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A B S T R A C T

Current HPC systems, such as supercomputers, consume severe amounts of energy. Specialized
hardware, such as GPUs, is already being included into HPC clusters. However, all of the nodes in
an HPC cluster still generally feature hardware with similar performance and energy consumption.
Therefore, the potential for improving the energy efficiency of HPC clusters by including low-power
systems featuring processors designed for the mobile and embedded systems field was investigated
in this thesis. Low-power processors, such as the ARM-Cortex-A53, are designed to be highly
energy-efficient while still providing competitive computational power.

To evaluate the potential increase in energy efficiency, a small heterogeneous cluster featuring
systems with both general-purpose and low-power processors was assembled. Initial tests on the
cluster revealed that some workloads could be executed with increased energy efficiency on the
low-power systems. To utilize the knowledge gathered in the initial set of tests, existing software
designed for the scheduling and resource-management of HPC systems was modified to incorporate
this knowledge into the process of node selection.

It was found that using the modified version instead of the default version reduced the cluster’s
energy consumption by at least 32 %, proposing that extending the heterogeneity present in HPC
clusters by including low-power systems can increase the energy efficiency of HPC clusters.
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KU R Z FA S S U N G

Aktuelle HPC-Systeme,wie beispielsweise Supercomputer, verbrauchen gravierende Mengen an
Energie. Spezialisierte Hardware-Komponenten, wie beispielsweise GPUs, sind bereits Teil von HPC-
Verbunden. Allerdings bestehen nach wie vor alle Systeme in einem HPC-Verbund aus Hardware mit
vergleichbarer Leistung und ähnlichem Energieverbrauch.

Ziel dieser Arbeit ist daher die Untersuchung des Potentials, die Energieeffizienz eines HPC-
Verbundes zu verbessern, indem Systeme mit geringem Strombedarf hinzugezogen werden, die
Prozessoren aus dem Bereich der mobilen und eingebetteten Systeme aufweisen. Diese Prozessoren
mit geringem Strombedarf (z. B. ARM Cortex-A53) wurden gezielt entworfen, um sowohl hohe
Energieeffizienz als auch kompetitive Rechenleistung bereitzustellen.

Um die potentielle Verbesserung der Energieeffizienz zu evaluieren, wurde ein kleiner heterogener
Verbund aus Systemen zusammengestellt, die sowohl Allzweck-Prozessoren als auch Prozessoren
mit geringem Strombedarf beinhalten. Anfängliche Tests auf dem Verbund haben gezeigt, dass
bestimmte Arbeitspakete mit besserer Energieeffizienz auf den Systemen mit geringem Strombedarf
ausgeführt werden konnten. Um das in den anfänglichen Tests gesammelte Wissen verwenden zu
können wurde bestehende HPC-Software, die verantwortlich für die Planung des zeitlichen Ablaufs
sowie die Verwaltung der Ressourcen ist, so angepasst, dieses Wissen im Prozess der Knotenauswahl
einzubeziehen.

Es wurde festgestellt, dass die Verwendung der modifizierten statt der ursprünglichen Software-
Version den Energieverbrauch des Evaluationsverbundes um mindestens 32 % senken konnte. Dies
impliziert, dass die Erweiterung der Heterogenität von HPC-Verbunden um Systeme mit geringem
Stromverbrauch die Energieeffizienz dieser Verbunde verbessern kann.
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1I N T R O D U C T I O N

Supercomputers, also often referred to as high-performance computing (HPC) systems, are com-
monly used for large-scale simulations of all kinds, for example weather and earthquake prediction,
or fluid- and aerodynamic simulation. Their main focus, as is already part of the term HPC, is
performance. However, these systems also consume severe amounts of energy, and their power
demand is continuously increasing at an extreme scale; for example the supercomputer Tianhe-1A
(2010) demands 4.04 MW. Its successor, the Tianhe-2 (2013), already demands 17.8 MW [1]. This
equals an increase of 145.21 % per year. In the light of these huge power demands, ways to improve
the energy efficiency of HPC systems have to be found.

HPC clusters usually consist of a large number of systems, commonly referred to as nodes. These
nodes are then split into partitions, with each partition being managed by their own dedicated control
units. Some of these partitions are composed of systems featuring specialized hardware, for example
graphics processing units (GPUs), but generally, all of a partition’s nodes are systems with exactly
the same hardware. This includes central processing unit (CPU), random-access memory (RAM),
and other hardware features. Therefore, all of these nodes provide equal computational power per
watt, and are optimized for performance.

