cited on page 60).

[85] OSEK/VDX Group. OSEK/VDX Communication 3.0.3. Tech. rep. http:

//portal.osek- vdx.org/files/pdf/specs/osekcom303.pdf. OSEK/VDX
Group, July 2004 (cited on page 105).

[86] OSEK/VDX Group. Operating System Specification 2.2.3. Tech. rep. http:
//portal.osek- vdx.org/files/pdf/specs/os223.pdf, visited 2011-08-17.
OSEK/VDX Group, Feb. 2005 (cited on page 3).

[87] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. „Stopless: A Real-
Time Garbage Collector for Multiprocessors.“ In: ISMM ’07: Proceedings of the
5th International Symposium on Memory Management. (Montreal, Quebec,
Canada). New York, NY, USA: ACM Press, 2007, pp. 159–172. isbn: 978-1-
59593-893-0. doi: 10.1145/1296907.1296927 (cited on page 29).

[88] F. Pizlo, E. Petrank, and B. Steensgaard. „A Study of Concurrent Real-Time
Garbage Collectors.“ In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’08). (Tucson, AZ,
USA). New York, NY, USA: ACM Press, 2008, pp. 33–44. isbn: 978-1-59593-
860-2. doi: 10.1145/1375581.1375587 (cited on page 29).

[89] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek. „High-Level Program-
ming of Embedded Hard Real-Time Devices.“ In: Proceedings of the ACM
SIGOPS/EuroSys European Conference on Computer Systems 2010 (EuroSys
’10). (Paris, France). New York, NY, USA: ACM Press, Apr. 2010, pp. 69–82.
isbn: 978-1-60558-577-2. doi: 10.1145/1755913.1755922 (cited on pages 67,
119).

[90] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek. „Schism:
Fragmentation-Tolerant Real-Time Garbage Collection.“ In: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’10). (Toronto, Ontario, Canada). New York, NY, USA:
ACM Press, 2010, pp. 146–159. isbn: 978-1-4503-0019-3. doi: 10.1145/1806596.
1806615 (cited on page 29).

168

http://dx.doi.org/10.1145/1850771.1850785
http://dx.doi.org/10.1145/1542476.1542505
http://dx.doi.org/10.1145/1542476.1542505
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://dx.doi.org/10.1145/1296907.1296927
http://dx.doi.org/10.1145/1375581.1375587
http://dx.doi.org/10.1145/1755913.1755922
http://dx.doi.org/10.1145/1806596.1806615
http://dx.doi.org/10.1145/1806596.1806615

Bibliography

[91] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and J. Vitek. „Developing
Safety Critical Java Applications with oSCJ/L0.“ In: JTRES ’10: Proceedings
of the 8th International Workshop on Java Technologies for Real-Time and
Embedded Systems. (Prague, Czech Republic). New York, NY, USA: ACM
Press, 2010, pp. 95–101. isbn: 978-1-4503-0122-0. doi: 10 . 1145 / 1850771 .

1850786 (cited on page 119).
[93] W. Puffitsch, B. Huber, and M. Schoeberl. „Worst-Case Analysis of Heap

Allocations.“ In: Proceedings of the 4th International Conference on Leveraging
Applications of Formal Methods, Verification, and Validation - Volume Part
II. (Heraklion, Crete, Greece). Heidelberg, Germany: Springer-Verlag, 2010,
pp. 464–478. isbn: 3-642-16560-5, 978-3-642-16560-3 (cited on page 119).

[94] PXROS-HR User’s Guide (Version 1.1). HighTec EDV-Systeme GmbH. Feld-
mannstraße 98, 66119 Saarbrücken, Germany, Jan. 2011 (cited on pages 42,
77, 105).

[95] Java RMI — Distributed Computing for Java. White Paper, Sun Microsystems
Inc. (Cited on page 69).

[96] S. G. Robertz and R. Henriksson. „Time-Triggered Garbage Collection: Robust
and Adaptive Real-Time GC Scheduling for Embedded Systems.“ In: Proceed-
ings of the 2003 Joint Conference on Languages, Compilers and Tools for
Embedded Systems & Soft. and Compilers for Embedded Systems (LCTES/S-
COPES ’03). (San Diego, CA, USA). New York, NY, USA: ACM Press,
2003, pp. 93–102. isbn: 1-58113-647-1. doi: 10.1145/780732.780745 (cited on
page 29).

