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Zusammenfassung

Ein Betriebssystem unterscheidet gewohnlich zwischen Threads, die von einem Scheduler
in Software verwaltet werden, und Interrupthandler, die von der Hardware eingeplant und
eingelastet werden. Diese Unterscheidung trédgt Probleme fiir Echtzeitsysteme mit sich, da
Interrupt Handler mit niedriger Prioritdt Threads mit hoher Prioritdt unterbrechen kén-
nen. Das SLOTH-Konzept stellt einen Weg vor, dieses Problem durch die Implementierung
von beiden, Interrupthandlern und Threads, als Interrupt zu l6sen. Dies beseitigt den Un-
terschied zwischen den beiden Arten von Kontrollflisssen und diese Vereinfachung erlaubt
es, das Einplanen und Einlasten von Threads vom Unterbrechungssubsystem der Hardware
erledigen zu lassen.

Im Rahmen dieser Arbeit wurde dieses SLOTH-Konzept als interrupt-gesteuertes Be-
triebssystem auf Basis der OSEK-Spezifikation fiir den ARM Cortex-M3 Mikrocontroller
implementiert. Dies beinhaltet auch die Untersuchung, wie das Sloth-Konzept auf der zur
Verfiigung stehenden Hardware umgesetzt werden kann und wie die Hardware-Komponenten
genutzt werden miissen. Diese fertige Implementierung wird dann evaluiert und mit einem
herkémmlichen System mit einem software-gestiitztem Scheduler verglichen, um die posi-
tiven Effekte dieses Konzepts auf die Verwaltung von Threads zu bestdtigen. Ebenso wird
der Einfluss der Hardware-Architektur auf das Design und die Implementierung von SLOTH
untersucht.

Abstract

An operating system usually distinguishes between threads managed by a software sched-
uler and interrupt service routines, scheduled and dispatched by an interrupt controller. This
paradigm has inherent problems for real-time systems as low-priority interrupt routines can
interrupt high-priority threads. The SLOTH concept proposes to overcome this issue by
implementing both interrupt handlers and threads as interrupts, which are scheduled and
dispatched by hardware. This eliminates the difference between the two types of control flows
by introducing a unified abstraction. With this simplification, scheduling and dispatching of
threads can be managed completely by the interrupt subsystem in hardware.

In the scope of this thesis, this SLOTH concept was implemented as an interrupt-driven
operating system conforming to the OSEK specification on the ARM Cortex-M3 microcon-
troller platform. This entails the investigation how the SLOTH concept can be implemented
with the provided hardware functionality and how the hardware components need to be uti-
lized. This finished implementation is evaluated and compared to another operating system
with a software-based scheduler in order to confirm the positive effect of this concept on the
performance of thread management. Additionally, this thesis examines the influences of the
hardware architecture on the design and implementation of SLOTH.
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Chapter 1

Introduction

The scheduler is a key component in any operating system, as it is responsible for the management
of different control flows. A scheduler usually switches between several threads synchronously
activated by software. Additionally, interrupt service routines (ISRs) interrupt the CPU at any
time asynchronously when signaled by the hardware. Using these two mechanisms together
establishes inherently dual priority spaces, in which ISRs always have a higher priority than
threads as they are running at the lowest hardware priority. Thus, an ISR meant to have a
low priority can preempt a high-priority thread. This issue is known as rate-monotonic priority
inversion [1]. The SLOTH concept introduced in [2, 3] proposes to solve this problem by removing
the distinction between threads and interrupts. By implementing all control flows in the system as
interrupt handlers, the interrupt subsystem hardware can do the scheduling work. In traditional
systems with a software scheduler, ISRs always have a higher priority as all threads. In SLOTH,
the unified priority space of threads and ISRs allows arbitrary distribution of priorities between
them, without implying restrictions on the precedence of asynchronous over synchronous control
flows.

1.1 The Sloth Concept

In SLOTH, both types of control flows—threads and interrupt handlers—are implemented as
interrupts. These threads running as ISRs are scheduled and dispatched by an interrupt controller
in hardware, eliminating the need for a software scheduler completely. In this system, threads
and interrupts share a single priority space managed by the hardware, avoiding the problem of
rate-monotonic priority inversion as described above.

The implementation of the SLOTH concept targets an event-driven embedded system, imple-
menting the OSEK OS specification as an example. The offered API is the same as in traditional
systems with a software-based scheduler by using this established standard; it is therefore trivial
to port applications to run using the SLOTH kernel. The description will stick to the terminology
and system services of OSEK, although this concept can be applied in general to any event-driven
real-time operating system.



l ISRs Cat. 2 l l ISRs Cat. 1 l Tasks l Activate Task l l Set Event l l Exec Callback l l Resources l l Events l
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Figure 1.1: Feature diagram of the OSEK OS specification. Features mandatory in a conformance
class other than BCC1 are marked with the corresponding classes below that feature. Feature
types include mandatory features (filled circle), optional features (hollow circle), minimum-one
feature sets (filled arc), and exactly-one feature sets (hollow arc) [2].

1.2 About OSEK

OSEK! is a standard for operating systems in the automotive industry. The specification for the
OSEK OS [4] defines an interface to the operating system offering the necessary functionality for
event-driven control systems. An overview of the provided features is given in Figure 1.1.

The offered system functionality includes control flow abstraction by use of tasks with different
preemption policies that configure whether a higher-priority task can preempt another currently
executing task (full preemption) or not (no preemption). This can also be configured individually
for each task (mixed preemption). Optionally, the OS stores multiple activation requests for
tasks and more than one task can share the same priority. Interrupt service routines (ISRs) are
dispatched by hardware and are partitioned into two groups. ISRs of category 1 are not allowed
to use any system services, while category-2 ISRs can use them. Synchronization is possible
by acquisition of resources implementing the OSEK priority ceiling protocol to avoid priority
inversion. Tasks are available in two types, where extended tasks have the same functionality as
basic tasks, but can also yield the CPU and wait until a certain event occurs, which is signaled
by another task. Alarms can activate tasks or execute callbacks after a specific period of time.

In order to build a highly scalable and portable system, the OSEK OS specification defines
multiple conformance classes as shown in Figure 1.1. This allows partial implementation of the
specification. Each conformance class defines a minimum set of features which are determined
by the type of tasks present in the application, support for multiple activations of the same task,
and the number of tasks per priority. These features are chosen and configured statically; that
is, the tasks, ISRs, and their priorities as well as the system’s features are configured at compile
time.

1.3 Sloth Overview

In a system implementing the SLOTH concept, each task and ISR will be assigned to an interrupt
source with the configured priority. ISRs are activated by the hardware system as usual, whereas
for tasks, two methods of activation are possible. On the one hand, they can be started syn-

LGerman acronym for “Offene Systeme und deren Schnittstellen fiir die Elektronik im Kraftfahrzeug”, trans-
lates to “open systems and corresponding interfaces for automotive electronics”
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Figure 1.2: Example control flow in a SLOTH system. The execution of most system services
leads to an implicit or explicit altering of the current CPU priority level, which then leads to an
automatic and correct scheduling and dispatching of the control flows by the hardware. [2]

chronously by an OSEK system service, which leads to a software generated interrupt request.
On the other hand, hardware devices can signal the corresponding interrupt asynchronously; for
example, tasks triggered by an alarm are invoked by a timer system connected to the interrupt
sources. Activation of a specific task results in triggering the interrupt source in both cases.

Subsequently, the interrupt controller needs to decide which of the interrupt sources with a
pending request has the highest priority, which correspond to the assigned control flows—either
tasks or ISRs. If the current execution priority of the CPU is less than the one of the determined
interrupt source, the CPU needs to be interrupted by an interrupt request. The current execu-
tion priority does not always correspond to the executing control flow as it can be raised and
lowered for synchronization purposes. If an preemption of the currently running control flow is
possible, the task or ISR corresponding to this interrupt source will be dispatched. This schedul-
ing implemented in hardware is responsible for the arbitration of the different priorities between
tasks and ISRs. Rescheduling needs to take place every time an interrupt source is triggered, an
interrupt handler returns, or masking of interrupts is enabled or disabled. Termination of a task
matches the return from an interrupt handler, which will issue a new arbitration in the interrupt
controller, determining the next interrupt to be handled.

Figure 1.2 shows an example control flow in a system implementing the SLOTH concept. In
this configuration, Taskl, ISR2, and Task3 have the priorities 1, 2, and 3, respectively. After
initialization of the system, the auto-started Taskl starts running with priority 1 at ¢;. In its
execution at ty, Taskl activates the higher-priority Task3, which is immediately dispatched and
starts running with the CPU priority level being raised to 3; preempting the previously running
Taskl. At the time t3, a hardware device signals an interrupt request for ISR2. However, as the
current execution priority is 3, the execution of ISR2 has to be delayed until Task3 terminates at
t4. At this point, ISR2 starts executing until it returns from the interrupt at ¢5 and the preempted
Task1 continues running. When Task1 terminates at ¢7, no other control flow is currently pending.
Thus, the system is running an idle function at the lowest priority level waiting for interrupts.
Here, at tg, Taskl is again activated by Alarml that was previously set up at tg.



1.4 Requirements on the Interrupt Controller

SLOTH’s goal is to implement a very concise kernel utilizing hardware components—especially
the interrupt controller. Using hardware for scheduling is supposed to improve the performance
of context switches as compared to software-based schedulers. For this approach, SLOTH has
requirements on the interrupt controller of the platform that define whether the system can be
implemented:

e The interrupt subsystem must provide different priority levels for each task and ISR in the
system.

e The interrupt subsystem must support software-generated interrupts, allowing to trigger
individual interrupts in a synchronous manner.

e The platform must provide a way to raise and lower the current execution priority of the
CPU as a synchronization mechanism.

Many modern platforms fulfill these requirements. The reference implementation of SLOTH
was achieved on the Infineon TriCore, while this thesis details the implementation on the ARM
Cortex-M3.

1.5 The ARM Cortex-M3

The SLOTH concept is not bound to a specific hardware architecture, but can be put into practice
on any platform that fulfills the requirements discussed in Section 1.4. The reference implementa-
tion of the SLOTH concept was achieved on the Infineon TriCore platform [5], which is commonly
used in the automotive industry. In this thesis, the SLOTH design was ported to the ARM
Cortex-M3 microcontroller [6], to see where differences in the hardware design will demand a
different approach in the implementation, which will then be evaluated in the comparison with
the reference implementation in Section 4.2.

1.5.1 Architecture Overview

In 2004, ARM introduced the Cortex-M3 microcontroller, which targets a broad range of embed-
ded system applications especially in the automotive segment [7]. The Cortex-M3 was the first
processor of the ARMv7-M architecture profile, which is meant for small sized embedded systems
optimized for deterministic operation and low-cost applications. The platform is designed as a
32-bit RISC system with a Harvard architecture, on which the processor operates in little endian
byte order for both data and instruction accesses [8, 9].

The Cortex-M3 implements the Thumb-2 instruction set, which consists of mostly 16-bit
instructions with a few additional 32-bit wide instructions. This simultaneous use of instructions
with differing length achieves a higher code density while barely affecting performance. All
instructions are aligned on a halfword boundary. The Thumb-2 instruction set is designed to
support interworking with the older purely 32-bit ARM instruction set, in which all instructions
have to be aligned to word boundary. To allow switching between the two instruction sets at all
branch operations, the current execution mode is being kept as part of the program counter in
bit 0, which is normally not being used due to alignment. On ARMv7-M, this bit must always
be set to ‘1’ to indicate use of the Thumb instruction mode, as only this is supported. This is
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Figure 1.3: Registers in the ARMv7-M architecture.

usually hidden from the programmer as the compiler takes care of this, but can be important for
low-level development, for example while examining addresses on the stack.

