
Lehrstuhl für Informatik 4 · Verteilte Systeme und Betriebssysteme

Web-based Visualization of Configuration Defects in
Linux Source Code

Patrick Plagwitz

Bachelorarbeit im Fach Informatik

31. Dezember 2015

Please cite as:
Patrick Plagwitz, “Web-based Visualization of Configuration Defects in Linux
Source Code” Bachelor’s Thesis, University of Erlangen, Dept. of Computer
Science, December 2015.

www4.cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Verteilte Systeme und Betriebssysteme

Martensstr. 1 · 91058 Erlangen · Germany

http://www4.cs.fau.de

Web-based Visualization of Configuration Defects in
Linux Source Code

Bachelorarbeit im Fach Informatik

vorgelegt von

Patrick Plagwitz

angefertigt am

Lehrstuhl für Informatik 4
Verteilte Systeme und Betriebssysteme

Department Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Andreas Ziegler, M.Sc.
Valentin Rothberg, M.Sc.

Betreuender Hochschullehrer: PD Dr.-Ing. habil. Daniel Lohmann

Beginn der Arbeit: August 2015
Abgabe der Arbeit: 31. Dezember 2015

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angege-

benen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner

anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenom-

men wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche

gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance from third parties.

I certify that the work has not been submitted in the same or any similar form for assessment to any

other examining body, and all references, direct and indirect, are indicated as such and have been

cited accordingly.

(Patrick Plagwitz)

Obermichelbach, 31. Dezember 2015

A B S T R A C T

With over 15,000 selectable features, Linux is a prime example of highly configurable system software.

However, this configurability is implemented with a mixture of MAKE scripts, C preprocessor (CPP)

#ifdef annotations, and a separate feature model written in the specially conceived KCONFIG

language. The extremely loose coupling between these three stages of the Linux build system can

possibly lead to contradictory or redundant #ifdef conditions in the program code. UNDERTAKER-

CHECKPATCH, based on the UNDERTAKER toolchain, can find and analyze these inconsistencies, called

defects, resulting in automatically generated defect reports. However, textual explanations must

still be written manually for these to be useful to Linux developers – a repetitive effort that warrants

improvement.

In this thesis, I develop the program WUNDERTAKER that explains defects in an automated way

via graphical means. This allows for an enhanced form of UNDERTAKER-CHECKPATCH’s output that

is both easier to understand and reduces the amount of text that needs to be written manually.

Designed as a web application, WUNDERTAKER employs appropriate visualization techniques, some

of them tested in other GUIs or examined in studies. I then show that WUNDERTAKER is fast enough

and robust enough to support an ongoing experiment where UNDERTAKER-CHECKPATCH’s defect

reports are sent via e-mail to Linux developers, two of them pointing out its fitness for the task. The

final result is a usable program that could be extended into a multitude of directions in further work.

v

KU R Z FA S S U N G

Mit über 15.000 auswählbaren Features ist Linux ein vorrangiges Beispiel von stark konfigurierbarer

Systemsoftware. Diese Konfigurierbarkeit ist jedoch implementiert durch eine Mischung aus MAKE-

Skripten, C-Präprozessor (CPP)-#ifdef-Annotationen und einem getrennten Feature-Modell, das

in der speziell konzipierten KCONFIG-Sprache geschrieben ist. Die extrem lose Kopplung zwischen

diesen drei Abschnitten des Linux-Buildsystems kann unter Umständen zu widersprüchlichen oder

redundanten #ifdef-Bedingungen im Programmcode führen. UNDERTAKER-CHECKPATCH, basierend

auf der UNDERTAKER-Toolchain, kann diese Widersprüchlichkeiten, die Defekte genannt werden,

finden und analysieren. Das führt zu automatisch generierten Defekt-Reports. Für diese müssen

trotzdem noch textbasierte Erklärungen manuell geschrieben werden, damit sie für Linux-Entwickler

einen Nutzen haben – ein sich wiederholender Prozess, der es rechtfertigt, verbessert zu werden.

In dieser Arbeit entwickle ich das Programm WUNDERTAKER, das Defekte durch grafische Mittel

automatisiert verdeutlicht. Das ermöglicht eine verbesserte Form der Ausgabe von UNDERTAKER-

CHECKPATCH, die sowohl einfacher zu verstehen ist als auch die Menge an Text reduziert, die manuell

geschrieben werden muss. WUNDERTAKER ist entworfen als Webanwendung und setzt geeignete

Visualisierungstechniken ein, manche davon erprobt in anderen GUIs oder untersucht in Studien.

Dann zeige ich, dass WUNDERTAKER schnell genug und robust genug ist, um ein momentan laufendes

Experiment zu unterstützen, wo die Defekt-Reports von UNDERTAKER-CHECKPATCH über E-Mail an

Linux-Entwickler gesendet werden. Zwei dieser Entwickler weisen darauf hin, dass es für diese

Aufgabe geeignet ist. Das Endergebnis ist ein benutzbares Programm, das in folgenden Arbeiten in

eine Vielzahl von Richtungen weiter erweitert werden könnte.

vii

C O N T E N T S

Abstract v

Kurzfassung vii

1 Introduction 1

2 Fundamentals 3

2.1 The Linux build process . 3

2.1.1 KCONFIG . 3

2.1.1.1 Mode of operation . 3

2.1.1.2 Translation into a propositional formula 5

2.1.2 KBUILD . 6

2.1.2.1 Mode of operation . 6

2.1.2.2 Translation into a propositional formula 7

2.1.3 CPP . 7

2.1.3.1 Mode of operation . 7

2.1.3.2 Translation into a propositional formula 8

2.1.3.3 Problems with the CPP . 9

2.2 UNDERTAKER toolchain . 10

2.2.1 UNDERTAKER-CHECKPATCH . 11

2.2.2 Defect classes . 11

2.2.2.1 code defects . 11

2.2.2.2 kconfig defects . 12

2.2.2.3 kbuild defects . 13

2.2.2.4 missing defects . 13

2.2.2.5 no_kconfig defects . 13

2.3 Related work . 13

3 WUNDERTAKER 15

3.1 Environment . 15

ix

x Contents

3.1.1 WUNDERTAKER as an UNDERTAKER GUI . 15

3.1.2 WUNDERTAKER as a GIT repository view . 16

3.2 The didactics of defect reports . 16

3.2.1 missing . 16

3.2.2 code . 17

3.2.3 kconfig and kbuild . 18

3.3 Requirements . 19

3.4 Implementation . 19

3.4.1 Visualization techniques . 19

3.4.1.1 The code view . 19

3.4.1.2 The folder view . 22

3.4.2 Colors . 23

3.4.3 Software that WUNDERTAKER uses . 25

3.4.3.1 Vertical Design . 26

3.4.3.2 Horizontal Design . 26

4 Evaluation 29

4.1 Targets and Procedure . 29

4.2 Results . 31

5 Conclusion 35

Lists 37

List of Acronyms . 37

List of Figures . 38

List of Tables . 40

List of Listings . 42

Bibliography . 44

1I N T R O D U C T I O N

With over 15,000 selectable features, Linux exemplifies highly and compile-time configurable system

software. Its KCONFIG language is used to model Linux features and constraints on them. However,

the actual implementation of features is accomplished by annotations made around program code

with the C preprocessor (CPP), as well as by a coarser-grained kind of conditional compilation

defined in the build scripts of Linux.

Two variability models are thus induced whose effective separation from one another is so

profound that programs in the build process working with one model can be entirely agnostic of

programs working with the other. Their sole connection is a Linux configuration variant – the result

of a user selecting or deselecting features from the KCONFIG model, and the associated KCONFIG tool

checking the selection for consistency. After such a variant has been generated, it is passed on to

the CPP and the KBUILD system. At this point, nothing stops the variant from contradicting #ifdef

conditions or KBUILD rules, both governing the conditional compilation of feature code. It is also

possible that the rules are superfluous when considering the variant. These possibilities lead to dead

or undead code that is never or always compiled, respectively, despite being annotated. It follows

that manual work is required to keep the definitions of both models in sync to prevent these kinds

of variability defects.

The lack of tools that support this task is what motivated the UNDERTAKER toolchain, introduced

by Tartler et al. from the VAMOS1 project, later the CADOS2 project (see [Tar+11]). UNDERTAKER

joins both models by extracting information from KCONFIG files, build scripts, and code files, resulting

in a propositional formula for each fragment of annotated code which is then used to reason about

what happens to the fragment during conditional compilation. The toolchain thus gives rise to

several practical applications, first of all being its dead code analysis that automatically finds dead

and undead CPP #ifdef blocks. Because this involves UNDERTAKER checking the propositional

formulas for satisfiability, UNDERTAKER can, in the general case, provide only limited information on

what led to the defect and how to fix it – problems that have been analyzed in [Nad+13]. Valentin

Rothberg extended the UNDERTAKER toolchain with UNDERTAKER-CHECKPATCH in [Rot14] which can

detect defects that got newly introduced by changes made to the Linux code. Being employed in an

1Variability Management in Operating Systems
2Configurability Aware Development Of Operating Systems

1

2 1 Introduction

experiment where a Linux development tree is periodically checked for new defects to inform the

responsible developers, UNDERTAKER-CHECKPATCH has a feature that further analyzes defects so as

to act as sort of a front end for the process.

However, the only information available at this point is still just a propositional formula and

an automated analysis of it. If Linux developers received this in raw form in an e-mail, it would

shift the burden of evaluating UNDERTAKER-CHECKPATCH’s output to the recipients of the e-mails,

which is not acceptable, even though the output would be understandable for them in many cases.

Also, the e-mails would miss an explanation of relevant context, such as the portion of the patch

that introduced the defect and the exact position of the defective #ifdef block. It is therefore vital

for them to be useful to developers that these information are enriched with a manually assembled

textual description. There are two problems with this: First, describing #ifdef blocks by naming

line numbers and explaining nesting relationships between them is a tedious task that might become

repetitive very quickly. Second, a text is very likely not the most optimal way to explain the context

of a defect.

Much more interesting would be a graphical view that relieves the CADOS people of having to

write the most basic of explanations and that can simultaneously provide a superior version of them.

My work is aimed at developing the program WUNDERTAKER that implements such a Graphical

User Interface (GUI), presenting developers with a familiar, syntax-highlighted version of a code file

and overcoming the lack of intuitive context Linux developers face if the manual enhancements of

defect reports are solely text-based. In the GUI, #ifdef blocks could be visualized with specialized

techniques so that as much information about defects as possible is available at first glance. Designed

as a web application, my GUI can help with understanding not only Linux code but arbitrary code

that contains #ifdef directives. So developers can explore the distribution of defects found in a

project on their own, it offers a browsable view of a GIT repository and so can be useful to any open

source project using CPP-based variability and GIT.

Since variability defects arise on account of the way the Linux build system operates and is used,

I will begin in Chapter 2 by explaining its three stages and how UNDERTAKER extracts propositional

formulas from them. Next, in Section 2.2, I will discuss UNDERTAKER’s dead code analysis, its defect

classification, and that UNDERTAKER-CHECKPATCH’s output is the foundation of WUNDERTAKER. Lastly,

I will briefly reference and summarize literature that reports on relevant visualization techniques.

Chapter 3 will discuss how WUNDERTAKER can fit technically into the UNDERTAKER toolchain and

how it can support it, step by step gathering a list of requirements. Section 3.4 will show how a

combined use of visualization techniques allows to fulfill these requirements, and Chapter 4 will

evaluate them and demonstrate their feasibility.

2F U N DA M E N TA L S

2.1 The Linux build process

2.1.1 KCONFIG

2.1.1.1 Mode of operation

The first step when compiling Linux into runnable binary files is to generate a configuration variant

by selecting features from the KCONFIG model. The model is defined in Kconfig files that reside in

the Linux tree and are written in the KCONFIG language. The following explanation of KCONFIG is

not as exhaustive as the one given in [Hen15], but it covers the most important language constructs

that influence UNDERTAKER’s formulas. Many constructs not mentioned here can be eliminated by a

pre-processing step [ZK10] or are not relevant to a dead code analysis.

