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Abstract

KESO is a Java runtime environment for embedded systems based on a standard OSEK
operating system. KESO provides a strong isolation of the different applications running
in the system, that is solely based on software.

Software-based memory protection can be advantageous, because hardware without
a memory management unit (MMU) is cheaper to obtain than microcontrollers with an
MMU and can provide a higher flexibility for allocating system resources.

The use of the object-oriented programming language Java for developing embedded
software furthermore provides a more robust software development process than the
low-level programming languages C and Assembler, that still dominate the embedded
field and tend to be error-prone with the ever increasing complexity of software.

In this thesis, a Java abstraction layer for the OSEK operating system interface was
developed, which has the task of providing access to the OSEK system services to Java
applications, while at the same time restricting access to the system services in order to
retain the strong isolation among the different applications.

Furthermore, a Java interface was created, that provides direct access to memory at
specific addresses and therefore access to memory mapped device registers. The mem-
ory areas accessible by this means can be restricted to guarantee, that the type-safety of
Java is not violated. This interface allows, amongst other things, the implementation of
device drivers in Java.

The main part of this thesis is a heap implementation for KESO that provides auto-
matic memory management. The garbage collector assumes a cooperative application
developer, that incorporates the garbage collector in the design of the whole system and
ensures, that enough time for the garbage collection will be available.

The developed heap implementation does presently not fulfill hard real-time require-
ments, mostly because the fragmentation problem has yet to be solved. The garbage
collector is, however, interruptible at any stage with very low latencies, and does there-
fore not affect the real-time capabilities of real-time parts of the system, that do not use
automatic memory management.

The concluding measurements show, that the overhead caused by the measures taken
to ensure the interruptibility of the garbage collector is tolerable for most applications,
and justifiable by the benefits that the application has of automatic memory manage-
ment.
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Zusammenfassung

KESO ist eine Java Laufzeitumgebung für eingebettete Systeme, die auf einem tradi-
tionellen OSEK Betriebssystem basiert. KESO ermöglicht eine rein software-basierte,
starke Isolierung der verschiedenen im System laufenden Anwendungen.

Ein software-basierter Speicherschutz bietet gegenüber einem auf Hardware basier-
ten Speicherschutz die Vorteile, dass zum einen Mikrocontroller ohne Speicherverwal-
tungseinheit in der Regel günstiger in der Anschaffung sind und zum anderen eine fle-
xiblere Allokation von Systemressourcen möglich ist.

Die Verwendung der objektorientierten Programmiersprache Java zur Entwicklung
von eingebetteter Software bietet zudem einen robusteren Entwicklungsprozess als die
in diesem Feld dominierenden Sprachen C und Assembler, welche in Verbindung mit
ständig komplexer werdender Software die Wahrscheinlichkeit von Fehlern in der Pro-
grammentwicklung erhöhen.

In dieser Arbeit wurde eine Java Abstraktionsschicht für die Systemschnittstelle des
OSEK Systems entwickelt. Diese hat unter anderem die Aufgabe, OSEK Systemdienste
für Java Anwendungen bereitzustellen, aber auch den Zugriff auf diese durch die ver-
schiedenen Anwendungen im System zu regeln, so dass die starke Isolation weiterhin
gewährleistet bleibt.

Außerdem wurde eine Java Schnittstelle geschaffen, die den direkten Zugriff auf
Speicher an festen Adressen und damit auf in den Speicher abgebildete Geräteregister
ermöglicht. Die so zugänglichen Adressbereiche können eingeschränkt werden und
gewährleisten so, dass die Typsicherheit von Java nicht verletzt wird. Diese Schnittstelle
ermöglicht unter anderem die Entwicklung von Gerätetreiber in Java.

Den Hauptteil dieser Arbeit stellt eine Heap Implementierung für KESO mit auto-
matischer Speicherverwaltung dar. Die Speicherbereinigung geht von einem kooperati-
ven Anwendungsentwickler aus, der sie in den Zeitplan des Gesamtsystems einplant und
gewährleistet, dass ausreichend Zeit für die Speicherbereinigung zur Verfügung steht.

Vor allem aufgrund der noch ungelösten Fragmentierungsproblematik kann die ent-
wickelte Heap Implementierung derzeit allerdings noch keine harten Echtzeitanforde-
rungen erfüllen. Der Speicherbereinigungsmechanismus ist jedoch mit geringer Latenz
an jeder Stelle unterbrechbar und beeinträchtigt somit nicht die Echtzeitfähigkeit ande-
rer Teile des Systems, die auf eine automatische Speicherbereinigung verzichten.

Die abschließenden Messungen zeigen, dass der Mehraufwand, der durch die zur
Unterbrechbarkeit der Speicherbereinigung notwendigen Maßnahmen entsteht, für die
meisten Anwendungen tolerierbar ist, und durch die Vorteile, die den Anwendungen
durch die automatische Speicherbereinigung entstehen, gerechtfertigt wird.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Problems Imposed by Heterogeneity in the Embedded Field
While the development speed in the field of universal computers is abating, the embed-
ded computing industry is booming. There is a vast number of visions in this field and
promising concepts like the idea of pervasive computing are still in their infancy. An
end of this fast-paced development is not in sight.

The automotive industry constitutes one major application area of embedded com-
puting. Modern cars may contain up to well over 100 microcontrollers for all kinds of
tasks, ranging from convenience functions, such as the automatic regulation of the air
conditioning to maintain a set temperature, over infotainment components, e.g. a car
navigation system, to safety-critical functions, like controlling the braking system of
the car.

More often than not, the multitude of microcontrollers in a car as well as the soft-
ware running on these controllers are produced by a number of different manufacturers.
The resulting heterogeneity in the deployed hardware and software imposes integration
problems.

1.1.2 Solving Integration Problems by Reducing Diversity
With microcontrollers becoming more and more powerful, the heterogeneity of the hard-
ware can be reduced by integrating multiple tasks on a single, more powerful microcon-
troller.

This approach introduces new problems though. When deploying dedicated micro-
controllers, physical separation provides isolation of the tasks running on these con-
trollers. An erroneous task running on a dedicated controller cannot spread and impact
tasks running on other microcontrollers. When multiple tasks share a microcontroller,

1



2 CHAPTER 1. INTRODUCTION

the physical isolation ceases. Usually, there are no memory protection mechanisms pre-
venting one task from accessing or modifying another task’s memory. Thus, a malfunc-
tioning task can affect the other tasks on the controller and possibly cause a malfunction
of the whole system.

Because the software integrated on a microcontroller is often developed by differ-
ent manufacturers, this problem can hardly be regulated by means of a diligent quality
assurance. In case of the failure of a component in the car, the microcontroller, that
was controlling the component that failed, is easy to determine, but the software task,
that was the cause for the failure, and that may be a different task than the one that
was controlling the failed component, can hardly be identified. In case of claims for
damages, however, it is necessary to determine the manufacturer of the malfunctioning
component, which would require a complex and costly reconstruction of the failure.

The problem is even aggravated by the way most embedded software is developed.
The dominating programming languages in the embedded field are C and Assembler,
with which development tends to be error-prone, because they provide few concepts for
supporting robust code development. Increasing functionality of software is accompa-
nied by increasing code size and complexity, both factors that also raise the chance of
faulty software development.

1.1.3 Software Isolation in the Area of Personal Computing
Though these problems are new to the embedded field, they are well-known from the
field of personal computers and mature concepts for solving these problems have already
been developed.

Object-oriented programming (OOP) languages such as C++ and Java allow devel-
oping applications in a more maintainable and less error-prone manner.

Encapsulation is one of the core concepts carried out by OOP, that restricts access
to data to a well-defined set of established channels. Though this concept reduces the
error-proneness of application development and is encouraged by OOP, it is commonly
not enforced by object-oriented programming languages.

The Java platform goes one step farther by running software in a controlled envi-
ronment isolated from the rest of the system, the Java Virtual Machine (JVM) [LY99].
Java achieves software-based memory protection without a memory management unit
(MMU) through its strict type system, that inhibits the use of arbitrary values as ad-
dresses. Type-safety is, in the last instance, ensured by the Java bytecode verifier, but
also at compile time by a trustworthy Java compiler.

The memory protection provided by the Java platform, however, is still not sufficient
to solve the isolation problem. Running multiple tasks, or threads in terms of Java, in a
single JVM still possibly allows one task to gain access to the memory of another task
through static class fields, that can be used by all tasks running in the JVM simulta-
neously. Furthermore, there is no means of task specific resource allocation, which is
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Figure 1.1: Architecture of the JX operating system. JX is structured in domains with
strong isolation among each other. Each domain is running pure Java code, has a heap
and a garbage collector of its own, whereby different domains may deploy different
algorithms for garbage collection. DomainZero is an exception from this and represents
the microkernel of the system, a minimal trusted codebase written in C and Assembler.

required for a real-time system. Memory and computing time are shared equally among
the running tasks, without a way to create a priority relation between the different tasks.

1.1.4 Migration of Operating System Concepts

Java is not really to blame for the above shortcomings with respect to thread isolation.
Resource allocation and provision of a process concept—which eventually provides the
isolation in modern operating systems for personal computers—are rather the duties of
an operating system than that of a (virtual) machine.

The Java operating system JX [GFWK02] solves the above problems for the domain
of personal computers. The JX system architecture is shown in figure 1.1. Domains are
the fundamental units of resource allocation and memory protection in the JX operating
system. From the application developer’s point of view, each domain represents a JVM
of its own. In spite of being strongly isolated, domains are yet able to communicate
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and cooperate via the portal mechanism, that allows domains to offer service methods
to other domains and can be used in a manner similar to Java RMI (Remote Method
Invocation) [Mic97]. Whenever an object is parameter to a service method invocation
at a portal, a copy of the object along with its transitive closure is created in the service
domain and used in the execution. Thus, a reference to an object of a domain’s heap
never crosses a domain boundary.

An attempt [Dom04] to port JX to the Lego Mindstorm RCX architecture has shown,
that JX in its current form is not suitable for being deployed on microcontrollers. The
JX microkernel alone has a size of 70–100 kB, which is small in the area of personal
computers, but too big for embedded microcontrollers. This is due to features, that are
desirable and required in a Java operating system for personal computers, such as the
dynamic loading of classes. Embedded systems in contrast are statically configured. A
facility such as a dynamic class loader is not required, because all classes ever used are
known at system creation time.

Inspired by JX concepts, KESO, a Java runtime environment specially suited for em-
bedded environments, built on top of a standard operating system for microcontrollers,
has been developed. An OSEK [OSE05] operating system was chosen as the underlying
operating system, because of its widespread use in the automotive industry.

In this thesis, a Java abstraction layer for the underlying OSEK operating system
was developed, that provides a controlled way for Java applications to access the OSEK
system services. Furthermore, a heap implementation that provides automatic memory
management was developed.

This thesis is structured as follows: In chapter 2, other work related to KESO is
reviewed. In chapter 3 and chapter 4, the architecture and some relevant runtime data
structures of KESO are explained to establish the KESO-related knowledge required for
the remainder of this work. The design and implementation of the OSEK abstraction
layer is covered in chapter 5, and chapter 6 describes the heap implementation that was
developed in this work. Finally, chapter 7 summarizes the results and outstanding issues
of the developed KESO components, and gives a glimpse of the current and future work
on the KESO system.

1.2 Typographic Conventions

Throughout this thesis, the following typographic conventions are used:

OSEK concepts and task states OSEK concepts and task states are written with cap-
itals to differentiate from common language use. The affected terms describing
OSEK concepts are Tasks, Resources, Events, Alarms and Counters. The existing
OSEK task states are Ready, Suspended, Waiting and Running.



1.2. TYPOGRAPHIC CONVENTIONS 5

Code elements Code elements, that are part of the continuous text, are written in type-
writer font. Function and method names are additionally appended brackets,
names of classes are usually written with a capital and names of fields or variables
are usually uncapitalized. Macros and constants are per convention written in all
capital letters. Examples: pushObject() designates a function or method with
the name pushObject, Task indicates the class Task, domain id designates a
variable of the name domain id and INVALID DOMAIN marks an identifier with
the name INVALID DOMAIN.

New terms Whenever a new term is introduced, it is written in italic font.

Names Names are written sans-serif font, e.g. DomainZero.
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Chapter 2

Related Work

2.1 The AJACS Project

The AJACS (Applying Java to Automotive Control Systems) project [con02] did gen-
eral research on deploying Java in automotive control systems, i.e. on static embedded
systems, and therefore has the same target platforms as the KESO system.

The main objective was developing and defining an open technology that is based
on existing standards of the automotive industry, explicitly naming OSEK/VDX oper-
ating systems. The expected benefits of using Java on automotive control systems were
restricted to a single JVM approach, particularly to software structuring, reusability,
dependability, portability and robustness benefits.

The AJACS project concluded with numerous recommendations on how to deal with
the limitations of various aspects of Java with respect to real-time support.

While KESO also targets all of the benefits expected from the sole use of Java for
the development of embedded applications, it mainly differs from AJACS in the multi
JVM approach, that puts the main focus on the isolation of the tasks integrated on the
controller.

2.2 The JX Java Operating System

The multi JVM architecture of the Java operating JX [GFWK02] posed the paradigm
for the architecture of the KESO system. While the architecture of KESO is similar to
the architecture of JX, both systems have not much in common in their implementation,
which is mainly a consequence of the diversities of the application domains that both
systems target, which are personal computers for the JX operating system and micro-
controllers for the KESO system, and the concepts inherited by the underlying OSEK
operating system for the KESO system, while JX uses its own microkernel.

7



8 CHAPTER 2. RELATED WORK

2.3 Embedded JVMs

This section reviews some embedded JVMs, that are related to KESO in that they also
have to face resource limitations of the target hardware.

2.3.1 NanoVM

NanoVM [Har06] is a small embedded JVM for the AVR architecture. It is limited to
a small subset of the Java class library and the Java programming language. NanoVM
interprets Java bytecode at runtime, but requires standard class files to be converted to a
NanoVM specific format before uploading the classes to the target.

2.3.2 TinyVM

TinyVM [Sol00] is a Java-based firmware replacement for the Lego MindstormTM RCX
microcontroller with a footprint of about 10 kB. Similar to NanoVM, TinyVM does not
provide a complete Java runtime environment, notably garbage collection and floating
point support are missing in TinyVM.

2.3.3 The Squawk Virtual Machine

The Squawk VM [SCC+06] is a small JVM written in Java that runs without an operat-
ing system. Squawk complies to the Connected Limited Device Configuration (CLDC)
1.1 Java Micro Edition (Java ME) configuration [Sun04]. Java bytecode is converted
to a Squawk specific Suite File format, that incorporates space, execution and garbage
collection simplification optimizations.

Squawk implements an isolation mechanism similar to that of Java Specification
Request (JSR) 121 [Cza00, jsr06]. Squawk encapsulates applications into so-called
Isolates, whereby each Isolate maintains an own copy of mutable data such as static
class variables. An Isolate may contain multiple threads, therefore the Isolate concept
shows some similarities to the domain concept used in KESO. Contrary to domains, all
Isolates allocate new objects from the same heap, therefore Isolates are no separate units
of memory allocation.

Squawk further differs from KESO in the thread and scheduling concept, and the
non-preemptible system code including the garbage collector, that can have a negative
impact on the interrupt handling latency.
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2.4 Java and Real-Time

2.4.1 The Real-Time Specification for Java
The real-time specification for Java (RTSJ) [BBG+00] is an extension to the Java lan-
guage definition and the Java standard libraries, that adds support for real-time threads,
while remaining backwards compatible with existing (non real-time) Java applications.
Among the important changes are the necessity of a priority inheritance or a priority
ceiling mechanism on Java monitors and an extended thread concept. Two types of
real-time threads are introduced, that can be assigned priorities higher than the priority
of the garbage collector. The system is then split in a real-time part and a non real-time
part, where the real-time threads use memory areas that are not under the control of the
garbage collector. The communication and synchronization between real-time and non
real-time parts is heavily restricted to avoid the deferment of real-time threads by the
garbage collector, that can occur by synchronizing a non real-time thread and a real-time
thread in combination with priority ceiling or priority inheritance.