ARMv7 specifies 16 registers, each of which is 32 bits wide. They are arranged into 12 general-
purpose and 4 special registers as shown in Figure 1.3. All instructions specifying a general-
purpose register can access the low registers rO—r7. The high registers r8—r12 are accessible
from all 32-bit instructions, but not from all of the 16-bit instructions.

Register r12 is used as a temporary workspace for address calculations during subroutine
calls; register r13 is used as the stack pointer (SP). Stack pointer values have to be aligned to
a 4-byte boundary. The register is banked into SP_main and SP_process to allow easy stack
switches for exception handlers and processes. Register r14 is used as a link register (LR), which
holds the return address during a procedure call. The return from a function is initiated by
loading the LR value into the program counter PC, which is the special register r15. Additionally,
the special program status register (PSR) holds current execution state like flags, which exception
is currently being handled, and auxiliary state for load multiple and store multiple instructions.

The processor has two operation modes: Thread mode and Handler mode. Thread mode is
the default operation mode after startup, which can run either in privileged or unprivileged level
to limit access to some resources and system configuration. The Handler mode is activated while
handling an exception and is always executed in privileged access level.



1.5.2 The Atmel SAM3U

For this thesis, an Atmel SAM3U4E evaluation kit from the SAM3U series was used [10], which
includes a Cortex-M3 revision 2.0 running at up to 96 MHz with 52 kB of SRAM and 256 kB
internal flash memory. On this particular SAM3U board, 30 different external interrupt sources
and 16 priority levels are available. With the interrupt controller component in the Cortex-M3,
this platform fulfills the requirements listed above in Section 1.4.

1.6 OQutline of This Thesis

The following Chapter 2 gives a detailed overview of the features offered by the Nested Vectored
Interrupt Controller as part of the ARM Cortex-M3, which will be the main hardware component
utilized to implement the SLOTH kernel. The design and implementation of SLOTH for the
Cortex-M3 are presented in Chapter 3, which is then evaluated in comparison with another
OSEK implementation in Chapter 4. This chapter also highlights the differences between the
system developed in the scope of this thesis and the reference implementation of SLOTH on the
Infineon TriCore. Chapter 5 concludes this thesis with with a summary of the results and an
outlook of ideas for future work.



Chapter 2

The Nested Vectored Interrupt Controller

In order to implement the SLOTH concept on a platform, the hardware must fulfil the requirements
as stated above in Section 1.4. The ARM Cortex-M3 microcontroller—the target platform for a
SLOTH implementation in the scope of this thesis—includes a tightly-coupled interrupt controller
called NVIC (Nested Vectored Interrupt Controller) [6, p. 6-1]; this integration of the interrupt
controller into the core allows low-latency interrupt handling. The maximum interrupt latency
amounts to 12 cycles, which describes the time between asserting the interrupt and executing the
first instruction of the handler [6, p. 3-20].

2.1 Exceptions and Interrupts

The Cortex-M3 provides 16 system exceptions and allows up to 240 different external interrupt
sources as shown in Figure 2.1. The Reset, NMI (Non-Maskable Interrupt) and HardFault ex-
ceptions have fixed priorities that cannot be changed. All other system exceptions and external
interrupt sources can be assigned to one of up to 256 different priority levels. However, chip man-
ufacturers can choose to only implement a fraction of these; for example, on the Atmel SAM3U4E
used for this thesis, 16 different priority levels are available.

The ARM terminology refers to exceptions as running any sort of handler for both synchronous
and asynchronous system events. The first 16 exceptions numbered 0 to 15 are reserved by the
system. They are used for fault handlers (HardFault, MemManage, BusFault, UsageFault),
debug functionality (Debug Monitor), supervisor calls (SVCall, PendSV) and for the system
timer (SysTick). External interrupts start after that, so the external interrupt N will have an
exception number of 16+N. The NVIC locates the exception handlers using a static vector table,
which is a list of address pointers to the entry points of the handlers.

A priority value of 0 denotes the highest configurable priority, higher values correspond to
lower priorities. The maximum value is defined by the implementation. The priorities of Reset,
NMI, and HardFault are fixed, so they always have a higher priority than all other exceptions. If
multiple exceptions have the same priority and they are pending at the same time, the one with
the lower exception number takes precedence.

2.2 Programming the NVIC

The components of the ARMv7-M architecture are programmed by manipulating memory-mapped
registers. The registers for the NVIC are accessible in a special address range, called the Sys-



Exception Interrupt

number number Name Priority
1 Reset -3
2 NMI -2
3 HardFault -1
4 MemManage configurable
5 BusFault configurable
6 UsageFault configurable
7-10 (reserved)
11 SVCall configurable
12 Debug Monitor configurable
13 (reserved)
14 PendSV configurable
15 SysTick configurable
16 0 External Interrupt 0  configurable
17 1 External Interrupt 1  configurable
16+N N External Interrupt N  configurable

Figure 2.1: Exceptions provided by the Nested Vectored Interrupt Controller. While the priori-
ties of Reset, NMI, and HardFault are fixed, all other priorities can be configured.

tem Control Space (SCS), in which internal system components are configured. Accesses in this
memory region are strongly-ordered, which means the transactions will be performed in program
order. Reading and writing these registers is limited to privileged execution level only. These
registers control masking of individual interrupts, set and clear their pending state and configure
their priorities. Each interrupt source can be triggered asynchronously from connected peripheral
devices or with synchronous instructions from software.

The NVIC provides multiple registers as listed in Table 2.1, controlling interrupt masks and
their pending state. A particular interrupt can be masked using the ISER (Interrupt Set-Enable
Register) and ICER (Interrupt Clear-Enable Register) bit fields. These are organized in groups,
so that each bit in a 32-bit register corresponds to one interrupt. There will be as many bit fields
as required for the number of interrupt sources implemented by the hardware manufacturer. A
single read or write operation can retrieve or manipulate the state of each interrupt in the specific
group. Writing a 1 to the corresponding bit position enables respectively disables the interrupt,
and reading the value returns the current state of the interrupts. A disabled interrupt can still
be asserted as pending, but it will not be dispatched.

Additionally, the NVIC offers bit fields named ISPR (Interrupt Set-Pending Register) and
ICPR (Interrupt Clear-Pending Register) to read and change the pending state of external in-
terrupts. They follow the same write and read semantics as ISER and ICER, where reading the
value returns the current pending state of the interrupts. Writing to ISPR allows software to
trigger interrupts from software. Additionally, STIR (Software Triggered Interrupt Register) can
be used to trigger interrupts in software without privileged access.

Priority levels are configured in the IPR, (Interrupt Priority Register) bit fields. The priorities
of interrupts can be set individually using 8-bit fields, which are organized in groups of four to



Register Name Function

ISER Interrupt Set-Enable Register writing bit n allows interrupt #n to be handled
ICER Interrupt Clear-Enable Register writing bit n prevents handling of interrupt #n
ISPR Interrupt Set-Pending Register writing bit n marks interrupt #n as pending
ICPR Interrupt Clear-Pending Register  writing bit n clears pending state of interrupt #n
IPR Interrupt Priority Register byte n defines the priority of interrupt #n

Table 2.1: Overview of the memory-mapped registers offered by the NVIC for control of inter-
rupts. When the number of supported interrupts is large enough, the actual registers are split
over multiple 32-bit bit fields organized in groups.

fill a 32-bit register. On systems not implementing the full 8 bits, the lower bits of the individual
fields ignore writes and read as zero.

In addition to masking individual interrupts as described above, it is also possible to influ-
ence interrupt handling globally by setting PRIMASK (priority mask), FAULTMASK, and BASEPRI
(base priority):

BASEPRI A register with up to 8 bits with the same width as implemented for the priority
registers (IPR). This register sets the minimum required base priority for exceptions. An
exception will only be processed immediately if its configured priority value is lower than
the current BASEPRI value. Of course, it will not be processed if another exception handler
with an equal or lower priority value is currently active. Remember that lower priority
values correspond to higher exception priority.

The highest priority of all active exception handlers and the value of BASEPRI is called the
current execution priority, as that is the actual value required for preemption.

BASEPRI_MAX Actually the same register as BASEPRI, but with a conditional write. The required
base priority will only be raised and never lowered. Any write to this register trying to set
a value higher (i.e., a lower priority level) than the current value will be ignored.

PRIMASK A 1-bit register which, when set, prevents the dispatching of any exception handler but
not the NMI and HardFault. This is equivalent to raising the current execution priority
to 0, the highest configurable value.

FAULTMASK A 1-bit register similar to PRIMASK, but disables dispatching of all exceptions including
the HardFault and allows only the NMI. This has the same effect as raising the current
execution priority to —1, the priority of the HardFault exception handler.

These global masking registers are not memory-mapped, but are accessed using instructions
instead. The MRS and MSR instructions (Move Register to Special and Move Special to Register)
read and write special register values, including the BASEPRI value from or to a general-purpose
register. The additional conditon of BASEPRI_MAX can be specified by the encoding of the special
register passed to the MSR instruction. The 1-bit registers PRIMASK and FAULTMASK are written
using the CPSIE and CPSID instructions (Change Processor State), which enable or disable the
specified mask.
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Figure 2.2: A stack frame as pushed onto the stack by the hardware at exception entry.

2.3 Exception Handling and Preemption

On exception entry, the NVIC automatically resets the pending bit of the dispatched interrupt
and thus is able to assert this interrupt again as soon as it is handled. Additionally, it stores
the flags, the return address—the value of the PC register at the time of interruption—, and
scratch/caller-saved registers on the stack. These registers form the current state of program
execution and will be used to resume where the interruption took place.

The pushed stack frame as shown in Figure 2.2 conforms to the AAPCS (Procedure Call
Standard for the ARM Architecture, [11]). This accommodates C/C++ programmers as exception
handlers can be written in C/C++ functions that are entered and returned using the calling
convention without requiring special assembler instructions. The difference between a normal
function call and interrupt handler entry is a special value in the LR register that will invoke the
return from exception when written to the PC. This value encodes if the interrupted code ran in
thread or handler mode and which of the banked stack point registers was in use.

The NVIC is capable of nesting interrupts automatically, which allows dispatching of a new
interrupt handler while another interrupt handler is currently running. Therefore, interrupts
will not be masked during execution of a handler. As only interrupts of a higher priority may
interrupt the currently executing control flow, the dispatching of an interrupt handler raises the
current execution priority to the priority of this interrupt. When another interrupt is triggered,
its priority will be compared to the current execution priority. If the new interrupt has a higher
priority, the current handler will be suspended and an exception entry for the new handler takes
place. After this handler returns, the control flow of the initial handler will continue where it
left off. Otherwise, if the priority of the new interrupt was lower, the initial handler runs to
completion before the pending interrupt may be handled.

2.4 Summary

The NVIC as part of the Cortex-M3 fulfills the requirements for a SLOTH implementation as
defined in Section 1.4. It provides multiple priority levels, which can be assigned freely to any

10



interrupt source by setting the IPR registers. Also, the interrupt sources can be triggered in
software by writing the bit pattern to ISPR, which are handled in the same way as if they
would have been triggered from external peripherals. Finally, interrupts can be masked for
synchronization purposes by raising the current execution priority with BASEPRI. Thus, the SLOTH
concept can be implemented on the ARM Cortex-M3 as presented in the next chapter.
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Chapter 3

Design and Implementation

The SLOTH concept defines the goal of letting the hardware interrupt subsystem do the scheduling
of control flows in an event-driven embedded system. The design of the SLOTH kernel for the
ARM Cortex-M3 platform follows the design of the original implementation for the Infineon
TriCore [2, 3]. New abstractions have been introduced for some of the functionalities where the
different hardware requires a different approach. First, this chapter will discuss the utilization
of the provided hardware systems; then, it explains the implementation of the OSEK system
services in detail.