Each KCONFIG feature has a type that determines the set of values it is allowed to take on. A

feature of type bool represents a binary choice: whether to compile it into the kernel or not. Tristate

features may assume a third state, designating the feature as a module that can be loaded at run

Figure 2.1 – make menuconfig TUI of Linux v4.3 – one of the KCONFIG front ends. Each entry
represents a feature.

3

4 2.1 The Linux build process

time – a Loadable Kernel Module (LKM). The three values are written as y or * for “selected”, M or

m for “selected as an LKM”, and n or ␣ for “not selected”. They can also be seen as numbers 2, 1,

and 0, in this order. Types string and int (integer) exist, too, but these are impossible to process

correctly with a purely boolean SAT checker as employed by UNDERTAKER, so I will ignore them.

Listing 2.1 shows the definition of the feature MAC80211 in one of the Kconfig files. It is

introduced in the first line by the config keyword, and the second line contains the tristate

statement that designates it as a tristate feature. It becomes evident that KCONFIG’s syntax is generally

line-based; each line represents the use of a statement, written as a keyword followed by a value,

whose effect is influenced by certain statements, like config, that come before it.

1 config MAC80211
2 tristate " Generic IEEE 802.11 Networking Stack (mac80211)"
3 depends on CFG80211

Listing 2.1 – Lines 1–3 from net/mac80211/Kconfig of v4.3.

Figure 2.1 shows the make menuconfig front end of KCONFIG, which generates a hierarchical

menu of features from the KCONFIG model and enforces its constraints by limiting a user’s actions.

Figure 2.1a/b/c demonstrate the effects of the depends on statement; Figure 2.1d/e/f those of

the select statement and the choice. . .endchoice block. The depends on statement, used in

line 3 in Listing 2.1, disallows a feature to be selected as long as its dependencies are not selected.

In Figure 2.1a, CFG80211 is deselected and the menu is almost empty. In Figure 2.1b, where it is

selected as an LKM, MAC80211 and other features become visible because they depend on CFG80211.

Here, MAC80211 is chosen as an LKM as well. In fact, it could not be selected as * because if a

dependency of a feature is to be compiled as an LKM, so must be the feature itself. In Figure 2.1c

with CFG80211 chosen as *, MAC80211 can too finally take on both * and M as a value. A more

precise definition of depends on is hence that A depending on B has the effect of the value of B

imposing an upper bound on the value of A.

Listing 2.2 shows five features being defined within a single choice. . .endchoice block. They are

there for changing the kernel’s default CPU frequency scaling governor. Although five governors are

available, only one can be the default setting. Figure 2.1d shows how make menuconfig visualizes

this mutual exclusivity: by showing the default governor as a single menu entry. Additionally, each

of the default governor definitions includes a statement selecting the actual governor. The effect

of this can be seen in Figure 2.1d and f, where the userspace and powersave governor features,

respectively, have hyphens instead of brackets around their selected values, signaling that whatever

governor is chosen as default in Figure 2.1e cannot be deselected. This “force on” acts as a reverse

to the normal depends on option, imposing a lower bound on the value of a selected feature, and

is employed when it is undesirable that features get hidden in the menu.

choice
prompt " Default CPUFreq governor " [...]

config CPU_FREQ_DEFAULT_GOV_PERFORMANCE
bool " performance "

2.1 The Linux build process 5

select CPU_FREQ_GOV_PERFORMANCE [...]
config CPU_FREQ_DEFAULT_GOV_POWERSAVE [...]
config CPU_FREQ_DEFAULT_GOV_USERSPACE [...]
config CPU_FREQ_DEFAULT_GOV_ONDEMAND [...]
config CPU_FREQ_DEFAULT_GOV_CONSERVATIVE [...]
endchoice

Listing 2.2 – Lines 49–105 from drivers/cpufreq/Kconfig of v4.3.

In KCONFIG, it is possible to form expressions with arbitrary combinations of features and

connectives based on tristate logic. For instance, given features A, B, and C, one could write

depends on B && !C or make select conditional, e.g., select A if B.

2.1.1.2 Translation into a propositional formula

To connect the KCONFIG constraints explained so far with others from the build system, UNDERTAKER

follows a procedure to translate them to a propositional formula φKCONFIG introduced by Zengler and

Küchlin [ZK10]. First, tristate values are represented as two bits, (a0, a1), as it is shown in Table 2.1,

yielding four possible combinations. For a tristate feature, only three are needed, so one constructs

a set CO of constraints that make the fourth possibilities illegal. If, for instance, there is a tristate

feature A, encoded with (a0, a1), then the set is

CO = {¬a0 ∨¬a1} ,

and it can be added to φKCONFIG as a conjunction
∧

t∈CO
t.

The second step is to find two projection functions π1,2 that map from a tristate expression to

the two-bit encoding of its value when all connectives are resolved. For simple symbols like A it is

π0,1(A) = a0,1. Conjunctions of expressions e = e0 && . . . && en can be explained as follows. They

cannot be y if any ei = n or if any ei = m and hence it would be π0(ei) = 0. Therefore, it must be

π0(e) =
∧

ei

π0(ei).

The conjunction can only be m if all ei 6= n, and if any ei = m, because otherwise e would then be y

and its second bit 0. Hence, reflecting the conditions in this order, it must be

π1(e) =
∧

ei

�

π0(ei)∨π1(ei)
�

∧
∨

ei

π1(ei).

a0 a1 Tristate meaning Treatment in autoconf.h

0 0 n No symbols defined
0 1 m CONFIG_A_MODULE is defined
1 0 y CONFIG_A is defined
1 1 illegal —

Table 2.1 – Encoding (a0, a1) of a tristate symbol A. The last column is relevant in Section 2.1.3.1.

6 2.1 The Linux build process

With analogous functions π1,2 for negations and disjunctions (see [ZK10]), one can now simulate

a depends on e option declared for a symbol s encoded as (s0, s1). Remember that the value of e is

an upper limit for the value of s, so s is not constrained at all if e is y. In other cases, s can be

n or m if e is m, π1(e)→¬s0;

and just n if e is n, (¬π0(e)∧¬π1(e))→ (¬s0 ∧¬s1).

As to select options, which impose a lower limit on the selected feature, s′ selected by a symbol

s under the condition that e is y would not be constrained if s is n. But it would have to be

m or y if s = m and e is y, s1 ∧π0(e)→ s′0 ∨ s′1;

and only y if s = y and e is y, s0 ∧π0(e)→ s′0.

The constraints in the right columns can be added to φKCONFIG as a conjunction
∧

d∈Cdepends on
d ∧

∧

s∈Cselect
s. Lastly, given mutually exclusive KCONFIG symbols s1, . . . , sn in a choice block, if one si

is y, no other si may be y, which can be written in a straightforward way as

∧

si

π0(si)→
∧

s j , j 6=i

¬π0(s j)

!

and added to φKCONFIG as a conjunction, as well.

Suppose now a variability model with a tristate feature FOO and a boolean feature BAR, encoded

as (f0, f1) and (b0, b1), where the former depends on the latter. The extended formula φKCONFIG ∧ f0

should then be satisfiable since it reflects that FOO can be chosen at all. Its satisfiability also

demonstrates that an #ifdef block with condition CONFIG_FOO is not dead because there are

configuration variants where it is compiled. In contrast, φKCONFIG ∧ f0 ∧¬b0, simulating an #ifdef

block with condition CONFIG_FOO && !CONFIG_BAR, should not be satisfiable since there is no legal

configuration variant where FOO is chosen but BAR is not.

2.1.2 KBUILD

2.1.2.1 Mode of operation

Connecting an #ifdef condition with the KCONFIG model is not enough to simulate conditional

compilation in a propositional formula because it is not a given that a file will be compiled at all.

Rather, KBUILD scripts in files called Makefile or Kbuild drive a build. They are written in the

MAKE language and distributed across the Linux tree. Normally, the MAKE program acts upon a set

of declarative rules composed of sources, a target, and a script. However, most of the Makefiles

in Linux reside in subdirectories and are merely responsible for setting the MAKE variables obj-y,

obj-m, and obj-n, thereby communicating to a top-Makefile the list of files that should be built

statically, as LKMs, or not at all, respectively.

To see how this takes place, assume that a developer wants to add a new interface for wireless

adapters called fooadapter. He places the code file fooadapter.c into net/wireless. Instructing

KBUILD with obj-$(CONFIG_FOO_ADAPTER)+= fooadapter.o in net/wireless/Makefile, he

2.1 The Linux build process 7

wants to make fooadapter.o’s existence in the final build dependent on whether a feature FOO_-

ADAPTER, in turn defined in net/wireless/Kconfig, is y, m, or n. The Makefile knows about this

value because a file auto.conf is automatically generated by KCONFIG based on the user’s feature

selection and included beforehand. Besides files, the three lists may also contain directories, making

KBUILD search them for Makefiles.

2.1.2.2 Translation into a propositional formula

To capture KBUILD’s implicit conditional compilation in a propositional formula φKBUILD, one needs

to find those KCONFIG features X that appear in lines of the form obj-$(CONFIG_X) += x.o. All

#ifdef blocks in the file whose build product x.o is, must then include X in their formula. However,

Dietrich et al. explain in [Die+12] that the MAKE language is, in general, much more powerful, even

Turing complete, because it has features such as command substitution. Under these circumstances,

it is much more difficult to decide whether a certain fragment of MAKE code does or does not extend

one of the lists obj-y, obj-m, and obj-n, given a configuration variant.

However, Dietrich et al. find a robust solution to this problem. In principle, it finds all configura-

tion variants that cause a file to be compiled, and adds a disjunction of them all,

∨

v∈V

�

∧

feature∈v

feature

�

,

as a conjunction to φKBUILD. This process is implemented as a tool called GOLEM, integrated into the

UNDERTAKER toolchain, and works by actually running MAKE with a custom Makefile that traverses

the Linux tree in the same way KBUILD would and evaluating the three MAKE lists afterwards. GOLEM

does this “probing” first with an empty configuration variant in which no features are selected.

Then it scans all sub-Makefiles for any variables they use that start with CONFIG_, i.e., the features

the file potentially depends on, and extends the initial configuration variant with them, one after

another, probing again after each extension and recursing into subdirectories. When a build product

is found in obj-y or obj-m after probing, the variant v used in this step is known to belong to V .

The major downside of this approach is its long runtime. Andreas Ruprecht notes in [Rup15]
that it takes over 3 hours to run GOLEM on a modern quad core machine on Linux v3.19 for a

single architecture. This motivated him to again take up a method based on regular expressions

and utilizing the fact that the majority of Linux Makefiles do after all use a safe subset of the MAKE

language. As a result, his MINIGOLEM tool has a runtime of around a second which makes it much

more usable for analyses where it must be invoked often, like in UNDERTAKER-CHECKPATCH (see

Section 2.2.1).

2.1.3 CPP

2.1.3.1 Mode of operation

KBUILD can include or exclude entire compilation units, but Linux developers’ need for finer-grained

variability is met by the CPP which handles arbitrary fragments of code within a file. The CPP has a

8 2.1 The Linux build process

rather disparate set of uses; only macro definition and the #ifdef family of directives is required

for variability implementation [Sin+10]. By surrounding code with an #ifdef block, its existence

in the final token stream to the C compiler is made dependent on the header of the block which

contains a condition like #ifdef CONFIG_FOO, testing for a KCONFIG feature. So the CPP has access

to the KCONFIG selection, KCONFIG generates an autoconf.h from a given configuration variant,

analogous to the auto.conf it makes for KBUILD. Only here, tristate values are encoded like in

φKCONFIG (see Table 2.1): Two CPP symbols act as bits by being defined or not. At its top, Listing 2.3

shows such a autoconf.h where MAC80211 is selected as an LKM, and the symbol hence suffixed

with _MODULE. At the bottom is a variant where MAC80211 is set to y, and the symbol is not suffixed.

define CONFIG_MAC80211_MODULE 1
define CONFIG_ARCH_USES_PG_UNCACHED 1

define CONFIG_MAC80211 1
define CONFIG_ARCH_USES_PG_UNCACHED 1

Listing 2.3 – Snippets from include/generated/autoconf.h I had generated from the vari-
ants active in Figure 2.1b and Figure 2.1c, respectively. Note that in an autoconf.h, all symbols
are prefixed with CONFIG_.