2.4.2 JamaicaVM
The commercial JVM JamaicaVM [Sie04] provides support for the RTSJ and contains a
garbage collector, that is suitable for hard real-time constraints. The heap of JamaicaVM
is divided in fixed-size blocks, that also represent the increment unit of the preemptible
garbage collector. Garbage collection is scheduled upon allocation by the allocating
thread. The amount of work done by the thread depends on the size of the allocated
object, i.e. threads have to pay for the allocation by performing garbage collector work.
The fragmentation problem is solved by composing objects of a linked list of fixed size
blocks. These blocks do not need to be sequential on the heap, thus completely avoiding
the need to compact memory.
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Chapter 3

Architecture of the KESO System

3.1 Conceptional Architecture
The architecture of the KESO system is illustrated in figure 3.1. From a conceptional
point of view, it is very similar to the architecture of the JX operating system. Contrary
to JX, however, KESO is based on top of an OSEK operating system rather than its own
microkernel. The environment of an OSEK operating system affects the KESO design
in several aspects, differentiating it from the design of the JX operating system:

1. OSEK operating systems use the concept of Tasks as the basic schedulable unit.
OSEK scheduling is based on priorities statically assigned to Tasks. Conse-
quently, KESO also uses the notion of priority-assigned Tasks to represent threads
of control rather than Java threads, whereby each Task is assigned to a KESO do-
main.

2. Allocation of the system resource CPU is controlled by the priority-based sched-
uler of the OSEK operating system. Memory, however, can be assigned on a
per-domain base by configuring the size of each domain’s heap.

Domains
Similar to JX, each domain appears as a self-contained JVM to the user application.
Each domain contains a set of static class fields and a heap of its own, whereby each
domain can choose from different heap implementations.

References to objects on the heap of one domain never cross a domain boundary.
Thereby, the structuring of the system in domains also produces distinct sets of objects,
which eases the work of garbage collectors, that do only need to examine the object set
of one domain at a time.

In addition to the domains specified by the user application there is a special domain
DomainZero. This domain is used to execute code, that does not belong to any of the

11
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Figure 3.1: KESO Conceptional Architecture

regular domains, which can, for instance, be the case for interrupt service routines.
Furthermore, it contains system objects that are accessible from all other domains, i.e.
globally visible immortal system objects1. DomainZero does not contain any Tasks.

DomainZero also exists in JX, but the semantics is entirely different. It is planned,
that DomainZero will be removed from KESO and replaced by a user configurable sys-
tem domain, that is only optionally present in the system in case global code or objects
are required by the user application.

Portals

Inter-domain communication is possible via portals in a manner similar to JX. A service
domain can provide a portal service, that allows Tasks of other domains to execute code
in the service domain. A portal service consists of a well-defined interface that offers
service methods to other domains. Tasks of other domains may invoke methods of the
portal. The execution of a service method takes place in the environment of the service
domain.

The implementation of KESO portals is described as part of the Task Management
in section 5.3.1.

1A reference to a global system object can be present in multiple domains. However, these objects are
not allocated from a domain heap and not subject to garbage collection, therefore this does not pose any
problems. System objects are discussed more detailed in chapter 5.
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KESO Runtime Environment
The two major functions of the KESO runtime environment layer are the provision of
a Java runtime environment for the Java applications and a Java class library providing
access to KESO services.

KESO services can be divided in three classes:

• Provision of OSEK services on the Java level

• Device-Memory

• Device drivers

The first class allows the user applications to use the system services of the underly-
ing OSEK operating system on the Java level. These services include synchronization
and notification mechanisms as well as limited access to the hardware, e.g. through
services, that allow to disable and enable interrupts. The KESO services of this class
are part of the OSEK abstraction layer (chapter 5).

Further hardware accesses to memory mapped device registers are possible through
Device-Memory, that is also a part of the JX operating system.

Device-Memory provides methods to access a specific region of memory with meth-
ods similar to raw access. The memory region accessible via Device-Memory can be
limited to prevent a breakout from the Java protection mechanisms, e.g. by modifying
the heap of a domain or the stack of Tasks. Device-Memory allows, amongst other
things, the implementation of device drivers in Java.

Device Drivers are not available yet, but a CAN (Controller Area Network) driver
for the Tricore architecture is currently in development. Device drivers will allow ac-
cess to hardware devices on the Java level without the need to program those devices.
Applications can then use the higher level interface provided by a device driver, which
greatly increases the portability of user applications.

3.2 Code Generation Concept
The user applications are developed in Java and available as Java bytecode after having
been processed by a Java compiler. Interpreting or even compiling the bytecode to native
code at runtime on the target microcontroller is not feasible, because memory and CPU
power are very limited on the target platforms. Instead, the bytecode is compiled to C
source code ahead of time by the KESO builder. Creating C source code rather than
directly compiling the bytecode to native code has a few advantages:

• Directly compiling to native code would require a compiler back-end for the
KESO builder for each supported target platform. However, a standard C com-
piler is available for almost all of the target platforms.
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• The available C compilers allow to create highly optimized code at the function
level.

• C source code is easier to read than native code, which eases debugging.

• A separate compiler back-end for each target platform increases the complexity
of the KESO builder and increases the probability of software bugs.

Components and Processes
The generation process of a KESO system is illustrated in figure 3.2. The components
that participate in the process are of three kinds:

• Components provided by the developers of the user application. These are com-
prised by the Java source code of the user application and the KESO system con-
figuration file.

• Standard components, that are comprised by a Java compiler, that compiles Java
source code to Java bytecode, the OSEK system generator (OSEK SG), that cre-
ates the source code of the OSEK kernel from the OSEK OIL [OSE04] (OSEK
implementation language) configuration file, and a C compiler and linker, that is
used to compile the C sources of the user application and the OSEK kernel, and
links the resulting objects files to the KESO binary image.

• KESO components, comprised by the KESO class library, that provides the KESO
services to Java applications, the KESO autoclass generator, which automatically
generates parts of the KESO class library from the system configuration file, e.g.
for providing OSEK identifiers on the Java level, and the KESO builder, that
compiles the Java bytecode of the user application to C source code and generates
the OSEK OIL configuration file from the KESO system configuration file.

The generated C code does not only contain the compiled class files, but also the KESO
runtime data structures (chapter 4), that include data structures such as the class store,
that contains type information required at runtime for tasks such as checking a cast,
and the virtual method table, that is required to resolve virtual methods calls at runtime.
Moreover, additional code is inserted to retain the properties of a JVM, such as null
reference checks and array boundary checks, and the code of other services of the KESO
runtime layer, such as the garbage collector and the portal services.

Optimizations with Respect to Code Size
KESO is a static system, that does not allow the dynamic loading of classes at runtime,
which opens some optimization potential for reducing the size of the generated system.
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Figure 3.2: KESO System Generation Process

The KESO compiler performs a reachability analysis on the bytecode and eliminates
classes, methods and fields, that are not accessed by the user application. This reduces
both, the code size of the generated system and the size of the KESO data structures.
Additionally, only the parts of the KESO abstraction layer, that are actually used by the
application, are added to the generated code, e.g. if an application does not make use of
OSEK Resources, the data structures and code for the Resource-related services are not
added to the generated system.

Figure 3.3 shows a code size comparison for a test application, that was used to
test the garbage collector discussed in chapter 6. The test application processes an in-
finite loop and maintains a FIFO of fixed size. In each loop cycle, a new element is be
allocated and added to the FIFO, and another element is removed. Additionally, the ap-
plication outputs a string, that is constructed using numerous StringBuffer objects
from several integers and constant strings. At the end of a cycle, the Task waits for an
OSEK Event, triggered by a cyclic OSEK Alarm, and continue with the execution once
the Event has been set. In the meantime, the garbage collector reclaims the memory of
unreachable objects. OSEK Resources are also used to synchronize the test application
with the garbage collector (chapter 6).

Figure 3.3(a) opposes the size of the class files actually used by the test application
and the size of the resulting KESO image, containing all of the above optimizations. If
one chose to actually interpret or just-in-time compile bytecode on the microcontroller,
the size of the deployed JVM would additionally need to be added to the size of the class
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Figure 3.3: Code size comparison for a garbage collector test application. The test
application makes use of OSEK Events, Alarms and Resources and contains the garbage
collector described in chapter 6.

files, but the resulting system would still neither contain an OSEK OS nor the KESO
runtime layer. The figure shows, that the resulting KESO system, including the OSEK
OS and the KESO runtime layer, is only half the size of the unoptimized class files.
The application component of the KESO system, that corresponds to the translated and
optimized class files, is even only 14.25% the size of the original class files.

Figure 3.3(b) shows the composition of the KESO system. The bulk of the system
is posed by the KESO layer, that consists almost half (4 kB) of the code of the garbage
collector, that will remain constant for larger applications. The other major part of
the KESO layer is posed by the runtime data structures. These data structures grow
with the number of classes and methods used in the system. The size of the OSEK
system also depends on the needs of the user applications, however, the test application
already makes use of OSEK Resources, Alarms and Events. Thereby, even for larger
applications, only a decent increase of the OSEK component has to be expected. The
most variable component is posed by the user application. With larger applications,
the application component will increase in size most, and the fraction of the other two
components in the size of the entire system will shrink.



Chapter 4

KESO Runtime Data Structures

This chapter describes some of the KESO runtime data structures. Only the data struc-
tures relevant to this work are discussed, i.e. others, such as the virtual table, that is used
to resolve virtual method calls at runtime, are omitted, because they are not needed in
the following.

4.1 Class Store
The class store is an array of class descriptor structures, that contain runtime informa-
tion on each class. Each class descriptor structure contains the following elements1:

• Type range (unsigned 16-bit): This field is required to check type information of
a class and is used in operations such as checkcast or instanceof. It is not
relevant in this work and not further discussed here.

• Size (unsigned 16-bit): The size in bytes of an instance of the class.

• Interfaces (unsigned 8-bit): Information about the interfaces implemented by the
class. This is also not relevant in this work.

• Reference offset (unsigned 8-bit): The number of reference fields that an instance
of the class contains. For the bidirectional object layout (see section 4.3.3), this
can be used to determine the offset between the begin of an instance and the object
header.

• Extensions (unsigned 16-bit): Reserved for extensions and not used at the mo-
ment. This ensures the 32-bit alignment of the class descriptor structures.

1The shown contents apply for the Tricore architecture. For other architectures, such as the AVR
architecture, that is currently in development, some elements may be missing or differ in size from the
elements shown here.

17
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Each class is assigned a class identifier, that can be used as an index into the class store
array to access the class descriptor belonging to the class. The class identifier is stored
in the object header of an instance.

4.2 Domain Descriptor Table and Domain Identifiers
The domain descriptor table contains domain descriptor structures with runtime infor-
mation on each domain.

Currently, the domain descriptor contains only data describing the domain’s heap
implementation. The actual fields of the descriptor therefore depend on the heap im-
plementation used by the domain. The only common field present in every domain
descriptor is the allocator field, that contains the address of the heap specific allo-
cator function. For the IdleRoundRobin (IRR) heap implementation (see chapter 6), the
domain descriptor furthermore contains the following fields:

• Freeslots: The number of slots available for allocation on an IRR heap.

• Slotsize: The size of a slot on an IRR heap in bytes.

• Heapsize: The total size of the IRR heap in bytes.

• Freemem: Pointer to the first element of the free memory list of an IRR heap.

• NewSlotsAllocated: Recorded number of slots allocated for new objects since the
last run of the garbage collector in a domain using the IRR heap.

• Heaptop: Address of the lower boundary of the IRR heap. Can be used in con-
junction with the Heapsize to determine the address range of the heap.

• Colorbit: Contains the current value of the colorbit, that represents the color gray
or black. The value is either 2 or 0, and is toggled after each garbage collector
cycle.

The domain identifier assigned to each domain can be used as an index into this array
to access the domain descriptor of the respective domain. The global indicator current
domain contains the domain identifier of the domain, that the currently executed code
belongs to, which is (in most cases) the domain of the currently running Task.

The special domain identifier INVALID DOMAIN is used in some places where no
valid domain identifier is applicable in the current state, e.g. the garbage collector uses
it to signal, that it is currently not active in any domain.

The domain identifier is also needed in various other places, e.g. to access static
fields of a class, as each domain maintains a set of static fields of its own.
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4.3 Object Layout

The object layout describes the internal runtime representation of an allocated object in
a Java virtual machine. It commonly consists of some meta data, the so-called object
header, and the actual fields of the object.

To provide an efficient access to object fields, the offset of an object field from the
object header should be computable at compile time rather than having to be computed
at runtime, regardless of inheritance. This can be easily accomplished for Java, because
Java only supports single inheritance and does not allow the declaration of fields in
interfaces.

The object layout is a crucial aspect for the performance of tracing garbage collec-
tors, such as the one implemented in this thesis (chapter 6). Tracing garbage collectors
determine the set of reachable (living) objects by recursively scanning the inner refer-
ence fields of discovered objects, starting from a root set. The object layout affects the
performance of this scanning phase, depending on how much effort is necessary to find
all reference fields in an object.

4.3.1 Object Header

The object header contains meta data on the referenced object. An object reference
always points to the object header. The 32-bit object header currently used for objects
in the KESO system is shown in figure 4.1.

The header contains the unsigned 16-bit class identifier of the object, that can be
used as an index into the class store and represents the type of the object. The least
significant byte of the object header, color, is reserved for information specific to a
heap implementation. Currently, only the IRR heap implementation (chapter 6) uses
this field. The remaining byte of the object header is currently not used and reserved for
future development.

Java specifies some special array types. There is an array class for each primitive
Java data type and for object references. These array types have an extended object
header, that additionally contains the number of elements of the array. The header of an
array class will also be called the array header.
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4.3.2 Array Classes

Array classes not only differ in their header from non-array classes, they also use a
different object layout, which is shown in figure 4.2. The elements are simply put behind
the array header, starting with the element at index 0 to the higher indices.

To scan an array of object references, the garbage collector only needs a simple loop,
where the length of the array can be used as loop counter and array index.

4.3.3 Non-Array Classes

Traditional Object Layout

The traditional approach for the object layout is illustrated in figure 4.3, and was initially
also used in the KESO system. The example shows the object layout for a class C, that
is a subclass of class B, which in turn is a subclass of class A. In the traditional object
layout, non-reference fields and reference fields are grouped together for each class in
the class hierarchy. The order in which the fields of each class are put after the object
header is starting with the most general class (A in the example) to the most specialized
class (C in the example).

To scan the reference fields of an object, for each class in the type hierarchy of
the object, the number of reference fields of the class and the offset of the reference
fields (or, alternatively, the number of bytes occupied by non-reference fields) need to
be stored. This can be done in two ways:

First, for each class, the offset and number of reference fields of the class and each of
its superclasses can be stored in the class descriptor of the class, which would increase
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the memory required by the class store, depending on the depth of the type hierarchy2.
Alternatively, the garbage collector would have to determine each super class at

runtime and read offset and number of reference fields from the class descriptors of all
superclasses, which would significantly complicate the scan process.

Generally, to scan an object, two nested loops would be required, the outer one
for climbing the type hierarchy and the inner loop for reading offset and number of
references and scanning the references for each class on the type hierarchy.

Bidirectional Object Layout

To facilitate the scanning phase of the garbage collection, the traditional object layout
was replaced by a bidirectional object layout similar to the one proposed in the SableVM
project [Gag02, GH01]. The layout used in KESO is shown in figure 4.4 for the same
class that the traditional layout was illustrated with. Contrary to the traditional layout,
an object now grows in both directions from the object header, where reference fields
are put before and non-reference fields are put after the object header. The ordering
remains the same, i.e. starting with the most generic class (A) to the most specialized
class (C). For an object with reference fields, the object header is now not placed in the
beginning of the object, but behind the reference fields, thus the object reference and the
starting address of the object usually differ in the bidirectional object layout. For each

2Because the class descriptors in the KESO class store need to be of equal size, the array containing
offset and number of reference fields for each class would either have to be stored outside of the class
store, or the maximum depth of the type hierarchy would have to be limited.



22 CHAPTER 4. KESO RUNTIME DATA STRUCTURES

reference
offsets

fields
reference

fields
reference

fields
reference

non−reference
fields

non−reference
fields

non−reference
fields

Reference
Object

Object Header

A

C

B

Object begin

A

B

Cad
dr

es
se

s
m

em
or

y
in

cr
ea

si
ng

C

A

B

Figure 4.4: Bidirectional Object Layout (Class C extends B extends A)

class, a reference offset can be identified, that specifies the number of reference fields of
a class (including inherited reference fields). Knowledge of the reference offset is also
sufficient to compute the difference between the beginning of an object and the object
header. Thus, for each class, only the reference offset needs to be stored in the class
store.