3.1 Sloth Implementation Overview

The implemented SLOTH system conforms to the classes BCC1 and ECC1 of the OSEK operating
system specification as defined in Figure 1.1 in Section 1.2. Therefore the system provides support
for tasks with statically configured priorities. These tasks are available as two types, of which
basic tasks always run to completion and extended tasks can block and wait for an event. A
synchronization mechanism exists in form of resources for mutual exclusion in critical sections.
For periodic actions, alarms can activate tasks after a timer has elapsed.

3.1.1 Utilization of the SAM3U Hardware

This section gives an overview of how the hardware is used to implement the various system
services of OSEK in order to achieve the goal of performing the scheduling by hardware.

The main part of the implementation is structured around the NVIC (Nested Vectored In-
terrupt Controller) provided with the ARM Cortex-M3. Each task is assigned to one of the
interrupt sources. The external peripherals usually connected to these interrupts should not be
used and need to be disabled in the power management to avoid any disturbance. As only the
application specifies which of the external peripheral components will be in use, the mapping of
tasks to interrupt sources is specified in the application configuration. Tasks also have a unique
priority that will be configured in the NVIC. While in OSEK higher priority values correspond
to higher priority, the NVIC defines 0 as the highest priority and higher values correspond to
lower priorities. The application configuration always uses the definition of OSEK and maps the
specified priorities to the hardware definition where required.

The basic task management is quite simple on the Cortex-M3. Synchronous task activation
from software boils down to triggering the corresponding interrupt. This only requires a simple
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one bit modification in the ISPR to pend the interrupt. If the activated task has a higher priority
than the current execution priority, it will preempt the currently running task. At any time, a
task can terminate by executing a return from interrupt. The NVIC already supports nesting of
interrupt handlers on its own and thus stores the scratch context automatically before entering
the interrupt handler. However, due to the possibility of terminating a task from subroutine level,
a prologue and epilogue model is required to ensure correct behavior in all cases as described in
Section 3.2.

Task blocking for event support is implemented by saving the context of the executing in-
terrupt handler, disabling the interrupt source in the register ICER in the NVIC, and a return
from the interrupt. The stored context will be used to resume the operation later when the task
is unblocked by another task or ISR. This results in setting the interrupt source to pending and
enabling the interrupt source again. The interrupt controller is then responsible for dispatching
the blocked interrupt handler, which will run the task prologue restoring the previous context
(see Section 3.3).

Resources are OSEK’s terminology for mutex synchronization objects, which are used to
protect critical sections and prevent concurrent access to shared data and peripherals by using
a stack-based priority ceiling protocol. The SLOTH implementation uses the functionality of
the BASEPRI register to boost the current execution priority while the resource is held. As
multiple resources can be acquired in a nested manner, a resource stack keeps track of the
previous priorities. Due to the static system configuration, the size of this stack is limited to the
maximum amount of resources used in the system and can be computed at compile time. The
implementation of resources is detailed in Section 3.4.

To take action after a specific amount of time has elapsed, OSEK offers alarms, which can
either activate a task or run custom callback functions provided by the application. An alarm
that is configured to activate a task can do so by triggering the interrupt source directly in
SLOTH. The hardware timer counters of the Atmel SAM3U board are used to implement this
system service. As these timer counters are connected to the interrupt subsystem, they match
the SLOTH concept of using functionality provided by the hardware (see Section 3.5).

At startup of the SLOTH system, after peripherals are initialized and the initial stack is set
up, the interrupts are configured according to the application configuration. This boot process
sets the priority for each of the interrupt sources in the NVIC and also enables them if they have
been assigned to a task. The interrupt vector table is loaded and tasks marked to be auto-started
in the configuration are set to the pending state. As the system starts with interrupts disabled,
these will not be dispatched until the initialization is completed and interrupts are allowed to be
handled.

3.1.2 System Configuration

The system is statically configured at build time. While customizing the system according to the
configuration, system generation is allowed to include or exclude features depending on whether
they are used or not. This modular approach makes it possible to produce small operating
system kernels that are tailored to the need of the application. The resulting binary is reduced in
size by disabling features and, thus, consumes less memory, which is an advantage in embedded
development where resource limitation is an important issue. Additionally, a smaller feature
set results in performance improvements as some checks can be disregarded. Due to the use of
inlining of the C compiler, calls to system services can often be replaced with the few instructions
making up the system service.

SLOTH consists of a platform-independent API that can be used by applications and internal
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Application Configuration Generated Code
tasks = { enum {
Taskl = { Analysis: Taskl = 1, // prio
type = extended, * Control flow interaction Task2 = 2, // prio
priority =1, x Priority space e
sam3u_irq = 1, * Mapping logical to Resourcel = 2, // ceiling prio
autostart = true . N RES_SCHEDULER = 3, // max prio
), physical priorities o
Task2 = { };
type = basic,
priority = 2, . . vectors[] = {
sam3u_irq = 22 static analys1s > prologueTaskl,
) } and system generation prologueTask2,
resources = { };
Resourcel = {
used_by = [Taskl,Task2] Generation: void trigger(TaskType id) {
b * Constants if (id == 1) {
}; + Vector table NVIC_SetPe.ndingIRQ(l);
alarms = { . . } else if (id == 2) {
Alarmi = { * IRQ triggering NVIC_SetPendingIRQ(22) ;
activates = Task2 * Task prologues }
} }
};

Figure 3.1: The example configuration of an application on the left is transformed into the code
on the right by the static analyzer and system generator.

abstraction for functionality on different hardware platforms. Some features are implemented on
the higher level and therefore do not require hardware specific handling.

The system generator written in Perl uses templates to produce header files according to the
application configuration, for which an example is shown in Figure 3.1. The actual syntax almost
corresponds to the OSEK Implementation Language (OIL), which makes it easy to port existing
applications. The resulting files consist of the exception vector table, task stacks, and custom
prologues for each task. The generator also calculates priorities of resources, creates functions
to disable, enable or trigger interrupt sources and an initialization sequence for the interrupt
controller and other peripherals used by the kernel, which also includes support for auto-starting
tasks automatically at startup of the operating system.

3.2 Basic Tasks

Multiple control flows in complex software can be organized into tasks. These tasks provide the
environment for executing functions. Usually a scheduler written in software is responsible for
switching between them and thus defining the sequence of task execution. In SLOTH, there is no
software scheduler but instead the hardware is being used to determine task execution order.
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Figure 3.2: Basic task states with transitions defined by the OSEK specification [4, p. 18].
Transitions drawn dashed are implicitly handled by the scheduler, while solid transitions are
invoked synchronously by software.

Overview

OSEK defines two different types of tasks, basic tasks and extended tasks [4, p .16]. This section
is dedicated to the former, the latter with additional support for waiting for events are being
discussed in Section 3.3 below.

As only one task can occupy the processor at any time, multiple tasks ready for execution
may be competing for the processor at the same time. Additionally, tasks of higher priority can
preempt tasks of lower priority. Thus, tasks transit between different states during the execution
of an application. The operating system is responsible for switching between the tasks, while
saving and restoring task context as needed in these transitions. The OSEK specification describes
different policies that will change the preemption of tasks: full-preemptive, non-preemptive, and
mixed-preemptive. The following sections focus on full-preemptive systems, which means that
the operating system is allowed to reschedule the currently running task immediately as soon as
synchronous or asynchronous task activations demand it. Data access shared with other tasks
therefore needs to be synchronized using resources as described in Section 3.4.

Figure 3.2 depicts the different states and possible transitions for basic tasks. The currently
executing task on the processor is in the running state, which can only be occupied by one task
at a time. Tasks waiting for execution are in the ready state. Scheduling decides which task will
change from the ready into the running state based on the configured priorities. The tasks of
the basic type adhere to a run-to-completion paradigm commonly used in event-driven systems,
which matches the run-to-completion execution model of interrupts, making them the perfect
target for the SLOTH concept. A task may only be moved back from running into ready when
a higher-priority task or an ISR (Interrupt Service Routine) takes precedence. In the suspended
state, a task has not been activated yet or terminated itself. A task will not be considered for
execution in this state.

As basic task execution will only occur strictly nested, it is possible to share the same stack
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for all basic tasks in the implementation.

System Services

Within an application, a task is declared using a special macro:

TASK(TaskID) { ... }

The TaskID will be used both in the configuration and system services to refer to this particular
task.

The OSEK API models the transitions described above to the corresponding system services:

ActivateTask(TaskType TaskID)

ActivateTask() changes the state of the task corresponding to TaskID from suspended to ready.
The operating system is responsible for starting the task as soon as possible according to task
priorities and scheduling policy. A system may optionally support multiple activations in confor-
mance class BCC2 or ECC2. In this case, the activation request will be recorded to be carried
out later if the task is currently not suspended. Without support for multiple activations, a call
will be ignored if the task is not in the suspended state. The configuration defines whether an
application needs multiple activations or not.

In the SLOTH implementation, the ActivateTask() function simply triggers the correspond-
ing interrupt source in the ISPR register of the NVIC (see Section 2.2). An interrupt request will
be generated by the hardware if the priority of the requested interrupt is higher than the current
execution priority. Activating a task with a lower priority will only mark the interrupt source as
pending and execution will continue with the calling task.

The implementation has to ensure that task activation happens synchronously. After activa-
tion of a higher priority task, preemption has to take place immediately and none of the next
instructions of the calling task may be executed. As the ISPR register is mapped into the SCS
(System Control Space), side-effects of the changes will take place immediately when the write
access completes. An additional DSB (Data Synchronization Barrier) will be added to guaran-
tee the access has always completed before proceeding. The ARMv7-M Architecture Reference
Manual ([8, p. A3-119]) suggests to use ISB (Instruction Synchronization Barrier) to invoke a
re-fetch of instructions already in the pipeline. However, the exception entry and return will flush
the pipeline anyway, having the same effect as an ISB instruction here. If the activated task has
a lower priority, no preemption is caused and the execution of the currently running task can just
go on.

TerminateTask(void)

TerminateTask() changes the state of the currently running task to suspended, ending the exe-
cution of this task. There is no way to terminate another task; only the currently executing task
can terminate itself. If this task is activated again later, execution will start at the first instruc-
tion. Ending a task without a call to either TerminateTask () or ChainTask() (see below) is not
supported and may result in undefined behavior.

OSEK allows TerminateTask() to be called from a subroutine level of the task. As the
Cortex-M3 only saves parts of the full register context on the stack automatically (see Section 2.1)
and function calls decrease the stack pointer, this situation needs special handling. The solution
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void prologueTaskl(void)

{
asm volatile ("push {%0, r4-r1l, LR}" : : "r" (currentTask));
returnSP[1] = currentStackPointer;
currentTask = 1;
asm volatile ("b functionTaskl");
}

Figure 3.3: Implementation of the generated task prologue, here as an example for a task with
the ID 1.

inline void __attribute__((noreturn)) epilogueTask(void)

{
currentStackPointer = returnSP[currentTask];
asm volatile ("pop {0, r4-ril, LR}" : "=r" (currentTask));
asm volatile ("bx LR");

}

Figure 3.4: Implementation of the task epilogue in a basic task system. All tasks use the same
epilogue as the current task ID has to be determined at runtime.

here is to save the remaining registers and the stack pointer at the entry of the interrupt handler
and restore that value when terminating the task. Usually the compiler would be responsible
for saving and restoring non-scratch registers when they are used. However, in this case, the
compiler-generated function epilogues need to be skipped to allow a premature exception return
from subroutine level. Thus, in SLOTH, each task has an individual prologue prepended that saves
the register values of r4-r11 and LR on the stack (refer to Figure 3.3). Additionally, it stores the
stack pointer value in a global array at the index of the task ID. A global variable currentTask
is set to the current task ID in order to identify the currently running task later. Afterwards, a
branch instruction to the actual task function starts the execution of the application code.