[97] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P. Ravn. „Hardware Objects
for Java.“ In: Proceedings of the 11th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC ’08). (Orlando, FL, USA).
Washington, DC, USA: IEEE Computer Society Press, 2008, pp. 445–452.
isbn: 978-0-7695-3132-8. doi: 10.1109/ISORC.2008.63 (cited on page 70).

[98] T. Schoofs, E. Jenn, S. Leriche, K. Nilsen, L. Gauthier, and M. Richard-Foy.
„Use of PERC Pico in the AIDA Avionics Platform.“ In: JTRES ’09: Proceedings
of the 7th International Workshop on Java Technologies for Real-Time and
Embedded Systems. (Madrid, Spain). New York, NY, USA: ACM Press, 2009,
pp. 169–178. isbn: 978-1-60558-732-5. doi: 10.1145/1620405.1620429 (cited
on page 67).

[99] O. Shivers. „Control Flow Analysis in Scheme.“ In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’88). (Atlanta, GA, USA). PLDI ’88. New York, NY, USA: ACM Press,
1988, pp. 164–174. isbn: 0-89791-269-1. doi: 10.1145/53990.54007 (cited on
page 87).

169

http://dx.doi.org/10.1145/1850771.1850786
http://dx.doi.org/10.1145/1850771.1850786
http://dx.doi.org/10.1145/780732.780745
http://dx.doi.org/10.1109/ISORC.2008.63
http://dx.doi.org/10.1145/1620405.1620429
http://dx.doi.org/10.1145/53990.54007

Bibliography

[100] F. Siebert. „Realtime Garbage Collection in the JamaicaVM 3.0.“ In: JTRES
’07: Proceedings of the 5th International Workshop on Java Technologies for
Real-Time and Embedded Systems. (Vienna, Austria). New York, NY, USA:
ACM Press, 2007, pp. 94–103. isbn: 978-59593-813-8. doi: 10.1145/1288940.
1288954 (cited on page 29).

[101] F. Siebert and A. Walter. „Deterministic Execution of Java’s Primitive Byte-
code Operations.“ In: Proceedings of the 1st Java Virtual Machine Research and
Technology Symposium. (Monterey, CA, USA). Berkeley, CA, USA: USENIX
Association, Apr. 2001, pp. 18–18. isbn: 1-880446-11-1 (cited on page 67).

[102] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. „Coping with
Type Casts in C.“ In: Proceedings of the 7th European Software Engineering
Conference. (Toulouse, France). ESEC/FSE-7. Heidelberg, Germany: Springer-
Verlag, 1999, pp. 180–198. isbn: 3-540-66538-2. doi: 10.1145/318773.318942
(cited on page 23).

[103] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. „Java™ on the
Bare Metal of Wireless Sensor Devices: The Squawk Java Virtual Machine.“
In: Proceedings of the 2nd USENIX International Conf. on Virtual Execution
Environments (VEE ’06). (Ottawa, Ontario, Canada). New York, NY, USA:
ACM Press, 2006, pp. 78–88. isbn: 1-59593-332-6. doi: 10.1145/1134760.
1134773 (cited on pages 27, 67).

[104] M. Simpson, B. Middha, and R. Barua. „Segment Protection for Embedded
Systems Using Run-Time Checks.“ In: Proceedings of the 2005 International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems
(CASES ’05). (San Francisco, CA, USA). New York, NY, USA: ACM Press,
2005, pp. 66–77. isbn: 1-59593-149-X. doi: 10.1145/1086297.1086307 (cited
on page 21).

[105] O. Spinczyk, D. Lohmann, and M. Urban. „AspectC++: An AOP Extension
for C++.“ In: Software Developers Journal 5 (May 2005), pp. 68–76. url:
http://www.aspectc.org/fileadmin/publications/sdj-2005-en.pdf (cited on
pages 60, 61).

[106] D. Spoonhower, J. Auerbach, D. F. Bacon, P. Cheng, and D. Grove. „Eventrons:
A Safe Programming Construct for High-Frequency Hard Real-Time Appli-
cations.“ In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’06). (Ottawa, Ontario, Canada).
New York, NY, USA: ACM Press, 2006, pp. 283–294. isbn: 1-59593-320-4.
doi: 10.1145/1133981.1134015 (cited on page 27).