The offset of a field from the object header is still constant and computable at com-
pile time, so field accesses remain efficient with the bidirectional layout.

When scanning an object, the garbage collector now only needs to read the reference
offset from the class descriptor and read the references ahead of the object header. Only
a regular loop is required where the reference offset can directly be used for the loop
counter. The bidirectional offset thus saves both, computing time and memory accesses
for the scanning phase of the garbage collector, plus it reduces the memory required for
the class descriptor of each class.



Chapter 5

OSEK Abstraction Layer

Since KESO is built on top of an OSEK [OSE05] operating system, the OSEK concepts
need to be made available to application developers on the Java level. A Java class
library and Java abstractions to OSEK system objects have been created for this task.

OSEK systems are configured with a configuration file described in the OSEK im-
plementation language (OIL) [OSE04]. Most of the parameters and defined system ob-
jects of the generated OSEK system are also required in the build process of the KESO
system.

To eliminate the need for specifying this information in two separate configurations,
the OSEK system configuration parameters have been integrated with the KESO con-
figuration parameters in a single KESO system configuration file. The OIL configura-
tion file for the underlying OSEK system is then automatically generated by the KESO
builder from the KESO configuration file. This provides the application developer with
a single point for configuring the entire system.

Several goals can be identified for the OSEK abstraction layer:

• Create an object-oriented view on OSEK concepts such as Tasks and Resources

• While the object-oriented abstraction is always desirable from the perspective of
software engineering, it is not always a viable choice. Because resources are
usually very limited on the KESO target platforms, a tradeoff between abstraction
and overhead has to be made. In some cases, e.g. OSEK Events, the advantages of
an object-oriented abstraction are outweighed by the overhead going along with
the abstraction and different solutions have to be considered.

• As a major goal of the whole KESO system, strong isolation of domains is also
a goal of the OSEK abstraction layer. Accesses to OSEK system services need
to be restricted to provide this isolation. As an example, it must be possible to
restrict access to a certain OSEK Resource to a domain, if this is eligible for the
user application.

23
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• The Java class library providing access to the OSEK system services should be
modeled closely to the original OSEK interface. This helps providing a familiar
programming interface to OSEK application developers, easing the transition to
application development for the KESO system.

Knowledge of the OSEK OS specification [OSE05] and the OSEK implementation lan-
guage specification [OSE04] is presumed throughout this chapter.

This chapter is structured as follows: Section 5.1 gives an overview on the general
design decisions made for the OSEK abstraction layer. The object abstractions were
similarly implemented for the different OSEK concepts and the general implementation
is described in section 5.2. Sections 5.3–5.7 cover implementation details on the various
OSEK topics. Finally, section 5.8 discusses some problems, that arise by the use of
portals, and the used solutions.

5.1 Conceptual Design
For each class of OSEK system services, as classified by the OSEK specification, a
service class has been created, that provides a static method for each OSEK system
service function, plus some additional functions, such as a name service, that enforces
access restrictions to the system services on the Java language level.

5.1.1 Magic Methods
The system service methods of the KESO class library need to call the OSEK system
services in the generated C code, which is not possible with the use of pure Java code.
The Java class library makes heavy use of so-called magic methods, i.e. Java methods
that are specially treated by the KESO builder.

Special code for a magic method can either be inserted at the call-side, removing the
invocation of the magic method, or in the body of the magic method, leaving the call of
the magic method untouched. The first variant corresponds to an inlining of the magic
method.

The preferable way mostly depends on the complexity of the generated code. In-
tercepting magic methods at the call-side can save the overhead of a method call, but
is only suitable for short code fragments, whereas leaving the calls to a magic method
untouched and generating special code in the method body instead is appropriate for
larger portions of code.

5.1.2 Access Restrictions to OSEK Services
The OSEK abstraction layer must ensure, that the isolation of domains is not weakened
by the inappropriate use of the OSEK system services. To ensure this, a mechanism
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needs to be provided that allows to restrict the access to certain system services.
For instance, a Resource might be created to synchronize two Tasks of the same

domain. In such cases, it is desirable, that Tasks of other domains are not able to use the
GetResource() service on that Resource. On the other hand, a Resource could also
be used to synchronize Tasks of two different domains, that, for instance, both access
a periphery device. Therefore, the OSEK abstraction layer supports both global and
domain local object abstractions.

The services classes, that an access restriction was found to be useful to, are

1. Resource Service: Provide domain local Resources, that are only visible inside of
a domain and can be used for synchronization of Tasks within the same domain
(see example above).

2. Task Management: The activation of other Tasks through the use of the Chain-
Task() and the ActivateTask() services is restricted to Tasks within the
same domain.

3. Alarm Service: Services of this class allow the modification, activation and can-
cellation of Alarms. Alarms are therefore assigned to a domain and the use of
the system services is restricted to Alarms within the same domain as the calling
Task.

Access restrictions are enforced on the language level. Object abstractions have been
created in the classes Resource, Alarm and Task. Instances of these classes will
be called system objects (SO). The SOs are automatically created by the KESO builder
using the information from the KESO configuration file. Affected system services do
not further check the domain of the calling Task and the domain of the system object
(that may be another Task, a Resource or an Alarm), but require a reference to the
respective system object as a parameter where OSEK uses plain identifiers on the C
level. A name service is provided, that allows Tasks to acquire references to KESO
system objects, by referencing the objects by their name as configured in the system
configuration file1. The name service does only return references of local SOs within the
same domain as the caller and references to global SOs to the caller, thereby restricting
the use of system services by limiting the access to SOs.

5.1.3 Provision of OSEK Constants and Identifiers
Where no access restrictions are required and object abstractions are not required due
to other reasons, the OSEK Identifiers are directly made available on the Java language
level. This affects Counters, Events and Application-Modes. For each of these, a Java

1These are the same identifiers, that would be used when programming C code for an OSEK applica-
tion.
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class is automatically generated by the KESO autoclass generator, that determines the
identifiers and the assigned values from the KESO configuration file. These Java classes
contain a final static field for each identifier with the assigned value, that can be used in
the Java applications similar to the use of OSEK identifiers in C applications.

5.2 Object Abstractions and Name Service

The object abstractions and the name service have been similarly implemented for
Tasks, Resources and Alarms. Differences are covered in the sections dedicated to each
OSEK topic below.

An example for the name service data structures and object abstractions for Re-
sources is shown in figure 5.1. In the following, only Resources are mentioned, but
everything applies for Tasks and Alarms, too.
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5.2.1 General Description
For each Resource, a Resource SO is created at compile time by the KESO builder. The
SO contains a private field with the OSEK identifier of the Resource represented by the
SO. When the GetResource() service is called on the Java level with the SO, the
builder compiles it to a call to the OSEK GetResource() service on the C level and
uses the OSEK identifier contained in the SO.

The references to the SOs are managed in an array, the Resource index. The OSEK
identifier of a Resource can be used as an index into this array to acquire the reference of
the associated SO. Additionally, a special value INVALID RESOURCE is introduced,
that is assigned the null reference2.

For the name service, a matrix mapping a Resource name and a domain identifier
to an OSEK identifier is created, the Resource name service lookup matrix. The lookup
matrix contains a row for each Resource name and a column for each domain, including
DomainZero. Each element of the matrix either contains the OSEK identifier of the
Resource with the respective name, if that Resource is visible within the domain, or else
the INVALID RESOURCE identifier. In case the same name is used multiple times, only
one row is created for the name. The elements in this row then contain the appropriate
OSEK identifier for the Resource visible within that domain, where a domain local
Resource shadows a global Resource with the same name.

5.2.2 Explanation of the Example
Figure 5.1 shows an example scenario for a Resource name service. The available do-
mains and the associated domain identifiers are shown in figure 5.1(b), including the
system domain DomainZero. The configured Resources with their OSEK identifiers
and scope are shown in figure 5.1(c). The scope specifies the domain a Resource is
assigned to, or global if the Resource is accessible in all domains.

ResourceA shows the case of a domain local Resource, which is only accessible
from DomainB. The row of ResourceA in the lookup matrix contains the OSEK iden-
tifier of ResourceA in the column of DomainB. In the columns of the other two do-
mains, the special identifier INVALID RESOURCE is stored. A lookup for ResourceA
therefore resolves to a reference to the appropriate SO if invoked in DomainB. In the
other two domains, the lookup resolves to the null reference, which represents the
INVALID RESOURCE.

ResourceB illustrates the case of a global Resource. The row of ResourceB in the
lookup matrix contains the OSEK identifier of the Resource for all domains. Therefore,
a lookup of ResourceB resolves to a reference to the valid SO in every domain.

2OSEK already specifies an identifier INVALID TASK. For Tasks, this identifier is used, but new
identifiers have been created for Resources and Alarms. In either case, the invalid objects are always
represented by the null reference on the Java level.
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The name ResourceC is used multiple times, in each DomainA and DomainB to
specify a domain local Resource and additionally for a global Resource. Therefore,
three different OSEK Resources are created, and for each of them a SO is statically
allocated. In the row of ResourceC in the lookup matrix, the column of DomainZero
contains the identifier of the globally configured ResourceC. For the other two domains,
the domain local Resources shadow the global Resource of the same name, and the
identifiers of the domain local Resources are stored in the respective columns. A lookup
for ResourceC resolves to the domain local Resources in DomainA and DomainB, and
to the globally configured Resource in DomainZero.

5.2.3 Java Interface to the Name Service

The name service for Resources is accessible as a method of the ResourceService
class, that also contains the other Resource-related OSEK system services:

p u b l i c s t a t i c Resource getResourceByName ( S t r i n g resName ) ;

The parameter to this method is the name of the Resource as specified in the system
configuration file. The name of the Resource must be provided as a String constant
to allow the builder to resolve the name at compile time. The builder determines the
number of the row assigned to the name and resolves the lookup for ResourceC

getResourceByName ( ” ResourceC ” )

to the following (assumed the values from the example):

r e s o u r c e i n d e x [ r e s o u r c e l o o k u p m a t r i x [ 2 ] [ c u r r e n t d o m a i n ] ]

This first determines the OSEK identifier in the lookup matrix and then acquires a refer-
ence to the SO from the Resource index, or null if the Resource is not accessible from
the domain. As an optimization, in cases where the lookup can be resolved at compile
time, which is the case for global Resources, that are not shadowed in any domain (as
ResourceB in the example), the method call

getResourceByName ( ” ResourceB ” )

is resolved to a direct lookup in the resource index:

r e s o u r c e i n d e x [ 1 ]

As an alternate solution, the lookup matrix could directly contain the references,
which would save the additional lookup in the resource index at the cost of a larger
lookup matrix.
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5.2.4 Related Issues
Global Objects violate the domain isolation criterion, that a reference to the same object
never crosses a domain boundary. This is, however, not a problem in the case of the
Alarm and Resource SOs, as these

• do not contain any reference fields, and subclasses of the Alarm and Resource
classes must not be created. They can therefore not be used as a container to
transport references from one domain to another.

• are immortal objects and not subject to garbage collection. If they were, they
would possibly be reclaimed by the garbage collector, that only determines the
reachability within one domain.

The first of the above conditions is not satisfied by Task SOs, because subclasses of
the Task class can be created and these SOs could therefore be abused to transport
references across a domain boundary. Therefore, Tasks cannot be configured globally
and always have to belong to a domain.

The data structures are only created if they are required, e.g. if Resources are not
used in the system, the Resource index and the Resource lookup matrix are not created.
This reduces the size of the KESO system.

5.3 Task Management
OSEK allows to query the identifier of the current Task. Similar to the current domain,
a reference to the SO of the current Task is stored in a global field current task.

Besides the OSEK identifier of a Task, the associated SO additionally contains the
domain identifier of the domain that the Task was configured in (field domain id) and
the identifier of the domain that the Task is currently running in, the effective domain
(field e domain id). The configured domain and the effective domain may differ in
case the Task makes use of portal services, see section 5.3.1.

Upon a Task switch, the current Task and the current domain need to be set for the
scheduled Task. They also need to be updated for interrupt service routines and Alarm
callback functions, but these two are described in section 5.4 and section 5.7. Upon
a Task switch, immediately before scheduling the new Task, the PreTaskHook() is
invoked by the OSEK system. KESO uses this hook to perform the update operations
for the current Task and the current domain. First, the OSEK ID of the current Task is
acquired using the GetTaskID() OSEK service. The Task ID is then used to lookup
a reference to the SO of the Task in the Task index. This reference is set as the current
Task, if the effective domain equals the configured domain of the Task, or to null,
which represents the INVALID TASK on the Java level. The effective domain of the
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current Task is set as the current domain. This is sufficient to setup the proper runtime
environment after each rescheduling.

5.3.1 Implementation of Portals
KESO portals can be used to allow a Task the execution of code within another domain,
the service domain, via a limited set of portal services offered by that domain.

From a conceptional perspective, one would then assume, that the code executed in
the other domain is executed by a service Task belonging to that domain. This approach
is, however, difficult to implement on an OSEK system. The service Task would have
to be configured with a fixed priority. Switching from the Task invoking the portal to
the service Task could only be handled by close-by or equal priorities combined with
a blocking of the invoking Task, which is only possible using Events. However, the
same service can be used by multiple Tasks, and for each Task the service should be
executed with the priority of the invoking Task. This could only be solved by adding
a dedicated service Task with an appropriate priority for each Task that could possibly
use the service, along with Events for each pairing. This is not a feasible solution.

Instead, no service Tasks are created at all and the portal call is actually handled
by the invoking OSEK Task, which is—for the duration of the portal call—migrated to
the service domain. Therefore, for each Task, the configured domain and the effective
domain can be distinguished, where the former represents the domain that the Task was
assigned to in the configuration, and the latter represents the domain that the Task is
currently running in. In case of a portal call, the effective domain is set to the domain
identifier of the service domain. This effectively changes the runtime environment of
the Task to the service domain, i.e. the Tasks have access to the SOs of the service
domain through the name service, to the static variables of the service domain, and
allocate objects from the heap of the service domain.

While a Task is executing code in a service domain, the GetTaskID() service al-
ways returns INVALID TASK. This is necessary, because SOs must not cross a domain
boundary, not even in copied form (see section 5.8).

Figure 5.2 shows an example for a Task (TaskA) that uses portal services of another
domain. The configured domain of TaskA is DomainA with the identifier 0. The Task
first uses a portal of DomainB, and while executing code in DomainB invokes a portal
of its configured domain. The changes of the effective domain identifier in the SO of
the Task as well as the respective values of the current Task and the current domain
are shown in the figure. Notably, when a Task migrates back to its configured domain
through another portal call as the example Task, the current Task contains a valid ref-
erence to the SO of the Task, even though the presence in the configured domain is
through the use of a portal.

An important aspect in this context is the layout of the Task stacks used by KESO,
which is also illustrated in figure 5.2. The stack of a Task that migrates among domains
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Figure 5.2: Portal implementation and Layout of a KESO Task Stack
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using portal calls can be divided into several stack chunks, each of which can be assigned
a domain. A stack chunk represents a part of the stack of a Task that belongs to methods
executed in a specific domain. Each object reference present on such a chunk either
refers to an object on the heap of the respective domain or to a SO. This is important
to the garbage collector, that needs to scan all references of a domain (chapter 6), and
therefore must find the relevant chunks of the stack associated with the scanned domain.

Each stack chunk is described by a structure that contains the domain identifier of
the chunk’s domain, a portal pointer to the next chunk in case the Task migrated to
another domain through a portal, or NULL for the last chunk in the chain, and a pointer
to the head of a linked list of references (LLREF). The stack index contains the address
of the structure describing the last3 chunk on the stack for each Task, or NULL if the
stack is empty. Thus, one can traverse the different chunks on the stack by starting
with the address in the stack index, and successively following the portal pointers of the
chunk describing structures until a NULL value designates the first chunk.

Within a chunk, a garbage collector needs to find all object references stored in
local variables of the stack frames of each method. To render this possible, a linked list
of references contains all the references stored in the stack frames of a chunk. Each
stack frame contains one element of the LLREF, that is structured as follows: first, all
local reference variables of the method are combined in an array. Immediately after
the last reference, a pointer to the reference array of the next stack frame is stored, or
the special value KESO EOLL that designates the last stack frame of the chunk. This
pointer is labeled framelink in the figure. KESO EOLL can be any value, that is not a
valid value for a reference field, and is currently defined as -1. The remaining non-
reference local variables of the method are stored after the framelink pointer and are
not of interest to a garbage collector. The describing structure of a chunk contains the
pointer to the reference array of the first stack frame of the chunk, or NULL if there are
no stack frames on the chunk.