A call to TerminateTask() will run the epilogue of the task, which retrieves the saved stack
pointer from the global array based on the currentTask variable. From this stack location, the
register values saved in the prologue will be restored. Finally, it commences the usual exception
return sequence by moving the special value in the LR register to the PC. The implementation can
be seen in Figure 3.4. The attribute noreturn informs the compiler that a call to this function
ends the current control flow, which will be used for optimization purposes.

ChainTask(TaskType TaskID)

ChainTask() will terminate the calling task. After the termination, the task corresponding to
TaskID will be activated. The succeeding task is allowed to be identical to the calling task.

The implementation of ChainTask() is affected by the same problem as TerminateTask()
as it can be called from a subroutine level. Furthermore, the activation of the succeeding task
must not be performed before termination of the calling task. The defined point of the task
switch should be the end of the task, which corresponds to the return from interrupt in SLOTH.
Therefore, synchronization is required to ensure the correct order; the activation request needs to
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inline void ChainTask(TaskType id)

{
/* set FAULTMASK; raises current execution priority to -1 */
asm volatile ("cpsid f");
/* activate new task, sets pending bit of corresponding interrupt */
ActivateTask(id);
/* end this task */
epilogueTask();
/* implicit reset of FAULTMASK on return from interrupt */
X

Figure 3.5: Implementation of task chaining with use of FAULTMASK.

be delayed until the exception return has been executed, which requires special attention in the
implementation for the Cortex-M3. In contrast to other microcontroller platforms, an exception
return on the Cortex-M3 does not re-enable globally masked interrupts (PRIMASK). The BASEPRI
value defining a minimum required priority level for preemption will not be affected either. This
means that neither PRIMASK, nor BASEPRI can be applied for this purpose. However, while
PRIMASK and BASEPRI values is not affected, the FAULTMASK will be reset on exception return.
Although meant for a different purpose as described in Section 2.2, this functionality is used here
to enforce the correct ordering of task execution.

Setting FAULTMASK raises the current execution priority over the configurable level and, there-
fore, this code section cannot be interrupted at all. The interrupt source corresponding to the
succeeding task will be triggered next. Even if the new task has a higher priority, dispatching
will be prevented by FAULTMASK. The calling task will then be terminated in the same way as
TerminateTask() does. The exception return will implicitly disable the FAULTMASK. At this
point, the hardware will decide which task or interrupt will be executed next according to the
pending priorities.

3.3 Extended Tasks

Extended tasks in OSEK [4, p. 16] are an addition to the basic tasks introduced in the previous
section. The extension on top of the functionality of basic tasks is the support of the OSEK event
mechanism, which allows tasks to wait for an event and yield the processor until the event is set.

Overview

The event ID in conjunction with the owner, which can only be an extended task, identifies an
individual event. An extended task as an owner of events is able to wait for one or more events
at the same time. Only events owned by the calling task can be queried or cleared. Basic tasks
and interrupt routines cannot own events and thus cannot wait for them, but they can signal
events to their owners.

An extended task waiting for an event is transfered into the waiting state. This state is an
addition to the basic task states as shown in Figure 3.6. In this state, it is no longer considered
for scheduling and other tasks of lower priority can run in between. If at least one of the events
the task is waiting for is signaled, the extended task will be moved from waiting to ready. If the
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wait terminate

preempt

release activate

Figure 3.6: Extended task states as an extension to the basic task states as defined by the OSEK
specification [4, p. 17]. This is an extension to the basic task model shown in Figure 3.2 on page
16.

event was signaled before the task tried to wait for it, this task remains in the running state.
Signaling an event does not activate the task if it is currently in the suspended state. The event
will be lost in this case.

While basic tasks can share the same stack as they can only preempt each other in a strictly
stacked manner, extended tasks can block and wait for an event, during which the previous state
of execution needs to be preserved while other tasks are executed. Therefore, it is necessary to
assign separate stacks to each of the extended tasks.

System Services

SLOTH uses simple bit fields for the event mask of a task and the events a task is waiting for.
The event mask holds the state of the individual events owned by this task; the events a task is
waiting for are those that caused this task to be transfered into the waiting state. This waiting
state is entered and left by blocking and unblocking extended tasks.

GetEvent (TaskType TaskID, EventMaskRefType MaskRef)

GetEvent () copies the state of all events owned by the extended task referenced by TaskID to
the event mask pointed to by MaskRef. This function may be called from any task or interrupt
service routine.

In the SLOTH implementation, this merely results in a simple check if the corresponding bits
are set in the event mask of the calling task.
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ClearEvent (EventMaskType Mask)

The service ClearEvent () clears the state of the events listed in Mask in the event mask of the
calling task. Events always have to be cleared manually. This function may only be called from
extended tasks that own the event specified by Mask.

The implementation for clearing an event is a simple bit field operation, removing the bits
from the event mask of the calling task.

SetEvent (TaskType TaskID, EventMaskType Mask)

SetEvent () sets the event mask of the task corresponding to TaskID according to Mask. If the
specified task was in the waiting state and waiting for at least one of the events denoted by Mask,
it will be transfered into ready state. Other events of this task remain unchanged. This function
may be called from any task or interrupt service routine.

The implementation of SetEvent () in SLOTH will be discussed below in conjunction with the
WaitEvent () system service.

WaitEvent (EventMaskType Mask)

The WaitEvent () system service sets the mask of events to be waited for. This function may
only be called from extended tasks and only events owned by this task may be specified in Mask.

In a system running basic tasks only, all control flows are strictly nested. The possibility
of blocking and unblocking of extended tasks introduces more complexity as all other tasks—
even those with a lower priority—can continue their execution while an extended task is in the
waiting state. Interrupt handlers with a run-to-completion execution model are not designed to
handle suspension and resumption; thus, to block a task, it has to be removed from scheduling
completely. In SLOTH, this means that the interrupt controller needs to continue dispatching
other interrupt handlers and their corresponding tasks while ignoring the blocked task. On the
ARM Cortex-M3, the decision whether a pending interrupt handler can preempt the running
control flow is based on the current execution priority. For this, the NVIC keeps track of all
active exception handlers and takes them into account for calculation of the current execution
priority. The Cortex-M3 will not dispatch any new handler with a lower priority assigned as long
as the current execution priority is equal or higher. The priorities assigned to interrupts are used
to determine if a new interrupt handler can be dispatched. However, the priority of a running
interrupt cannot be lowered by the IPR value in the NVIC as the current execution priority
is only calculated once at the time of dispatching of the interrupt. Therefore, to support the
continuation model of extended tasks, SLOTH has to internally terminate extended tasks when
they need to block to retain them from scheduling. In order to re-enter the interrupt handler later
at the point of blocking, the full context of the task needs to be stored before it is terminated.

Blocking occurs whenever WaitEvent () is called and the event in question has not been set
before. As shown in Figure 3.7, after checking the event mask and setting the mask of events to
be waited for, the corresponding interrupt source of the calling task is disabled. This prevents
dispatching of this interrupt handler as long as the task is in the waiting state. The interrupt
is triggered immediately afterwards, so it fires as soon as the interrupt source is enabled again.
To unblock a task when SetEvent () signals an event another task is waiting for, the respective
interrupt source is enabled again.

To save the full context of the extended task on blocking, a return address is pushed onto
the stack followed by all the register values. This return address points to the instruction right
after the context saving and termination. This has to be the address right before the compiler-
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inline void WaitEvent (EventMaskType mask)
{
/* if at least one event is already set, return immediately */
if ((eventMask[currentTask] & mask) != 0) {
return;

}

/* no event was set; need to block until an event is signaled */
eventsWaitingFor [currentTask] = mask;

/* disable interrupt source for current task and set to pending */
archDisableIRQSource (currentTask) ;
archTriggerIRQ(currentTask) ;

/* retrieve return address from label resumeTask */
asm goto (

"adr r0, %1l[resumeTask]\n"

"orr r0, #1\n"

"push {rO}\n"

: /* no output */

: /* no input */

llroll

: resumeTask
);
/* store context on stack */
asm volatile (

"push {rO-r3, ri2}\n"

"mrs rO, PSR\n"

"push {rO}\n"

"push {r4-ri11, lr}\n"

: /* no output */

: /* no input */
);

contextSP[currentTask] = currentStackPointer;

/* end task, returns from exception */
epilogueTask();

resumeTask:

; /* dummy to avoid warning "label at end of compound statement" */

Figure 3.7: Implementation of the function WaitEvent ()
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Enter Extended Task Prologue
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1
ﬂ) Push context onto stack
2 yes 2a
getType(currentTask) == basic? interruptedBasicTaskSP := SP
no ]
3
currentTask := N
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hasSeenCPU [current Task]? T hasSeenCPU][currentTask] := true
ycsl
5a 6b
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contextSP[current Task] Initialize Stack Pointer
6a l b
Continue at resumeTask label Jump to functionTaskN

Figure 3.8: State diagram of the prologue for extended task N. As each prologue is generated
individually, the number N will be replaced for the specific task.

generated function epilogue to restore any non-scratch registers used in the implementing func-
tion.

The SLOTH implementation uses the relatively new asm goto statement introduced with
version 4.5 of GCC (GNU Compiler Collection) [12, 13]. This statement is an extension to
the usual asm statement; it allows to retrieve the address of a C label and to be used in jump
statements. This makes it possible to inline the implementing function. Using an asm label would
have prevented inlining as the asm label can only be accessed in the global scope whereas here the
address needs to be calculated each time the function will be inlined. The last bit of the address
has to be set to 1 to indicate that the target location is assembled in the Thumb instruction set.

The current task context is pushed onto the stack and the stack pointer is saved to a global
array indicating where the context can be found for the restore operation. Afterwards, the task
is terminated using the epilogue for task termination which is described in detail in Section 3.2
above.

A matching prologue exists for extended tasks in the same way as for basic tasks, which is
depicted in Figure 3.8. After saving the context of the interrupted task and setting the current
task ID in steps 1-3, this prologue of an extended task additionally needs to check whether
it has been activated or resumes from waiting state in step 4. If it has run before, the saved
context needs to be restored by popping the values from the stack location back into the registers
(step 5a). The return address pushed before will be written to the program counter in step 6a,
completing the re-entry of the handler at the position after it was blocked. Otherwise, if the task
did not run before, it is marked as running in step 5b. After initialization of the stack pointer in
step 6b, the prologue jumps directly to the user task function in the last step 7b.

Stack switches are necessary in the prologue not only for extended tasks, but for basic tasks
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as well. All basic tasks share the same stack as their invocation happens strictly nested, whereas
each extended task uses its own stack. Extended tasks load their predefined stack pointer in
the prologue in the initialization or implicitly set them by a restore of the saved context when
returning from waiting state. A basic task preempting an extended task needs to return to the
shared stack used by all basic tasks. Therefore, if the interrupted task was of the basic type,
the prologue of an extended task saves the stack pointer of the basic task stack after saving its
context. The prologue of the basic task will load this value and continue its operation on the
basic task stack. When a basic task preempts another basic task, no action needs to be taken as
they share the same stack.

3.4 Resource Management

Overview

The resource management in OSEK is responsible for coordination of concurrent accesses to
shared resources [4, p. 29]. These resources could represent system components, memory ranges,
or hardware peripherals. The operating system ensures that

e only one task can occupy a resource at a time,
e no deadlocks occur by use of resources, and

e priority inversion cannot occur.

To achieve these goals, OSEK prescribes a special kind of priority ceiling protocol. Resources
are available in all OSEK conformance classes.

OSEK Priority Ceiling Protocol

The most common problems of synchronization methods like semaphores or mutexes are priority
inversion and deadlocks. When using mutexes for synchronization, a task has to be blocked when
the attempt to acquire a mutex was not successful as it was already occupied. Using a spin-lock
is not possible in an event-driven uniprocessor system as taking it would immediately lead to an
obvious deadlock. Additionally, priority inversion can occur when lower-priority tasks delay the
execution of a higher priority task.