Other fields of systems research, such as mobile and embedded systems, have already advanced
further in the development of highly energy-efficient hardware. Their initial goal was to provide
systems with sufficient computational power for the respective field of use with as little energy
consumption as possible; for example the advanced reduced instruction set computing machine
(ARM) processor family [2]. But recently, their focus has shifted towards increasing the computational
power of these systems while at least maintaining or even further reducing their energy demand.
The result of these newer efforts is the ARMv8 family of processors, such as the ARM Cortex-A53 [3].
Compared to previous ARM generations, new generations provide increased computational power
while still shining with a low energy consumption; allowing microcontroller units (MCUs) featuring
these processors to be introduced to novel fields of application. They are already established today
in a lot of common large-scale computational grids, such as data-centers [4], reducing the grid’s
energy consumption when processing requests that are less time constrained. Investigations on
whether using low-power processors, such as the ARM family, in HPC systems could improve energy
efficiency have begun more recently, for example the Mont-Blanc project [5].

1.1 Motivation

General-purpose systems have been shown to not always be the most efficient execution environment
for certain workloads with special attributes. Hence, the need for specialized hardware exists.
Examples include graphics cards, such as the NVIDIA TITAN Xp [6], which feature GPUs with high
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1.1 Motivation

amounts of cores (e.g., the TITAN Xp features 3840 cores) compared to generic processors, and are
therefore more efficient for workloads that benefit from extremely high parallelism, such as creation
or manipulation of image data.

Modern clusters often need to provide ways of reducing their energy demand if runtime per-
formance is less of a concern. The usual method of providing said behavior is utilizing operating
systems (OSs) to manage local energy consumption of systems [7]. Possibilities include limiting
core frequencies or shutting off currently idle cores completely [8]. However, generic systems still
have a high power consumption per time unit compared to specialized low-power systems such as
the previously mentioned MCUs featuring ARM processors, as shown in Section 4.2. Therefore, a
heterogeneous cluster that features both generic and low power systems has the potential to be
more energy efficient than an equivalent cluster without low-power systems.

However, managing heterogeneous clusters presents unique challenges regarding workload
scheduling and target-node(s) selection. Therefore, existing scheduling and resource-management
software need to also include information about runtime and energy differences between nodes
to make correct decisions, as shown in Section 4.3. Hence, modifications of existing software tool
chains for cluster management might be necessary, as investigated in Chapter 3.

In this thesis, the benefits and challenges of introducing heterogeneity to HPC are investigated by
building a small heterogeneous cluster consisting of nodes with generic and low-power processors,
employing as well as modifying existing HPC software, and evaluating energy and performance
behavior of said cluster.

1.2 Overview of this Thesis

First, important fundamentals for the comprehension of this thesis, such as the basic setup and
components of an HPC cluster, or limiting a processor’s power consumption by enforcing power
caps, and a selection of related work are presented in Chapter 2.

Next, the design and implementation of a modified version of the used resource manager Simple
Linux Utility for Resource Management (SLURM) [9], which is better suited for the management
of a heterogeneous cluster, is discussed in Chapter 3. This prototype version, named Simple Linux
Utility for Resource Management of Heterogeneous Clusters (SLURM-HC), aims to use predetermined
information about a workload’s energy-consumption and performance behavior, referred to as
application-induced energy claims, depending on the node it was executed on to improve the
cluster’s overall energy efficiency.

Following this, the results of two sets of tests executed on a small heterogeneous evaluation
cluster are presented and evaluated in Chapter 4. The evaluation setup presented in Section 4.1
features two generations of low-power development boards with ARM processors, and a general-
purpose system with an Intel Xeon (Skylake architecture) server processor. The first set of tests
was used to gather individual runtime and energy-consumption data for all of the investigated
benchmarks being executed on each of the evaluated systems separately; the results are presented
and evaluated in Section 4.2. Subsequently, the second set of tests was used to investigate whether
SLURM-HC could utilize the data gathered in the first set of tests to increase the evaluation cluster’s
energy efficiency compared to SLURM. For this purpose, the results of executing sets consisting of
multiple benchmarks in parallel on the evaluation cluster, either managed by SLURM or SLURM-HC,
are presented and evaluated in Section 4.3.

Last, the observations presented in this thesis are summarized and topics of potential future
work are presented in Chapter 5.
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2F U N DA M E N TA L S

This chapter provides an overview of basic concepts and terminology required for full comprehension
of this thesis.

First, a basic HPC cluster and its necessary or helpful software components are described in
Section 2.1. Second, different types of hardware potentially present in a heterogeneous cluster are
classified and summarized in Section 2.2, concretizing the concept of heterogeneity. Next, common
methods of measuring and evaluating the energy consumption of systems are detailed in Section 2.3,
since measuring energy consumption is detrimental to evaluating the energy efficiency of a cluster.
In Section 2.4, the method and benefits of limiting a system’s maximum power consumption by
enforcing power caps is discussed, which will become important once discussing modifications
to existing software in Section 3.3, and three methods of enforcing power caps are detailed and
compared. Last, previous scientific work that is related to the contents of this thesis is summarized
and discussed in Section 2.5.