The maintenance of the LLREF adds some overhead to each method invocation.
The garbage collector described in chapter 6 only runs if no other Tasks in the system
are in the ready state. This means, whenever the garbage collector Task is running,
the other Tasks are either in the Suspended state, in which the stack is empty, or the
Waiting state. The LLREF therefore only needs to be created for blocking methods. A
method is considered a blocking method, if the method itself or—recursively—any of
the methods invoked by this method use the WaitEvent() system service. This anal-
ysis is performed by the builder and each method is assigned an attribute that specifies
if the method is a blocking method. The additional code required to link and unlink
stack frames of subsequently invoked methods is only generated for blocking meth-

3It is easier to implement to always link to the last chunk of the stack rather than the first one from
the stack index. This way, when adding a new chunk to the stack, the address of the previous chunk can
always be determined from the stack index.
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ods. If, for instance, a blocking method invokes a non-blocking method, the LLREF
is built to the level of the blocking method, but not further on the code path of the
non-blocking method. This analysis is performed across portal calls, i.e. a new chunk
with the corresponding describing structure is only created for portal calls that use the
WaitEvent() service on any of the possible code paths.

5.3.2 Task-Related System Services
A class TaskService provides the Task-related system services, that allow the acti-
vation of other Tasks, the termination of the current Task and the explicit triggering of a
reschedule for non-preemptible Tasks. Furthermore, the current Task and the state of a
Task may be queried.

All services, that require a Task identifier to be passed on the C level, require a
Task SO on the Java level. Therefore, these services are restricted to Tasks within the
same domain4. The following summarizes in short how the different services were
implemented:

• GetTaskID(): A call to this service is replaced at the call-side with the global
current Task field.

• TerminateTask() and Schedule(): These services are replaced at the
call-side with calls to the respective OSEK services, without any additional over-
head. For TerminateTask(), additional code is inserted to clear the stack by
storing NULL in the appropriate field of the stack index.

• ActivateTask() and ChainTask(): Both of these services require a single
Task SO as parameter. In order to call the respective OSEK services, the OSEK
identifier has to be read from the Task object, and a null reference check has
to be added. The necessary wrapper code is inserted in the body of the magic
method (see figure 5.3)

• GetTaskState(): This service allows to query the state of a Task and expects
a Task SO as parameter. The method body is replaced similar as above, however,
the state of the queried Task is returned as an int to the application. The vari-
ous values are defined as constant values of the Task class, e.g. the int value
associated with the Ready state can be accessed via the static field Task.READY.

All of the above services, except GetTaskState() and GetTaskID(), pass the
state of the called OSEK service on. The different state values are defined as constant

4A Task can nevertheless use the Task services on a Task in a different domain through the use of a
portal, however, the application developer has to explicitly enable it in the design of the user application
by providing a portal service.
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i n t a c t i v a t e T a s k ( T a s k C l a s s t ∗ taskSO ) {
i f ( taskSO == NULL) {

t h r o w N u l l P o i n t e r E x c e p t i o n ( ) ;
}

re turn A c t i v a t e T a s k ( taskSO−> t a s k i d e n t i f i e r ) ;
}

Figure 5.3: ActivateTask() Code Example. The above code fraction shows the
code generated for the magic method TaskService.activateTask(). The ref-
erence to the Task SO is checked for null. Afterwards, the OSEK identifier of the
Task is read from the SO and passed to the OSEK system service. The return state of
the OSEK service is passed through to the Java application. Similar code is created for
all KESO system service wrapper functions that expect a SO as parameter.

values of the TaskService class with the same name as the corresponding OSEK
macros, e.g. TaskService.E OK represents the state returned upon a successful
service invocation.

5.3.3 Wrapper Functions

OSEK specifies the TASK macro to define the initial function of a Task. In KESO, the
OSEK standard parameters for the Task configuration are extended by the parameters
MainClass and MainMethod, that specify the initial class and method of a Task.
The initial class must be a subclass of the system class Task. The builder creates an
instance of that class as SO for the Task, and the initial method of the Task, in the
remainder of this thesis also referred to as the launch() method of a Task, is passed
a reference to this object as the this reference. The launch() method should not
return anything and must not expect any parameters.

The constructors of the Task objects are called from the StartupHook() after
initializing the KESO runtime data structures. The application developer must obey the
restricted set of system services that may be used in the StartupHook() as specified
in the OSEK specification [OSE05]. In particular, the GetTaskID() service must not
be used from the StartupHook().

The builder creates a wrapper method using the TASK macro for each Task, that
invokes the user specified launch() method. Additionally, the builder adds code to
initialize the describing structure for the first chunk on the stack and to store the address
of that structure in the stack index, if the launch() method is a blocking method.
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5.3.4 Issues of the Object Abstraction

Since the application developer has to create subclasses of the Task class, there is no
Java language construct to prohibit the arbitrary creation of instances of that subclass.
These objects can, however, be used with the system services, which is not desired. To
solve this problem, the constructor of the Task class initializes the internal identifier
with the OSEK INVALID TASK identifier. The Task SOs created legally by the builder
have the correct task identifier inserted in the StartupHook() after invoking the
constructors.

Because the INVALID TASK identifier is known to the OSEK OS, invoking OSEK
services with this identifier does not pose any problems, and the services will fail with
an appropriate return state.

5.4 Interrupt Handling

OSEK distinguishes two different types of interrupt service routines (ISR): category 1
interrupt service routines (ISR1) bypass the OSEK scheduler and are directly executed
on the stack of the currently running Task. ISR1 must not use any system services,
with the exception of the interrupt-related system services. Category 2 interrupt service
routines (ISR2) in contrast are scheduled by the OSEK scheduler and provided with an
ISR frame on the stack. Upon leaving an ISR2 rescheduling takes place.

ISRs are defined in the OIL configuration file. The OSEK OS takes charge of regis-
tering the handlers in the interrupt vector table and enables the interrupts. OSEK defines
macros ISR and ISR1 for ISR2 and ISR1 to define the ISRs in C code.

For KESO, ISRs are configured with the same options as they are configured in
an OIL configuration. Additionally, for each ISR a HandlerClass and Handler-
Method needs to be defined, that name class and signature of the Java method that
ought to be installed as the service routine. An ISR handler method must be a static
method with the following signature:

p u b l i c s t a t i c vo id hand le rMethod ( ) ;

An ISR is either assigned a domain or defined globally to specify the execution envi-
ronment of the ISR. An ISR, that is assigned a domain, runs within that domain when
executed, i.e. it has access to the system objects and static fields of that domain. Glob-
ally defined ISRs run in DomainZero, and are only able to access global system objects.

To switch to the proper execution environment upon entering an ISR, a wrapper
routine is added to each ISR that uses the appropriate OSEK macro and then invokes
the user specified handler method (figure 5.4). For ISR1, a backup of the current domain
is made. ISR2 do not require the restoration of the current domain or the current Task,
because a rescheduling takes place when the ISR2 is left and the PreTaskHook() is
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ISR ( i s r a s c 0 r x ) {
unsigned char db = c u r r e n t d o m a i n ; /∗ ISR1 o n l y ∗ /
c u r r e n t d o m a i n = 0 ; /∗ 0 == Domain o f ISR ∗ /

i f ( c u r r e n t d o m a i n != 0 ) { /∗ ISR2 o n l y ∗ /
c u r r e n t t a s k = NULL; /∗ ISR2 o n l y ∗ /

}
rxIRQHandler ( ) ; /∗ u s e r s p e c i f i e d h a n d l e r ∗ /

c u r r e n t d o m a i n = db ; /∗ ISR1 o n l y ∗ /
}

Figure 5.4: ISR wrapper function. Source lines marked with ISR1 or ISR2 only apply
to wrapper routines for category 1 or respectively category 2 ISRs. isr asc0 rx
is the OSEK identifier of the ISR as configured in the system configuration file,
rxIRQHandler() is the handler method specified by the application developers.

invoked, that sets the correct values for both. The domain of the ISR is set as the current
domain afterwards for any ISR category.

For category 2 ISRs, the current Task is additionally set to INVALID TASK, if the
ISR2 belongs to a different domain than the currently running Task. This is necessary
because otherwise a Task object could migrate to a different domain through an ISR2.
For ISR1, this is not required, because ISR1 must not use the GetTaskID() system
service.

The user defined handler routine is then invoked and, for ISR1, the saved value of
the current domain is restored before leaving the ISR1.

The OSEK system services related to interrupt handling allow the disabling and
enabling of interrupts. These are provided as static methods by a class Interrupt-
Service. Calls to these methods are intercepted at the call-side and replaced with calls
to the OSEK services. These services may therefore be invoked without any overhead.

5.5 Event Mechanism

The Event mechanism allows extended Tasks to enter the Waiting state until one of the
Events the Task is waiting for is set. This is also the only way that an OSEK Task can
possibly block during its execution, which is an important aspect for garbage collection.

An Event is represented by its mask. The mask of an Event needs to contain a bit
unique for each Task, that accesses the Event, because bit operations can be used to
create masks containing multiple Events. It is possible, that two Events use the same
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mask, if there is no Task in the system that accesses both of the Events. The mask of an
Event is either configured manually in the configuration file or automatically generated
by the OSEK configurator. OSEK specifies, that the mask of each Event is accessible
via the identifier of the Event in the code, and the identifiers can be used with any bit
operation.

In KESO, Events are also represented by their mask. There is no need to create
an object abstraction for Events, since the setting and querying of Events for a Task is
already limited by the requirement for a Task SO. Furthermore, an object abstraction
would add a significant overhead to provide the creation of masks using bit operations.
The mask of an Event is provided as a constant value with the name of the Event identi-
fier in the class Events. This class is automatically generated from the information of
the KESO configuration file. The builder computes an appropriate Event mask for each
Event where automatic generation of the mask is configured, and the generated OIL file
contains the computed values of the mask. This prevents, that the OSEK configurator
computes different masks than the KESO builder.

The Event-related services are provided by the EventService class and imple-
mented as follows:

• ClearEvent() and WaitEvent() both expect an Event mask as parameter.
The mask can be constructed using the identifiers provided by the Events class
and bit operations. Calls to these methods are replaced at the call-side with calls
to the corresponding OSEK services.

• SetEvent() and GetEvent() are passed the SO of the Task that the service
is to be performed on. SetEvent() additionally expects an Event mask. The
method body of these services is replaced, whereby additional code to check the
reference to the Task SO for null and to extract the Task identifier from the SO
is added, similar to the wrapper code created for the Task services.

5.6 Resource Management

Resources allow the coordination of concurrent accesses of several Tasks to shared re-
sources. KESO supports both, domain local Resources for the coordination of Tasks
within the same domain and global Resources for the inter domain coordination of
Tasks. The implementation of the object abstraction for Resource has already been
extensively described in section 5.2.

There are only two system services related to Resource management, the Get-
Resource() service, that allows to occupy an OSEK Resource, and the Release-
Resource() service, that allows to release an occupied Resource. The reader is as-
sumed to be familiar with the ceiling protocol used by OSEK systems in conjunction
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with the Resource management, that plays a role in the synchronization of the garbage
collector implemented in chapter 6.

Both of the above services expect a Resource identifier on the C level and require a
Resource SO on the Java level. Unlike Task objects, Resource SOs cannot be created
by the user application. A Resource SO therefore always contains a valid Resource
identifier.

Additional code that checks the SO reference for null and extracts the Resource
identifier from the SO, needs to be inserted in the body of the magic methods, similar to
the wrapper code added for the Task services.

5.7 Alarms and Counters

OSEK provides a two-stage concept for processing recurring events, Alarms based on
Counters.

5.7.1 Counters

A Counter is represented by its value that is measured in ticks. A Counter can either
be increased by hardware or by software. The OSEK specification does not further
specify this, but requires that OSEK implementations provide at least one Counter that
is derived from a hardware or software timer. Alarms are based on a Counter and expire
when the Counter reaches a predefined counter value. In reaction to the expiration of
an Alarm, a Task can be activated, an Event for a Task can be set or an alarm callback
routine can be invoked. Multiple Alarms can be based on the same Counter.

Since the number of available timers, that a Counter can be based on, is usually
very limited, Counters are only configured globally in KESO. OSEK associates a few
constants to each Counter that are accessible via macros, such as the maximum al-
lowed value of a Counter. On the Java level, these are provided as constants of the
Counters class. The constants have the same name as the macros provided by OSEK,
e.g. the maximum allowed value for the Counter with the identifier c1 is available as
Counters.OSMAXALLOWEDVALUE c1.

5.7.2 Alarms

Alarms, on the other hand, can be configured as both, global and domain local objects.
Object abstractions were introduced for Alarms as described in section 5.2. Multiple
Alarms can use the same Counter, even if the Alarms are configured in different do-
mains.
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Scope of an Alarm

The scope of an Alarm restricts the use of the system services (e.g. a domain local
Alarm can only be canceled by a Task within the same domain) and limits the reactions
to an Alarm:

• Activate a Task: This action can only activate Tasks within the same domain as
the Alarm. Global Alarms cannot use this action.

• Set an Event for a Task: The Event can only be set for Tasks within the same
domain as the Alarm. Global Alarms cannot use this action.

• Invoke a callback function: This is the only action possible for global Alarms.
The callback function is executed in the domain of the Alarm, or DomainZero for
global Alarms.

Wrapper Function for Alarm Callback Functions

OSEK specifies, that Alarm callback functions must be defined using the ALARMCALL-
BACK macro. Very similar to ISRs, a wrapper function is created by the OSEK builder
that uses the macro and calls the user defined callback function. The callback function is
specified in the configuration file by the class and the signature of the callback method.
The callback method must be static and can neither have parameters nor a return value.

The wrapper code created around the invocation of the user specified alarm callback
method is the same as for an ISR1, i.e. a backup of the current domain is taken and the
current domain is set to the domain of the Alarm associated with the callback function
before invoking the user defined callback method, and the saved domain is restored
afterwards.

Alarm Services

The Alarm-related system services are provided by the AlarmService class on the
Java level. The Alarm services allow to query the properties of the underlying counter
of an Alarm using the GetAlarmBase() service. A class AlarmBase has been
implemented on the Java level that contains all the elements of the AlarmBaseType
structure on the C level specified by the OSEK specification and can be used in the same
manner.

All functions that expect an Alarm identifier as parameter on the C level require
an Alarm SO on the Java level. Wrapper code has been added in these functions that
extracts the OSEK identifier of the SO to invoke the OSEK service and checks if the
reference is null, similar to the wrapper code created for the Task services. Contrary
to Task objects, Alarm SOs cannot be created by the user application. Thus, an Alarm
SO always contains a valid Alarm identifier.
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5.8 Problems Imposed by Portals
When passing object parameters to a portal, the referenced objects, including the transi-
tive closure, are copied to the service domain. The object copies are allocated from the
heap of the service domain.

This approach causes some problems when system objects are passed to a portal
call, as these are used to restrict the access to the services. When accessing an OSEK
service, a copy of a system object is of the same value as the original object. Therefore,
portal calls would allow system objects to spread across domains and escape their scope.

To solve this problem, a marker interface NonCopyable was introduced to mark
classes that are not to be copied across portal calls. Instead, when a NonCopyable
object is passed to a portal call, it is replaced by a null reference. The system object
classes Alarm, Resource and Task implement this interface. Furthermore, the in-
terface may be implemented by classes of the user application to prevent instances to be
copied across portal calls.



Chapter 6

Memory Management

KESO was designed to allow the coexistence of different heap implementations. Each
domain in a KESO system can choose a heap implementation for managing its heap.

Besides the heap implementation developed in this work, KESO already contained
a very simple heap implementation, that does not provide any garbage collection. The
advantage of this heap implementation is the short, constant and thus easily predictable
time required for the allocation of an object. However, since there is no way of releas-
ing the memory of objects that are not required anymore, the memory requirements of
the application must be exactly predictable and must not grow with the runtime of the
application. This heap implementation is suitable for hard real-time systems where no
overhead for garbage collection can be tolerated.