2.1.3.2 Translation into a propositional formula

At the end of Section 2.1.1.2, I already alluded to how #ifdef conditions can be incorporated into

our formula. CPP #ifdef conditions can basically be taken and integrated straight into a formula

φCPP which is then added to the existing formula φKCONFIG. However, presence conditions of blocks

need not simply be the expression in its header; parents and #ifdef chains must be taken into

account, as described in [Sin+10]. When #ifdef blocks are nested, the presence condition of a

block is the conjunction of its header condition with those of all of its ancestor blocks. When blocks

are chained, like the one in lines 2–6 in Listing 2.4, their presence condition is the conjunction of its

header condition with the negations of its predecessors’ conditions.

1 #ifdef CONFIG_A
2 # if defined (CONFIG_B) && defined (CONFIG_C_MODULE)
3 # elif defined (CONFIG_D)
4 # else
5 a
6 # endif
7 #endif

Listing 2.4 – When processed with the CPP, the presence of the character a in the output would
depend on the parent block #ifdef CONFIG_A to be present and the first two chain blocks to
not be present. Writing bits (a0, a1) for feature A, an so on, the presence condition of the a is
a0 ∧¬(b0 ∧ c1)∧¬d0.

Finally, the CPP allows symbols to be redefined and undefined anywhere in the code. The

formula can reflect this by including a logical implication from the presence of a block that contains

2.1 The Linux build process 9

a redefinition to the new value of the respective symbol. Although Sincero et al. noted in their

publication [Sin+10] that their implementation did not yet support this, UNDERTAKER has been thus

extended since then.

2.1.3.3 Problems with the CPP

The CPP might seem like a natural choice for the task at hand, given that most of Linux is written

in C, but its deficiencies have been pointed out in the literature. Spencer [Spe92] describes that it

often acts as a poor substitute for well-designed interfaces by making small bits of code conditional

all over the place instead of deferring the variability to a central module. Lohmann et al. concern

themselves in [Loh+06] especially with the use of the CPP in system software and propose a remedy

to its inherent problems, which they call “#ifdef-hell”, in the form of aspect-oriented programming.

Defects partly result from the unsuitability of the CPP for implementing variability.

First, CPP-annotated code does not get parsed by the CPP, only tokenized. For example, the

CPP would read a+b as a, +, and b, whereas "a+b" would be read as a single string literal token

a+b, ensuring a rudimentary syntactic correctness. However, Listing 2.5 shows that a code file

which is compilable with the correct configuration of symbols A and B (see Table 2.2) can still very

well elicit a syntax error under a different configuration. Concentrating on only one of the four

variations of the code file, the developer may mistakenly think his program valid and tested because

the other three, like the one where the semicolon in line 8 is missing, are never even sent to the

compiler. Even if the syntax of a variation is correct, the function call in line 6 might be compiled

while the definition in line two is not. Assuming definition and call to belong to a single feature, this

demonstrates that feature-related annotations tend to be spread across the code and the conditions

in lines 1 and 5 would have to be kept in sync.

1 #if defined (A) && ! defined (B)
2 int foo(int a) { return a; }
3 #endif
4 int main(void) { return
5 #ifdef A
6 foo (1);
7 #elif defined (B)
8 foo (2)
9 #endif

10 }

Listing 2.5 – CPP-annotated C code resulting in variations illustrated in Table 2.2.

Is there a simple solution that only involves changing one’s coding style? Code in regular if

statements does cause compiler errors when it calls undefined functions or has an invalid syntax.

On the other hand, regular ifs cannot surround function declarations, nor can they eliminate the

spread of features and so cannot be a general replacement for #ifdefs. One would either need to

improve the CPP itself, or make tools that support developers working with it.

10 2.2 UNDERTAKER toolchain

A defined? B defined? Active block in chain foo declared? Compiler / Linker errors

no no none no syntax error
no yes second no syntax error
yes no first yes none
yes yes first no foo undefined

Table 2.2 – The different variations of Listing 2.5 depending on the configuration of A and B.

2.2 UNDERTAKER toolchain

UNDERTAKER’s dead code analysis does not type check or help test CPP-annotated code, but it

eases the burden on developers of writing annotations by detecting redundant #ifdef conditions.

Beginning with the presence condition of an #ifdef block φCPP, UNDERTAKER extends this formula

step by step with φKBUILD and φKCONFIG until

φ = φCPP ∧φKBUILD ∧φKCONFIG

is reached (see Figure 2.2).

At each step, UNDERTAKER checks whether the current formula is satisfiable. If it is not, i.e.,

if it is a contradiction, the #ifdef block under scrutiny is deemed dead because it will never be

compiled. On the other hand, if the negation of the formula is not solvable, then the formula is a

tautology, and the block is undead (to be understood as the contrary of dead) because it will always

be included in the build product whenever its parent is. In practice, not the entire formulas φKCONFIG

and φKBUILD are used, but only the parts of them dealing with those features that actually appear in

the block’s presence condition. This slicing algorithm was presented by Sincero in [Sin13].

1

2

3

4

config HOTPLUG_CPU
 bool "Support for ..."
 depends on SMP && ...

configuration space

implementation space

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

source files

autoconf.h

#define CONFIG_HOTPLUG_CPU
#define CONFIG_SMP
...

implementation variant

gcc

Kbuild
Kconfig

auto.conf

configuration variant

user selection

Kconfig files

(a) The Linux build system. Note how the configura-
tion variant is communicated via the files autoconf.h
and auto.conf to KBUILD and the CPP. Slightly mod-
ified version of Figure 1 from [Tar+11].

DEFECT
REPORTS

obj-$(CONFIG_LUSTRE_FS) +=
...
linux-cpu.o

config HOTPLUG_CPU
 bool "Support for ..."
 depends on SMP && ...

Kconfig
files

Linux
source

Makefiles

defect
reports

(Mini)
Golem

CPP
Parser

SAT
Engine

cross-
check

Kconfig
Parser

#ifdef \
CONFIG_HOTPLU_CPU
...
#endif

undertaker

(b) UNDERTAKER’s mode of operation. Modified ver-
sion of Figure 4 from [Tar+11].

Figure 2.2 – Summary of the Linux build system and how it is examined by UNDERTAKER.

2.2 UNDERTAKER toolchain 11

2.2.1 UNDERTAKER-CHECKPATCH

Tartler et al. pointed out that UNDERTAKER could be useful when used as close as possible to a

developer: “More importantly, we also aim at supporting programmers at development time [with

undertaker] when only a few files are of interest. [. . .] we consider the efficient check for variability

consistency during incremental builds essential.” [Tar+11]. UNDERTAKER-CHECKPATCH, implemented

by Valentin Rothberg in [Rot14], was a step towards this goal. It runs UNDERTAKER’s static dead

code analysis before and after applying a set of changes, called a patch, to the Linux tree, determines

the differences between the analyses, and outputs a report as well as a supplementary .analysis

file for each new defect.

The environment in which UNDERTAKER-CHECKPATCH is now mainly used is not, however, on a

developer’s machine to check “incremental builds” but to check already published GIT commits in

development repositories. The CADOS team chose to periodically run UNDERTAKER-CHECKPATCH

on their own computers, evaluate and manually compile explanations and fixes for found defects,

and send them off as e-mails to the responsible programmers. The target of this experiment, which

evolved from the one described in [Tar+11], is the linux-next3 GIT repository.

2.2.2 Defect classes

Whenever UNDERTAKER finds a defect, it assigns it one flag from each of the three categories in

Table 2.3. The distinction between dead and undead is the first and most basic form of classification.

Second comes the part of the formula where the analysis stopped, which is very important to guide

further analysis of a defect [Rup15; Die+12], which will be explored in the following sections. The

third category is based on the architectures (x86, arm, etc.) a defect appears in. UNDERTAKER must

test an #ifdef block for each architecture separately because each has its own main Kconfig file,

perhaps producing differing results. Once the flags are assigned, UNDERTAKER writes the position

of the defective block and the formula it used into a file whose name ends with the flags joined

together with dots, e.g., foo.c.B1.code.locally.dead, where B1 is an identifier UNDERTAKER

assigns to #ifdef blocks. UNDERTAKER-CHECKPATCH’s supplementary analysis would get written to

foo.c.B1.code.locally.dead.analysis.

2.2.2.1 code defects

The first step of SAT checking examines φCPP alone, without φKCONFIG and φKBUILD, and this is where

code defects can be detected [Rup15; Die+12]. This class is named as such because the formulas of

defects belonging to it are unsatisfiable even when excluding KCONFIG and KBUILD. Its defects result

solely from the presence condition of an #ifdef block. A very simple example might be a block

whose header condition is CONFIG_FOO && !CONFIG_FOO – an obviously unsolvable formula. The

3The linux-next repository at http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git collects
patches from a variety of development trees that are not yet in mainline Linux.

http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git

12 2.2 UNDERTAKER toolchain

Category Flags Description UNDERTAKER-CHECKPATCH analy-
sis

Basic
dead Contradiction
undead Tautology

Part of φ

code φCPP Presence condition
kconfig φCPP ∧φKCONFIG MUS and always on/off
kbuild φCPP ∧φKCONFIG ∧φKBUILD MUS and always on/off
missing φ∧

∧

mi
¬π0(mi)∧¬π1(mi) Missing symbol and similar ones

no_kconfig φ contains symbols not be-
ginning with CONFIG_

Ignored

Architecture
locally Less than all architectures
globally All architectures

Table 2.3 – UNDERTAKER defect classes. The mi are CPP symbols missing from KCONFIG, see
Section 2.2.2.4. For a more detailed version of the two rightmost columns, see Sections 2.2.2.1
to 2.2.2.5. MUS stands for Minimal Unsatisfiable Subset.

very same formula φCPP, but in a more implicit way, would result for the inner block in Listing 2.6.

UNDERTAKER-CHECKPATCH’s analysis file consists simply of the formula φCPP in this case.

1 #ifdef CONFIG_FOO
2 # ifndef CONFIG_FOO
3 # endif
4 #endif

Listing 2.6 – The outer block is not dead, but the inner one is dead, in combination with the
outer one. #ifndef stands for “if not defined.”

2.2.2.2 kconfig defects

If no code defect could be found, UNDERTAKER adds φKCONFIG to the initial formula φCPP and checks

the resulting formula φCPP ∧φKCONFIG [Rup15; Die+12]. If there is a defect now, it is flagged with

kconfig as it arises no sooner than one connects a block’s presence condition with the KCONFIG

model. Section 2.1.1.2 has shown an example for this class of defects. Consider boolean features FOO

and BAR where the former depends on the latter. If the condition CONFIG_FOO && !CONFIG_BAR

would now result from any combination of #ifdef chains and nestings, it would be unsolvable.

Note that while φCPP is absolutely readable, φCPP ∧φKCONFIG commonly has lengths in excess of 500

lines. To overcome the limited usefulness of such an amount of text, UNDERTAKER-CHECKPATCH can

generate a Minimal Unsatisfiable Subset (MUS) out of it and place it in its analysis. UNDERTAKER-

CHECKPATCH also checks if KCONFIG features are involved that are always on or always off in every

possible configuration variant. For instance, if FOO was always on, an #ifdef block testing for

the definedness of CONFIG_FOO would be undead, and UNDERTAKER-CHECKPATCH’s analysis would

inform about this relationship.

2.2 UNDERTAKER toolchain 13

2.2.2.3 kbuild defects

After φCPP∧φKCONFIG, UNDERTAKER finally tests the satisfiability of the full formula φ. If the test turns

out negative, the defect gets assigned the class kbuild, introduced by Andreas Ruprecht [Rup15].
The presence condition of a defective #ifdef block of this kind is not contradictory itself, nor in

combination with KCONFIG, only when taking the build system into account.

For example, assuming again that FOO and BAR are boolean features with FOO depending on

BAR. A block #ifndef CONFIG_BAR would then be kbuild dead if it appeared in a file foo.c which

is referenced in its Makefile with obj-$(CONFIG_FOO)+= foo.o. Under these circumstances, the

block would only be compiled if both FOO and BAR are selected, demonstrating how a dependency

chain through all three formulas can give rise to a contradiction.