[107] J. H. Spring, F. Pizlo, R. Guerraoui, and J. Vitek. „Reflexes: Abstractions for
Highly Responsive Systems.“ In: Proceedings of the 3rd USENIX International
Conf. on Virtual Execution Environments (VEE ’07). (San Diego, CA, USA).
New York, NY, USA: ACM Press, 2007, pp. 191–201. isbn: 978-1-59593-630-1.
doi: 10.1145/1254810.1254837 (cited on page 27).

170

http://dx.doi.org/10.1145/1288940.1288954
http://dx.doi.org/10.1145/1288940.1288954
http://dx.doi.org/10.1145/318773.318942
http://dx.doi.org/10.1145/1134760.1134773
http://dx.doi.org/10.1145/1134760.1134773
http://dx.doi.org/10.1145/1086297.1086307
http://www.aspectc.org/fileadmin/publications/sdj-2005-en.pdf
http://dx.doi.org/10.1145/1133981.1134015
http://dx.doi.org/10.1145/1254810.1254837

Bibliography

[108] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. „Streamflex: High-
Throughput Stream Programming in Java.“ In: Proceedings of the 22nd ACM
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA ’07). (Montreal, Quebec, Canada). New York, NY, USA:
ACM Press, 2007, pp. 211–228. isbn: 978-1-59593-786-5. doi: 10.1145/1297027.
1297043 (cited on page 27).

[109] V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam. „Translating
Out of Static Single Assignment Form.“ In: Proceedings of the 6th International
Symposium on Static Analysis. (Venice, Italy). SAS ’99. Heidelberg, Germany:
Springer-Verlag, 1999, pp. 194–210. isbn: 3-540-66459-9 (cited on page 87).

[110] M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. „Gradual Software-
Based Memory Protection.“ In: Proceedings of the Workshop on Isolation and
Integration for Dependable Systems (IIDS ’10). (Paris, France). New York,
NY, USA: ACM Press, 2010. isbn: 978-1-4503-0120-6 (cited on page 7).

[111] M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. „Memory Protection
at Option.“ In: Proceedings of the 1st Workshop on Critical Automotive Appli-
cations: Robustness & Safety. (Valencia, Spain). New York, NY, USA: ACM
Press, 2010, pp. 17–20. isbn: 978-1-60558-915-2. doi: 10.1145/1772643.1772649
(cited on page 7).

[112] M. Stilkerich, J. Schedel, P. Ulbrich, W. Schröder-Preikschat, and D. Lohmann.
„Escaping the Bonds of the Legacy: Step-Wise Migration to a Type-Safe
Language in Safety-Critical Embedded Systems.“ In: Proceedings of the 14th
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC ’11). (Newport Beach, CA, USA). Ed. by G. Karsai, A.
Polze, D.-H. Kim, and W. Steiner. IEEE Computer Society Press, Mar. 2011,
pp. 163–170. isbn: 978-0-7695-4368-0. doi: 10.1109/ISORC.2011.29 (cited on
page 7).

[113] M. Stilkerich, I. Thomm, C. Wawersich, and W. Schröder-Preikschat. „Tailor-
Made JVMs for Statically Configured Embedded Systems.“ In: Concurrency
and Computation: Practice and Experience 24.8 (2012), pp. 789–812. issn:
1532-0634. doi: 10.1002/cpe.1755 (cited on pages 7, 27, 67, 116, 151).

[114] M. Stilkerich, C. Wawersich, W. Schröder-Preikschat, A. Gal, and M. Franz.
„OSEK/VDX API for Java.“ In: Proceedings of the Linguistic Support for
Modern Operating Systems ASPLOS XII Workshop (PLOS ’06). (San Jose,
CA, USA). New York, NY, USA: ACM Press, Oct. 2006, pp. 13–17. isbn:
1-59593-577-0. doi: 10.1145/1215995.1215999 (cited on page 7).

[115] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,
and C. Godin. „Practical Virtual Method Call Resolution for Java.“ In: ACM
SIGPLAN Notices 35.10 (2000), pp. 264–280 (cited on page 87).

[116] TC1796 User’s Manual (V2.0). Infineon Technologies AG. St.-Martin-Str. 53,
81669 München, Germany, July 2007 (cited on page 48).

171

http://dx.doi.org/10.1145/1297027.1297043
http://dx.doi.org/10.1145/1297027.1297043
http://dx.doi.org/10.1145/1772643.1772649
http://dx.doi.org/10.1109/ISORC.2011.29
http://dx.doi.org/10.1002/cpe.1755
http://dx.doi.org/10.1145/1215995.1215999

Bibliography

[117] D. Tennenhouse. „Proactive Computing.“ In: Communications of the ACM
(May 2000), pp. 43–45 (cited on page 1).