The heap implementation developed in this work features a precise, incremental,
tracing, non-moving mark-and-sweep garbage collector (GC). The reader is supposed
to be familiar with garbage collection techniques, as they are not covered in this work.
A survey on garbage collection techniques on uniprocessors is available in [Wil92].
This heap implementation was named the IdleRoundRobin (IRR) heap implementation,
because—from the viewing point of the application developer—the garbage collection
is performed at the idle time of the system, and because a single OSEK Task, the
garbage collector Task (GCT), manages multiple domains in a manner similar to Round
Robin (see section 6.6.1, Domain Selection). The OSEK Task of the garbage collector
is configured with the very lowest priority of all Tasks in the system, and is therefore
only active when there is no other Task in the system in the Ready state, i.e. all other
Tasks are either in the Suspended state or the Waiting state. This is a very advantageous
point in time for garbage collection, because the stacks of Tasks in the Suspended state
are empty, and therefore the effort required to scan the root set of reachable objects is
expected to be minimal at this point.

The application developers have to ensure, that there is enough time for the garbage
collector to run, by integrating the garbage collector in the design process of the whole
system just as any other user application. This approach can be termed cooperative
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garbage collection, as the cooperation of the application developer is required.
As an incremental garbage collector, the GC process can be interrupted at any stage.

To ensure a low latency on interrupts (i.e. external events), which is crucial on real-
time systems, the garbage collector was designed in a way, that restricts all critical
sections1 to constant complexity. The worst case reaction time to an incoming interrupt
is therefore low and easily predictable.

The remainder of this chapter is structured as follows: At first, the data structures of
the IRR heap implementation is described in section 6.1, followed by a description of
the coloring mechanism used by the IRR heap in section 6.2. Then, the implementation
of the free memory list and the special list processing function listwalker(), that
allows traversal of the list with all critical sections being of O(1) (constant) complexity,
is discussed (section 6.3). The listwalker() function is the base of both, the alloca-
tor function (section 6.4) and the garbage collector (section 6.5). The discussion of the
garbage collector poses the main part of the chapter. The different phases of a garbage
collector cycle are explained in section 6.6. An interruption of the garbage collector
during the scan phase imposes particular problems, that are identified and solved in sec-
tion 6.7. Finally, the overhead and interrupt latency caused by the garbage collector are
presented in section 6.8.

6.1 Data Structures of the IdleRoundRobin Heap
This section describes the data structures deployed by the IRR heap in order to estab-
lish fundamental knowledge required to understand the allocator and garbage collector
implementations. The figures used for illustration also introduce the figure conventions
used later on in the more sophisticated illustrations.

6.1.1 Slot Division and Bitmap
As every heap in the KESO system, an IRR heap is of a statically configured size that
cannot be changed at runtime. During the scan phase the garbage collector needs to
keep track of the parts of the domain heap that are used by living2 objects. The garbage
collector uses a bitmap to mark the occupied memory by setting corresponding bits in
the bitmap. Allocating one bit in the bitmap for each byte of the heap would be wasteful,
since each object has a minimum size due to the object header, which is currently four
bytes. The heap is therefore divided in slots of a fixed, configurable length, the slot size.
Each object occupies one or more consecutive slots on the heap. A slot is never shared

1The term critical section is used throughout this chapter to refer to a section of code, that is protected
by a blockade of interrupts when executed, i.e. interrupts are disabled straight before entering the critical
section of code, and immediately reactivated after leaving the critical section of code.

2An object is said to be living if it is still reachable by the user applications.
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(a) Example of an IRR-heap with embedded free memory list

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 00 0 0 0 0 0

(b) Empty bitmap with one bit associated with each slot of the heap

Figure 6.1: Example of an IdleRoundRobin heap with the associated bitmap

among objects, so there is a certain clipping in cases where objects do only partially
occupy a slot.

Figure 6.1(a) shows an example heap with the corresponding bitmap in figure 6.1(b).

The slot size is configurable for each domain that uses the IRR heap implementation,
however, there are some restrictions. First, the slot size always needs to be a multiple
of the word size of the underlying hardware, i.e. a multiple of 4 bytes on the 32-bit
Tricore architecture, because an object always needs to be word-aligned in order to
address word-sized object fields like references. Second, the size of the object header
(currently 4 bytes) sets a minimum limit for the reasonable slot size, as it determines the
minimum size of any object. Third, the header of a free block in the free memory list
(see section 6.1.2), which is 8 bytes on the used 32-bit Tricore architecture, is stored in
the first slot of a first memory block, thus a slot must be large enough to accommodate
the entire free block header. The minimum size for a slot in our test configuration is
thus limited by the latter to 8 bytes.

To keep the used memory as low as possible the slot size must be carefully selected.
The smaller the slot size, the larger the size of the bitmap. The larger the slot size, the
higher the clipping of objects that do only partially occupy their last slot.

There is only one bitmap shared among all domains using the IRR heap, the size
of which is determined by the heap with the most slots. The sharing of the bitmap is
possible, because the garbage collector never processes multiple domains at the same
time. This saves memory compared to a separate bitmap for each heap.
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6.1.2 Free Memory List

The IRR heap implementation uses a linked list to keep track of the free memory on the
domain heap, referred to as the free memory list in the following. The free memory list
consists of list elements, each containing meta information on a block of contiguous free
memory. A block of contiguous free memory consists of consecutive unused slots on the
domain heap, and a block’s size is therefore always a multiple of the slot size. The term
free memory block, or in this context also just block in short, refers to the free memory
block as a whole, composed of consecutive free slots, while the term list element is used
to refer to the data structure containing meta data of a block such as its size.

The list element is stored in the first slot of the block it describes. This way, no extra
memory is consumed by the free memory list. The size of a list element therefore sets
the lower limit for the size of a slot to 8 bytes on the Tricore architecture (as discussed
above in section 6.1.1). The address of the first list element is stored in the domain
descriptor.

The meta data contained within a list element are the 16-bit size of the associated
block, expressed as the count of its slots, the colorbit initially assigned to newly
allocated objects from this block, the locking mode of the element, each of which is
assigned an 8-bit portion of the element, and a pointer to the next element, that has a
size of 32 bits on the Tricore architecture.

The 16-bit unsigned integer, the size is stored in, limits the maximum size of a free
memory block to 65536 slots. In the current implementation, this is also the limit for
the total size of the heap, since an empty heap is described by a single list element. The
implementation could, however, be extended to use multiple list elements for describing
memory blocks exceeding this limit.

The locking mode is explained along with the interrupt friendly list implementation
in section 6.3.

The pointer to the next list element contains the address of the list element following
the current one in the list, or the special value KESO EOFML, that equals 0xffffffff
(on a 32-bit architecture) to denote the end of the list. The next pointer must never point
to a list element at a lower address than the current one, i.e. the list elements are sorted
and the list is always processed from the element at the lowest address to the element at
the highest address. This is a prerequisite for some algorithms deployed in the garbage
collector. It should be noted, that the special value used to mark the end of the list is
always considered a higher address in a pointer comparison with the address of any list
element.

An example for a partially occupied heap and an embedded free memory list man-
aging the unused parts of the heap is shown in figure 6.1(a).
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6.1.3 Working Stack for the GC Scanning Phase

The working stack is an array of object references that is used by the garbage collector
during the scanning phase to store references to objects that still need to be scanned.
The stack pointer is an index into the working stack array and contains the index of the
next unused array element. Thus, pushing to the stack is a post-increment operation on
the stack pointer while popping references from the stack is a pre-decrement operation.
The stack is empty when the stack pointer is 0.

The maximum size of the working stack has to be predictable, because the stack
must not overflow during the scanning. The scan algorithm implemented in the IRR-
GC guarantees, that an object reference is never present on the working stack multiple
times. Thus, the worst-case size of the stack can easily be calculated as the maximum
number of objects, that can be allocated from the heap, plus the number of immortal
objects that exist in the system.

The maximum number of objects, that can be allocated from an IRR heap, equals
the number of slots on the heap. Immortal objects are allocated by the KESO builder,
thus the number of immortal objects is known at compile time.

To further pursue the idea of cooperative garbage collection, the worst case size of
the stack could be reduced with hints by the application developer, who could possibly
provide a closer estimate on the maximum number of reachable objects in the system at
the time of garbage collection.

6.1.4 Managed Domains Array

As aforementioned, the IRR heap implementation creates a single Task for garbage
collection that manages all domains deploying this heap type. The managed domains
array contains the domain identifiers of all domains managed by the GC and is used by
the domain selector function to determine the domain for a garbage collection cycle.

6.1.5 Garbage Collector Domain

The garbage collector of this heap can be interrupted during a garbage collection cy-
cle. During certain phases of the garbage collection, it is important for the interrupting
code to know, if a garbage collection is currently being performed on the domain the
code runs in. This is explained in detail in section 6.7, where the interruptibility of the
garbage collector is discussed. The garbage collector domain (GC domain) contains the
identifier of the domain, that the IRR-GC is currently operating on, or the special iden-
tifier INVALID DOMAIN, if the garbage collector is currently not running in a critical
phase.
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6.2 Coloring of Objects
During the scan phase, the garbage collector performs a coloring of objects according
to the tricolor marking scheme [Bak92]. The color field of an object header (sec-
tion 4.3.1) is used to store the color of an object. Bit 0 of the color byte is always set
to 1. This allows to distinguish the object header from object references, in which the
least significant bit is always cleared because of the alignment of the object header3.

To store the color, only one bit in the color byte of the object header is actually
used, indicating whether the object is marked as black, gray or white. The distinction
between black and gray is made by the objects presence on the working stack of the
garbage collector. If the object is present on the working stack, it has not been scanned
yet and its color corresponds to gray, else the object is not scanned in this cycle and the
color corresponds to black4.

After each garbage collector cycle, the color of all objects that survived the cycle
needs to be reset to white for the next cycle. To achieve this with the least necessary
effort, the meaning of the color bit is simply inverted after each garbage collection
cycle. The domain descriptor of each domain, that uses the IRR heap, contains a field
that stores the current value for colored (black, gray) objects.

6.3 Interrupt Friendly List Implementation
A crucial aspect of embedded real-time operating systems is minimizing the interrupt
latency, which determines the worst-case reaction time to external events. For all op-
erations that require a traversal of the free memory list, the IRR heap implementation
provides a generic and reentrant function listwalker(), that allows traversing the
list and applying a callback function to each list element. All critical sections are of
constant complexity. The interrupt latency is thereby kept low and predictable.

To achieve this, each list element contains an 8-bit locking field, of which only one
bit is actually used. The semantics of this bit is, that as long as it is set, the list element
must not be removed from the list. It may, however, be resized. The locking bit is also
called the mode of the list element in the following, and always has a value of either 0
(unlocked) or 1 (locked), indicating whether the element may be removed from the list
or not.

The listwalker() function performs a single traversal of the list, calling a spec-
ified callback function for each list element. The callback function may cause the ter-
mination of the list traversal if no further processing is required.

3This is only true for architectures with an address capacity of 16 bits or higher. For 8-bit architectures,
a different solution would have to be found.

4An object is either black because it has already been scanned in the garbage collector cycle or because
it was allocated black during a garbage collector cycle.
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The implementation of the listwalker() function is shown in figure 6.2, where
domain t and listel t are the types of a domain descriptor structure and a list
element structure respectively. The callback function is of the type callback fct t.
The function was slightly simplified by removing the special handling necessary for the
first element.

6.3.1 Interface to the Caller
The listwalker() is passed a pointer to the domain descriptor structure in the pa-
rameter domaindesc, which contains the beginning of the free memory list. This
pointer is also handed through to the callback function. The parameter cbparam can
be used by the application to pass an optional parameter to the callback function and
is not used by the listwalker() itself. The parameter callback contains the ad-
dress of the callback function. The callback function needs to conform to the interface
described in section 6.3.2.

6.3.2 Interface to the Callback Function
The callback function is invoked for each list element in the free memory list and finally
with the special value KESO EOFML. Besides the addresses of the domain descriptor
structure and the optional parameter cbparam, it is passed the address of the cur-
rently processed list element, the location of the pointer linking to the current element
(prevNextPointer), which is either the next pointer of the preceding list element
or the head pointer in the domain descriptor structure for the first list element, and the
original locking mode of the current element. The callback function may cancel the list
traversal at any time by returning a 0 value, e.g. when the allocator has found a suitable
memory block to satisfy the request. If further processing of the list is required, a value
of 1 has to be returned.

The listwalker() takes charge of acquiring and releasing the locks on the ele-
ments. If the structure of the list is changed, however, the mode of the current element
cannot safely be restored by the listwalker(). An allocator might have removed
the current element and handed it to the application for instance—in that case, restoring
the locking mode would corrupt the memory occupied by an object of the application.
The listwalker() detects a change to the list structure by checking if the linking
pointer still refers to the current element. If this is not the case, the callback function
needs to restore the original locking mode, if the element is still a member of the free
memory list, which is e.g. the case when new elements are inserted by the garbage
collector between the previous and the current element.

Interrupts are enabled while calling the callback function, however, it is guaranteed,
that the current element, as well as the location with the pointer referring to the current
element, is not removed asynchronously while the callback function processes it. If
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void l i s t w a l k e r ( d o m a i n t ∗ domaindesc ,
c a l l b a c k f c t t c a l l b a c k ,
void ∗ cbparam )

{
l i s t e l t ∗∗ p r e v N e x t P o i n t e r ;
l i s t e l t ∗ curElement , ∗ prevE lemen t ;
i n t c b r e t u r n =1;
unsigned char prevmode =0 , mode ;

/∗ a d d r e s s o f head p o i n t e r o f f r e e memory l i s t ∗ /
p r e v N e x t P o i n t e r = &( domain−>f reemem head ) ;

whi le ( c b r e t u r n != 0 ) {
D i s a b l e A l l I n t e r r u p t s ( ) ;
c u r E l e m e n t = ( l i s t e l t ∗ ) ∗ p r e v N e x t P o i n t e r ;

i f ( c u r E l e m e n t == KESO EOFML ) {
/∗ end o f t h e f r e e memory l i s t ∗ /
E n a b l e A l l I n t e r r u p t s ( ) ;
c a l l b a c k ( curElement , 1 , p r e v N e x t P o i n t e r ,

domain , cbparam ) ;
break ;

}

mode = curElement−>mode ; /∗ backup o r i g i n a l mode ∗ /
curElement−>mode = mode | 1 ; /∗ l o c k e l e m e n t ∗ /
E n a b l e A l l I n t e r r u p t s ( ) ;

c b r e t u r n = c a l l b a c k ( curElement , mode ,
p r e v N e x t P o i n t e r ,
domain , cbparam ) ;

/∗ advance t o n e x t e l e m e n t ∗ /
i f ( ∗ p r e v N e x t P o i n t e r == c u r E l e m e n t ) {

prevElement−>mode = prevmode ;
p revE lemen t = c u r E l e m e n t ;
p r e v N e x t P o i n t e r = &curElement−>n e x t ;
prevmode = mode ;

}
}

/∗ r e s t o r e mode o f p r e v i o u s e l e m e n t ∗ /
prevElement−>mode = prevmode ;

}

Figure 6.2: Implementation of the listwalker() (simplified)
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the callback function performs any critical operations on the list, however, it has to
synchronize the critical operations by itself. This topic is covered with the description
of the particular operations in section 6.4 for the allocator and section 6.6 for the various
phases of the garbage collector.

6.3.3 Synchronization of Recursive Invocations
Because the list walking operation can be interrupted by higher priority allocator func-
tions that change the structure of the list, appropriate measures have to be taken to syn-
chronize overlapping invocations of the listwalker(). The two possible scenarios
are

1. An allocator function is interrupted by another allocator function invoked by a
higher priority OSEK Task.

2. The garbage collector is interrupted by an allocator function invoked by a higher
priority OSEK Task.

It is impossible for the garbage collector to interrupt an allocator function, because
the GCT always runs on the very lowest priority5. The only structural change that
an allocator function can possibly do to the free memory list is the removal of a free
memory block. The insertion of new blocks and the merging of close-by blocks is only
performed in the garbage collector.

During a run of the listwalker(), neither the current element nor the memory
location of the pointer linking to the current element may be removed from the list (Fig-
ure 6.3). The straightforward solution to avoid this problem is the disabling of interrupts
for the entire run of the listwalker(). This critical section is, however, at least of a
complexity linear to the number of list elements6, causing a possibly unacceptable high
interrupt latency. To avoid the problem, a locking mechanism was implemented that
allows the execution of the callback functions with interrupts enabled.