The basic layout of an HPC cluster and commonly used software components used in HPC
environments are presented in the following section.

2.1 HPC Cluster Basics & Software Components

The basic layout of an HPC cluster is an interconnected grid of multiple cooperating systems, or
nodes, bundled into partitions. Each of these partitions is then managed by dedicated control nodes,
often referred to as masters; akin to the master–slave principle [10]. The masters are the connection
between users and computational nodes, offering interfaces for job submission and management to
the user, scheduling the submitted jobs, and selecting which nodes the jobs will be executed on. The
masters also forward necessary information to their controlled slave nodes and return the results to
the user. Figure 2.1 shows the basic layout of a master-slave HPC grid, including components, tasks
and interactions.

Often, HPC clusters also include dedicated database systems for the provision of kernel and OS
images to computational nodes, or storage and management of accounting information about jobs
and users. These clusters require specialized software environments taking care of provisioning said
images, scheduling jobs, and managing the available resources. The following sections describe
these software components in detail.

2.1.1 The OpenHPC Project

The OpenHPC (OHPC) project [11] served as the entry point for the process of setting up the
evaluation cluster, further discussed in Section 4.1. It is a Linux Foundation collaborative project,
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2.1 HPC Cluster Basics & Software Components
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Figure 2.1 – Components, tasks and interactions of a sample master–slave HPC grid

providing a reference collection of open-source HPC software components and full detailed install
guides for Linux derivatives such as the Community Enterprise Operating System (CentOS) [12]
and SUSE Linux Enterprise Server (SLES) [13]. The project’s goal is to reduce the initial hurdle
for administrators new to HPC wishing to set up a basic HPC cluster by providing a preconfigured
software suite and a step by step install guide. The only software needed outside of the OHPC
package is the respective OS. The project runs it’s own repositories, providing updates and bug fixes
for all components. As of November 2016, the OHPC software stack counts over 60 components [14],
including versions of the OS-provisioning and scheduling/resource-management toolkits presented
in the following subsections.

2.1.2 Operating-System–Provisioning Software

Provisioning software is the first highlighted component. It manages and distributes full images
of kernel and OS to computational nodes. These bootable images are transfered to the nodes via
traditional Ethernet networks. This allows for centralized management and modification of the
node’s full software suite without directly accessing the node or even requiring detailed knowledge
of how to access it, simplifying administrative tasks like updating software and kernel drivers.

Optionally they may also provide a full virtual node file system (VNFS), allowing the nodes to
operate without physical storage memory like hard disk drives (HDDs). Therefore the nodes can
operate stateless, tremendously reducing the effort for restoring failed nodes after a crash.

To function correctly, provisioning software requires information about all nodes’ Ethernet
network interface names, Internet protocol (IP) and multimedia access control (MAC) addresses.

A sample toolkit is the WAREWULF operating-system–management toolkit [15]. Its features
include, but are not limited to, stateless provisioning and monitoring of nodes, accessible via simple
user interface calls. WAREWULF is part of the evaluation setup, which is fully described in Section 4.1.

2.1.3 Scheduling & Resource-Management Software

Scheduling and resource-management software is the second highlighted component. It acts as a
gateway between the user and the actual computing nodes, usually running a control daemon on
the master and worker daemons on all slave nodes.
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2.1 HPC Cluster Basics & Software Components

The control daemon is responsible for scheduling jobs, managing available resources, and
forwarding job execution requests to suitable nodes. It provides the user with an interface for job
submission and distribution, allocating resources based on user requirements or default per-job
values. If not enough resources are available at the point of submission, the job request will be
queued and scheduled for a later time. Resources usually only include processor cores and memory,
but can be extended to include less general-purpose hardware features like the availability of GPUs.

The worker daemons act similar to a remote shell environment: they wait for job-submission
details from the control daemon, execute the specified workloads, and return the results. Also they
frequently report their current state and allocated resources back to the control daemon, ensuring
the data used by the controller to make scheduling and resource-allocation decisions is correct.

One example of this software is SLURM [9], an open-source cluster-management system for
Linux clusters. It is part of our evaluation setup presented in Section 4.1, and the design and
implementation of a modified version are presented in Chapter 3. Since the evaluation setup
features hardware heterogeneity, existing hardware is classified into categories in the following
section, presenting the individual attributes and specialties of different hardware types.