Figure 3.9 illustrates an example for an unbounded priority inversion in a full-preemptive
system. Task T1 with the lowest priority acquires a mutex at ¢1, after which T3 is activated at
to by an external event. As T3 has a higher priority, it preempts T1. During execution of T3,
it tries to acquire the same mutex at t4. As the mutex is already occupied by task T1, the task
T3 has to block and return control to scheduling. The asynchronous activation of task T2 which
took place in between at 3 can now be handled as now other task with a higher priority than the
one of T2 is ready. However, T3 cannot continue with its execution as long as T1 still occupies
the mutex, which can only be unlocked when T1 is scheduled again. In this situation, T2 clearly
delays the execution of the higher-priority task T3, although it is not even using the mutex.

To avoid such an unbounded priority inversion, the OSEK specification defines the OSEK
Priority Ceiling Protocol. As an abstraction for synchronization, OSEK defines resources. When
acquiring a resource, the current task’s priority is raised to the resource ceiling priority and
lowered to the original priority when released. This ceiling priority of a resource is the highest
priority of all tasks that can acquire it. This value is computed at system generation and statically
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An example for an unbounded priority inversion problem using mutexes.

The

execution of the high-priority task T3 is delayed by task T2, although it has a lower priority.

Execution Priority

A

Act (T3)

¢

Task T1

Act(T2)

s

1

1
I
1
|

Task T3

A unlock()

\
1
I
I
I

lock()

unlock()

Term()

Task T2

Term()

Task T1 v
lock()

t1 to tz ta ts te t7 tg

Figure 3.10: The solution to the unbounded priority inversion problem presented in Figure 3.9
using the OSEK priority ceiling protocol.

assigned to each resource. Tasks using the same resource therefore have a priority lower or equal
to the resource’s ceiling priority. Therefore, the ceiling priority required for a specific resource is
the highest priority of all tasks accessing this resource.

The solution applied to the unbounded priority inversion problem using the OSEK priority
ceiling protocol is shown in Figure 3.10. The priority of task T1 is raised to the ceiling priority
when acquiring the resource at t; and falls down to the original value when releasing the resource
in t3. But at this point, the priority is not actually lowered again, as task T3 was marked pending
by an external event at t5 and is dispatched as soon as the execution priority allows at t3. Hence,
task T3 is only delayed for the time T1 occupies the resource in the critical section between t;
and t3. As no other task such as task T2 is able to run in between, the execution of T3 is not
delayed any further.

This priority ceiling protocol ensures that no task can be preempted by another task accessing
the same resource while the resource is occupied. Although this protocol still allows tasks with
a priority higher than the one of the acquiring task, but lower or equal to the ceiling priority to
be delayed, the duration of the delay is always limited to the time a resource is occupied by a
lower-priority task.
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inline void GetResource(ResourceType id)

{
/* read current priority */
TaskType localPrevPrio = archGetBASEPRI();
/* lock the kernel; not interruptible after that */
archSetBASEPRI (OSMAXPRIO) ;
/* save the execution priority; increment resource stack pointer */
resourceStack[resourceStackPointer] = localPrevPrio;
resourceStackPointer++;
/* check if new level is above previous level */
TaskType newPrio = (id > localPrevPrio) 7 id : localPrevPrio;
/* set new priority level; implicitly unlocks the kernel */
archSetBASEPRI (newPrio) ;

b

Figure 3.11: First implementation of the GetResource() system service, synchronizing the
resource stack access by setting BASEPRI to OSMAXPRIO.

System Services

GetResource (ResourceType ResID)

GetResource () acquires the resource denoted by ResID to enter a critical section. Any critical
section has to be left using ReleaseResource() before terminating the task. In case multiple
resources will be acquired in the same task, the get and release operations need to be strictly
nested.

The SLOTH implementation uses the BASEPRI register of the Cortex-M3 to implement the
priority ceiling protocol of OSEK. This register describes the minimum exception priority required
for preemption as outlined in Section 2.2. The NVIC will only dispatch interrupt handlers with a
priority higher than the current execution priority, which is usually the priority of the currently
running interrupt handler. When multiple interrupt handlers are nested, this is always the one
at the greatest nesting level which preempted the others. Using the BASEPRI register, the current
exception priority can be raised to a higher level, which will prevent interrupt handlers—and the
corresponding tasks—of a lower priority from dispatching. Changing the BASEPRI register can
only raise the current execution priority over the priority of the currently executing exception
handler. The initial value of 0 disables the masking of BASEPRI completely and only the priorities
of the interrupts are taken into account.

In GetResource (), the current BASEPRI value is pushed onto a global resource stack; then, it
is set to the new ceiling priority of the resource. Pushing the value onto the resource stack consists
of multiple non-atomic operations. First, the resource stack pointer needs to be increased; then,
the value is written into the reserved space. Thus, this access needs to be synchronized as another
task of higher priority could preempt the currently running task in between and try to acquire a
resource as well.

To make as much use of the provided hardware functionality as possible, two separate imple-
mentations using different synchronization mechanisms are provided. The configuration defines
which of them will be used for the particular application. The first one shown in Figure 3.11 locks
the kernel by increasing the current execution priority—the BASEPRI value—to the maximum pri-
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inline void GetResource(ResourceType id)

{
/* read current priority */
TaskType localPrevPrio = archGetBASEPRI();
/* lock the kernel; not interruptible after that */
archDisableIRQs();
/* save the execution priority; increment resource stack pointer */
resourceStack[resourceStackPointer] = localPrevPrio;
resourceStackPointer++;
/* set new priority level if new value is greater */
archSetBASEPRI_MAX (id);
/* unlock the kernel */
archEnableIRQs();

}

Figure 3.12: Second implementation of the GetResource() system service, synchronizing the
resource stack access by disabling interrupts.

ority of all tasks and category-2 ISRs. The access to the BASEPRI register is encapsulated into
wrapper functions archGetBASEPRI and archSetBASEPRI. The actual value is calculated during
system generation as OSMAXPRIO.

In SLOTH, tasks and category-2 ISRs, which are allowed to access system services, are not

distinct as in traditional OSEK conforming implementations since they share the same priority
space. ISRs of category 1, which cannot use system calls, will have priorities assigned higher than
those of tasks and category-2 ISRs. Thus, raising the current execution priority to OSMAXPRIO
will only lead to suspension of tasks and category-2 ISRs, while ISRs of category 1 with the higher
priority can still be handled as usual.
The second implementation shown in Figure 3.12 utilizes the hardware by using BASEPRI_MAX
to update the current execution priority. The BASEPRI_MAX register specification actually refers
to the same register as BASEPRI, but has a conditional write. When writing a new value to
BASEPRI_MAX, the hardware will compare it with the current value and applies the change only
if the new value is greater than the current value. Otherwise, the write is ignored. This has the
advantage that it is not necessary to read the value, compare it, and then write a new value as
it would be done in software. Thus, as reading the value can be omitted, using BASEPRI_MAX
should result in better performance for GetResource().

However, the stack access still needs to be synchronized. To take advantage of BASEPRI_MAX,
this cannot be done by raising the BASEPRI for locking purposes already. Therefore it is necessary
to lock the kernel by disabling interrupts completely using PRIMASK, which is modified using the
helper functions archDisableIRQs and archEnableIRQs. The drawback is that category-1 ISRs
would be blocked as well, but only for the bounded time until the GetResource () system service
is completed, which only takes a couple of cycles.

ReleaseResource (ResourceType ResID)

ReleaseResource () releases the resource denoted by ResID by restoring the previous value of
BASEPRI from the global resource stack. The implementation is shown in Figure 3.13 and un-
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inline void ReleaseResource(ResourceType id)

{
/* lock the kernel; not interruptible after that */
archSetBASEPRI (OSMAXPRIO) ;
/* decrement resource stack pointer */
resourceStackPointer—-;
/* restore the previous execution priority; implicitly unlocks the kernel */
archSetBASEPRI (resourceStack[resourceStackPointer]) ;
}

Figure 3.13: Implementation of the ReleaseResource () system service.

like above for GetResource(), no alternative implementation is possible. ReleaseResource()
is always synchronized using OSMAXPRIO with an implicit unlock by restoring the previ-
ous execution priority level. This leaves the critical section enclosed by GetResource() and
ReleaseResource().

RES_SCHEDULER

In an OSEK system, a task can protect itself against preemption by other tasks by acquiring the
special resource RES_SCHEDULER (). This resource is automatically generated and accessible from
all tasks. It is implemented as a normal resource following the priority ceiling protocol with a
resource priority that is the same priority as the highest priority used for any task.

3.5 Alarms

Overview

Alarms in the OSEK operating system [4, p. 36] are used to run actions in either periodic or
one-shot modes. They can be configured statically to activate specific tasks when a timer expires.

System Services

SetRelAlarm(AlarmType AlarmID, TickType increment, TickType cycle)

After increment ticks have elapsed, the assigned task will be activated. The cycle count can be
used to set up periodic alarms, which will be set up again every time they expire. After the first
invocation, the alarm will fire every cycle ticks. A value of 0 sets up a one-shot alarm.

The implementation uses the three timer counters included on the Atmel SAM3U board [10,
p. 755]. These are organized around 16-bit counters driven by either the main clock modified by
a scale factor or a slow clock running at constant 32,768 Hz. Each of them can be programmed
to generate an individual interrupt when a specific counter value is reached. Depending on the
application, the timer counters need to be configured to the correct clock sources. Using a different
clock speed has an impact on the maximum ticks that can be specified for a SetRelAlarm() call.
A task supposed to be activated by an alarm is mapped directly to the interrupt number of the
corresponding timer counter in the configuration. For such tasks, a slightly different prologue
will be generated as the external interrupt of the timer counter needs to be acknowledged. This
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only adds one instruction and still works when activated manually using ActivateTask(). The
SetRelAlarm() system service merely computes and sets the compare value for the corresponding
timer counter derived from AlarmID and starts the timer. The counting will be done by the
hardware until expiry of the timer activates the task by triggering its interrupt source.

The ARMv7-M architecture also provides a system timer called SysTick. This timer is capable
of generating an interrupt after a specific tick count, but is limited to only one entry in the vector
table. Thus, an implementation with support for multiple alarms would require a dispatcher in
software to activate the corresponding tasks. To support this, additional data about the alarms
would need to be kept in memory. Although using the SysTick would be more portable across
different Cortex-M3 hardware, the timer counters as provided by the SAM3U board match the
SLOTH concept better.

3.6 Summary

The SLOTH implementation detailed in this chapter implements OSEK system services for task
management of basic and extended tasks, resource management, and alarms. Both task and
resource management utilize the NVIC as part of the ARM Cortex-M3 for the implementation
of interrupt-driven scheduling. The implementation of alarms uses the timer counters provided
on the Atmel SAM3U board used for this thesis which are able to trigger interrupt sources after
a given amount of time has elapsed.
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Chapter 4

Evaluation

The SLOTH implementation was evaluated on an Atmel SAM3U4E evaluation kit, which includes
a Cortex-M3 revision 2.0. The board was configured to run at 48 MHz, which is the default
clock speed in the startup code provided by Atmel. Measurements were taken in frequency-
independent clock cycles to analyze the run time of selected scenarios in a preemptive operating
system conforming to OSEK classes BCC1 and ECCI1 in Section 4.1.

Additionally, due to the variability in hardware platforms, several aspects of the SLOTH
implementation for the ARM Cortex-M3 use a different approach as the reference implementation
on the Infineon TriCore. Section 4.2 analyzes the differences in the systems and their implication
on the system services.

Finally, the implemented feature set of OSEK is discussed in Section 4.3, explaining the
current limitations of the system.