One bit in the header of a free block is used to protect list elements from being
removed. During a list traversal, the element that is currently being processed needs
to be protected and—if the current element is not the first element—also the previous
element. This is necessary, because the pointer linking to the current element needs to
be updated upon removal of the element. If the previous element was removed in the
meantime, the operation cannot be performed anymore (Figure 6.4).

The critical operation that needs to be performed by the listwalker() is ad-
vancing to the next list element, consisting of the following steps:

5An OSEK Task can only overlap the execution of a higher priority OSEK Task, if the latter is in the
Waiting state. Because an allocator function never enters the Waiting state, this scenario cannot happen.

6Because the interrupts would also be disabled when running the callback function, the complexity
might be higher, depending on the complexity of the callback function
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prevNextPointer element

(a) Before the interruption. The list traversal
is currently at the third list element. The third
element is linked by the next pointer in the
second element, thus prevNextPointer
points to this location.
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(b) The current element was removed by an
overlapping allocator function. The callback
function does not immediately notice this, and
either misleadingly interprets memory of the
allocated object as a list element or, even
worse, modify the data thereby corrupting the
state of the object.
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(c) The listwalker() could detect the
removal of the current element by check-
ing the contents of the prevNextPointer,
however, the list element containing this
pointer might also be removed by a second
interrupting allocator function, leaving the
listwalker() in an unrecoverable state.

Figure 6.3: Problem scenario of a list
traversal that is overlapped by one or more
allocators that remove list elements at crit-
ical positions, when there is no synchro-
nization mechanism.
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prevNextPointer element

(a) An allocation request on 4 slots before the
interruption. The list traversal is at a point
where an element exactly fitting the requested
size has been found and ready to remove that
element.
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(b) An overlapping allocation of a block of 3
slots removes the previous list element. The
4 slots sized block is now linked from the first
block in the list and the prevNextPointer
of the interrupted allocator has become in-
valid.
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(c) Removing the 4 slot sized block leaves the
list in an inconsistent state and corrupts the ob-
ject allocated in the 3 slots block, because the
correct location of the linking pointer is not
known to the allocator function anymore.

Figure 6.4: Race condition where two
overlapping allocators both remove a list
element and leave the list in an inconsis-
tent state.
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1. Read the next pointer of the current element.

2. Read and backup the locking mode of the next element.

3. Acquire a lock on the next element by setting the locking bit.

These steps need to be performed atomically, because

• An interrupting allocator between steps 1 and 2 might remove the following ele-
ment. After removal of the element the assumed list element header now actually
contains either the header of the object allocated in the removed block or a refer-
ence field of that object. Reading the locking mode would be pointless and setting
the locking bit would corrupt the state of the object.

• The removal of the next element between steps 2 and 3 likewise corrupts the
object’s state when setting the locking bit. A special machine instruction such as
bit-test-and-set would allow the atomic performance of steps 2 and 3 without the
need to disable interrupts, but is not available on the Tricore architecture7.

After acquiring the lock, the callback function is invoked, and upon return of the call-
back function the lock on the previous element can be released.

6.4 Allocator Function
The design of KESO allows to choose a specific heap implementation on a per domain
base. Each heap implementation provides an allocator function of its own, but since
code is shared among domains, a common entry point for allocating new objects needs
to be available.

6.4.1 Generic Allocator Function Interface
The generic function for allocating new objects is the keso allocObject() func-
tion. This function determines the size in bytes required by the new instance and invokes
the appropriate heap implementation specific allocator function. The allocation of in-
stances of array classes works slightly different: For each array class type, a generic

7The initial approach was reserving a bit in the object header for the locking bit at the location corre-
sponding to the locking bit in the header of a list element. This would allow the locking bit to be written
even to an already allocated object without corrupting that object. This would, however, render the use
of the bidirectional object layout impossible, because in case of objects that contain inner reference fields
the former header of the free list element would be occupied by such a reference field rather than the
object’s header. Additionally, the Tricore architecture does not provide an instruction for setting single
bits using an indirect addressing mode. One would therefore have to reserve an entire byte in the object
header. This would clash with the goal of a minimal memory consumption.
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allocator function is provided that works similar to keso allocObject(). The dif-
ferences are the calculation of the object size, that incorporates the length of the array
and the byte size of each array element, and that the instance has an extra length
field in the object header. For the allocation of the required memory, the generic allo-
cator functions for the array class types use the same heap specific allocator function
as the keso allocObject() function. In the following description of the interface,
only the keso allocObject() function is described. The interface is illustrated
in figure 6.5. The generic keso allocObject() function is invoked with the class
identifier (15) of the instance that is to be created. The required size in bytes (12 bytes)
for the new instance is then determined from the class store using the provided class
identifier. The address of the heap specific allocator function is looked up in the do-
main descriptor of the current domain, and the allocator function is then invoked with
the size in bytes of the memory needed for the instance. The heap specific allocator
function is expected to return a chunk of memory of a size larger than or equal to the
size requested, with every word except the first be cleared. If the heap specific allo-
cator function fails to allocate a suitable chunk of memory, it is expected to throw an
OutOfMemoryException. In the first byte of the memory chunk, the initial color
(allocation color) of the object is passed. The generic keso allocObject() reads
the color byte, clears the first word of the memory chunk and initializes the header
of the object at the appropriate reference offset. The color byte is written as given by
the heap specific allocator function to the object header. The semantics of the color
byte may differ for each heap implementation and are not known to the generic allocator
function.

6.4.2 IdleRoundRobin Allocator Function
The basic steps performed by the allocator function of the IRR heap are shown in fig-
ure 6.5. First, the size in bytes (12 bytes) provided by the generic allocator function
is rounded up (16 bytes) to a multiple of the slot size (8 bytes) and converted to slots
(2 slots). The listwalker() function is then invoked with an appropriate allocator
callback function to find a suitable free block (see section 6.4.3). The found chunk of
memory is cleared, except the first word, that contains the initial color byte of the
object or, if no suitable block is available, and OutOfMemoryException is thrown.
Finally, the allocated chunk of memory is returned to the generic allocator function.

6.4.3 Allocation of a Memory Block
To find a suitable block of free memory, the free memory list needs to be traversed. The
listwalker() is used for this task and a callback function for allocating a suitable
block is provided. The callback function checks the size of each element it is invoked
with. The first element that has a size larger than or equal to the required size is then
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either downsized or, in case of an exact fit, removed, and the list traversal is terminated.
The pointer to the allocated block is returned via the cbparam parameter to the callback
function, that contains the address of a pointer variable of the IRR heap’s allocator
function. If no suitable block is found, NULL is returned and the IRR heap’s allocator
function throws an OutOfMemoryException.

Checking the size of free memory block is not a critical operation, as it does only
read the value from the list element. The downsizing and removal operations of a free
block, however, are critical sections and need to be secured.

Downsizing of a free list element. When the callback function encounters a free block
with a size larger than the required size, the following critical section is entered8:

1. Read the size of the free memory block again. It might have been downsized
after checking the size but before disabling interrupts by a higher priority
allocator function.

2. Check if the size is still larger than the requested size. If it is not, leave the
critical section and continue with the check for an exactly fitting block.

3. Calculate the difference between the free memory block’s size and the re-
quested size, which is the remaining size of the free memory block.

4. Write the remaining size to the list element.

The allocated memory is then available behind the downsized memory block,
and its location can be calculated with the knowledge of the address of the free
memory block and the remaining size of the free memory block, both of which
are available in local variables.

Removal of an exactly fitting element. When encountering a block of free memory
matching exactly the required size, the free memory block can be entirely allo-
cated and removed from the free memory list, provided that the element was not
locked. If the element was locked by a lower priority Task, it has to be ignored. In
case the element was not locked before, the following critical section is entered:

1. Read the size of the block again. Although the element is protected from
being removed it might have been downsized by a higher priority allocator
function.

2. If the size still matches, read the value of the next pointer of the current list
element, or else leave the critical section and continue.

8A compare-and-swap or similar instruction would allow the atomic execution of these steps, but is
not available on the Tricore architecture.
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3. Store the read next pointer in the pointer linking to the current element,
pointed to by prevNextPointer, effectively removing the current ele-
ment from the free memory list.

The removed free memory block can now entirely be used to store the new object.
Steps 2 and 3 need to be performed atomically, because the next list element could
be removed from the list, thereby updating the next pointer of the current list
element. Storing the previously read value in the linking pointer would then link
to memory block that has been removed from the free memory list and thereby
corrupt the list.

The listwalker() function detects the removal of the element, because the
value of the linking pointer was updated, and does not modify the allocated mem-
ory attempting to restore the original locking mode.

Allocation Color

The initial color of the object needs to be passed in the color byte to the generic allo-
cator function in the first byte of the allocated memory. Objects are generally allocated
white, except when the garbage collector is currently active in the domain. The transi-
tion from white to black allocation happens per list element (see section 6.6.2), thus the
color needs to be stored with each list element. Therefore, to pass the initial color of the
object in the first byte of the memory, the value only needs to be copied from the list
element header of the free memory block that the object was allocated from.

6.5 The Garbage Collector of the IRR Heap
The garbage collection is performed by a single lowest priority garbage collector OSEK
Task. This Task manages the heaps of all domains that deploy the IRR heap imple-
mentation as their heap type. Whenever the garbage collector starts a cycle in a spe-
cific domain, the GCT migrates to this domain. This is done by changing the domain
id of the associated KESO Task object, that is then set as the current domain by the
PreTaskHook() whenever the GCT is scheduled. This is necessary for any user
application code (e.g. the finalize() methods of reclaimed objects) to run in the
proper domain environment.

6.6 Phases of the IRR Garbage Collector
A garbage collection cycle can be divided into several phases. As a mark-and-sweep
garbage collector, the IRR garbage collector goes through a scan-and-mark phase, in
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(e) Heap after the garbage collection cycle. The memory of unreachable objects was added to
the free memory list.

Figure 6.6: Sample Garbage Collection divided by phases
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that the reachable objects are scanned and colored, and a sweep phase, in which the
memory of unreachable objects is reclaimed and added to the free memory list. Addi-
tionally, as the IRR garbage collector manages multiple domains, there is an additional
initial phase in which the domain for the garbage collection cycle is chosen, and because
the garbage collector does not keep track of the total set of allocated objects, there is a
phase in that the free memory is marked in the bitmap in order to distinguish it from the
memory of unreachable objects in the sweep phase.

In the following, the different phases of the IRR garbage collector are described in
the order of processing in a garbage collector cycle. Figure 6.6 illustrates the impacts
of each phase by means of a simple example.

6.6.1 Domain Selection

In the very beginning of the garbage collection cycle, the domain, whose heap will be
garbage collected, has to be selected. Originally a simple Round Robin scheme was
used to select the domain, which has the disadvantage, that garbage collection is often
performed on domains that still have enough free memory, and no or only little garbage
can be collected, whereas other domains are running out of memory.

To avoid this problem, the Need of a domain for garbage collection is calculated as

Need = FreeSlots − NewSlotsAllocated − HeapSize

5

where FreeSlots is the total number of slots available in the free memory list, NewSlots-
Allocated is the recorded number of slots allocated from the domain’s heap since the
last garbage collection cycle, and Heapsize is the total number of slots of the entire
heap, 20% of which is additionally subtracted as a grace value. FreeSlots and NewSlots-
Allocated are recorded in the domain descriptor of the domain and updated by the IRR
allocator function and the IRR garbage collector. A domain is considered to require a
garbage collection if a negative Need value is calculated for the domain.

The idea behind the Need function is that embedded systems typically run cyclic
Tasks that retain a similar allocation behavior during the runtime of the system. Thus,
if there is still enough memory to allocate the number of slots since the last cycle plus a
deviation of 20%, the domain likely has enough memory until the next cycle.

In order to keep a certain fairness, the selection of the domain is not solely based
on the Need value, and a Round Robin element is kept in the algorithm: All domains
managed by the IRR garbage collector are ordered in a circular buffer. The garbage
collector remembers the last processed domain across cycles. Starting from this domain,
it searches through the circular buffer and selects the first domain with a negative Need
value that is found, which is then selected for this cycle. In case there is no domain with
a negative Need value at the time of the domain selection, the behavior of the garbage
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collector depends on its working mode, that is statically configured in the KESO system
configuration:

Lazy Mode (Default) In this mode, the garbage collector enters the Suspended state
(TerminateTask()) and sets a global flag, indicating that the garbage collec-
tor is sleeping. The IRR allocator function checks this flag upon each invocation
and reactivates the garbage collector (ActivateTask()) if necessary.

This mode is the preferable in most scenarios and hence the default. First, it en-
ables the OSEK operating system to put the microcontroller in a low power mode
when the system is idle. Second, a running garbage collector needs to disable in-
terrupts at certain stages, which delays the reaction to external events. Putting the
garbage collector in the Suspended state allows immediate reaction to interrupts
when a garbage collection is not required (except if interrupts are blocked by the
user application). Third, write barriers (section 6.7.1) make certain types of write
accesses to reference fields more expensive. When the garbage collector is not
active, the fastest path through a write barrier can be taken (figure 6.7).

Workaholic Mode In this mode, the garbage collector always chooses the domain with
the smallest Need value in the case that every domain has a positive Need value,
therefore the garbage collector is always active.

The Round Robin element of the selection algorithm prevents one domain, that main-
tains a large set of reachable objects using a large portion of the domain heap and there-
fore keeps a low Need value, from starving other domains9.

6.6.2 Marking of Free Memory Blocks
In the second phase of the cycle, the free memory list is traversed one time and the bits
in the bitmap of the garbage collector, that are associated with slots of free memory
blocks, are set. This ensures, that after completing the scan phase, only the bits of
slots that belong to unreachable objects are still clear. After marking the bits of a free
memory block, new objects allocated from that block cannot be reclaimed in the running
cycle anymore, and do not need to be scanned because of the active write barriers (see
section 6.7.1). When marking the slots of a free memory block, the allocation color for
new objects allocated from that block is changed to black at this point.

This phase is implemented as a callback function to the listwalker(), that per-
forms the following operations for each block on the free memory list:

9If domains allocate a large set of objects in the startup phase and keep references to those objects,
and do only allocate few objects in the regular runtime, the NewSlotsAllocated value is small after the first
cycle and the Need function computes a higher Need value, which additionally compensates the starving
effects.
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1. Read the size of the list element

2. Change the allocation color in the list element header to black (after the cycle the
meaning of the color is inverted and objects allocated in the meantime automati-
cally become white)

3. Mark the bits in the bitmap corresponding to the block, using the previously read
size. The first corresponding slot can be calculated as

FirstSlotIndex(elementaddress) =
elementaddress − heapstartaddress

slotsize

These steps do not need to be performed atomically, though it may happen, that an
object is allocated white between steps 1 and 2 and the bits associated with the slots
in the bitmap are marked in step 3. If the object is reachable during the scan phase, it
would unnecessarily be scanned and colored, and the bits in the bitmap would be marked
again, which causes some additional work, but does not impose any further problems.

The order of steps 1 and 2 is important, however. If the color would be changed
before reading the size of the element, it could happen that an element is allocated black
after changing the allocation color, but before reading the size of the free memory block.
In this case, the bits in the bitmap corresponding to the slots of the object would not be
marked in step 3 and would neither be marked in the scan phase as the object is already
colored black. Therefore, it might happen that the object is reclaimed although it is still
reachable.

The bitmap modifications performed in this phase are illustrated in figure 6.6(b) to
figure 6.6(c), for the example scenario shown in figure 6.6(a).

6.6.3 Scan and Mark of Reachable Objects

In the scan-and-mark phase, the garbage collector scans, starting with a root set of
objects, the reference fields of each discovered object, adds the referenced objects to the
working set, and marks the discovered objects, i.e. colors them and marks the slots used
by these objects in the bitmap. The root set consists of immortal system objects10, static
reference fields of the respective domain and the stacks of Tasks in the Waiting state.
The CPU registers of the saved contexts of Tasks in the Waiting state do not need to be
scanned, because every reference held in a CPU register is also stored in some reference
field in the memory.

10These are generally comprised by the object abstractions of the OSEK abstraction layer, i.e. Task,
Alarm and Resource objects, however, Alarm and Resource objects do not contain any reference fields
and no subclasses of these classes may be created. Therefore the set of immortal system objects that need
to be scanned by the garbage collector is solely comprised by the Task objects.
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Overlapped execution of the scan-and-mark phase and the user applications imposes
certain problems beyond the consistency of global data structures of the garbage collec-
tor, and appropriate synchronization mechanisms need to be deployed. These problems
and the used techniques to solve these problems are described in section 6.7.