As to the UNDERTAKER-CHECKPATCH analysis, the entire formula φ can obviously only be more

complicated than its extension φCPP ∧φKCONFIG, so a MUS is generated here as well.

2.2.2.4 missing defects

If, even by use of the formula φ, no defect is found, UNDERTAKER gathers all KCONFIG symbols

m1, . . . mn in use in the formula and sets their propositional literals in the SAT checker to False

[Rup15]. If the expression φ ∧
∧

mi
¬π0(mi)∧¬π1(mi), is then a contradiction or a tautology, the

defect is of class missing as φ tests symbols that cannot possibly be defined in autoconf.h, i.e.,

are always missing from it. These defects can result from typos in #ifdef conditions, in build

scripts, or in KCONFIG files [Rot14]; or from the use of symbols that do not exist in mainline Linux.

A programmer might have a private development tree with its own KCONFIG features for testing

purposes. If this developer submits a patch, it might still contain references to those features.

missing defects being the most common ones [Rot14], they are also the most easy ones to analyze.

UNDERTAKER-CHECKPATCH outputs the names of missing symbols and a list of symbols that do exist

and are similar in name to the missing ones, which helps when typos are involved.

2.2.2.5 no_kconfig defects

Rothberg introduced one last class, no kconfig, in [Rot14]. Whenever a defect is found, it gets

assigned to this class, regardless of its previous classification, under the condition that the block’s

presence condition φCPP must reference symbols not beginning with CONFIG_. This is to catch

defects resulting from blocks with conditions like #ifdef DEBUG which are most likely intended to

be dead except during development.

2.3 Related work

Attempts to visualize one’s way out of the #ifdef hell [Loh+06] have been made. The two most

closely related to WUNDERTAKER seem to be FEATURECOMMANDER [Fei+11] and the Colored IDE

(CIDE) [KTA08], a prototype of a stand-alone GUI and an Eclipse plug-in, respectively. They both

14 2.3 Related work

feature a folder view, giving an overview over the files in a project, and a code view which shows

code in a way that is beneficial to understanding annotations around it. FEATURECOMMANDER does

visualize actual #ifdefs; CIDE does not, but rather its own, special, way of annotating code. Both

focus on showing features in connection with a feature model, not individual #ifdef blocks.

Techniques employed by them that are also interesting for WUNDERTAKER are hence those that

are limited to within a single code file because #ifdef blocks, unlike features, do not span across

files. First, CIDE has an elaborate functionality to hide code, helping focus the attention on code

fragments that are more relevant than others. This technique is not unique to CIDE and is sometimes

called ‘code folding’; Integrated Development Environments (IDEs), like Eclipse4, use it to hide

bodies of function definitions, of classes, or of #ifdef blocks, etc.

Secondly, because nested #ifdef blocks can be seen as a tree, FEATURECOMMANDER places a

bar next to the code of a block. The bars of children, that necessarily run within the line range of a

parent, are stacked onto parent bars. [CPR07] presents another tool that uses stacked bars to make

it clear at a glance where a block of code that is found in a tree begins and ends.

The most obvious visualization technique that both FEATURECOMMANDER and CIDE employ is

probably the use of background colors to highlight annotated code. As noted in [KTA08], if colors

are supposed to uniquely identify more than a handful of features, then they cannot scale well in

large projects with many of them. Colors in CIDE are rather used for their contrast – to emphasize

the boundaries of code fragments. FEATURECOMMANDER takes this notion one step further and does

not assign any saturated colors to features unless the developer does it manually for a small subset.

Some of the authors of [Fei+11] and [KTA08], among others, have conducted a very comprehen-

sive set of studies on the effect of using background colors to highlight #ifdef blocks [Fei+13]. In

the first experiment, they tested two groups: the first had an uncolored and #ifdef annotated code

view, and the second had a colored but unannotated one. Subjects of both groups were given a set

of tasks from two categories: static tasks and maintenance tasks. Static tasks required subjects to

associate code with features; in maintenance tasks, they had to fix bugs starting from bug reports.

The conclusion from the experiments is that colors are beneficial. Users from both groups

estimated that working with the colored version is faster than working with the uncolored one.

Users of the colored version were indeed faster with static tasks and took a comparable time for

all maintenance tasks except one. The authors assumed that the color group was slower with this

one task because a red color was used in it to highlight large swaths of code, probably negatively

affecting performance. Whereas in this experiment users did complain about the badly chosen color,

they did not in a second experiment with a single group that had the possibility to switch between

#ifdefs and colors. Most subjects chose to use colors and were consequently slowed down in a task

that involved red again by the same amount as the color group in the first experiment, but without

realizing it. Finally, the third experiment confirmed that previous results also apply in large-scale

software projects. However, it involved one task where users of the colored code had to work with

12 different colors at the same time, also resulting in a performance worse than that of the #ifdef

users.

4http://www.eclipse.org/pdt/help/html/using_code_folding.htm

http://www.eclipse.org/pdt/help/html/using_code_folding.htm

3W U N D E RTA K E R

3.1 Environment

WUNDERTAKER is the front end of UNDERTAKER-CHECKPATCH’s dead code analysis, visualizing the

defect reports and fitting in with the rest of the toolchain, and its first and foremost use case is

supposed to be as a didactic tool in the linux-next experiment (see Section 2.2.1). The following

sections will answer how, where, and by whom WUNDERTAKER is intended to be run.

3.1.1 WUNDERTAKER as an UNDERTAKER GUI

Computations of the linux-next experiment are conducted centrally. The CADOS team analyze

the generated reports and send out e-mails as sort of a service. If they had a GUI at their disposal,

they could, after having checked a linux-next commit, update it with the respective reports and

refer to it from within their e-mails.

In order to be up-to-date, WUNDERTAKER would therefore firstly need access to the CADOS server

where the reports lie and secondly to the respective Linux code where the defects appear in, which

can be any, up to the most recent, linux-next commit. Although an implementation as a desktop

GUI is thinkable, I chose to keep both things in one place – on the CADOS server, with the reports

being in a file system and the code in a GIT repository. WUNDERTAKER would then run as a web

application, managed by the CADOS team and serving Hypertext Markup Language (HTML) pages

from this server to Linux developers who received report mails.

Benefits of this approach are that WUNDERTAKER is automatically made platform-independent

without any further effort, given the universality of web standards, and that it can be integrated

into e-mails almost seamlessly by a link, being accessible via the Internet to the same degree the

e-mails are as well. This last point is probably the most important one; if WUNDERTAKER needed

set-up time on part of the recipients, its acceptance would likely suffer. Ideally, the visualization

behind the link would be comprehensive to the point of making any manually written explanation

of the defect redundant, so e-mail writers’ lives would be made easier. We will see that this goal is

only partially reachable within the scope of this work, but WUNDERTAKER should certainly be able

to both relieve the writers of repetitive tasks and to improve and supplement the explanations.

15

16 3.1 Environment

3.1.2 WUNDERTAKER as a GIT repository view

As we found out, WUNDERTAKER already needs access to a GIT repository. It is then only a small

step towards making the repository fully browsable via a folder view that presents clickable subfiles

and subfolders, at least when limited to a given GIT commit. Navigation from one commit to

another and along GIT branches is, however, more complex, and one needs to draw a line between

what is and is not sensible to include as a functionality. WUNDERTAKER is not supposed to be

a development platform like GITLAB5, for example, but a fully read-only online view of a single

repository. Navigation features should be provided only as long as they are conducive to conveying a

context to UNDERTAKER defect reports. If WUNDERTAKER not only visualizes files but also the folders

that contain them up to the root of the tree of a given commit in a rudimentary way, like in a common

file browser (see Figure 3.1), it should be sufficient. As one further enhancement, WUNDERTAKER

could count the reports that exist beneath each item in the view and show this number, giving an

impression of how defects are distributed.

3.2 The didactics of defect reports

After UNDERTAKER-CHECKPATCH has found a defect, it supplies three bits of information: the formula,

a part of φ; the position of the defective block; and the .analysis file. In the following, we go

through the different classes of defects and find suitable ways to explain them in a graphical form.

A thorough examination of the general causes and fixes of variability defects without regard to GUIs

has been conducted by Nadi et al. in [Nad+13], and by Rothberg in [Rot14].

3.2.1 missing

Defects of this class are easy to understand, given that the UNDERTAKER-CHECKPATCH analysis already

names the symbol missing from KCONFIG (see Listing 3.7). It should not be hard for a developer

who is accustomed to the defective code to grasp the problem, then. When an e-mail links to

5https://about.gitlab.com/

Figure 3.1 – A screenshot of the dolphin file browser showing the contents of a folder containing
both folders and files. Things to note are the clickable path (1), the separation between folders
and files, and the columns that supply further information on each item (2). WUNDERTAKER

should try to stick close to this, as it is a tried approach, making WUNDERTAKER consistent with
programs already known to users.

https://about.gitlab.com/

3.2 The didactics of defect reports 17

WUNDERTAKER, the latter should therefore show this exact analysis in a view of the relevant code file

right next to the CPP annotations that caused the defect. As a result, the e-mail would not need to

mention the defect class, the position of the #ifdef block, nor what symbol is missing, freeing the

CADOS team from manually assembling this information over and over again whenever a missing

defect arises.

New defect : arch/arm64/ kernel / cpufeature .c:B1 :66:74: missing . globally .dead
CONFIG_AS_LSE is referenced but not defined in Kconfig

Similar symbols : CONFIG_AFS_FS , CONFIG_USB_LED , CONFIG_AFFS_FS

Listing 3.7 – Analysis of a missing defect that UNDERTAKER-CHECKPATCH found in Linux v4.3.

3.2.2 code

A good visualization of code defects is perhaps best found when looking at one. GIT commit

73b341efd changed occurrences of CONFIG_PPC_HAS_HASH_64K to CONFIG_PPC_64K_PAGES, among

the affected #ifdef blocks the one starting in line 704 in arch/powerpc/mm/hash_low_64.S (see

Listing 3.8). The block happened to have already contained another block testing for the exact same

symbol. As a consequence, the inner block is classified as undead and its #else branch as dead.

#ifdef CONFIG_PPC_64K_PAGES
[144 lines omitted]
#ifdef CONFIG_PPC_64K_PAGES

oris r30 ,r30 , _PAGE_HPTE_SUB0@h
#else

ori r30 ,r30 , _PAGE_HASHPTE
#endif
[142 lines omitted]
#endif /* CONFIG_PPC_64K_PAGES */

Listing 3.8 – Snippet from arch/powerpc/mm/hash_low_64.S from v4.3.

UNDERTAKER-CHECKPATCH’s analysis, the presence condition of the block, is shown in Listing 3.9.

The formula is short but not self-explanatory for developers that are unfamiliar with UNDERTAKER.

Firstly, block identifiers B00, B0, etc. are unique to UNDERTAKER, and not used by other programs, and

take some time to get familiar with – something WUNDERTAKER can avoid entirely by not employing

any textual notation at all but rather showing the blocks themselves and placing interactive shortcuts

between them. So WUNDERTAKER knows where the shortcuts must point, it can run UNDERTAKER

with options that make it print out the line numbers of the blocks. WUNDERTAKER can thus build on

existing, but disconnected, bits of information and bring them together.

New defect : arch/ powerpc /mm/ hash_low_64 .S:B5 :849:851: code. globally . undead
Tautology in the block ’s precondition :
B5
&& (B5 <-> B4 && (CONFIG_PPC_64K_PAGES))

18 3.2 The didactics of defect reports

&& (B4 <-> (CONFIG_PPC_64K_PAGES))
&& B00

Listing 3.9 – UNDERTAKER-CHECKPATCH analysis of the code defect.