4.1 Performance Evaluation

To confirm the positive effects of the SLOTH concept on the non-functional properties of an op-
erating system, the performance of the SLOTH implementation was compared to another OSEK-
conforming implementation. For this purpose, Arctic Core was chosen, which is a multi-platform
operating system developed as an open source project [14]. It implements the AUTOSAR specifi-
cation, which is a superset of the OSEK specification using the same interface for system services.
Although Arctic Core supports the ARM Cortex-M3 platform on several boards already, some
small changes to the build system, startup code, and linker scripts against version 2.9.1 were
necessary to add support for the Atmel SAM3U board used in this thesis.

4.1.1 Measurement Setup

The ARMv7-M architecture defines several components for debugging purposes. A debugger can
be attached using a normal JTAG connector, which can read arbitrary registers and memory
addresses, set breakpoints, and step through the code executed on the device. Additionally,
the Instrumentation Trace Macrocell (ITM) and the optional Embedded Trace Macrocell (ETM)
can generate timestamps and instruction traces, which can be read out using the Serial Wire
Debug protocol. The Atmel SAM3U4E used for this thesis does not provide the ETM and only a
JTAG adapter was available, which is not capable of reading the ITM data from the debug port.

31



Thus, a different approach using the Data Watchpoint and Trace unit (DWT) was used to take
measurements of the implemented software.

The DWT provides, among other registers, a memory-mapped 32-bit cycle count register
CYCCNT, which is incremented each clock cycle. This can be used to obtain the amount of clock
cycles a specific code section needs for execution. After enabling the cycle counter in the DWT,
the CYCCNT register can be read any time to get the current clock cycle count since the counter
was reset.

A simple measurement using this approach would look like this:

uint32_t value;

DWT->CYCCNT = 0;

/* ... code to be measured ... */
value = DWT->CYCCNT;

As the DWT uses memory-mapped registers for control, the compiler-generated assembly code
accessing CYCCNT needs to load its address first. For a small piece of code, this will be held in a
register during execution of the examined code. However, for a larger section, the value will be
calculated and loaded again. Depending on the surrounding code, an optimizing compiler might
even try to merge the calculation with other statements, moving statements out of the examined
section. To avoid falsified results or unsteady overhead to be added to the measured cycles, the
register accesses were wrapped into small helper functions.

uint32_t value;

sam3uMeasureStart () ;

/* ... code to be measured ... */
value = sam3uMeasureStop();

This way, only two additional branch statements to sam3uMeasureStart and sam3uMeasureStop
will be inserted in the code, respectively. Attributes advising the compiler not to inline these
start/stop functions to ensure branch statements are also included. In the stop function, the
measurement code automatically subtracts the overhead added by these calls, which is determined
in an initial measurement at the beginning of the test program.

The execution time of a code section on the Cortex-M3 is usually predictable as long as
no branch instructions are hit in the instruction stream and no interrupts occur in between.
However, fetching instructions from the embedded flash controller may be delayed depending
on the address and wait states applied. For example, a halfword-aligned 32-bit instruction will
require a second fetch as all instruction fetches are word-wide. That is why the compiler was
instructed to align the 32-bit branch instruction to the start function to a word boundary, which is
meant to ensure the overhead introduced by the measurements is constant. Of course, depending
on the measured code, the stop function might still hit a halfword boundary, which might lead
to a single cycle added to the measurement. However, this is inherent to the measured code and
cannot be avoided.

The flash controller on the SAM3U4E optimizes sequential read accesses using buffers, adding
two wait states for the first instruction of a block by default. To simulate an environment as it
would be used in real applications, this was not changed. Additionally, at each branch instruction,
the 3-stage pipeline of the Cortex-M3 might need to be flushed if the branch prediction guessed
wrong. Therefore, the initial measurement to calculate this overhead is performed with 8 NOP
instructions. This number was chosen as the encoding of 16-bit NOP instructions is a multiple
of four to mitigate the effects of misaligned instructions and is long enough to fill the pipeline of
the Cortex-M3.
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The measured values also need to be retrieved from the board. The host computer was
connected over a serial interface using the Universal Asynchronous Receiver/Transmitter (UART)
on the SAM3U hardware. The start/stop functions mentioned above were extended to transmit
the measurement value right after it has been obtained to the host computer, where further
processing may take place. All measurements were repeated multiple times, but as execution on
the ARM Cortex-M3 is fully deterministic, this leads to zero deviation between all runs.

4.1.2 System Configuration

As both SLoTH and Arctic Core support the OSEK system services, the same test applications
were used on both systems. Both systems were compiled using the GNU Compiler Collection
with the optimization level -03 and assertions disabled. The configuration was almost the same
for both implementations. Whereas SLOTH uses a shared stack for basic tasks, the Arctic Core
implementation always uses distinct stacks for each of the tasks. This will have a slightly adverse
influence on the performance of task switches in the Arctic Core system as they always involve
switching stacks, although this would not be necessary in a BCC1 system with only basic tasks
involved. Additionally, advanced features of Arctic Core were disabled by using the AUTOSAR
scalability class 1, which is backwards compatible to OSEK.

For the SLOTH implementation, an additional optimization regarding task switches was eval-
uated. Most system services need to know which task is currently active as they use this task
ID as an offset in an array or for similar actions. Usually, this would involve loading the infor-
mation from a memory location, which requires multiple bus accesses to load the address first
and then the actual value. Thus, these accesses can be optimized by keeping the current task
ID in a general-purpose register instead of a memory location. As all registers are normally
under control of the compiler, a register has to be reserved globally and may not be used in any
compiler-generated code. GCC allows to mark a register as fized with the option -ffixed-reg,
which removes it from the register allocator and generated code will never refer to it. As only
low registers rO-r7 can be addressed by all 16-bit instructions in the Thumb instruction set and
using one of these would reduce the available registers for most instructions, the high register ri1
is chosen for this purpose. The downside of this approach is that all code has to be compiled with
the appropriate compiler flag and, thus, linking against binary-distributed libraries is impossible.

Thus, the test cases were evaluated on two separate configurations for SLOTH, where one
stores the current task ID in a register and the other one uses conventional memory, and as the
third competitor, the Arctic Core implementation. On all three systems, multiple scenarios were
evaluated to show the performance of the implementation on task switching, synchronization
with resources, and handling of events.

4.1.3 Test Scenarios

To cover as many scenarios as possible in the evaluation, three separate test applications were
prepared for measurements. The first one uses basic tasks only, where the performance of task
switches and resources using the OSEK priority ceiling protocol can be observed. The second
one uses extended tasks only, where task blocking and the effects of the additionally required
stack switches on the performance can be inspected. Finally, the last test application implements
both basic and extended tasks, which allows to analyze the impact of extended tasks in the same
system as basic tasks on their task switching performance and the scalability of the implemented
system services. The selected test cases include all task-switching-related system services that
stand to benefit from use of the hardware in the SLOTH implementation.
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Test Case SLOTH ArcCore ‘ Speed-Up

register memory ‘

A1 ActivateTask without dispatch 9 9 233 25.9
A2 ActivateTask with dispatch 40 56 507 12.7
A3 TerminateTask with dispatch 24 33 310 12.9
A4 ChainTask with dispatch 61 84 471 7.7

a) synchr. using OSMAXPRIO 31 32 4.1
A GetResource {b)) synchr. using PRIMASK 21 22 126 6.0
A6 ReleaseResource without dispatch 29 29 185 6.4
A7 ReleaseResource with dispatch 63 80 461 7.3

Table 4.1: Performance evaluation of task switching and resources in a system with basic tasks
only. The values specify the measured execution time in number of clock cycles. The speed-up
is the comparison of the SLOTH register variant with Arctic Core.

The latencies of all system services are measured from the point before the invoking statement
until the action is completed. For instance, a preempting task activation is measured from the
point before ActivateTask() () to the first application instruction in the activated task func-
tion, and a task termination is measured from the point before TerminateTask () () to the next
instruction in the following task. If no preemption or task dispatching occurs, the measurement
is ended at the next instruction right after the statement invoking the system service.

4.1.4 Basic-Task System

The results for task switching in a system with basic tasks only is presented in Table 4.1 as a
comparison between the two SLOTH configurations—with the current task ID in a register or in
memory—and the Arctic Core system.

Sloth-Internal Evaluation Results

The numbers show clearly how SLOTH can benefit from the optimization of keeping the current
task ID in a general-purpose register for system services operating with this number. Although
test case Al is not influenced at all as activating a task without preemption does not involve the
current task ID, test case A2 runs faster since the context saving in the prologue of the dispatched
task can take advantage of the optimization. By using a register, the current task ID is stored
altogether with other registers, whereas by using a memory location, a separate load and store
sequence is required. Similar improvements can be observed in both task termination and task
chaining in test cases A3 and A4. Overall, the register variant has a maximum speedup of 1.4
compared to using a memory location.

For resource acquisition in test case A5, the performance of the two implemented methods for
synchronization as described in Section 3.4 were compared. Implementation a) raises the current
execution priority in BASEPRI to OSMAXPRIO in order to synchronize accesses to the resource
stack, whereas implementation b) takes advantage of the hardware by using BASEPRI_MAX for
setting the new execution priority, which renders reading and comparing the value in software
unnecessary. Therefore it has to implement a different way for synchronization by disabling inter-
rupts completely using PRIMASK. The results show that both implementations are not influenced
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very much by the register optimization, but implementation b) is 10 cycles faster than a) due to
using the hardware to the full extent. However, the synchronization method using PRIMASK in b)
also blocks ISRs of category-1, while synchronization in a) still allows them to be handled. Thus,
the configuration of the system in this respect is subject to a trade-off decision by the application
programmer.

The test cases A6 and A7 show the performance of releasing a resource, while in A7 a task
dispatch is required and in A6 it is not. The ReleaseResource() system service itself does
not gain performance from the optimization by using a register for the current task ID as that
value is not used for this action. The difference in performance between A6 and A7 is similar to
the difference between task activation with and without dispatching a task for both versions of
SLOTH, which is 31 and 34 cycles for the register variant and, when the current task ID is held
in memory, 47 and 51 cycles. This shows that only the prologue of the dispatched tasks adds
additional cycles to the operation.

Comparison with Arctic Core

In comparison with Arctic Core with a scheduler and dispatcher in software, a huge difference
in performance can be noticed for all system services, totaling to between 95 and 224 additional
clock cycles. Apart from its software-based scheduling, this arises from the fact that this system
does not use a single stack for all basic tasks and thus has to perform a stack switch for each
transition as the tests in the following sections will show. Additionally, Arctic Core does not use
as many optimizations as SLOTH does. For instance, Arctic Core compiles and links in multiple
steps and thus, system services cannot be inlined into the application itself as they are in the
SLOTH implementation. Due to the software-based nature of Arctic Core, many cycles have to be
spent for scheduling. This can be seen in the first four test cases which cover the task management
for basic tasks, where even the slower configuration of SLOTH that uses a memory location for
the current task ID can achieve a minimum speed-up of 5.6, whereas the variant using a register
even achieves a minimum speed-up of 7.7.

Summary

In summary, the difference between the versions with the current task ID in a register and memory
has a maximum speed-up of 1.4. In absolute cycles, this ranges from 0 cycles for system services
that do not need this information, up to 23 cycles for task chaining. This proves that reserving
a register for the current task ID can be a viable optimization to be enabled for the SLOTH
implementation.

The performance comparison shows that the scheduling by hardware can achieve a speed-up
ranging from 4.1 to 25.9 for a basic task system compared to the software-based scheduler of
Arctic Core.