2.2 Hardware Classification

The term hardware heterogeneity implicitly states that existing hardware can strongly differ in both
design and field of use. Hence, classifying existing hardware into categories called hardware types is
beneficial, highlighting their attributes and specialties, and comparing their field of use. This allows
for fixed terms to be used when discussing heterogeneous hardware. The following subsections
clarify the meaning of the terms used in this thesis when referring to hardware types. In Table 2.1,
the introduced hardware types and their attributes are summarized.

2.2.1 General-Purpose Hardware

General-purpose hardware systems are designed for the highest variety of tasks. They consist
of hardware found commonly in private and enterprise environments. A sample configuration
nowadays: a quad-core general-purpose processor with 64-bit support; 8 to 16 GiB of RAM; physical
storage memory such as solid-state drives (SSDs); and either Ethernet or Wi-Fi network connection.
General-purpose processors are usually designed following the complex instruction set computing

Table 2.1 – Hardware types and attributes

Hardware type Attributes

General-purpose hardware common, flexible, possibly less time-/energy-efficient than
specialized hardware

Server processor more cores with less power than general-purpose proces-
sors, multi-CPU support, ECC memory support

Graphics processing unit high number of cores, highly parallel, usually dedicated to
computer graphics tasks, sometimes additionally supports
utilization for general-purpose tasks (e.g., CUDA [16])

Low-power processor low power consumption, RISC architecture, adequate per-
formance, require adapted software

5



2.2 Hardware Classification

(CISC) design principle, differentiating them from reduced instruction set computing (RISC) based
low-power processors such as the ARM family.

The main advantage of general-purpose systems is their flexibility, being able to compute all
kinds of workloads. However, this flexibility comes at the cost of being slower or less energy-efficient
than specialized hardware for certain workloads. An argument favoring clusters composed of only
general-purpose systems is the flexibility in scenarios where the nature of incoming workloads is
unpredictable and diverse. However, a cluster of nodes with enough heterogeneous specialized
hardware might be able to match the efficiency of a general-purpose–systems cluster in those
scenarios, and surpass it in all others. The next section presents the general design concept of
specialized hardware and three of the most common categories.

2.2.2 Specialized Hardware

Specialized hardware is the result of the search for a way to increase time and/or energy efficiency
for a narrow field of use compared to general-purpose hardware.

The term hardware acceleration is used to describe one subvariant of these cases. It refers
to specialized hardware performing certain tasks strictly faster than general-purpose hardware.
This increased speed of execution is possible for example by exploiting greater concurrency, or by
reducing the instruction overhead via provision of unique, specialized interfaces.

Three common categories of specialized hardware are presented in the following sections: server
processors, GPUs, and low-power processors.

Server Processors

Server processors feature a higher amount of cores with less computational power per core compared
to general-purpose CPUs. Their design is based on the need for high parallelism when processing
common server-environment workloads. Different to standard desktop processors, server processors
also often support setups with multiple CPUs per board, enabled by additional I/O links being part
of their architecture. They also support unique features commonly present in server environments,
for example error-correcting (ECC) memory.

Recent examples include the Intel Xeon E3-12xx v6 series [17], based on the Kaby Lake mi-
croarchitecture. Compared to its predecessor, the Skylake microarchitecture, Kaby Lake processors
feature clock speeds increased by up to 300 MHz, and faster clock speed changes, reducing the time
required for transitioning between, for example, the default clock speed and the higher clock speed
realized by the Intel Turbo Boost technology. The Xeon E3-12xx v6 series of processors features
thermal design powers (TDPs) of 72 to 73 W [17]. CPUs from different Xeon families are featured
in five out of the current top ten supercomputers worldwide [1].

Graphics Processing Units

GPUs are processors specialized on creating and modifying image data rapidly. They have a huge
number of cores, allowing for efficient processing of workloads with good parallel scaling. Tradi-
tionally, they are dedicated to computer-graphics–related tasks only. But recently the concept of
so-called general-purpose GPUs (GPGPUs) has become increasingly common. This concept allows
GPUs to be used by tasks not related to graphics calculations that also benefit from high parallelism,
like computational fluid dynamics or large-scale numerical simulations [18]. They obtain speedups
of few orders of magnitude compared to optimized multicore CPU implementations [18]. Hence, it
is no surprise to see GPGPUs being part of multiple supercomputers in the top 10 worldwide [1].

6



2.2 Hardware Classification

One of the currently most powerful standalone graphics cards, the NVIDIA TITAN Xp [6], features
3840 cores with a frequency of 1582 MHz and 12 GB of video RAM (VRAM). It supports the NVIDIA
CUDA [16] interface, allowing the use as a GPGPU.