Secondly, the formula can become quite convoluted in cases such as in Listing 3.10. It deals with

block 33 that is located within block 32 which is in turn located in block 31, which itself has an

include guard as its parent, as indicated in line 4. The relevant bits are in lines 2 and 8: block 32

tests STRICT_MM_TYPECHECKS while block 31 #undefs it. So block 32 and hence block 33 cannot be

enabled; the latter is marked as dead. This is hard to see at first glance from the formula. Therefore,

an UNDERTAKER GUI should not depend on formulas if it does not need to. Rather, it should visualize

the nesting of #ifdef blocks. Such a hierarchy is already easier to see if code not belonging to CPP

directives is hidden in the same way I manually did in Listing 3.8. There, the inner block is located

more than 140 lines – multiple pages – into its parent from both ends.

Also, if a block references a symbol which is redefined as constant beforehand, WUNDERTAKER

should make this noticeable. In conclusion, code defects are the ones that might benefit the most

from a GUI. Presence conditions of blocks are rather complicated to explain so a structured and

automated way to show them would surely ease the writing of e-mails.

1 (B33 <-> B32 && ((CONFIG_PPC_64K_PAGES) && (CONFIG_PPC_STD_MMU_64)))
2 && (B32 <-> B31 && (STRICT_MM_TYPECHECKS .))
3 && (B31 <-> B0 && (! __ASSEMBLY__))
4 && (B0 <-> (! _ASM_POWERPC_PAGE_H))
5

6 && (B0 -> _ASM_POWERPC_PAGE_H .)
7 && (!B0 -> (_ASM_POWERPC_PAGE_H <-> _ASM_POWERPC_PAGE_H .))
8 && (B31 -> ! STRICT_MM_TYPECHECKS .)
9 && (! B31 -> (STRICT_MM_TYPECHECKS <-> STRICT_MM_TYPECHECKS .))

Listing 3.10 – Presence condition of block 33 in arch/powerpc/include/asm/page.h of Linux
commit 456fdb267.

3.2.3 kconfig and kbuild

Let us again begin with an example to find further requirements for WUNDERTAKER: in commit

4c477de14237, there is an undead block in the file kernel/stop_machine.c. The commit gave an

#ifdef block the condition CONFIG_SMP || CONFIG_HOTPLUG_CPU. But it becomes apparent that

this condition is none, really, since stop_machine.c will not ever be compiled without CONFIG_SMP,

as defined in its Makefile. This is exactly what UNDERTAKER-CHECKPATCH says in its analysis shown

in Listing 3.11. Again, a GUI should display this alongside the relevant code.

Listing 3.11 – UNDERTAKER-CHECKPATCH analysis of a kbuild defect.

File preconditions from build system create a tautology

3.2 The didactics of defect reports 19

File precondition for architectures [’alpha ’, ’arc ’, ’arm ’, [...]]: CONFIG_SMP
[...]

Given the complexity of the formulas involved in these classes, WUNDERTAKER is probably least

useful here, mostly relying on UNDERTAKER-CHECKPATCH’s MUS form of the propositional formula φ.

kconfig and kbuild defects, by definition, span across multiple files, and WUNDERTAKER only visualizes

a single one at a time – the C code file. Still, it is not a given that φKCONFIG or φKBUILD are complicated.

Maybe only φCPP is – one of a block’s many parents references a symbol that is already used in

a Makefile, like SMP above. And, like above, the content of the .analysis file would suffice to

see the problem. Also, showing the #ifdef hierarchy in a view resembling an IDE or text editor a

developer is used to, could very well help to construct a mental context to the defect.

3.3 Requirements

From the preceding sections, one can now gather a list of basic requirements WUNDERTAKER

should meet. WUNDERTAKER’s code view, on the one hand, should (1) be visually similar to those

found in IDEs, including syntax highlighting; (2) display the .analysis provided by UNDERTAKER-

CHECKPATCH in the vicinity of the defective #ifdef block it belongs to; (3) be able to hide, or fold,

any code not belonging to a feature annotation; (4) visualize the hierarchy of #ifdefs, i.e., the way

they are nested; (5) have clickable shortcuts from #ifdef headers to #define directives if they

share symbols; and (6) should ideally show the presence condition formulas it gets from UNDERTAKER

only optionally. Its folder view, on the other hand, should (1) have a clickable breadcrumb path,

(2) adhere to common file browser GUI design principles, and (3) show the number of reports that

are in each item.

Being only a front end, WUNDERTAKER should re-use as much functionality from the UNDERTAKER

toolchain as possible, such as the parsing of #ifdef conditions.

3.4 Implementation

3.4.1 Visualization techniques

3.4.1.1 The code view

Suppose one wants an all set-up and running WUNDERTAKER to display its visualization of the

file arch/powerpc/mm/hash_low_64.S in the tree of Linux v4.3. Being a web application, the

intended way to do this would be to send a request with a web browser, where the first component

of the path is the version and the rest is the path of the file. So if this WUNDERTAKER instance

was running on www.example.com, then the address bar of the browser would show something

like http://www.example.com/v4.3/arch/powerpc/mm/hash_low_64.S. In fact, this path is

the only information WUNDERTAKER only ever needs from a user; it does not store any cookies or

20 3.4 Implementation

server-side session data, except for caching purposes. WUNDERTAKER then looks up the path in its

Linux GIT repository, finds that it is indeed a code file, not a folder, generates its output, including

information from relevant UNDERTAKER defect reports it reads from a file system, and returns a

response to the browser.

After this response has been rendered, the user will see a page with the general layout depicted

in Figure 3.2. The page header and footer are purely decorative elements. The defects list acts

as sort of a table of contents linking from short descriptions of defects to defective blocks inside

the code view. This, where the substance of the visualization can be found, is shown in Figure 3.3.

The figure shows the visualization of the entire file; no parts have been cut from the screenshot.

The reason for why it all fits on one page is that WUNDERTAKER shows only lines of code that are

responsible for beginning or ending an #ifdef block. A number of lines are additionally shown after

each #ifdef header in order to allow for a certain context when glancing over the view. Certain

points of interest in the figure are numbered for further explanation.

Page header

Breadcrumb navigation

Defects list

Code view / Folder view

Page footer

Figure 3.2 – General layout of a WUNDERTAKER page.

There is an ellipsis, numbered with 1, which stands for 291 lines of code that are not related

to any #ifdef annotations. This is code I call ancillary code for it just happens to exist between

code that is actually analyzed by the UNDERTAKER toolchain. Each ellipsis stands for a fragment of

ancillary code, and is not just a static placeholder but can be interacted with by clicking on it, upon

which the code underneath it will be revealed and the placeholder hidden in its stead – something

that can also be done en masse by using the button above number 3, which expands all fragments at

once. The ellipses implement the code folding technique that should augment the focus on feature

annotations by hiding irrelevant code by default.

The left column, numbered with 2, contains boxes, one for each #ifdef block, with their top

borders aligning with those of the #ifdef blocks in the code. The first line in a box shows the

identifier of the #ifdef block it describes, numbered from zero onwards the same way UNDERTAKER

does it. The rest is the presence condition of the block in which WUNDERTAKER recognizes block

identifiers and links to the headers of the respective blocks. For example, if a user clicks on a B3 link

in the example, the page would be scrolled in order to show line 459 if it was not already visible.

Since the boxes may overlap, or not fit into the column, they are brought to the front when the user

3.4 Implementation 21

Figure 3.3 – Code view of arch/powerpc/mm/hash_low_64.S in Linux v4.3.

hovers over them, as shown with the box of block B0. Fulfilling another one of the requirements,

the column can be removed from view with the button below 3.

The middle one of the buttons (3) is active in this example, meaning that #ifdef coloring is

enabled in the figure. Indeed, the blocks are colored with one of five colors, where red is reserved

for defective blocks. Furthermore, in the code view, the text itself is colored, not just the background.

This is standard syntax highlighting as it can be found in IDEs or text editors. I will describe the

exact choice of colors for both foreground and background in Section 3.4.2.

Next is the “Block Boundaries” column (4) whose purpose is to visualize the hierarchy of #ifdef

blocks. Each bar in this column corresponds to a block and runs next to its lines in the code column

with the exact same height as the block has there, growing and shrinking whenever ellipses are

expanded or closed. Bars belonging to child blocks stack to the right onto the bars of their parents

so that bars always have a smaller height than the bar on their left. The color of a bar is similar

to the background color of the respective block; it is more saturated but has the same hue so as to

make a connection to the code view. The bars are also clickable; each leads to the header of the

block it belongs to, like when clicking on a block identifier.

22 3.4 Implementation

When we look at the defective blocks, colored in red, there is an additional horizontal bar above

each. Their headers inform about the defect classification and the identifier of the block. More

importantly, however, they can be folded out via the “details” button (5) in order to display the

exact contents of the UNDERTAKER-CHECKPATCH .analysis file that was generated alongside the

respective defect. To make usage more convenient, this bar stays fixed at the top of the browser

window whenever a user scrolls around in a long defective #ifdef block.

The last point in this figure is not one of the requirements per se, but helpful for the user. When

hovering above the column headers, like the one numbered with 6, a small help box is shown

describing some of the details from the text above.

In summary, Figure 3.3 shows techniques fulfilling all but one of the requirements stated on

page 19, namely the one that CPP symbol uses should have links to symbol definitions. However,

WUNDERTAKER meets also this last requirement, as illustrated in Figure 3.4. It shows the visualization

of the defect described in Listing 3.10 in Section 3.2.2. The fact that all code within block B32

is dead now becomes quite clear in this figure as WUNDERTAKER informs about the relationship

between lines 281 and 283 (see number 1) with a link that can be highlighted to show the tooltip,

and clicked, in which case the browser scrolls to the appropriate symbol definition. Such a link

cannot go beyond the current file, though.

Please note that, in this figure, #ifdef highlighting is not switched on. As a result, block bars

are here shown in alternating shades of gray rather than saturated colors. Merely the defective

blocks are still in red. Also, block headers have a special, yellow, background color of their own

which the lines surrounding them do not.

Lastly, when a user hovers with his mouse cursor above a block bar (see 3), WUNDERTAKER

shows the respective presence condition box next to it (2). This functionality works even if the left

column is hidden away and is mostly useful when reading longer #ifdef blocks.

3.4.1.2 The folder view

Imagine again, that a user has the page /v4.3/arch/powerpc/mm/hash_low_64.S in front of

himself. This page, like all pages (see Figure 3.2), would contain a breadcrumb navigation like the

Figure 3.4 – Code view of arch/powerpc/include/asm/page.h of Linux commit 456fdb267.

3.4 Implementation 23

one made up from numbers 1 and 2 in Figure 3.5. Each of the path components in 1 is a link and so

Figure 3.5 would be the result of the user clicking on hash_low_64.S’s parent.

WUNDERTAKER, upon receiving a request for the path /v4.3/arch/powerpc/mm, would recog-

nize it as a folder and generate an appropriate view (3 in Figure 3.5). This view is a simple list of

folders and files residing within the requested directory, together with a display of the number of

defect reports found in each item.

Pairs of a version and a path, as used by WUNDERTAKER, can be converted to equivalent Uniform

Resource Locators (URLs) naming the same file or folder in the GIT repository browser used at www.

kernel.org6. WUNDERTAKER can, for this reason, generate a link, numbered with 2 in Figure 3.5,

to the linux-next repository on kernel.org. As mentioned in Section 2.2.1, linux-next is the

target of periodic invocations of UNDERTAKER-CHECKPATCH by the CADOS team. The repository

browser at www.kernel.org has much more advanced features for navigating within the GIT history

of a file and can thus complement WUNDERTAKER because, being a web application as well, it should

be accessible from anywhere where WUNDERTAKER is also available.

3.4.2 Colors

In WUNDERTAKER’s code view, there are several elements that benefit from coloring. First of all

are the #ifdef blocks. Being highlighted with saturated background colors, as opposed to the

color white, notifies a user reading their code that it is annotated. By contrasting with colors of

neighboring blocks, their boundaries become clear, too. Colors achieve this without the need of even

reading the text, since they are processed by the human brain first [Fei+13]. Second are the block

bars whose coloring would serve the same purpose. Last are tokens of the program code that need

to be syntax highlighted. However, the colors of tokens must also contrast with the background

colors of blocks so as to keep the code readable.