The working set of the garbage collector is maintained on the working stack of
object references. Because an object reference is never added to the working set twice
in a cycle, the maximum size of the working stack depends on the maximum number
of reachable objects in the system at a time, which is, in the worst case, the maximum
number of objects that can be allocated from the heap plus the number of immortal
objects. The former is equal to the number of slots on the heap, the latter is fixed and
known at system creation time. This number could, however, be significantly reduced
with hints by the application developer.

Initially, the whole root set is pushed to the working stack. Pushing an object refer-
ence, that is not a null reference, consists of the following steps:

1. Check if the object is already colored (if it is, do not push the reference)

2. Color the object by setting the color bit in the object header to the value that
currently represents black or gray color

3. Read the stack pointer

4. Increase the stack pointer by one

5. Write back the increased stack pointer

These operations are performed in the function pushObject() (figure 6.7), which
is also used by write barriers (see section 6.7.1). This critical section needs to be pro-
tected by disabling interrupts. An overlapping pushObject() of the same reference,
performed by a write barrier, between steps 1 and 2, can cause the object to be pushed
on the stack multiple times. This is not tolerable as it might impact an overflow of
the stack. Steps 3 through 5 need to be performed atomically, because an overlapping
pushObject() between these steps would use the same stack slot, and the reference
pushed by the overlapping write barrier would be overwritten and lost11.

The critical section above actually can be divided into two distinct critical sections
between steps 2 and 3, but has been combined to avoid the doubled overhead for en-
abling and disabling the interrupts in between12.

11In theory, pushObject() could overlap n times in this critical section, loosing n-1 pushed ref-
erences, where n is the number of OSEK Tasks configured in the system (including the GCT) plus the
number of ISRs plus the number of Alarm Callback routines.

12Steps 1 and 2 can be performed atomically on architectures with bit-test-and-set and bit-test-and-reset
instructions as available on 80386 architectures, steps 3 through 5 with a compare-and-swap or similar
instruction.
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Figure 6.7: Code Paths through a Write barrier and the pushObject function

After leaving the critical section, the reference is written to the reserved stack slot.
This operation is uncritical, because references are only popped from the stack by the
garbage collector, which never overlaps a pushObject().

After pushing all references of the root set to the working stack, the garbage collector
begins scanning the stack by successively popping elements from the stack until the
stack is empty. For each popped reference, all inner reference fields of the referenced
object are pushed to the working stack using the above procedure.

Because of the bidirectional object layout (see section 4.3.3), scanning the inner
reference fields of an object is easy. First, it needs to be determined whether the object
is an array of references, which can be done by comparing the object’s class identifier
against the class identifier of the reference array class. For all other classes, only one
lookup in the class store is required to determine the reference offset of the object.

After working off the entire working set, all slots used by living objects have been
marked in the bitmap. Slots whose bits in the bitmap are still clear now mark the space
occupied by unreachable objects that can be reclaimed. Figure 6.6(d) shows the example
bitmap after the scan phase, for the reachable objects as displayed in the example heap
(figure 6.6(a)).

Because the Tricore architecture does not support instructions to directly address
single bits, the coloring was optimized to not only use one bit in the object header
but the entire color member of the object header. To check the color of an object,
the whole byte can be read and compared, and for setting the color the whole byte
can be written. This renders the additional CPU operations required for extracting or
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setting single bits of the byte unnecessary, and noticeably increases the performance
of the color-related operations (for benchmarks see section 6.8). On the other hand,
more memory is required in the object header, because the color byte of the header is
completely used.

6.6.4 Sweep: Recover Memory of Unreachable Objects

In the sweep phase, the memory of objects that were not marked in the scan-and-mark
phase is reclaimed and added to the free memory list. Furthermore, the JVM specifica-
tion [LY99] and the Java Language specification [GJSB05] require, that the finalizer of
an object is invoked before it is reclaimed by the garbage collector, which is also done
in this phase.

The sweep and allocation algorithms ensure that the elements of the free memory
list always remain sorted by address, i.e. an element, that is not the last element in
the free memory list, always links to another element at a higher address. The sweep
mechanism is implemented as a callback function to the listwalker(), that searches
for reclaimable memory between two list elements (the last element and the current
element) at a time, creates a linked list of the new free blocks found (the partial list)
and inserts this list between the currently processed two elements, possibly merging
the first (the head element) and last element (the tail element) of the partial list with the
surrounding elements of the free memory list (figure 6.8). The sorted property of the free
memory list allows the merging of elements without searching the entire free memory
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list for candidates. Merging of reclaimed objects that occupied near-by slots happens
automatically as they appear as a sequence of cleared bits in the bitmap. Building the
partial list instead of inserting each discovered free block immediately into the free
memory list is advantageous, because it does not need to be synchronized with the user
application.

Because the listwalker() only passes the current element to the callback func-
tion, the callback function must remember the last element it processed. The optional
parameter of the callback function cbparam is used for this purpose and contains a
pointer to a structure that contains the address of the last element as well as the current
position in the bitmap. The pointer is initialized with NULL and the bitmap position
with 0 before starting the listwalker(). The three possible invocation scenarios of
the callback function are

• For the part of the heap before the first element, the last element pointer is NULL
and the element pointer points to the first list element.

• For any part of the heap between two elements of the free memory list, the last
element points to the last processed element and the element pointer points to the
current element.

• For the part of the heap after the last element, the last element pointer points to the
last element of the free memory list and the element pointer contains the special
value KESO EOFML.

Only the parts of the bitmap that correspond to the scanned part of the heap per invo-
cation of the callback function need to be scanned, i.e. the parts corresponding to free
memory blocks are skipped. The phase in which the free memory blocks are marked
in the bitmap is nevertheless necessary because the size of a free memory block might
have changed since the beginning of the cycle, or free memory blocks may have been
removed from the list. These slots belong to objects that were allocated during the
garbage collector cycle and must not be freed during this cycle.

Before a new free memory block is inserted in the partial list, the finalizers of the
unreachable objects contained within that block need to be invoked. Since the garbage
collector does not keep track of allocated objects, the object headers need to be found
within the free memory block. In front of the object header, there may be several refer-
ence fields, depending on the class of the object. Because the least significant bit of the
object header is always set, it can be distinguished from references, which have their
least significant bit cleared for alignment reasons13. When the object header is found,

13On 8-bit microcontrollers, this approach does not work and an alternate solution needs to be found.
A possible solution would be aligning object headers on slot boundaries. A slot boundary is always at an
address with a cleared least significant bit due to the minimum slot size of the heap.
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the finalizer of the object can be invoked. Afterwards, the non-reference fields of the ob-
ject can easily be skipped as the class identifier can now be read from the object header,
and be used to lookup the size of the object in the class store.

Synchronization with the User Applications

The insertion of the partial list in the free memory list needs to be synchronized with
interrupting allocator functions. Besides the case that there was no reclaimable mem-
ory between the currently processed elements, there are four cases that are differently
processed.

Neither head nor tail are mergeable If neither the head nor the tail of the partial list
can be merged with the surrounding elements of the free memory list, an un-
critical insertion operation can be performed14. First, the next pointer of the tail
element of the partial list is assigned the address of the current element. Because
the current element is locked by the listwalker(), it cannot be removed by
an allocator and the reference stays valid. Afterwards, the address of the head
element of the partial list is stored in prevNextPointer. After the address
was written back, the new elements are available to allocator functions in the free
memory list. The current element needs to be unlocked by the callback function,
except if the current element has the special value KESO EOFML.

Only head is mergeable If only the head element of the partial list is mergeable with
the last element, the next pointer of the tail element is assigned the address of the
current element, as above. The interrupts need to be disabled for the following
critical section:

1. Check if the head is still mergeable with the last element (If not, proceed as
if neither head nor tail were mergeable).

2. Add the size of the head element to the size of the last element.

All operations from checking if the elements are still mergeable until storing the
increased size must not be interrupted by an allocator, as downsizing of the last
element would revoke the mergeable property. After the critical section, the next
pointer of the last element is updated with a local copy of the next pointer of the
head element, that was made before entering the critical section. This is not crit-
ical, because the free memory list is in a consistent state where neither the last
nor the current element may be removed, and storing the next pointer is an atomic

14On architectures where a store operation for an address value needs to be split into two or more store
operations, such as the AVR architecture, storing an address value is not an atomic operation and updating
the next pointer needs to be included in the critical section.
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operation14. Therefore, the remainder of the partial list is simply not visible to al-
locator functions until the store operation for the next pointer has been performed.
The current element needs to be unlocked by the callback function, except if the
current element has the special value KESO EOFML.

Tail element mergeable (two cases). If the tail element is mergeable with the current
element, this cannot be changed by interrupting allocators, because the current
element must not be removed. A critical section is entered that performs:

1. Add the size of the current element to the size of the tail element

2. Copy the next pointer of the current element to the next pointer of the tail
element. The tail element and the current element have now been merged.

3. Check if the head element can be merged with the last element

• If the head element cannot be merged, store the address of the head
element in the linking location, pointed to by prevNextPointer.

• If the head element can be merged, add the size of the head element
to the size of the last element, and copy the next pointer of the head
element to the next pointer of the last element.

Finalize Issue

Before adding a new block to the partial list, the finalizers of all contained objects need
to be invoked. Through the operations of the finalizer of an object, objects that were
previously unreachable by the application may become reachable again, if they were
reachable by the finalizable object (f-reachable), e.g. by writing a reference to an f-
reachable object to a static reference field. The issue is discussed in detail in the Java
Language Specification [GJSB05]. In the simplest case, the finalizer can store the this
reference to a static reference field thereby making the object the finalizer is invoked on
reachable again.

Basically, the Java specification requires an additional scan phase after calling the
finalizer that finds that the object is still unreachable. If the object becomes reachable
again, the application will work with an object that has already been finalized. If a
finalized object is found to be unreachable again, the finalizer is not invoked again on
that object and it is reclaimed.

The IRR heap does currently not handle this issue. Instead, finalizers that make f-
reachable objects reachable again are prohibited. This has the advantage that all objects
found unreachable can immediately be reclaimed.

The downside is, however, that the distinction between f-reachable and reachable
objects might not always be obvious to the application developer. Therefore, as alternate
solutions, it is considered to either
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• not invoke the finalizers at all, which would violate the Java specification, or

• introduce a finalized state for objects, by using an additional bit in the object
header. This is only necessary for class instances that override the default finalizer.
On those instances, the finalize() method is invoked when an unfinalized
object is found unreachable in the scan phase, the finalized bit is set but the object
is not reclaimed. If a finalized object or an object whose class does not override
the default finalize() method is found unreachable, it is reclaimed. This
adds the downside, that objects that override the finalize() method can at the
earliest be freed in the second garbage collector cycle after becoming unreachable.

The finalizers are invoked by the GCT at the lowest priority, therefore they may
be interrupted by other Tasks. This behavior is conforming to the Java specification
that allows finalizers the be executed in any thread and even the concurrent execution
of multiple finalizers in different threads. The invocation of a finalize() method
does, however, prolongate the garbage collector cycle, which might impose problems
for real-time systems, as it must be calculated by the application developer.

6.7 Interruptibility of the Scan Phase
During the scan phase of the garbage collection, the garbage collector can be interrupted
by the user applications at any stage, with the exception of the short protected critical
sections. By overwriting reference fields, the user application (also called mutator in
this context) modifies the graph of reachable objects. If the mutator creates a new
reference from a black object to a white object, this object is not discovered by the
garbage collector on this path during the scan phase anymore. This is not a problem
if the object is still reachable via another discoverable path, which is the case in the
beginning of the garbage collector cycle. If the mutator removes the last discoverable
path to a living object, the object is not marked by the garbage collector and reclaimed.
To avoid this problem, one of the following two conditions must be satisfied:

• a black reference field must never reference a white object

• the last discoverable path to a living, white object may never be removed

There are two different methods, that guarantee at least one of the two above conditions.
Read barriers color white objects gray whenever the mutator reads a reference. Thus the
mutator never gets to see a white object, and therefore cannot create a path from a black
to a white object.

Write barriers, on the other hand, color objects upon write accesses. Different kinds
of write barriers [GLS75, DLM+76, JL96] have been developed that differ in which
object’s color is changed. Because write barriers commonly offer a better performance
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Figure 6.9: Yuasa’s write barrier implementation

than read barriers, basically based on the assumption that read accesses occur more often
than write accesses, write barriers were used in KESO. A comparison of barrier meth-
ods for garbage collection including overhead measurements is available in a technical
report by B. Zorn [Zor90].

6.7.1 Write Barriers

For KESO, the write barrier variant of Yuasa [JL96] was chosen (figure 6.9). In this
implementation, whenever a reference to a white object is overwritten, no matter if the
reference field was already scanned or not, the object referenced by the overwritten
reference (B) is colored gray. This guarantees the second of the above conditions, as it
prevents the last discoverable path to a living white object from being removed. Write
barriers are enabled before starting the phase where the free memory blocks are marked
in the bitmap.

Write barriers add a significant amount of overhead to write accesses on reference
fields. In order to keep write accesses to local reference variables of a Java method as
fast as possible, write barriers are not used on local variables. Write barriers are enabled
for write accesses to static reference fields, reference fields in object instances and field
writes in an array of object references. All objects, that were reachable at this point,
are not reclaimed in the same garbage collection cycle, because the write barrier marks
them, except if the object was only referenced on the stack of a waiting Task and this
reference is removed, in which case the object can safely be reclaimed.

6.7.2 Atomic Scanning of the Task Stacks

Because write barriers are not active on the local reference variables of Java methods,
the Tasks’ stacks must be scanned atomically. Only stacks of Tasks in the Waiting state
need to be scanned, the stacks of all other Tasks in the Suspended state are empty at the



68 CHAPTER 6. MEMORY MANAGEMENT

time the garbage collector starts.
Scanning a stack is of a complexity linear to the size of the stack. In most cases,

the size of the stack of a Task is easily predictable at the time the stack is scanned by
the garbage collector, because the stack is only scanned when a Task is waiting for an
Event, which is only the case in few well-known places where WaitEvent() is called.
Recursive invocation of blocking methods may, however, complicate the prediction of
the stack size.

The straight-forward solution of disabling the interrupts for the entire scan of the
stacks imposes a high interrupt latency, that depends on the size of the stacks which in
turn depends on the user application, and would foil the low interrupt latency achieved
by the aggressively optimized critical sections in the other parts of the garbage collector.
However, it is not required to scan all Tasks atomically, but only the stack of one Task
at once15, and only the Task whose stack is scanned actually needs to be delayed until
the scan operation is finished. Stefan Gabriel solved a similar problem in his study
thesis [Gab05] when implementing a real-time garbage collector for the JX operating
system [GFWK02]. In his implementation, he completely disabled the scheduling to
create copies of each stack. These copies could then be scanned without additional
synchronization. This allows the processing of first level interrupt handlers while a
stack is copied.

Copying the stacks is not an attractive solution for KESO because of memory con-
straints, furthermore the way KESO’s stacks are organized allows a very fast scanning
of the stacks and an exact and fast detection of references on the stack, that is nearly of
the same efforts as copying the stack16. When scanning a stack, all discovered objects
are merely colored gray, i.e. the reference is passed to pushObject(). The scanning
of the objects themselves is performed after completing the stack scan.

Synchronization using OSEK Resources

The basic idea of Stefan Gabriel’s garbage collector was adapted for the IRR garbage
collector, however, the granularity was refined. Entirely disabling the scheduling still
poses the problem that high priority Tasks may be delayed by the garbage collection,
even though the stack of those Tasks is not scanned. For the IRR heap, a synchronization
mechanism based on OSEK Resources was developed that allows a maximum flexibility
for the granularity.

The basic idea is to assign a garbage collector resource (GCR) to each Task that uses
the WaitEvent() system service. These Tasks can be easily identified, because the

15The only problem one might think of is the propagation of a reference that is only held in a local
reference variable on an unscanned (white) stack to an already scanned (black) stack. This is, however,
only possible via a common object or static reference fields, and write barriers are active on both of these.