4.1.5 Extended-Task System

The second test application evaluates the performance of a system with extended tasks only.
Here, every task switch requires a stack switch as well. The results of the measurements are
shown in Table 4.2. As the performance gains of the variant using a register for the current task
over using a memory location was already affirmed in the first test case, only the register variant
of SLOTH is compared to Arctic Core.
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Test Case SLoTH  ArcCore ‘ Speed-Up

B1 ActivateTask (extended) with dispatch 60 505 8.4
B2 WaitEvent with dispatch 96 325 3.3
B3 SetEvent with dispatch 87 407 4.7
B4 ClearEvent 9 48 5.3
B5 TerminateTask (extended) with dispatch 30 312 10.4
B6 ChainTask (extended) with dispatch (same task) 94 235 2.5

Table 4.2: Performance evaluation of task switching and blocking in a system with extended
tasks only, which requires stack switches for all system services except B4. The values specify
the measured execution time in number of clock cycles.

Sloth-Internal Evaluation Results

Although the blocking and unblocking of tasks does not fit to the run-to-completion model of
interrupt handlers, the SLOTH implementation achieves respectable performance. Task switches
between extended tasks in B1 and B5 take a little bit longer than basic task switches in A2
and A3 with a difference ranging between 6-20 cycles compared to the register variant. This
is because task switches for extended tasks involve stack switches and more conditional checks.
The task termination in B5 requires less additional cycles with only 6 cycles compared to the
register variant in A3 as the code path is very similar as the next test application will show in
more detail. The additional cycles required for task activation with dispatch are added by the
extended task prologue as it has to do stack switches and needs to check whether it resumes from
waiting for an event or was dispatched without prior context.

The ClearEvent () system service in B4 takes the fewest time with 9 cycles as it only operates
on a bit mask. The task blocking implemented in WaitEvent () as tested in B2 involves saving
the full context state of the task in order to block the task and remove it from scheduling. This
system service—including a following dispatch—takes 96 cycles in the SLOTH implementation.
The task unblocking caused by SetEvent (), which allows a blocked extended task to continue its
operation, takes 87 cycles, which includes the extended task prologue which restores the previous
context. Therefore, with 27 cycles more, this takes significantly longer than a task activation of
60 cycles in B1, where the prologue can directly jump to the user task function. Test case B6
of extended task chaining takes 33 cycles longer than basic task chaining in A4 which already
includes the additional 6 cycles for task termination and additional 20 cycles for the extended
task activation.

Comparison with Arctic Core

Again, all system services have an performance improvement over Arctic Core, while the speed-
up ranging from 2.5 to 10.4 is not as high as it is for a basic task system. The extended task
activation of Arctic Core in B1 is very similar to the basic task activation in A2 with a difference of
only 2 cycles, which could also be caused by unaligned instruction accesses in the measurement as
outlined in Section 4.1.1. The same is observed for task termination in B5 and A3, which also only
differs in 2 cycles. However, this suggests that Arctic Core does not handle basic and extended
tasks differently and especially requires the same overhead for scheduling and dispatching in
software for both of them.

The lowest speed-up value was measured for task chaining in B6, which, as said, differences

36



Test Case Task Type Transition  Stack Switch SLoTH  ArcCore ‘ Speed-Up

C1 ActivateTask Basic — Basic no 42 505
C2 ActivateTask Basic — Extended yes 65 525
C3 ActivateTask Extended — Basic yes 47 525
C4 WaitEvent Extended — Basic yes 112 357
C5 SetEvent Basic — Extended yes 92 407
C6 TerminateTask Basic — Basic no 33 313
C7 TerminateTask Extended — Basic yes 33 312
C8 TerminateTask Extended — Extended yes (dispatch new task) 83 346
C9 ChainTask Basic — Basic no (dispatch same task) 74 233

12.0
8.0
11.2
3.2
44
9.5
9.5
4.2
3.1

Table 4.3: Performance evaluation of task switching and blocking in a mixed task system with
both basic and extended tasks, which requires stack switches for transition involving extended
tasks. The values specify the measured execution time in number of clock cycles.

from the basic task chaining in A4 as the former chains the same task again, where Arctic Core
achieves a faster operation for B6 than for A4. Arctic Core probably optimizes the special case of
chaining the same task, which does not need to switch stacks as it is safe to assume the currently
terminated task will again be the task with the highest priority. Although SLOTH does not apply
any optimization for this case, it still outperforms the software-based scheduler with a speed-up
of 2.5.

Summary

In the performance comparison with Arctic Core, the SLOTH implementation achieves a speed-up
ranging from 2.5 up to 10.4 for an extended-task system. This is not as high as for the first test
application which only involves basic tasks. However, extended tasks do not match the run-to-
completion model of interrupt handlers and this second test application shows that the SLOTH
implementation of task blocking again performs faster than a software-based scheduler.

4.1.6 Mixed Task System

The third test application examines the performance in a system with both basic and extended
tasks; the results are shown in Table 4.3. The comparison is between SLOTH, configured to use a
register for the current task ID, and the Arctic Core implementation. The task transitions denote
which task called the system service and which task is chosen to run next after the scheduler
decision. The table also indicates required stack switches for transitions involving extended tasks.

Sloth-Internal Evaluation Results

In a mixed task system using the SLOTH kernel, also the basic task switches are affected by a
small performance penalty (for instance, 2-5 cycles in C1 and C2 when compared to A2 and B1),
as checks whether the preempted task was extended—leading to a stack switch—are required.
Similarly, task termination and task chaining execute additional instructions as they need to
distinguish whether the calling task is basic or extended by checking the calling task ID.

Basic task activation from within an extended task in C3 only has a very small overhead of 5
cycles for the stack switch compared to the basic task activation from within a basic task in C1.
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Task termination in test cases C6 and C7 has the same timing of 33 cycles as both test cases take
the same code path in SLOTH. At preemption, the context is always stored on the current stack
and the stack pointer is saved to allow an exit of the task from subroutine level. Thus, restoring
the stack pointer for a basic task is the same action as loading the stack pointer for an extended
task. The results for C6 and C7 are similar to those in A3 and B5 with 3-9 additional cycles
required. However, C8 is different, as in this test case, a new task is dispatched, whereas in C6
and C7, the termination returned to the activating, already running task. Therefore, the result
for C8 also includes the execution time of about 56 cycles (derived from C2 and A1) required for
the extended task prologue. Evaluation of the task chaining of two basic tasks in C9 is 20 cycles
faster than task chaining of extended tasks in B6, which is about the same difference in amount of
cycles added to task activation between basic and extended tasks due to the different prologues.
Task blocking and unblocking in SLOTH using the WaitEvent () and SetEvent () system services
with task switches to basic and from basic tasks take additional 5-16 cycles as compared to a
purely extended-task system.

Comparison with Arctic Core

The numbers for the Arctic Core system show that there is not much difference in task activation
between basic and extended tasks in test cases C1, C2, and C3, as a separate stack is being used
for each task, including basic tasks. For task termination, similar effects as in the SLOTH system
for C6 and C7 can be observed. Test case C8 dispatching a new task adds a less significant
amount of additional cycles for Arctic Core. As mentioned above, the value obtained in A4
deviates from the other two test applications, as the test cases B6 and C9 chain the calling task
again, while A4 dispatches another task.

The speed-up of 8.0-12.0 of SLOTH for task activations in C1, C2, and C3 is similar compared
to the speed-up of 8.4 and 12.7 observed in the test cases in A2 and B1. The same is true for the
other test cases as well, which all achieve a little less speed-up than the test cases in the purely
basic and extended test applications before. Nevertheless, the SLOTH implementation achieves a
speed-up in the range from 3.1 up to 12.0 in the third test application.

Summary

The third test application shows that the SLOTH implementation is able to provide a system with
both basic and extended tasks, in which the basic task switches only have a small overhead of up
to 9 cycles.

As expected after the first two test applications, SLOTH outperforms Arctic Core in the third
test application once again with a speedup from 3.1 to 12.0.

4.1.7 Summary of the Performance Evaluation

The performance of the SLOTH implementation for the ARM Cortex-M3 was evaluated on mul-
tiple configurations of the system using three test applications with basic tasks, extended task,
and an application with mixed types. The results were compared to Arctic Core, another imple-
mentation conforming to the AUTOSAR/OSEK specification. In all test cases in the three test
applications measured and evaluated above, SLOTH outperforms the Arctic Core implementation
with a speed-up from 2.5 to 25.9.

Of course, the benefits of SLOTH in an actual application depend on the executed task func-
tions and the percentage of application code compared to the use of system services. As the
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operating system usually is only used as a means to an end, as the applications running on them
implement the actual functionality of a deployed system, it is important to have a low use of
resources by the operating system combined with a high performance.

Nevertheless, the introduction of a single priority space for both tasks and ISRs by the SLoTH
concept leads to additional advantages for real-time applications, as it allows to arbitrarily assign
priorities among control flows without implying restrictions on the precedence of asynchronous
over synchronous activation.

4.2 Comparison with the Reference Implementation on the TriCore Platform

The previous section evaluated the performance of the SLOTH implementation on the ARM
Cortex-M3 platform, which was developed in the scope of this thesis. This new implementation
founded on the design of the original SLOTH implementation that was written for the Infineon
TriCore. This section compares the implementations for the two platforms and work out the
reason for the differences.

4.2.1 The Infineon TriCore

The TriCore is a 32-bit platform, whose name derives from unifying three components: a real-time
microcontroller, a digital signal processor, and a superscalar RISC architecture. The instruction
set of the TriCore is usually encoded using 32 bit word length. The platform uses different
registers for addresses and data, providing 16 registers with a 32-bit width for each type. This
makes a total of 32 general purpose registers, which can be used freely with the exception of some
reserved registers for stack pointer, return address and four global address registers. [5, 15]

Interrupt Subsystem of the Infineon TriCore

Of course, the Infineon TriCore includes an interrupt controller that fulfills the requirements de-
fined in Section 1.4 [5, p. 1-8], which allows the implementation of the SLOTH concept. Different
priorities can be assigned to each interrupt source, which can be triggered by either a connected
hardware peripheral or by software. Additional interrupt sources are available for access from
software only, which are not connected to any hardware device. The interrupt sources are or-
ganized in service request nodes (SRNs), which encapsulate the properties of the interrupts like
priority, interrupt masking, and request state. An interrupt control unit (ICU) is responsible
for determining the highest pending interrupt among all SRNs, which are connected to the ICU
over a special bus exchange priority information. This arbitration takes a defined number of
system bus cycles in parallel to normal CPU execution. The amount of cycles required for this
calculation depends on the number of SRNs involved and their respective range of competing
priorities. Thus, this arbitration takes fewer cycles with less ISRs configured.

The prioritization in the interrupt subsystem allows nesting of interrupts. A service request
can interrupt the handling of another interrupt if the requested priority is higher than the cur-
rently handled interrupt. The precedence of an interrupt is always determined by the ICU, which
signals this interrupt number to the CPU. Interruption of the current control flow executing on
the CPU will only be carried out if the current CPU priority number (CCPN) is less than the
priority of the requested interrupt. At exception entry, the context is stored in a fixed-size context
save area (CSA), which is organized as a linked list of previously stored contexts. The interrupt
handler is accessed using a vector table that contains the first few instructions of the ISR.
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Summary

The Infineon TriCore platform fulfills the requirements for a SLOTH implementation and as a RISC
architecture provides a similar set of features on the system level compared to the ARM Cortex-
M3. However, the interrupt subsystem follows a different model by using a separate arbitration
unit, which has implications on the implementation of task management and synchronization
using resources.

4.2.2 Similarities and Differences in the Implementation of the System Services

Although the implementations for both platforms follow the same central idea of using the hard-
ware for scheduling, the implementation varies due to the mentioned differences.

Basic Task Management

The basic task management on the TriCore is very simple as task activation boils down to
triggering the respective interrupt source, just as it is on the ARM Cortex-M3. As already
mentioned for the ARM Cortex-M3 in Section 3.2, synchronous task activation requires special
attention.