Low-Power Processors

Low-power processors, such as all CPUs of the ARM family, are specialized on maximum power
efficiency. These low-power processors are based on the concept of RISC, which is a CPU design
strategy that aims to provide a simplified instruction set that is highly optimized for its architecture,
resulting in a high performance per watt value. This allows the low-power processors to consume
very little energy while still providing adequate performance for a lot of tasks. However, they face a
problem: RISC-designed CPUs require adapted software, since they do not provide the full set of
instructions as CISC-designed general-purpose CPUs would.

They are commonly used on cheap small development boards like the Hardkernel ODROID
series, such as the ODROID-C2 [19], which features an ARM Cortex-A53 [3] (ARMv8 architecture)
quad-core processor. This board and its direct predecessor, the ODROID-C1+ [20], are part of the
evaluation setup detailed in Section 4.1. The evaluation setup also includes an external energy
measurement device, which was used to record the nodes’ energy consumption on-line. The following
section details how energy consumption can either be recorded with measurements performed
on-line, or estimated by creating energy profiles.

2.3 Energy-Measurement Approaches

Measuring the actual energy consumption of workloads executed on hardware can be done in
multiple ways. Indirect approaches allow estimation of consumed energy by creating energy models
that correlate expected or recorded resource usage with energy consumption data. Often, the
resource usage caused by executing a workload is determined by evaluating hardware-provided
internal performance counters. The direct approach is to perform measurements on-line over the full
execution time of a workload with the help of an energy measurement device (e.g., a multimeter).

The following sections describe these approaches, their requirements, advantages and problems
in more detail.

2.3.1 Energy Models

Energy models aim to estimate the energy consumption of a software component by utilizing
knowledge about the code and its surrounding infrastructure to derive functions allowing calculation
of estimated results. For example, the scenario of estimating a Java application’s energy consumption
running in a virtual machine (VM) was translated to the following formula [21]:

Ecomponent = Ecomputational + Ecommunication + Ein f rast ructure (2.1)

The formula combines estimates of the energy costs of computation, communication, and the
surrounding infrastructure. Ecomputational represents costs of execution of byte codes, native methods
and thread synchronization if applicable. Ecommunication represents costs of all occurring network
communication, based on the size of received/transmitted data and the cost of single units of data.
Ein f rast ructure represents the cost of the surrounding OS, such as process scheduling or context
switching, and the runtime platform (in this case the Java VM). The estimates of the energy costs
are often created by evaluating hardware-provided performance counters, which track the hardware
activity events that occur during the execution of a workload.
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Hardware-provided performance counters allow estimating current and total power consumption
of processes by utilizing internal performance counters and translating their values into power
consumption. These performance counters are a set of special-purpose registers which store the
counts of related hardware activity events; for example memory read/write instructions or amount of
total used CPU cycles. By monitoring the use of system components during workload execution and
correlating the resulting performance-counter values with the total power consumed by the system,
energy models can be derived [22]. However, evaluating the relation between performance-counter
values and energy consumption requires initial energy measurements.

Energy models provide the advantage of re-usability once created and verified, allowing for the
energy consumption of code to be estimated without measuring the actual energy consumption of
the code being executed. However, these models also have disadvantages: being estimations, they
do not represent actual reliable data when faced with unpredicted behavior, such as OS background
processes accessing the same hardware resources as the workload. Additionally, the models rely on
the software being strictly deterministic, which might not be the case, for example if parallelism
is involved. Portability is another problem: changing the execution environment, for example by
modifying the hardware, requires overhauling the formulas to account for the new costs. Therefore,
always recording the workload’s actual energy consumption by utilizing an external measurement
device can be desirable. The functionality, advantages and problems of these measurement devices
are presented in the following subsection.

2.3.2 External Measurement Devices

With the help of external measurement devices, energy consumption data of the execution of
workloads on any system can be recorded on-line, provided that the system is compatible with the
measurement tool. There is a wide variety of tool variants available, ranging from simple multimeters
to full-scale specialized current mirrors with live digital data transmission interfaces [23], for example
a universal serial bus (USB) interface.

In case of the sampling frequency of measurements being high enough, and the to-be-measured
energy values being within the device’s measurement range, external devices are the most precise
of all energy-measurement approaches [21], which is their main advantage. However, achieving
precision for a large range of voltage and electric current is difficult. Therefore, most external
tools have only narrow ranges of precision or even supported incoming voltage/current. Hence,
knowledge about the expected values to be investigated is required to choose the correct tool a priori
to actual measurements. Another argument against measurements being performed on-line is that,
generally, they have to always be performed for every single execution. Also, they require isolated
testing environments or a large amount of iterations to gain correct average values. Otherwise,
outliers can distort the results, triggered by for example OS background processes. Despite these
requirements, it was chosen to record the energy-consumption data presented in Chapter 4 by
utilizing an external measurement device, ensuring the best possible accuracy for the results. The
utilized device is presented in Section 4.1.3.