Drawing from the experience gathered by Feigenspan et al. in [Fei+13] that is summarized in

Section 2.3, I tried to distribute these colors as well as possible regarding the criteria stated above.

6kernel.org is the web page where official Linux GIT repositories are hosted, including Linus Torvalds’s mainline
repository.

Figure 3.5 – The top of the view of folder arch/powerpc/mm in Linux v4.3.

www.kernel.org
www.kernel.org
www.kernel.org
kernel.org

24 3.4 Implementation

I used the three-dimensional Hue, Saturation, Lightness (HSL) coordinate system for describing

colors (shown in Figure 3.6a). In short, a point in this system describes a color. Points with L = 1 are

always white, regardless of the other parameters; points with L = 0 are black (see B in Figure 3.6a).

Also shown in B is that the hue H is written as an angle from 0° to 360°. Fixing L = 1/2, points

with S = 0 would appear as a gray exactly midway between black and white, and points with S = 1

and L = 1/2 would appear as the most saturated colors possible in HSL which are depicted on the

imaginary horizontal line in the middle of Figure 3.6a B.

With this information, one can construct colors so that the intuitive contrast between them is

maximized. Suppose S and L are constant and only H remains free. One then obviously gets the

most contrast among n colors if the distances between their hues are maximized and all equal.

When thus distributing, for instance, six values over the domain of H, one can start with 0° and

then add 60° in successive steps until 0° is reached again, resulting in 0°, 60°, 120°, 180°, 240°, 300°.

However, when choosing foreground colors for text that is to appear upon a colored background,

one must leave out a range around the background color’s hue lest the text become unreadable.

This extended process is illustrated in Figure 3.6b and can be seen as a function dist(n, Havoid, w)
that results in n hues with maximum contrast, under the boundary condition of leaving out a range

of width w around the supposed hue Havoid.

As shown in Table 3.1, I choose to keep S and L constant among each of the three groups of

colored elements, text, boundary bars, and block backgrounds. The reason for this is that variations

of lightness or saturation among these elements would look misleading. Consider one block that

has a green as a background color while the block following it is colored with a blue that is much

paler. A user might then associate a valuation with the difference in saturation – that one block is

somehow more or less important than another. Hues, except red, on the other hand, should be free

of valuation with regard to #ifdef blocks.

(a) A cropped and slightly modified version of https://en.
wikipedia.org/wiki/File:Hsl-hsv_models.svg by Jacob
Rus under license CC BY-SA 3.0.

(b) Result of dist(4, 234°, 102°). The
prohibited range is overlaid with black.
The hues found by dist are marked by
white stripes.

Figure 3.6 – The HSL system.

https://en.wikipedia.org/wiki/File:Hsl-hsv_models.svg
https://en.wikipedia.org/wiki/File:Hsl-hsv_models.svg

3.4 Implementation 25

Visual Element H S L

Backgrounds 0°, 60°, 120°, 180°, 240°, 300° 0.5 0.85
Bars 0°, 60°, 120°, 180°, 240°, 300° 0.6 0.5
Text dist(8, HBackground, 90°) 1 0.25

Table 3.1 – Fixed S and L values and the distribution of hues in the different colored GUI
elements. Saturation values become larger from row one to the last row while Lightness values
become smaller in order to to make text colors appear ‘stronger’ and darker than the light
background. Bar colors are in between.

The six hues constructed above are used for the six background colors. The rationale for this

number is that the graph coloring problem for a tree of #ifdef blocks, additionally assuming that

siblings are connected, can be solved with four colors because of the Four Color Theorem [Wik15].
Therefore, four of the six hues are used for regular coloring: WUNDERTAKER alternates two sets

of two colors between levels in the tree. So nodes at level 1 are colored with the first two colors,

blocks at level 2 with the second two, and level 3 with the first set again, and so on. Within a level,

the two colors in the set are alternated resulting in the desired property that each line that starts

or ends a block will have another color than the line that precedes or follows it, respectively. The

fifth color is red, which is reserved for defective blocks and not used as a regular block background

respecting the insight from [Fei+13] that it would be a bad color for that. The sixth is an extra color

used to highlight certain lines that have been selected by the user, for example the header of a block

after being jumped to.

All in all, six background colors should be few enough to not overload the perception of users;

users of the colored version in the experiments by Feigenspan et al. only started getting problems in

tasks involving 12 colors. Also, this #ifdef coloring feature is optional and off by default. Rather

than being permanent, it is intended as an option that is switched on by the user, once he has found

a certain spot in a file, to discern between #ifdef blocks local to the file – to find their boundaries

as quickly as possible, and to help the user decide what block a line of code belongs to.

3.4.3 Software that WUNDERTAKER uses

As a web application, WUNDERTAKER communicates with web browsers via the Hypertext Transfer

Protocol (HTTP). An HTTP request is text-based and can be as simple as in Listing 3.12 which might

be what a browser would send to www.example.com if one were to enter www.example.com/foo

in its address bar. Of interest to WUNDERTAKER are only GET requests which, according to the HTTP

standard, are intended for pure information retrieval. That is, WUNDERTAKER never changes any

state in the wake of a request but loses all information about a connection the moment it is closed.

The sole exception to this rule of read-only access and statelessness is the caching it does to enhance

performance.

WUNDERTAKER does not handle all the protocol details itself but builds on a stack of software

responsible for this. I chose Ruby7 as the language to write WUNDERTAKER in because it provides a

7https://www.ruby-lang.org/en/

https://www.ruby-lang.org/en/

26 3.4 Implementation

useful combination of libraries and frameworks for this task, which is demonstrated in this section.

How WUNDERTAKER interacts with these dependencies can perhaps best be explained by dissecting

it into two dimensions: Vertically, it is placed on top of a stack of HTTP-related software where

requests travel upwards and responses downwards. Horizontally, it gathers all the data it needs

from several sources to produce HTML documents once it has got a request.

GET /foo HTTP /1.1
User -Agent: Mozilla /5.0
If -Modified -Since: Sun , 6 Dec 2015 12:00:00 GMT

Listing 3.12 – A HTTP request.

3.4.3.1 Vertical Design

Imagine a web browser sending a request, as sketched in Figure 3.7. The request would travel across

the internet to the web server WUNDERTAKER is running on. WEBRICK8 is a simplistic web server

integrated into the Ruby standard library and so makes it easy to interface to it from Ruby programs.

But WUNDERTAKER can also run on the APACHE HTTP Server9 as long as the Phusion Passenger10

module is installed and loaded into APACHE. This is necessary because before passing the request on

to the Ruby-based part of the stack, it needs to be encoded in a rudimentary way as a Ruby object,

as defined by the Rack interface11, and Passenger can do this.

If it is so configured, the RACK12 program itself can now directly pass on the request to the

second level. Usually however, it first wraps a certain set of middleware around the call, like

Rack::ShowException that catches any Ruby exception occurring further up and generates an

error page with traceback based on this. SINATRA13, upon getting the request, goes through a

list of routing rules, both SINATRA’s own and ones that have previously been registered by WUN-

DERTAKER, and calls a function associated with the first one that matches. For example, one of

WUNDERTAKER’s rules is defined as a match of the pattern /*/* against the path of the request. The

path /v4.3/kernel/sched/core.c matches this pattern – a request for kernel/sched/core.c

as it was when v4.3 of Linux was released. The response then travels all the way back down to the

web server, where it is encoded in HTTP, and sent back across the Internet.

3.4.3.2 Horizontal Design

Figure 3.8 illustrates WUNDERTAKER’s mode of operation after a request has been passed on from

SINATRA. In this diagram, arrows indicate that data are moved from one component to another. The

vertical structure below WUNDERTAKER is hidden in this diagram (Figure 3.7 rotated by 90 degrees).

8http://ruby-doc.org/stdlib-2.2.2/libdoc/webrick/rdoc/WEBrick.html
9https://httpd.apache.org/

10https://www.phusionpassenger.com/
11http://www.rubydoc.info/github/rack/rack/master/file/SPEC
12https://rack.github.io/
13http://www.sinatrarb.com/

http://ruby-doc.org/stdlib-2.2.2/libdoc/webrick/rdoc/WEBrick.html
https://httpd.apache.org/
https://www.phusionpassenger.com/
http://www.rubydoc.info/github/rack/rack/master/file/SPEC
https://rack.github.io/
http://www.sinatrarb.com/

3.4 Implementation 27

Web server

Ruby

WUndertaker

Framework: Sinatra

Middleware like Rack::ShowException

Rack

Phusion Passenger
(mod_rack)

Apache

WEBrick

Browser

HTTP

Rack Interface

Figure 3.7 – The vertical design of WUNDERTAKER.

The first important thing that catches the eye is the file tree on top of the diagram. This is the folder

WUNDERTAKER “runs on”; it contains the Linux GIT repository and another folder commits. Makefile

and other files are checked out from the repository in the drawing, but it is not a requirement. It

merely illustrates the fact that the repository is the sole place where the actual code of Linux needs

to be stored.

Let us again go through the sequence of steps leading from an HTTP request to a response,

indicated by the numbers inside circles. After the request for a file is received and routed at 1 ,

WUNDERTAKER fetches the specified version, indicated in red, of the file at the specified path, written

in blue, from the repository 2 .

Next, a simultaneously running instance of MONGODB14 is consulted whether it already has

defects reports and information about #ifdef annotations regarding this file in its storage (3).

This is to avoid the possibly costly step 4 and also step 5 . Step 4 involves executing UNDERTAKER

as a separate process on the retrieved repository code, once to parse the position of #ifdef blocks in

it, and once for each block to extract its presence condition formula. Step 5 is more straightforward

since it only comprises finding and reading UNDERTAKER defect reports in the commits folder. Notice

how the red part of the request, the version, is matched against the names of the direct subfolders

of the commits folder. This is done by normalizing it as the SHA1 checksum of the GIT commit it

describes since, for the sake of convenience, it may be any uniquely identifying prefix of the actual

checksum as well as a pointer or shortcut, called tags in GIT, to the commit. WUNDERTAKER then

tries to find UNDERTAKER defect reports and their .analysis files in the matched subfolder under

the path of the file.

14MONGODB is a document-oriented database management system, see https://www.mongodb.org/.

https://www.mongodb.org/

28 3.4 Implementation

repo.git
...

kernel/
Makefile

.git

commits

456fdb26... kernel/sched/
core.c.B120.
kconfig.x86.

dead

core.c.B120.
kconfig.x86.
dead.analysis

6a13feb9... arch/x86/crypto/
poly1305_glue.
c.B1.missing.
globally.dead

Code View
HTML GeneratorWUndertaker

Browser

MongoDB
27017

undertaker

/456fdb26/kernel/sched/core.c 1

C code via libgit2 2

Cached reports 3

-j blockpc 4

Defect report and .analysis 5

6

6
7

HTML

Response document 8

3

Cached #ifdef tree

Figure 3.8 – The horizontal design of WUNDERTAKER. Boxes with thick borders stand for
programs that produce information on their own. The HTML generator is in fact a part of
WUNDERTAKER and therefore has a dashed border. Databases have rounded corners.

Step 6 is the caching of the so far gathered information, except for the code from the repository –

the counterpart of step 3 . The code view HTML generator is a collection of classes in WUNDERTAKER

that write the HTML code that is responsible for syntax-highlighting C code and visualizing #ifdef

– in short, the core part of WUNDERTAKER. Once the HTML generator is done, it passes the HTML to

the main program in step 7 which in turn finalizes its layout and adds other elements before at last

sending it off in step 8 .

From this design, it can now be seen how the CADOS team could insert new data from

UNDERTAKER-CHECKPATCH into a running instance of WUNDERTAKER. One would create a new

folder beneath commits with the hash of the commit that was checked by UNDERTAKER-CHECKPATCH

as its name. So as not to corrupt the cache while writing into the folder, WUNDERTAKER respects the

existence of a lock file and ignores folders that contain such a file.

4E VA LUAT I O N

Linux is a large software project, with the tree of v4.3 consisting of 3439 folders containing 51556

files, many of them with over 1000 lines of code. When counting defect reports, WUNDERTAKER must

traverse parts of this tree. When visualizing files, it must tokenize the code for syntax highlighting,

parse #ifdef directives, extract presence conditions, and finally construct an HTML document.