[118] I. Thomm, M. Stilkerich, R. Kapitza, D. Lohmann, and W. Schröder-Preikschat.
„Automated Application of Fault Tolerance Mechanisms in a Component-Based
System.“ In: JTRES ’11: Proceedings of the 9th International Workshop on
Java Technologies for Real-Time and Embedded Systems. (York, UK). New
York, NY, USA: ACM Press, 2011, pp. 87–95. isbn: 978-1-4503-0731-4. doi:
10.1145/2043910.2043925 (cited on page 7).

[119] I. Thomm, M. Stilkerich, C. Wawersich, and W. Schröder-Preikschat. „KESO:
An Open-Source Multi-JVM for Deeply Embedded Systems.“ In: JTRES
’10: Proceedings of the 8th International Workshop on Java Technologies for
Real-Time and Embedded Systems. (Prague, Czech Republic). New York,
NY, USA: ACM Press, 2010, pp. 109–119. isbn: 978-1-4503-0122-0. doi:
10.1145/1850771.1850788 (cited on page 7).

[120] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-Preikschat.
„I4Copter: An Adaptable and Modular Quadrotor Platform.“ In: Proceedings
of the 26th ACM Symposium on Applied Computing (SAC ’11). (TaiChung,
Taiwan). New York, NY, USA: ACM Press, 2011, pp. 380–396. isbn: 978-1-
4503-0113-8 (cited on page 39).

[121] M. Urban and O. Spinczyk. AspectC++ Language Reference (Version 1.7).
http://www.aspectc.org/fileadmin/documentation/ac- languageref.pdf,
visited 2012-04-19. pure-systems GmbH. Agnetenstr. 14, 39106 Magdeburg,
Germany, Apr. 2011 (cited on page 61).

[122] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. „Efficient Software-
Based Fault Isolation.“ In: Proceedings of the 14th ACM Symposium on Op-
erating Systems Principles (SOSP ’93). (Asheville, NC, USA). New York,
NY, USA: ACM Press, 1993, pp. 203–216. isbn: 0-89791-632-8. doi: 10.1145/
168619.168635 (cited on page 19).

[123] C. Wawersich. „KESO: Konstruktiver Speicherschutz für Eingebettete Sys-
teme.“ Dissertation. Friedrich-Alexander University Erlangen-Nuremberg, Oct.
2008 (cited on pages 67, 87).

[124] C. Wawersich, M. Stilkerich, and W. Schröder-Preikschat. „An OSEK/VDX-
Based Multi-JVM for Automotive Appliances.“ In: Embedded System Design:
Topics, Techniques and Trends. (Irvine, CA , USA). IFIP International Feder-
ation for Information Processing. Boston: Springer-Verlag, 2007, pp. 85–96.
isbn: 978-0-387-72257-3 (cited on page 7).

[125] P. R. Wilson. „Uniprocessor Garbage Collection Techniques.“ In: Proceedings
of the International Workshop on Memory Management (IWMM ’92). (St.
Malo, France). Ed. by Y. Bekkers and J. Cohen. Vol. 637. Lecture Notes in
Computer Science. Heidelberg, Germany: Springer-Verlag, Sept. 17–19, 1992,
pp. 1–42. isbn: 3-540-55940-X (cited on page 68).

172

http://dx.doi.org/10.1145/2043910.2043925
http://dx.doi.org/10.1145/1850771.1850788
http://www.aspectc.org/fileadmin/documentation/ac-languageref.pdf
http://dx.doi.org/10.1145/168619.168635
http://dx.doi.org/10.1145/168619.168635

Bibliography

[126] E. Witchel, J. Cates, and K. Asanović. „Mondrian Memory Protection.“ In:
Proceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’02). (San
Jose, CA, USA). New York, NY, USA: ACM Press, 2002, pp. 304–316. isbn:
1-58113-574-2. doi: 10.1145/605397.605429 (cited on page 14).

[127] E. Witchel, J. Rhee, and K. Asanović. „Mondrix: Memory Isolation for Linux
Using Mondriaan Memory Protection.“ In: Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05). (Brighton, UK).
New York, NY, USA: ACM Press, 2005, pp. 31–44. isbn: 1-59593-079-5. doi:
10.1145/1095810.1095814 (cited on page 15).