A tool that used to include energy modeling into its functionality is Intel’s running average power
limit (RAPL) [24] interface, which enforces power caps. Power capping and common methods of
enforcing power caps, including RAPL, are presented in the following subsection.

8



2.4 Power Capping

2.4 Power Capping

Many current systems provide power-management mechanisms that allow dynamically scaling
the amount of power consumed by the system. Therefore, the system’s energy efficiency can be
improved by only consuming as much power as required for the current tasks executed on it. Utilizing
these power management mechanisms, limits for the maximum power consumed by the system,
regardless of current system load, can be enforced. Enforcing these limits is commonly referred to
as power capping.

An example of the benefits of power capping are data centers, as presented in [25]: Only in rare
occasions, the entirety of systems present in data centers have to operate at maximum performance.
However, the data center facility still must be able to support these peaks in power consumption.
Therefore, the entire infrastructure, such as power supplies and cooling systems, often end up being
overdesigned for the typical loads expected, wasting resources. With the help of power capping, the
data center’s peak power consumption can be limited, allowing for a downscaled infrastructure.

How power capping is realized depends on the system. Common methods include dynamic
frequency scaling (DFS), dynamic voltage and frequency Scaling (DVFS), and Intel’s RAPL [24]
interface. These three methods are presented in the following subsections, starting with DFS.

2.4.1 Dynamic Frequency Scaling

DFS enables dynamic adjustments of a processor’s clock speed, depending on the required per-
formance. By reducing the clock speed, and therefore reducing the processor’s performance, the
processor’s power consumption can be reduced. By enforcing upper limits for the clock speed, power
caps can effectively be realized. However, the reduced power consumption does not scale linearly
with the resulting decrease in performance, therefore often leading to increased energy consump-
tion [25]. Hence, DFS is an inefficient way of reducing a system’s power consumption. Additionally,
a processor is not the only power consumer present in systems. Other system components also
consume power, for example RAM. However, DFS only affects the processor, and therefore is not in
all cases the most efficient way to limit a system’s power consumption regarding the resulting loss
of performance. Implementations of DFS include Intel’s SpeedStep technology, commonly used in
Intel’s mobile processor line, and AMD’s Cool’n’Quiet and PowerNow! technologies, used in AMD’s
desktop and server processor line or mobile processor line, respectively. Another approach to limiting
frequency is DVFS, which is presented in the following subsection.

2.4.2 Dynamic Voltage-Frequency Scaling

Contrary to DFS, DVFS dynamically adjusts the voltage supplied to many hardware components
present in a system, for example CPU and RAM, and subsequently their frequency. Voltage has a
quadratic impact on a component’s power consumption according to Ohm’s law [26]:

P = C ∗ V 2 ∗ f (2.2)

P represents the power consumption, C the component’s capacity, V the voltage, and f the frequency.
Hence, by reducing the voltage, more power is saved than if only the frequency is reduced, resulting
in a better relation between saved power consumption and loss of performance. Hence, enforcing
the same power cap with DVFS instead of DFS, a higher remaining performance is achieved, and
subsequently better execution times. Therefore, DVFS represents a more energy-efficient way to
adjust a system’s power consumption. Initially, DVFS was only utilized to reduce energy consumption,
but in the last years, enforcing power caps with DVFS was also researched [25]. For example, Gandhi
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et al. investigated enforcing power caps by utilizing DFS, DVFS, and even a combination of both at
the same time, in [27]. Another power-capping mechanism that combines DFS and DVFS is Intel’s
RAPL interface, which is presented in the following subsection.

2.4.3 Intel’s Running Average Power Limit Interface

RAPL combines automatic DVFS and clock throttling to enforce user-defined power-consumption
limits. DVFS is used to approximate the exact power limit, whereas clock throttling is used for further
required fine-tuning to keep the system’s power consumption as close to the limit as possible [25].
Therefore, RAPL enables finer granularity of power-consumption states than DVFS, while still bene-
fiting from the improved energy efficiency that DVFS provides in comparison to DFS. Furthermore,
RAPL is directly integrated into the processor, improving the speed of identifying load changes and
adapting voltage/frequency limits to the new level of load [25]. Since RAPL was developed by Intel,
it is only available on Intel’s own family of processors. The hardware components managed by RAPL
are distributed into three to four domains, which can each be managed separately [28]:

• the CPU’s cores

• if present: the Intel HD graphics chip, integrated into the CPU

• the dynamic RAM (DRAM)

• the entire CPU (or CPUs in the case of multi-processor systems), including all cores and caches,
and, if present, the graphics chip

Since part of the systems in the evaluation setup, described in Section 4.1, feature Intel’s Xeon
E3-1275 v5 [29] supporting RAPL, the power caps discussed in Chapter 3 were enforced with the
help of RAPL. Power capping is the last fundamental concept introduced in this thesis, leaving only
related work to be presented and discussed in Chapter 2, which is covered in the following section.