Performance is therefore a major concern for WUNDERTAKER; having to wait lengthy periods of

time just for one page to generate would severely diminish its usefulness and acceptance among

developers, especially so when it would make the use case of “clicking around” in the repository

unreasonably tedious. This section shows that WUNDERTAKER, while meeting its design requirements,

is a usable program by measuring and presenting several numbers that arise when it operates, first

and foremost being the speed and memory consumption of WUNDERTAKER.

4.1 Targets and Procedure

All measurements were done on a machine with an i5-3570K CPU with four cores, 16 GBs of

RAM, and with WUNDERTAKER running on WEBRICK. The Linux GIT repository and all other files

WUNDERTAKER needs to access, including the MONGODB database, were moved onto a tmpfs, which

is a file system residing entirely in the RAM of a machine without requiring any disk to perform

reads or writes15. This is to prevent delays caused by input / output (IO) from affecting the results

too much because the delays are hard to predict. I also make sure during testing that enough RAM

remains free so as not to risk the kernel swapping out any files from the tmpfs.

I invoke WUNDERTAKER by sending a request with Ruby’s Net::HTTP module16 via a method

call Net::HTTP.get_response(’localhost’, path, 4567) from a separate script, where path

is the request path, WUNDERTAKER runs on port 4567, and is accessed via localhost, which means

that no data have to be sent over a network but only through the kernel. The time that elapses

during this call is measured with Ruby’s Time class (see Listing 4.13). This total time is further

partitioned into four split times, three of which are measured in WUNDERTAKER’s code. The fourth

15https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
16http://ruby-doc.org/stdlib-2.2.0/libdoc/net/http/rdoc/Net/HTTP.html

29

https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
http://ruby-doc.org/stdlib-2.2.0/libdoc/net/http/rdoc/Net/HTTP.html

30 4.1 Targets and Procedure

is determined by subtracting the sum of the three first times from the total time. The split times are

defined as:

init init is reached as soon as WUNDERTAKER takes over from SINATRA. It then reads its configuration

file and finds the requested object in its GIT repository.

preprocessing If caching is enabled, the preprocessing stage always follows the pattern of connecting

to MONGODB, checking there if some information is already available, and generating and

writing new data if not. When visualizing folders, there is only a single bit of information: the

report counts in the subfolders and subfiles. In case of the code view, WUNDERTAKER finds

and reads contents of relevant defect reports, makes UNDERTAKER parse #ifdef blocks, and

further processes these information.

html html is the last stage before WUNDERTAKER hands back control to SINATRA. Here, code is

tokenized and syntax highlighted on the fly. After that, the final response HTML document is

generated by assembling a long string in memory. Together with the previous two steps this

one adds up to the time that passes while WUNDERTAKER’s own code is running.

frame This is the difference between the total time and the sum of the three times above and

illustrates how much is lost to the web server stack and the framework WUNDERTAKER runs

on and in.

start_time = Time.now
#[code whose performance is to be tested]
duration_in_seconds = Time.now - start_time

Listing 4.13 – Measuring time with Ruby.

The pages I target with my measurements can be summarized in three groups. The first

group 1 comprises the root folders of the trees of the Linux commits 456fdb267, v4.3, and

v4.2. In the test setup, there are 3208 folders in the folder containing defect reports for 456, 36

in the folder for v4.3, and none at all in the one for v4.2, testing the effect of the size of the

reports database on WUNDERTAKER’s performance. The second group 2 are code views of the files

crypto/testmgr.h, kernel/sched/core.c, drivers/char/rtc.c, and drivers/memory/of_-

memory.c, all from Linux v4.3, because they exemplify files of different sizes (1.2MiB, 206KiB,

34KiB, and 4.8KiB, in this order).

The third group 3 is a measurement where I requested each of the 51556 files from the tree

of Linux v4.3 (called ‘all in v4.3’) and computed the mean split times, in order to stress test and

determine the average performance of WUNDERTAKER. Unfortunately, 132 files produced error

responses and were omitted for this reason. In all cases, the error resulted from the UNDERTAKER

#ifdef parsing interface being unable to process the respective files. 19 of the problematic files

contain text that is not CPP-annotated and could very well include invalid C tokens. However, the

remaining 119 are .S, .c and .h files so I assume a bug on the part of UNDERTAKER. WUNDERTAKER

produces HTTP 200 OK responses for all 51424 files that are left.

4.1 Targets and Procedure 31

Every request, or set of requests, was measured four times, resulting in a pair of results. The

first result is the mean time elapsed during the first request, and the second one is the mean across

the other three measurements. Results suffixed with u or c originate from measurements done with

an ‘uncached’ or a ‘cached’ WUNDERTAKER, respectively. The first result is not averaged because a

cached WUNDERTAKER fills its cache during the first request to a page, influencing all subsequent

requests. The second results tagged with c should be much lower than the first ones if caching is

beneficial. When comparing them to the first result, the averaged second results will show that the

measured times are constant and hence reproducible.

4.2 Results

The results of the performance measurements are shown in Figure 4.1. One can see that the init

phase never takes a significant amount of time – it has a constant runtime of less than 5ms. The

first group, depicted on the left of the chart, is dominated by the preprocessing stage, that is, by the

report counting. Note that caching is extremely effective here, with the second result of 456 c and

v4.3 c not even visible any more on the chart. However, their first measurements take longer than

45
6
u
45
6
c

v4
.3

u

v4
.3

c

v4
.2

u

te
st
mg
r.
h
u

te
st
mg
r.
h
c

co
re
.c

u

co
re
.c

c

rt
c.
c
u

rt
c.
c
c

all
in
v4
.3

u

all
in
v4
.3

c
0

1

2

3

4

5
Group 3Group 2Group 1

D
ur

at
io

n
in

s

frame init preprocessing html

45
6
c2

v4
.3

c2

v4
.2

u

v4
.2

c

of
_m
em
or
y.
c
u

of
_m
em
or
y.
c
c

all
in
v4
.3

u

all
in
v4
.3

c
0

1

2

3

4

5

6

7

8
Group 3Group 2Group 1

D
ur

at
io

n
in

10
−

2
s

Figure 4.1 – WUNDERTAKER performance measurements. c means ‘cached‘, u means ‘uncached’.

32 4.2 Results

the uncached counterparts, in the case of v4.3 more than twice as long. I assume this is because the

tests represent a worst-case scenario where the cache is empty and then the root folder is suddenly

requested. WUNDERTAKER then traverses the tree and checks for each subdirectory whether its report

counts are already stored in the cache, which, in this case, is for naught. Note that when caching

is disabled, 456 takes longer than v4.3, which in turn takes longer than v4.2, despite all having

roughly equally many files and folders in their GIT tree. This is because WUNDERTAKER does not

traverse the commits folder containing the reports but rather fetches paths of its subdirectories from

the GIT repository and then “probes” commits for the existence of reports. 456’s reports database

contains the most folders, v4.3’s less, and v4.2 none. So the more folders there are to probe the

slower WUNDERTAKER is.

In the second group, the html stage, doing syntax highlighting, is much more pronounced. The

right bar of a measurement with cache is basically the left one with preprocessing much shortened, so

the ratio of preprocessing:html determines how well the code view of a file can benefit from caching

– the greater the better, since html stays constant. While caching is generally useful in folder views,

the situation here depends on the structure of the files. The visualization of the largest of them,

testmgr.h, which has 33595 lines of code and 88 #ifdefs, is sped up by a factor of almost 2 if

caching is enabled. core.c, on the other hand, is quite a bit shorter, but it has 133 #ifdef blocks

and a greater ratio, resulting in a visibly greater speedup when cached. rtc.c is even shorter but

still contains 54 blocks and has the largest ratio of preprocessing:html. It can hence be summarized

that heavily annotated files have the largest preprocessing:html and are therefore most suitable for

caching.

The third group, the two rightmost measurements (‘all in v4.3’), show that the average Linux

file does not contain any #ifdef blocks at all, like of_memory.c. The speedup of ‘all in v4.3’ is

hardly visible. One could react to this situation by disabling caching for non-code files. Also in

contrast to the folder view, during generation of code view pages, the interaction with MONGODB is

negligible – the first bars of the cached measurements look the same as the uncached bars. As a

last remark, note that frame is about constant everywhere – except in testmgr.h u/c where it is

quite visible. Most probably, the sheer size of the response HTML document (4MiB) is responsible

for this delay. When WUNDERTAKER is accessed over the Internet, frame would depend heavily on

the connection between client and server.

WUNDERTAKER’s memory consumption, which I measured with the USED column of the top

program, becomes apparent if we look at the ‘all in v4.3’ experiment again. WUNDERTAKER used

35MiB before it started, 1.9GiB after one pass, and 3.2GiB after the second one, suggesting the

existence of a serious memory leak. If caching is disabled, WUNDERTAKER ends up with 140MiB of

RAM, indicating that the MONGODB interface, or the code that uses it, is probably the root cause

here. However, WUNDERTAKER is completely written in garbage collected Ruby and it does not keep

any global state that might grow with each request in its own code. Although 3.2GiB is a lot of

memory, WUNDERTAKER’s RAM usage becomes so high only after having served over 100,000 code

views and can be zeroed by simply restarting the WUNDERTAKER process, which does not incur any

4.2 Results 33

data loss. The MONGODB cache on disk, empty at the beginning, grows from pre-allocated 17MiB

to 269MiB, which is reasonable.

Seeing that WUNDERTAKER works, is it useful, too? A promising approach to answer this question

would be to conduct a study as so much subjectivity is involved. At this point, I can only reference

[Fei+13], which I discussed in Section 2.3, proving that the coloring techniques employed by

WUNDERTAKER are effective. Then, Valentin Rothberg and I have received dedicated and helpful

feedback regarding WUNDERTAKER from two Linux developers. Greg Kroah-Hartman’s response was

purely positive, saying that WUNDERTAKER indeed makes it easier to see redundant CPP annotations

that ought to be removed and generally praised the value of WUNDERTAKER as a didactic tool, saying,

“This is great stuff, I really like it, it makes it easy to see and understand.”

Paul Bolle was “quite impressed” with three examples of WUNDERTAKER sent to him, all still

development versions without .analysis display. His first bit of criticism is interestingly in accord

with my design principle mentioned in Section 3.2.2, namely that block presence condition formulas

should be optional. However, I still chose to show them by default in a column next to the code

(Figure 3.3), something he says makes the GUI “a bit cluttered.” Secondly, he points out that WUN-

DERTAKER does not show any relationships between code and Makefiles. Although WUNDERTAKER

now includes the .analysis files that inform about φKBUILD, this is correct and further work would

be needed to thus extend WUNDERTAKER. He also mentions that the #else branch of a defective

#ifdef block is shown as a separate defect, all while correctly assuming that connecting both is

difficult to achieve – indeed, I think a sensible implementation that features this functionality would

need to introduce heuristics at a lower level than WUNDERTAKER. Finally, an interesting suggestion

of his is a mode that shows only defective blocks and their parents and hides everything else.

5C O N C LU S I O N

In this work, I presented the program WUNDERTAKER implemented with techniques that ensure a

performance and robustness that allows to process almost any Linux code file within a reasonable

time frame, even if WUNDERTAKER runs as a much-accessed web application. Its visualization follows

carefully designed and proven principles and has received praise from actual Linux developers.

Suggestions for improvement so far, apart from proposals for further work, consist of minor points

or target the underlying UNDERTAKER toolchain.

WUNDERTAKER’s main purpose was as a didactic tool in the linux-next experiment. It fits

into the experiment’s workflow by being a web application e-mails can link to. It incorporates

UNDERTAKER-CHECKPATCH’s output, visualizes the hierarchy of #ifdefs with bars that illustrate

their boundaries, also seen in [Fei+11]. It uses code folding, as seen in [KTA08], and follows

the conclusions drawn from the studies in [Fei+13] to construct a set of colors that ease the

understanding of an annotated code file. It can thus serve as a substitute for the basic portions of

manual explanations of code and missing defects in the linux-next experiment. The intricacies

of kbuild and kconfig defects still need to be described, though, because WUNDERTAKER can only

visualize a single file at a time. In Section 4.2, WUNDERTAKER’s maximum response time was

around 4s and its average response time for a code view around 60ms. Moreover, its RAM usage

stays within a reasonable limit, if it is restarted periodically, and its use of MONGODB for caching

purposes is especially useful in folder views, where a speedup of over 250 was measured. In

conclusion, WUNDERTAKER is also technically suitable to be used in a production environment like

the linux-next experiment.

