
Operating Systems: are we finally ready to move
forward after 30 years of stagnation?

Antônio Augusto Fr̈ohlich Wolfgang Schr̈oder-Preikschat
GMD-FIRST University of Magdeburg

Kekuléstraße 7 Universitätsplatz 2
12489 Berlin, Germany 39106 Magdeburg, Germany

guto@first.gmd.de wosch@ivs.cs.uni-magdeburg.de

Abstract

If there are areas of computer science that were left behind by the market, operating systems is certainly one
of them. The products currently available in the area, namely Microsoft WINDOWS and UNIX , owe their
designs to projects such as THE [1] and MULTICS [4], which are at least 30 years old. In the meanwhile,
several new ”hacks” have been proposed, but very few systems brought about revolutionary designs. The
partitioning of the problem domain in abstractions likeprocess and file is so old that some people
regard it as a ”canonical” one. The scene is even worse if one takes in consideration that only 2% of the
microprocessors produced in the year 2000 targeted the interactive market [6], for which those operating
systems have been designed. The software industry spent 30 years saying that there are not many things to
be improved in the operating system area [5], but left 98% of market without a choice!

Innumerable software engineering techniques have been proposed for the development of applicative
software, many of them are now mature and widely used in production. Nevertheless, not many operating
system developers have tried to deploy them, or to adapt them, to the development of their products. We
believe that several of these techniques can be successfully deployed in the area of operating systems with
minor adjusts, as long as we reformulate our view of the corresponding domain. Of course we are dealing
with a very special field. A field where words such as asynchronism and determinism have very special
meanings. A field pressed to squeeze the last bit of performance and to blow overhead away without
relaxing on correctness. Anyway, by now we should be ready to make it up with software engineering and
move forward with operating system design.

We developed a novel operating system design method that addresses many of the questions raised
above. Deeply influenced byobject-oriented design, but also byfamily-based design, collaboration-based
design, aspect-oriented programmingandgenerative programming, our method enables the development of
operating systems as an assemblage of reusable and adaptable components. Our method produces systems
that can be tailored to fulfill the requirements of any particular application, without disregarding any of the
quality metrics compulsory to the field. Indeed, applications play such a major role that we decided to name
the methodapplication-oriented system design.

In summary, our method conducts the partitioning of the problem domain inscenario-independent,
application-ready abstractionsthat will shape the components of the resulting system. Because these ab-
stractions know very little about the execution scenario they will join, they can be adapted to join several
scenarios. When performing a scenario, abstractions are wrapped byscenario-adapters, which know de-
tails of both scenario and abstractions. In order to avoid overloading users with system-level decisions,
all implementations of an abstraction are made visible through the sameinflated interface. If the system
is proper designed, tools can automatically select the best implementation via syntactical analysis of the
application’s source code.

This combination of objects, collaborations, and aspects may sound low-performing. However, our
method proposes abstractions to be arranged in astatically metaprogrammed component framework, so
that compositions are carried out during compilation, resulting in virtually no run-time overhead. Such
frameworks define the relationships between abstractions in terms of scenario-adapters, hence capturing
a reusable system architecture. If the target application does not need this or that abstraction, the corre-
sponding scenario-adapters will contribute for a scenario free of them. In this way, each application gets



exactly the operating system it needs. Yet, system developers do not need to redesign or reimplement the
system several times, they can play with components, adapters and frameworks to deliver a vast range of
application-oriented systems.

We deployed this design method in the EMBEDDED PARALLEL OPERATING SYSTEM (EPOS) project
under development at GMD-FIRST [2]. The current implementation targets parallel applications running in
a cluster of PCs interconnected through a MYRINET high-speed network. Although the number of compo-
nents in the repository is still small, and the tools are relatively primitive, EPOS first results are very encour-
aging, not only in terms of performance, but of quality in general. As far as we are concerned, application-
to-application communication over MYRINET in EPOS has the best performance ever reported [3]. Besides
continuing the development for the cluster domain, we will soon deploy application-oriented system design
to the embedded systems domain.

References

[1] Edsger Wybe Dijkstra. The Structure of the THE-Multiprogramming System.Communications of the
ACM, 11(5):341–346, May 1968.

[2] Antônio Augusto Fr̈ohlich and Wolfgang Schröder-Preikschat. High Performance Application-oriented
Operating Systems – the EPOS Aproach. InProceedings of the 11th Symposium on Computer Archi-
tecture and High Performance Computing, pages 3–9, Natal, Brazil, September 1999.

[3] Antônio Augusto Fr̈ohlich, Gilles Pokam Tientcheu, and Wolfgang Schröder-Preikschat. EPOS and
Myrinet: Effective Communication Support for Parallel Applications Running on Clusters of Commod-
ity Workstations. InProceedings of 8th International Conference on High Performance Computing and
Networking, pages 417–426, Amsterdam, The Netherlands, May 2000.

[4] Elliott Organick.The Multics System: an Examination of its Structure. MIT Press, Cambridge, U.S.A.,
1972.

[5] Rob Pike. Systems Software Research is Irrelevant. Online, February 2000. [http://cm.bell-
labs.com/who/rob/utah2000.ps].

[6] David Tennenhouse. Proactive Computing.Communications of the ACM, 43(5):43–50, May 2000.