2.5 Related Work

In this section, a selection of previous scientific works related to the contents of this thesis are
presented, discussing their relations to this thesis.

The first two presented publications offer further insight into the energy-measurement and
power-capping approaches presented in this chapter. Noureddine et al. [21] highlight different
energy-measurement approaches, as discussed in Section 2.3, in detail, investigate and compare
examples for these approaches, and provide recommendations on how to efficiently measure energy
consumption of devices and software. Petoumenos et al. [25] compare existing power-capping
mechanisms, such as the approaches mentioned in Section 2.4, investigating which is the optimal
mechanism for any given computing environment.

The publications presented next all discuss components that are part of the heterogeneous cluster
evaluated in this thesis. Jensen et al. [30] discuss similarities and overlaps of design challenges for
future exascale and embedded systems, highlighting the actual relation between two seemingly very
different system-design approaches. It is related to this thesis because the evaluated heterogeneous
cluster combines systems commonly used in HPC clusters and low-power boards that originated from
the research on embedded systems. Blem et al. [31] compare RISC- and CISC-designed processors,
investigating whether the used instruction set architecture (ISA) influences performance and energy-
efficiency behavior of CPUs. The evaluation setup used in this thesis features systems with RISC- and
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CISC-designed processors. Azimi et al. [32] propose a new method of managing power capping in
server clusters, decentralizing the logic to reduce response delays and actuation latency by avoiding
hierarchical power-management systems. They use many software components that are part of this
project’s evaluation environment as well, for example the resource manager SLURM, as presented
in Section 4.1.

The following publications are part of the Mont-Blanc Project [5], which has the aim to design a
new type of computer architecture capable of setting future global HPC standards, built from energy-
efficient solutions used in embedded and mobile devices. It was incited by the findings of Rajovic
et al. [33] in 2013. In another publication, Rajovic et al. [34] advocate building an HPC system
from low-power embedded and mobile parts and evaluate a prototype consisting of ARM Cortex-A9
chips, investigating and estimating the potential energy savings brought by future iterations of ARM
family processors. In contrast to their work, this thesis features a heterogeneous cluster combining
general-purpose systems with systems featuring ARM processors. Weloli et al. [35] describe available
tools and platforms for the exploration of using 64-bit ARM processors in many-node clusters and
propose evaluation methodologies. The ODROID-C2 that is part of the cluster evaluated in this
thesis features a 64-bit ARM processor as well.

2.6 Summary

This chapter provided an overview of important concepts, terms, and methodologies needed for the
following chapters.

First, basic terminology and software components of HPC clusters were presented, allowing to un-
derstand the interactions and tasks happening on such clusters. Next, the concept of heterogeneous
hardware was clarified by classifying existing hardware, presenting key design principles and differ-
ences between the types. Following that, two different approaches of obtaining energy-consumption
data were highlighted, introducing profile-based energy models and external measurement devices,
and specifying their advantages and problems. Next, the concept of power capping was presented,
and three common methods of enforcing power caps were detailed and compared. Last, potentially
interesting related work was referenced, providing locations of concepts and discussions on topics
similar or related to the goals of this thesis.

The next chapter presents the design and implementation of modifications adapting existing
scheduling and resource-management software to a heterogeneous cluster to improve the cluster’s
energy efficiency.
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3D E S I G N & I M P L E M E N TAT I O N

This chapter describes the design and implementation of modifications adapting the scheduling
and resource-management software SLURM to support a heterogeneous cluster. In its default
version, SLURM does not consider the varying energy and performance between nodes included in
a heterogeneous cluster. Therefore, a modified version was designed and implemented, that can
consistently benefit from the selection of specialized hardware present in a heterogeneous cluster.

First, the basic functionality of SLURM is summarized in Section 3.1, allowing easier understand-
ing of the next section. Following this, Section 3.2 presents the architecture of SLURM, detailing
important components and commands, possibilities for configuration, and its present plug-in infras-
tructure. Knowledge about SLURM’s default architecture is important to understand the implemented
modifications necessary to adapt SLURM to heterogeneous clusters, as discussed in Section 3.3. This
section comprises a discussion of the goals that were achieved with these modifications, how the
modifications were integrated into the existing architecture, and how they were implemented in
detail.

3.1 Basic SLURM Functionality

As presented in Section 2.1.3, scheduling and resource-management software is a vital part of
every HPC cluster. One example of this software is SLURM [9]. Its basic functionality and tasks are
summarized in this section.