As explained in the previous section, the interrupt subsystem on the TriCore requires arbi-
tration cycles to determine the highest pending interrupt, which takes place in parallel to normal
CPU execution. This is different on the ARM Cortex-M3, where pending an interrupt will be
synchronized automatically with the data access to ISPR as one of the NVIC memory-mapped
registers. On the TriCore, synchronous task activation will not be propagated to the CPU
immediately due to the additional cycles required for arbitration and, thus, requires manual syn-
chronization to avoid executing the instructions following the call to the ActivateTask() system
service. This synchronization is achieved by executing NOP instructions while the arbitration
runs in the ICU. The number of these NOPs is calculated statically during system generation to
account for the worst-case latency caused by arbitration, depending on the number of arbitration
rounds and the number of configured tasks and ISRs. Also, to define a synchronous point of
preemption, before triggering the IRQ and the following NOP instructions interrupts need to be
disabled. Enabling the interrupts afterwards lets the CPU handle the pending interrupt.

Such a synchronization mechanism is implemented for task chaining as well, where on the
TriCore, interrupts are disabled to terminate the task before dispatching the chained task using
the same NOP delay waiting for the arbitration. On return from the interrupt handler, interrupts
are implicitly enabled allowing the chained task to be executed. On the Cortex-M3, this is solved
similarly by using FAULTMASK, which raises the current execution priority over all configurable
priorities. This is the only priority boosting method which is reset implicitly at a return from
interrupt.

Extended Task Management

The extended task management uses a prologue on both systems to determine if the task has
run before and has a context available for resume after waiting for an event. Additionally, stack
switches happen at this point as each extended task has its own stack. In order to block an ex-
tended task in WaitEvent (), the implementation on the Cortex-M3 disables the interrupt source
and then executes a return from interrupt. For this, the implementation on the TriCore achieves
the same by disabling the interrupt source and then lowering the priority to zero, which yields
the CPU and allows pending interrupts to be handled while the blocked task is not considered by
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the ICU anymore. Again, synchronization using both NOPs and masking interrupts is applied
to define the point of preemption. The implementation on the TriCore will never return to the
previous task at the point it was preempted, instead, it relies on the prologue to restore the
context of the task. On both systems, task unblocking enables the interrupt source again, which
causes the interrupt controller to dispatch interrupt handlers and the corresponding blocked tasks
based on their priorities in the current system state.

Basic tasks also need a prologue on both systems when used in conjunction with extended
tasks. This prologue performs a stack switch when the basic task preempts an extended task.
Additionally, the basic task needs to switch the stack when terminating with a return back to
the preempted extended task. This requires checks whether a stack switch is necessary or not.
Besides the different handling of terminating a task, this implementation detail is the same on
both systems.

Resources Management

Resources are used to synchronize critical sections by raising the priority according to the OSEK
priority ceiling protocol as described in Section 3.4. For raising the priority to the ceiling, the
SLOTH implementation on the Cortex-M3 uses BASEPRI, which allows to specify a minimum
required priority for preemption, whereas the TriCore implementation modifies the current CPU
priority level to the ceiling priority of the resource.

If an extended task on the TriCore is preempted, that task would be entered again using the
task prologue, which sets the CPU priority level to that of the task and then restores the context
saved at preemption. However, if a task had acquired a resource at the point of preemption,
it is necessary to restore the raised priority as well. Therefore, the resource has its own IRQ
assigned that is identified by the ceiling priority of the resource. This is calculated at system
generation and is higher than the priority of all tasks accessing this resource. The generated
prologue for this interrupt source of the resource determines which task had taken the resource
at the time of preemption as recorded by the GetResource() system service. Leaving the CPU
priority unmodified—as it already is at the resource priority—the resource prologue restores the
context of the preempted task.

The implementation on the Cortex-M3 does not require any additional TRQ for resources,
as the use of BASEPRI only defines the minimum required priority for preemption. The priority
required for preemption on the Cortex-M3 is always the highest priority of all active exceptions
and the BASEPRI value. This current execution priority is only compared to check if a pending
interrupt can preempt the currently running control flow. Thus, interrupts with higher priorities
can preempt a task with a resource acquired as usual as the BASEPRI will remain unchanged.
The main difference is that, unlike on the TriCore, the prologue does not set the current priority
level, which is derived from the active handlers instead.

Summary

The different hardware results in different implementations for the Infineon TriCore and the ARM
Cortex-M3, especially in the task management. While the SLOTH concept can be implemented
on any hardware platform that fulfills the requirements as listed in Section 1.4, the actual im-
plementations will be hardware-dependent as they rely on the hardware mechanisms provided to
perform the scheduling. However, the implemented kernel is quite small and has an abstraction
layer between the general OSEK functionality and the part relying on the hardware, making
porting to other platforms easy.
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Test Case Task Type Transition Stack Switch SLOTH

on TriCore
T1 ActivateTask Basic — Basic no 79
T2 ActivateTask Basic — Extended yes 116
T3 ActivateTask Extended — Basic yes n/a
T4 WaitEvent Extended — Basic yes 168
T5 SetEvent Basic — Extended yes 118
T6 TerminateTask Basic — Basic no 29
T7 TerminateTask Extended — Basic yes 86
T8 TerminateTask Extended — Extended yes (dispatch new task) 94
T9 ChainTask Basic — Basic no (dispatch same task) 98

Table 4.4: Performance evaluation on the TriCore platform of task switching and blocking
in a mixed task system with both basic and extended tasks, which requires stack switches for
transitions involving extended tasks. The values specify the measured execution time in number
of clock cycles. Numbers are taken from [3, Table IV].

4.2.3 Evaluation of the Test Cases

The SLOTH implementations for the Infineon TriCore and ARM Cortex-M3 have differences in
their performance of the system services, but as they are implemented for distinct architectures,
the measurements cannot be compared directly. Thus, this section compares the performance of
system services between the systems itself to see where the different implementation influences
the execution time. The measurements of the TriCore system are shown in Table 4.4, as taken
from [3]. Test case T3 is not available for this system, as it was added to the test application for
the measurements on the Cortex-M3 only.

There is almost no difference in additional execution time required for extended task activation
compared to basic task activation between the two systems. On the TriCore, test cases T1 and
T2 take 79 and 116 cycles, whereas the measurements on the Cortex-M3 for C1 and C2 took 42
and 65 cycles. This is a factor of 1.47 for the test cases T2 and T1, while on the Cortex-M3, the
factor between C2 and C1 is 1.55. That means that the additional code for conditional checks
and stack switches in the extended task prologue leads to similar results in relative execution
timing for both platforms.

Examining the termination of tasks, a difference between TerminateTask() for basic and
extended tasks can be observed in T6 and T7 in the implementation on the TriCore. The reason
for this is the additional synchronization using NOPs required when terminating an extended
task. In the TriCore implementation, extended tasks are not terminated by returning from the
interrupt handler; instead, the priority of the interrupt is lowered to zero in the same way it is used
for blocking a task. This yields the CPU and allows other interrupt handlers of higher priority
to preempt this handler, but as that causes a new arbitration to find the interrupt of highest
priority, which runs in parallel to CPU execution synchronized, it is required to synchronize this
using NOP instructions. This results in a factor of 3.0 for termination of an extended task in T7
compared to termination of a basic task in T6. On the Cortex-M3, the termination of basic and
extended tasks takes the exact same amount of cycles in C6 and C7 as they use the same code
path as explained above in Section 4.1.

Another outstanding result is the test case for task blocking in C4 and T4, which is—on both
systems—the slowest task transition of the test application. This is clearly caused by the fact
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that the run-to-completion model of interrupt handlers does not fit blocking tasks. Hence, the
implementation of WaitEvent () is the most extensive system service, which is reflected in its
execution time.

Summary

It is difficult to compare the test cases between distinct architectures as the instruction set,
addressing modes, pipelining, and other relevant properties of the microcontrollers influence the
required execution cycles. However, the relative comparison of the test cases have shown that on
both platforms, the task prologue of extended tasks requires the same factor of additional cycles
when compared to basic task management. Also, the extended task termination by changing
priority with manual synchronization of the interrupt arbitration on the TriCore leads to more
additional cycles than on the Cortex-M3, where basic and extended task termination take the
same amount of cycles.

4.2.4 Summary of the Comparison with the Reference Implementation on the
TriCore Platform

The SLOTH implementations on the Infineon TriCore and the ARM Cortex-M3 have similar
runtime characteristics in most aspects of the task management, although the implementations
have differences as they match the provided hardware functionality. However, both systems
follow the same central design idea of using the hardware for scheduling purposes by making use
of the interrupt controller. This is reflected in the evaluation of the test cases, where the relative
comparison shows that the test scenarios take similar amounts of cycles.

4.3 Limitations

The port to the ARM Cortex-M3 platform is currently bound to the Atmel SAM3U microcon-
troller used in this thesis due to the use of the board-specific timer counters. Also, the startup
code and initialization routines target this hardware configuration only. However, the SLOTH im-
plementation would be portable to any microcontroller using the ARM Cortex-M3 with minimal
effort.

Also, the implemented SLOTH system only supports the conformance classes BCC1 and ECC1
of the OSEK specification, as shown in Figure 1.1 on page 2. Of the additionally required features
for the conformance classes BCC2 and ECC2, support for synchronization using resources and
multiple activations of tasks have already been implemented. The missing feature is support
for multiple tasks per priority. This is a limitation that cannot be solved easily, as the OSEK
specification states that tasks of the same priority level have to be started in their order of
activation. Thus, this requirement cannot be fulfilled by an interrupt subsystem without the use
of a software scheduler determining which task will be dispatched next.

4.4 Summary

The performance evaluation confirms the SLOTH concept, as it shows the advantages of utilizing
hardware for scheduling. In comparison with another OSEK-conforming operating system, the
SLOTH implementation for the ARM Cortex-M3 outperformed the competitor with a software-
based scheduler by a factor ranging from 2.5 to 25.9. The comparison with SLOTH on the Infineon
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TriCore shows that the different hardware influences the implementation details of the system
services. However, the performance of the individual system services for task management are
similar in the relative comparison.
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Chapter 5

Conclusion

For this thesis, the SLOTH concept of using interrupt controlling hardware for thread scheduling
and dispatching purposes was examined on the ARM Cortex-M3 hardware platform. The goal
of the SLOTH concept is to omit a scheduler in software and use the interrupt subsystem instead
by using interrupt handlers as a universal abstraction for control flows. The presented features
of the Cortex-M3 platform were used to design and implement an operating system kernel based
on the SLOTH concept.

The implemented system was evaluated in different configurations and results were compared
with another implementation using a software-based scheduler. With a speedup ranging from
2.5 to 25.9, the results show the positive effects of the SLOTH concept onto the non-functional
properties of the operating system.

The similarities and differences to the original SLOTH reference implementation on the TriCore
platform show that any SLOTH implementation for a specific platform will be hardware-dependent
in large parts, as each architecture has their own interfaces and peculiarities. However, the SLOTH
concept can be implemented on any platform that fulfills the basic requirements on the interrupt
controller: different priority levels for each interrupt, support for triggering interrupts in software,
and support for raising the current execution priority as a synchronization mechanism.

By modeling all control flows as interrupts in SLOTH, the distinction between threads and
interrupts is gone. Therefore, they can share the same priority space managed by the hardware,
which avoids the problem of rate-monotonic priority inversion and allows assigning priorities
arbitrarily between threads and interrupts.

The SLOTH concept as described in this thesis could be implemented on any platform fulfilling
the requirements on the hardware. In future work, SLOTH needs to follow the ongoing trend of
multi-core and multi-processor systems, which is spreading to the world of embedded systems at
the moment. With multiple processor units, and therefore more complex scheduling decisions to
make, a multi-core system would benefit from support by the hardware to improve the perfor-
mance. Extending the SLOTH concept for use in multi-processor systems will be an interesting
challenge.
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