[128] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren, G. Necula,
and E. Brewer. „SafeDrive: Safe and Recoverable Extensions Using Language-
Based Techniques.“ In: 7th Symposium on Operating System Design and Im-
plementation (OSDI ’06). (Seattle, WA, USA). Berkeley, CA, USA: USENIX
Association, 2006, pp. 45–60 (cited on page 26).

173

http://dx.doi.org/10.1145/605397.605429
http://dx.doi.org/10.1145/1095810.1095814

	Introduction
	Motivation
	Electronic Control Units in the Automotive Industry
	Paradigm Shift Towards an Integrated Architecture
	New System-Software Requirements: Need for Isolation

	Problem Statement and Proposed Solution
	Broader Scope of this Work
	Structure of this Thesis
	Own Publications Related to this Thesis

	State of the Art
	Levels of Memory Protection
	Sandboxing
	Memory Safety
	Type Safety

	Comparison Criteria
	Hardware-Based Memory Protection Approaches
	Coarse-Grained Approaches Without In-Memory Data Structures
	Caching Approaches with In-Memory Data Structures
	Discussion

	Software-Based Memory Protection Approaches
	Instruction-Set-Architecture-Level Approaches
	Compiler-Level Approaches
	Language-Level Approaches
	Discussion

	Decision for MPU-Based Protection and a Multi-JVM

	Analysis: Application Model and Protection Levels
	The AUTOSAR OS Application Model
	Layers of Protection
	Required Isolation Properties
	Graduations of Hardware-Based Memory Protection

	The I4Copter Application
	Core Subsystems of the I4Copter Framework
	Mapping to the AUTOSAR OS Application Model

	Model Refinement: Software-Isolated Components
	Graduations of Software-Based Memory Protection
	Memory-Protection Overhead Imposed by Java
	Offloading Runtime Checks to the Hardware
	Selective Omission of Runtime Checks
	Impact Classification

	Chapter Summary

	Design: A Framework that Provides Memory Protection at Option
	Selection of an AUTOSAR OS Implementation
	CiAO Application Model
	Introduction to AspectC++
	CiAO Build Process
	CiAO Components: Application Interface

	Selection of a Multi-JVM
	J2ME Implementations
	Commercial JVMs for Embedded and Real-Time Systems
	Sun's SquawkVM for Sensor Nodes
	KESO

	Integration of KESO with CiAO
	CiAO Backend
	C++-Compatible Output
	MPU-based-Protection-Friendly Java Runtime Environment

	Configurable MPU-Based Protection
	Region Management
	Region Identification and Data Mapping
	Configurable MPU-Context Switching Code

	Determining Domain Reachability for Java Code
	Overview of the Reachability Analyses in Jino
	Domain Reachability Example
	Reachability Results for the I4Copter Codebase

	Configurable Software-Based Protection
	Incorporating Memory Characteristics into the Compiler
	Per-Application Configurability

	Chapter Summary

	Component-Wise Soft Migration
	Migration Granularity: Software Components
	Considering CiAO and KESO as Component Systems
	I4Copter Component Interfaces

	Shared Memory Extension for CiAO
	Definition of Shared Memory Areas
	Shared Memory Placement
	Shared Memory Conclusions

	Message Ports for CiAO
	Message Protocol
	Placement and Implementation
	Implications of Read Protection
	Variants
	Message Ports Conclusions

	Safe Java Interface
	KESO Abstractions for Accessing Raw Memory Areas
	Using Memory-Mapped Objects to Resemble C Data Types
	Possible Issues with Mapping C Types to Mapped Objects
	Raw Memory as a Base Abstraction

	Port of the I4Copter Application
	Chapter Summary

	Quantitative Evaluation
	Test Setup
	Evaluation Platform
	Used Compilers and Tools

	Test Applications
	I4Copter
	Collision Detector Benchmark Family

	Metrics and Method of Measurement
	Statically Determined Metrics
	Runtime Measurements

	Cost of Using Java Instead of C or C++
	I4Copter
	Collision Detector
	Conclusions

	Microbenchmarks: Individual Costs of Basic Operations
	Basic Protection Primitives
	Costs of Common System Operations
	Conclusions

	Costs of Memory Protection in the I4Copter
	Execution Times
	Memory Footprint
	Conclusions

	Chapter Summary
	Overhead of Using Java as a Language Compared to C/C++
	Costs of Basic Protection Primitives
	Comparison of Protection Mechanisms for an Application

	Summary, Conclusions, and Outlook
	Summary
	Conclusions
	Contributions
	Ideas for Future Work