16In JX, reference fields on the stack need to be identified via a complex heuristic, which posed the
major reason for copying the stacks instead of immediately coloring the objects.
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Figure 6.10: Synchronization of Task stack scanning using OSEK Resources. The figure
shows the GCT (IRRGC), a low-priority Task (TaskC), a medium priority Task (TaskW),
that enters the Waiting state while the garbage collector is performing the scan phase,
and a high priority Task (TaskA). The priority is parenthesized behind the Task names.
The ceiling priority of the GCR is equal to the priority of TaskW.
In the example, while the GCT is scanning the stack of TaskW, both TaskW and TaskC
become Ready, however, they are not scheduled, because the GCT is running with the
ceiling priority that is greater than or equal to the priority of TaskC and TaskW. Later
on, while the GCT is still scanning the stack of TaskW, the high-priority TaskA becomes
Ready and is immediately scheduled. After TaskA terminates, the GCT finishes scan-
ning the stack and release the GCR. TaskW and TaskA are then scheduled according to
their priorities.

OSEK OIL specification [OSE04] requires Tasks to declare references for every Event
they may react to in the system configuration file. While scanning the stack of a waiting
Task, the GCR of the Task is occupied (figure 6.1017). The OSEK priority ceiling raises
the priority of the GCT to the ceiling priority of the GCR, which is in this case the
priority of the waiting Task. This still allows any Task with a higher priority than the
waiting Task, first and second category ISRs and alarm callback routines to interrupt the
garbage collector during the scanning of the stack. Tasks with a lower priority than the

17Note that there is no direct transition from the Suspended state to the Running state as implied by
the figure. Actually, the suspended Task does first enter the Ready state and is then scheduled according
to its priority and the other Tasks in the Ready state. In the figure, this intermediate state is omitted for
simplification in cases where the priority of the Task causes its immediate transition to the Running state
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ceiling priority of the GCR are delayed, which is desired to avoid priority inversion.
Creating a separate GCR for every extended Task that makes use of the Wait-

Event() system service is the finest granularity of the stack scanning synchronization
and allows a minimum number of Tasks being delayed by the operation. However, this
finest granularity might not be required for every application scenario. Therefore, the
IRRGC allows the definition of synchronization groups, that allow choosing coarser
granularities to save system resources. Every Task belonging to a domain using the IRR
heap that uses the WaitEvent() system service is assigned a synchronization group,
and a GCR is then created for each defined synchronization group and shared by all
members of that group. The resulting ceiling priority of a GCR is determined by the
highest priority Task in the synchronization group. Locking this GCR therefore affects
a higher number of Tasks than a GCR chosen on a per-Task base. As an example, a
synchronization group could be defined per domain.

6.7.3 Scan Order
In the scan phase, it is imperative that the stacks of waiting Tasks are scanned before
scanning the remaining parts of the root set. Otherwise, the only reference to a white
object on a Task stack could, for instance, be written to a static reference field that was
already scanned and removed from the stack. Since write barriers do only color the
object to that a reference is overwritten, they do not color the object in this case because
the reference is overwritten on the stack where write barriers are not active.

6.8 Benchmarks
This section presents measurements of the overhead posed by the used write barriers as
well as comparisons of different implementation approaches.

All benchmarks are run on an Infineon TC1796b microcontroller, containing a 32-bit
Tricore v1.3 CPU clocked at 150 MHz during the test runs, 2 megabytes of embedded
flash memory, 192 kilobytes on-chip SRAM and a 16 kilobytes instruction cache. The
microcontroller is attached to a Lauterbach hardware debugger, and the measured run
times were recorded by the debugger.

KESO is under fast-paced development, and changes to the KESO code will likely
affect the runtime of the tests. The tests that show the benefits of write barrier inlining
and the coloring optimization were made with revision 357, all other tests with revision
390 of the KESO subversion repository, and the test results should be reproducible with
that revision.

For each of the three types (static reference fields, object instance reference fields,
components of an array of references) of write barrier protected field writes, a test pro-
gram was written, that performs 20,000 consecutive writes of the respective field type.
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To determine the loop overhead of each test, the actual field writes were removed from
each test and the time was measured. In all shown numbers, the loop overhead is already
subtracted. The shown values thus represent the actual time required for the 20,000 ref-
erence writes of the respective type.

The overhead posed by a write barrier depends on the actual reference that is pushed.
The three possible code paths through a write barrier where a non-null reference

is overwritten are illustrated in figure 6.7. Each test was performed for all three code
paths. To force the write barrier to take a specific path through the write barrier during
the benchmark, the garbage collector was modified. The modifications for each code
path are as follows.

Without Write barriers (Without WRBR) Instead of passing through the write bar-
rier, only the actual write access to the field was left in the code. This is exactly
the same code as it would be used without write barriers.

Write barriers not active (WRBR(1)) To model the path where the GCT is not per-
forming a scan phase in the domain of the test Task, the GC domain was set to a
fixed value that differs from the test Task’s domain. Thus, the WRBR(1) path is
always taken.

Write barriers active, reference to a colored object overwritten (WRBR(2)) The
GC domain is set to a fixed value of the test Task’s domain. Furthermore the
condition of the test, that checks if the object is already colored, is inverted. The
comparison then indicates that the object is already colored and never colors the
object.

Write barriers active, reference to a white object overwritten (WRBR(3)) The GC
domain is set to a fixed value of the test Task’s domain. The function push-
Object() is modified to always color the referenced object white, effectively
disabling the coloring of the object. Therefore, the WRBR(3) code path is always
taken, but instead of coloring the object gray it is always recolored white.

6.8.1 Overhead Measurements
The three tests were run with coloring optimization and inlined write barriers, and com-
pared with the reference time without write barriers. The displayed times are the ab-
solute measured run times of the functions minus the loop overhead. Null reference
checks for instance reference writes and null reference and array boundary checks for
reference array component writes are not considered loop overhead and included in the
printed numbers.

Write access to an instance reference field without write barriers is the fastest of
the three test types. Before accessing the field the reference only needs to be checked
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Figure 6.11: Write barrier Overheads on each reference field type. For each test, the
height of the bar shows the entire time taken by the test. Each bar is split in the runtime
spent at the call-side (the launch() method of the test Task in this case), and the time
spent in the pushObject() function where applicable. The values above the bars
show the overhead percentage of a write barrier path. The loop overhead was separately
identified for each test and subtracted, the shown run times represent the isolated time
required for the field accesses.
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for null. The address of the reference is at a constant offset from the object reference
which is known at compile time. Static reference field writes are slightly slower, because
the current domain value needs to be loaded and the address of the reference needs to
be calculated. Writing a component of an array of references is the most expensive
write type in the test field, as it requires a null reference check, a check of the array
boundary and the calculation of the address.

For the WRBR(1) path, which is considered the most frequent case for a GCT work-
ing in lazy mode, write barriers incur the least overhead (28 ms, 14.7%) on the static
references test, because the current domain, that is required to test whether the GCT is
currently performing a scan phase in the current domain, needs to be loaded anyway to
access the correct set of static fields. Therefore, only the GC domain needs to be loaded
and compared with the current domain. Writing components of a reference array is
more expensive (40 ms, 14.5%) because the current domain does not need to be loaded
without write barriers, but due to the already high costs for such an access the overhead
percentage is even less than with static reference fields. In the instance field test, the
overhead is much more noticeable (114 ms, 116.1%), because instance field writes need
to load the current domain and are the fastest of the three access types, yielding a high
overhead percentage.

For paths WRBR(2) and WRBR(3), the invocation of the pushObject() function
causes additional overhead at the call-side of approx. 115 ms for all tests. The time spent
in the pushObject() function is an additional 70 ms for checking if the overwritten
reference is null, and checking if the referenced object is already gray or black.

The WRBR(3) paths need to perform all operations needed on the WRBR(2) plus
additionally color the object and push it to the working stack, adding approx. 77 ms to
the runtime of the pushObject() invocations.

6.8.2 Benefits of the Coloring Optimization
Figure 6.12 shows the benefits achieved by using a whole byte to represent the color
value instead of a single bit, exemplified by the test case for object instance reference
field writes. The optimization saves the instruction required to extract the colorbit from
a byte value for checking the color, and the instructions needed to toggle a bit in the
color byte. Using the optimization, the comparison can be realized as a direct compar-
ison of two byte values, and coloring an object as writing a per garbage collector cycle
fixed value to the object header. For the WRBR(2) code path, where the color is only
checked but not set, the optimization reduces the time spent in the pushObject func-
tion by approximately 33%. For the WRBR(3), that double benefits because it needs
to check the color as well as set it afterwards, a speed increase of almost 41% could be
observed.

The downside of the optimization is an increased memory requirement in the object
header, but the other bits of the color byte are not used by the IRR heap anyway.
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Figure 6.12: Benefits of the optimized coloring method. The test application for object
instance reference fields was taken for illustration. Only paths WRBR(2) and WRBR(3)
are relevant to this test, because WRBR(1) does not enter the pushObject function. The
bars show the time spent in the pushObject function during the test, on top of the bars
the exact measured times are printed.

6.8.3 Differences between inlined and not-inlined Write barriers

When implementing write barriers, an implementation decision had to be made among
inlining parts of the write barrier or alternatively providing a write barrier function per-
forming all operations of the write barrier, including the actual write operation. A ded-
icated function has the advantage that less code needs to be generated at the call-side.
The inlined variant performs the comparison of the current domain and the GC domain
and the actual write operation at the call-side, but still calls the pushObject() func-
tion for all further operations of the write barrier (figure 6.7), which generates additional
code at the call-side but does not require the overhead of a function call in most cases,
when the garbage collector is currently not performing a scan phase on the domain. The
test for static reference field writes has been performed with a dedicated write barrier
function and compared with the run times with inlined write barriers (figure 6.13).

The comparison shows a speed increase of 37% for the codepath WRBR(1) where
the pushObject() function does not need to be invoked. The time spent at the call-
side to perform the comparison of the domain ids and the actual write operation for
inlined barriers is less than the time spent at the call-side to invoke the write barrier
function. For the other paths, the benefit percentage is less due to the additional opera-
tions required on those paths, but still measurable.



6.8. BENCHMARKS 75

Without 
WRBR

WRBR(1) WRBR(1) 
inlined

WRBR(2) WRBR(2) 
inlined

WRBR(3) WRBR(3) 
inlined

0

100

200

300

400

500

600

700

800

192
258 220 257

324
257

3580

93

0

201
0

214 0

0

0

0

168

203

262

346
pushObject
IRR_WRBR
Launch

ti
m

e 
(m

s)

Figure 6.13: Comparison of inlined write barriers and dedicated write barrier function
(IRR WRBR). The coloring optimization was activated for the test runs.

6.8.4 Runtime Spectrum of the pushObject() Function
The run times of the pushObject() function for the different paths have measured
for each test and are shown in figure 6.14. As expected, the runtimes do not differ for
the different tests.



76 CHAPTER 6. MEMORY MANAGEMENT

Null Reference 
Overwritten

Grey/Black Object 
Overwritten

White Object 
Overwritten

0
0.5

1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

6
6.5

7
7.5

0.24

3.51

7.37

0.24

3.51

7.38

0.24

3.51

7.37

object array

instance field

static field

ti
m

e
 (

µ
s)

Figure 6.14: Run times of the pushObject() function



Chapter 7

Conclusion and Future Work

In this thesis, the design and implementation of the OSEK abstraction layer and a heap
implementation, that provides automatic memory management, both core parts of the
KESO system, were presented.

7.1 OSEK Abstraction Layer

The OSEK abstraction layer provides access to OSEK system services, whereby access
restrictions guarantee, that the strong isolation of domains is retained. The access re-
strictions are enforced on the Java language level through a name service, carrying on
the type-safety-based isolation concept.

Different aspects of the OSEK system have been analyzed to identify the possible
impacts on the domain isolation. Object abstractions, implemented in the form of im-
mortal system objects, have only been introduced where necessary to provide access
control to system services. The overhead imposed by the system object abstraction
compared to the use of plain OSEK data types is therefore only introduced in places
where it was found useful and required.

System services that do not require system objects as parameters, e.g. all interrupt-
related system services, have been implemented with zero overhead by replacing in-
vocations of the respective Java methods at the call-side with immediate calls to the
corresponding OSEK services. The system services, that are subject to access control
and therefore are passed system objects additionally contain wrapper code in the method
body around the call of the respective OSEK service, including a null reference check
for the system object. This adds the overhead of the wrapper code plus the call to the
Java service method. The exact impact still needs to be evaluated. In some cases, e.g.
for the ActiveTask() service, where the wrapper code mostly consists of the null
reference check, it might be better to replace the service call at the call-side, as the refer-
ence possibly was already checked in the calling method and can thus be omitted. This

77
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would additionally save the code and time required for the method call, thus possibly
creating a win-win situation saving both, code size and CPU time.

The name service that provides the user application with system objects uses static
data structures. A lookup is resolved to a large extent at compile time, preventing ex-
pensive string comparisons at runtime and reducing a lookup to a single or double array
lookup. Only the runtime data structures of the name service, that are actually used by
the application are added to the generated KESO system.

7.2 IdleRoundRobin Heap Implementation
In the second part of this thesis, a heap implementation was presented that provides
automatic memory management adapted for embedded systems. During the design of
the IdleRoundRobin heap, real-time capabilities were kept in mind and the heap was
optimized to provide a low latency in the reaction to external events. The task model of
the underlying OSEK operating system was incorporated in the design of the garbage
collector, and a low priority scheduling of the garbage collector was chosen because the
effort needed to scan the root set is minimal at the idle time of the system.

To achieve the low interrupt latency, a fully preemptible garbage collector was im-
plemented. The developed algorithms do only require the disabling of interrupts for
short critical sections of constant complexity. The worst-case interrupt latency is there-
fore low and predictable.

Resources were used to synchronize the scanning of Task stacks with the applica-
tions, which is not of constant complexity. This allows high priority Tasks to be sched-
uled during the scanning of a stack. Priority inversion is prevented by the OSEK priority
ceiling protocol that is used for OSEK Resources.

Many of the critical sections, that are currently protected by the disabling of in-
terrupts, can be implemented using special instructions such as the compare-and-swap
instruction, on architectures where such or similar instructions are available.

The dynamic allocation of new objects is currently allowed for interrupt service
routines and alarm callback functions. In common practice, however, memory is not
dynamically allocated from such functions. Therefore, as a reasonable constraint, the
dynamic allocation of memory could be prohibited for functions on the interrupt level.
This would allow to synchronize most of the critical sections, that are currently pro-
tected by disabling the interrupts, by disabling the OSEK scheduler. This would even
further improve the reaction times to external events. Preliminary benchmarks have
shown, however, that the IdleRoundRobin garbage collector already has a very low im-
pact on the interrupt latency.

The garbage collector of the IdleRoundRobin heap is not yet suitable for the use
by applications that need to meet hard real-time constraints. It can, however, be used
for non real-time parts of the system, while still allowing hard real-time Tasks in other
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domains.
The main problem of the garbage collector, that renders it unsuitable to real-time

requirements, is the yet unsolved fragmentation problem of the heap. One solution to
this problem is compacting the heap during garbage collection. This does, however,
imply the atomic copying of discovered objects, which imposes system pause times that
are probably not acceptable. As an alternative solution, objects exceed the size of a
slot could be represented by a linked list of slots that does not need to be sequential in
memory, similar to the approach taken in JamaicaVM [Sie04]. This would, however,
drastically increase the access times to object fields that exceed the first slot of the
object.

A smaller issue of the garbage collector is the currently conservative estimated
worst-case size of the working stack. With hints by the application developer, how-
ever, close estimates for the worst case size of the working stack are possible.

Write barriers were used to synchronize the mutation of the object graph by the user
applications with the garbage collector during a scan phase. The overhead measured for
the write barriers is expected to be tolerable to most applications. Realistic applications
have not yet been developed for KESO, and benchmarks with such applications still
have to be taken to determine the actual impact of write barriers on applications.

7.3 KESO Future Development
To provide a full-featured JVM, Java exceptions and Java monitors still need to be im-
plemented. Furthermore, drivers for the serial port and the CAN interface of the Tricore
controller are currently in development.

A port of a stripped down KESO to the AVR architecture is also in development.
Because of the extreme resource constraints on AVR controllers, this KESO variant is
not based on an OSEK operating system and runs on the bare hardware.

A larger milestone for the future developments is the distribution of a KESO system
across several microcontrollers, while retaining a uniform view on the entire system.
The domains of the total system are located on different controllers, and inter-controller
communication is done through the portal mechanism. One could, for instance, think of
a network of low performance AVR nodes, that are connected through a more powerful
controller, such as the Tricore, and relocate complex operation to the more powerful
controller.
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