Possible subjects for further work arise from the challenges that were met during this work, as

well as from comments by Linux developers. Taking up Paul Bolle’s suggestions from the preceding

section, WUNDERTAKER has a few places where it could be improved. The defective-blocks-only

mode he mentioned could be implemented in a straightforward way, but it would need some work.

Then, within the framework of the UNDERTAKER toolchain, the next logical step in WUNDERTAKER’s

development would probably be a dedicated visualization of Makefiles and Kconfig files with

interactive shortcuts to and from #ifdef conditions, thereby completing a triad of visualizations for

the three stages of the Linux build system.

35

36 5 Conclusion

There are reasons for WUNDERTAKER being a web application (see Section 3.1.1), but it may

also be advantageous to implement it as an Eclipse plug-in or as an extension of UNDERTAKER’s

emacs mode17 in the future. Given an UNDERTAKER-CHECKPATCH that is fast enough, it could then

highlight defective #ifdef conditions by constructing a patch file on-the-fly while changes to code

are typed into the computer even before they are published. Another topic for further development,

which is already closer to implementation, would be a WUNDERTAKER that works more like GitLab,

contrary to the design requirement in Section 3.1.2. It could be an online platform visualizing

arbitrary software projects – this is already possible with the current version of WUNDERTAKER – and

providing graphs and statistics about feature models, how features are distributed across files, and,

most importantly, about defects.

17see http://vamos.informatik.uni-erlangen.de/trac/undertaker/wiki/UndertakerElDocumentation

http://vamos.informatik.uni-erlangen.de/trac/undertaker/wiki/UndertakerElDocumentation

L I S T O F A C R O N Y M S

CPP C preprocessor

GUI Graphical User Interface

LKM Loadable Kernel Module

IDE Integrated Development Environment

URL Uniform Resource Locator

HSL Hue, Saturation, Lightness

IO input / output

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

MUS Minimal Unsatisfiable Subset

37

L I S T O F F I G U R E S

2.1 make menuconfig TUI of Linux v4.3 – one of the KCONFIG front ends. Each entry

represents a feature. 3

2.2 Summary of the Linux build system and how it is examined by UNDERTAKER. 10

3.1 A screenshot of the dolphin file browser showing the contents of a folder containing

both folders and files. Things to note are the clickable path (1), the separation

between folders and files, and the columns that supply further information on each

item (2). WUNDERTAKER should try to stick close to this, as it is a tried approach,

making WUNDERTAKER consistent with programs already known to users. 16

3.2 General layout of a WUNDERTAKER page. 20

3.3 Code view of arch/powerpc/mm/hash_low_64.S in Linux v4.3. 21

3.4 Code view of arch/powerpc/include/asm/page.h of Linux commit 456fdb267. . . 22

3.5 The top of the view of folder arch/powerpc/mm in Linux v4.3. 23

3.6 The HSL system. 24

3.7 The vertical design of WUNDERTAKER. 27

3.8 The horizontal design of WUNDERTAKER. Boxes with thick borders stand for programs

that produce information on their own. The HTML generator is in fact a part of

WUNDERTAKER and therefore has a dashed border. Databases have rounded corners. 28

4.1 WUNDERTAKER performance measurements. c means ‘cached‘, u means ‘uncached’. . 31

39

L I S T O F TA B L E S

2.1 Encoding (a0, a1) of a tristate symbol A. The last column is relevant in Section 2.1.3.1. 5

2.2 The different variations of Listing 2.5 depending on the configuration of A and B. . . 10

2.3 UNDERTAKER defect classes. The mi are CPP symbols missing from KCONFIG, see

Section 2.2.2.4. For a more detailed version of the two rightmost columns, see

Sections 2.2.2.1 to 2.2.2.5. MUS stands for Minimal Unsatisfiable Subset. 12

3.1 Fixed S and L values and the distribution of hues in the different colored GUI elements.

Saturation values become larger from row one to the last row while Lightness values

become smaller in order to to make text colors appear ‘stronger’ and darker than the

light background. Bar colors are in between. 25

41

L I S T O F L I S T I N G S

2.1 Lines 1–3 from net/mac80211/Kconfig of v4.3. 4

2.2 Lines 49–105 from drivers/cpufreq/Kconfig of v4.3. 5

2.3 Snippets from include/generated/autoconf.h I had generated from the variants

active in Figure 2.1b and Figure 2.1c, respectively. Note that in an autoconf.h, all

symbols are prefixed with CONFIG_. 8

2.4 When processed with the CPP, the presence of the character a in the output would

depend on the parent block #ifdef CONFIG_A to be present and the first two chain

blocks to not be present. Writing bits (a0, a1) for feature A, an so on, the presence

condition of the a is a0 ∧¬(b0 ∧ c1)∧¬d0. 8

2.5 CPP-annotated C code resulting in variations illustrated in Table 2.2. 9

2.6 The outer block is not dead, but the inner one is dead, in combination with the outer

one. #ifndef stands for “if not defined.” . 12

3.7 Analysis of a missing defect that UNDERTAKER-CHECKPATCH found in Linux v4.3. . . . 17

3.8 Snippet from arch/powerpc/mm/hash_low_64.S from v4.3. 17

3.9 UNDERTAKER-CHECKPATCH analysis of the code defect. 18

3.10 Presence condition of block 33 in arch/powerpc/include/asm/page.h of Linux

commit 456fdb267. 18

3.11 UNDERTAKER-CHECKPATCH analysis of a kbuild defect. 18

3.12 A HTTP request. 26

4.13 Measuring time with Ruby. 30

43

R E F E R E N C E S

[CPR07] David Coppit, Robert R Painter, and Meghan Revelle. “Spotlight: A prototype tool

for software plans.” In: Proceedings of the 29th international conference on Software

Engineering. IEEE Computer Society. 2007, pp. 754–757.

[Die+12] Christian Dietrich et al. “A robust approach for variability extraction from the Linux

build system.” In: Proceedings of the 16th International Software Product Line Conference-

Volume 1. ACM. 2012, pp. 21–30.

[Fei+11] Janet Feigenspan et al. “FeatureCommander: Colorful #Ifdef World.” In: Proceedings of

the 15th International Software Product Line Conference, Volume 2. SPLC ’11. Munich,

Germany: ACM, 2011, 48:1–48:2. ISBN: 978-1-4503-0789-5. DOI: 10.1145/2019136.

2019192. URL: http://doi.acm.org/10.1145/2019136.2019192.

[Fei+13] Janet Feigenspan et al. “Do background colors improve program comprehension in

the# ifdef hell?” In: Empirical Software Engineering 18.4 (2013), pp. 699–745.

[Hen15] Stefan Hengelein. “Analyzing the Internal Consistency of the Linux KConfig Model.”

MA thesis. University of Erlangen, Dept. of Computer Science, 2015. URL: https:

//www4.cs.fau.de/Ausarbeitung/MA-I4-2015-04-Hengelein.pdf.

[KTA08] Christian Kästner, Salvador Trujillo, and Sven Apel. “Visualizing Software Product Line

Variabilities in Source Code.” In: SPLC (2). 2008, pp. 303–312.

[Loh+06] Daniel Lohmann et al. “A quantitative analysis of aspects in the eCos kernel.” In: ACM

SIGOPS Operating Systems Review. Vol. 40. 4. ACM. 2006, pp. 191–204.

[Nad+13] Sarah Nadi et al. “Linux variability anomalies: What causes them and how do they get

fixed?” In: Proceedings of the 10th Working Conference on Mining Software Repositories.

IEEE Press. 2013, pp. 111–120.

[Rot14] Valentin Rothberg. “Years of Variability Bugs in Linux - How to Avoid Them.” MA thesis.

Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014. URL: https://www4.cs.

fau.de/Ausarbeitung/MA-I4-2014-07-Rothberg.pdf.

[Rup15] Andreas Ruprecht. “Lightweight Extraction of Variability Information from Linux Make-

files.” MA thesis. University of Erlangen, Dept. of Computer Science, 2015. URL:

https://www4.cs.fau.de/Ausarbeitung/MA-I4-2015-01-Ruprecht.pdf.

45

http://dx.doi.org/10.1145/2019136.2019192
http://dx.doi.org/10.1145/2019136.2019192
http://doi.acm.org/10.1145/2019136.2019192
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2015-04-Hengelein.pdf
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2015-04-Hengelein.pdf
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2014-07-Rothberg.pdf
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2014-07-Rothberg.pdf
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2015-01-Ruprecht.pdf

46 List of Listings

[Sin+10] Julio Sincero et al. “Efficient extraction and analysis of preprocessor-based variability.”

In: ACM SIGPLAN Notices. Vol. 46. 2. ACM. 2010, pp. 33–42.

[Sin13] Julio Sincero. “Variability Bugs in System Software.” PhD thesis. Erlangen: Friedrich-

Alexander-Universität Erlangen-Nürnberg, 2013. URL: http://opus4.kobv.de/

opus4-fau/files/3317/diss.pdf.

[Spe92] Henry Spencer. “#ifdef Considered Harmful, or Portability Experience with C News.”

In: In Proc. Summer’92 USENIX Conference. 1992, pp. 185–197.

[Tar+11] Reinhard Tartler et al. “Feature consistency in compile-time-configurable system soft-

ware: facing the linux 10,000 feature problem.” In: Proceedings of the sixth conference

on Computer systems. ACM. 2011, pp. 47–60.

[Wik15] Wikipedia. Four color theorem — Wikipedia, The Free Encyclopedia. [Online; accessed

31-December-2015]. 2015. URL: https://en.wikipedia.org/w/index.php?

title=Four_color_theorem&oldid=695588105.

[ZK10] Christoph Zengler and Wolfgang Küchlin. “Encoding the Linux kernel configuration

in propositional logic.” In: Proceedings of the 19th European Conference on Artificial

Intelligence (ECAI 2010) Workshop on Configuration. Vol. 2010. 2010, pp. 51–56.

http://opus4.kobv.de/opus4-fau/files/3317/diss.pdf
http://opus4.kobv.de/opus4-fau/files/3317/diss.pdf
https://en.wikipedia.org/w/index.php?title=Four_color_theorem&oldid=695588105
https://en.wikipedia.org/w/index.php?title=Four_color_theorem&oldid=695588105

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 The Linux build process
	2.1.1 Kconfig
	2.1.1.1 Mode of operation
	2.1.1.2 Translation into a propositional formula

	2.1.2 Kbuild
	2.1.2.1 Mode of operation
	2.1.2.2 Translation into a propositional formula

	2.1.3 CPP
	2.1.3.1 Mode of operation
	2.1.3.2 Translation into a propositional formula
	2.1.3.3 Problems with the CPP

	2.2 Undertaker toolchain
	2.2.1 Undertaker-CheckPatch
	2.2.2 Defect classes
	2.2.2.1 code defects
	2.2.2.2 kconfig defects
	2.2.2.3 kbuild defects
	2.2.2.4 missing defects
	2.2.2.5 no_kconfig defects

	2.3 Related work

	3 WUndertaker
	3.1 Environment
	3.1.1 WUndertaker as an Undertaker GUI
	3.1.2 WUndertaker as a git repository view

	3.2 The didactics of defect reports
	3.2.1 missing
	3.2.2 code
	3.2.3 kconfig and kbuild

	3.3 Requirements
	3.4 Implementation
	3.4.1 Visualization techniques
	3.4.1.1 The code view
	3.4.1.2 The folder view

	3.4.2 Colors
	3.4.3 Software that WUndertaker uses
	3.4.3.1 Vertical Design
	3.4.3.2 Horizontal Design

	4 Evaluation
	4.1 Targets and Procedure
	4.2 Results

	5 Conclusion
	Lists
	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