SLURM is tasked with automatizing the selection of resources to be reserved for a submitted
job, and when to execute the job. For this, the following information is required: the amount of
resources available in total per node; the current status of resource usage; and the job’s resource
requirements and, if specified, deadline. This information can either be hard-coded into SLURM or
supplied by the user(e.g., the cluster administrator). Based on this data, SLURM then decides which
node or nodes will execute the job. If the required resources are currently available, SLURM reserves
them, transmits necessary job information to the computational nodes, and returns the results to
the user after the execution is complete. If not enough resources are currently available, SLURM
saves the job’s details and queues the job until enough resources are available. SLURM provides
three key functions: allocation of access to the compute nodes’ resources; provision of a framework
for submission, execution and monitoring of work on the allocated nodes; and management of a
queue of pending work to arbitrate the contention for resources.

The following section provides an overview of SLURM’s architecture.
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3.2 SLURM’s Architecture

SLURM is an open-source, fault-tolerant, and highly scalable cluster-management and job-scheduling
system for large and small Linux clusters [9], written in the C programming language.

It consists of three main components: a control and management daemon running on the
master node; execution-handling daemons running on all slave nodes; and command binaries for
interaction with the user or administrator. It also provides an optional database daemon which
supports accounting tasks, but is not relevant for this thesis as discussed in Section 3.2.1. Figure 3.1
depicts SLURM’s daemon components, a sample list of common user commands, and the relation
between these daemons and commands.

SLURM’s framework also supports an optional plug-in infrastructure, allowing for further cus-
tomization of existing behavior or introduction of additional novel functionality. Examples include
backfill scheduling, enforcement of resource limits by user account, or multi-factor–job-prioritization
algorithms.

In the following sections, SLURM’s important components and commands and its plug-in in-
frastructure are described in further detail, and the intended way to configure SLURM outside of
providing/modifying actual code is presented.

3.2.1 Important Components & Commands

Among all available SLURM daemon components and commands, only three are utilized for this
thesis: the controller daemon slurmctld; the compute node daemon slurmd; and the user command
srun. Both daemons are required for the basic functionality of SLURM, and the command srun is
the most direct way to submit jobs to the cluster. All other components and commands provide

slurmctld

slurmdbd
(optional)

database

scontrol

sinfo

squeue

scancel

sacct

srun

slurmd slurmd

slurmd slurmd

Controller Daemon

Compute Node Daemons

User Commands
(partial list)

Database Daemon

Figure 3.1 – SLURM components and their relation [9]
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additional functionality for managing and using the cluster that was not used in the adaptation of
SLURM to heterogeneous clusters, and are therefore not further discussed. Why and how SLURM
needs to be modified to fully take advantage of a heterogeneous cluster’s specialized hardware is
discussed in Section 3.3.

slurmctld

The controller daemon slurmctld is the centerpiece of SLURM, permanently running on the master
node. It is responsible for monitoring all other SLURM daemons and cluster resources, accepting
job submissions, and allocating resources to submitted jobs or scheduling them for later execution.
All user commands interact in some way with slurmctld, as partially shown in Figure 3.1. Hence,
SLURM cannot function without a running instance of slurmctld. To prevent temporary loss of
functionality if slurmctld or the entire master node crashes, SLURM supports optionally running a
backup instance of the controller daemon on a second master node. This can be activated by editing
the configuration file mentioned in Section 3.2.3.

slurmd

The compute node daemon slurmd is the connection between the master node’s control daemon
slurmctld and its assigned partition of slave nodes. All on-line slave nodes need to run an instance of
slurmd, or they cannot be provided with job information by the master node. Besides receiving job
information and returning execution results, slurmd is also responsible for launching, monitoring,
and, if requested, killing jobs on its respective compute node.

srun

The command srun allows the user to request resource allocation and job execution on the cluster
managed by SLURM. Usage is as follows:

1 srun [options] executable <args >

A wide amount of options is available, allowing for e.g. specification of exact required resources,
transmission of additional environment variables, or output redirection to a certain file path. A full
list of options can be found in SLURM’s official documentation for srun [36]. In the course of this
thesis, only the option to export environment variables to the target node will be used. Its syntax
looks like this:

1 --export=<environment variables >

Component Interaction

The roles of all important components and commands were described, but not how they interact
with each other. Therefore, a sample execution of a user-submitted job now serves to explain the
individual roles in further detail. It is visualized in Figure 3.2. First, the user has to submit the job via
the command srun. The sample job binary to be executed is called testjob. It is assumed that one
compute node is sufficient and will be completely allocated to the job. Parallel execution of one job
on multiple nodes or of more than one job on a single node would unnecessarily complicate SLURM’s
behavior and is therefore not further investigated in the course of this thesis, albeit supported and
common practice in the scope of HPC clusters. To highlight the process of exporting environment
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variables by using the export option, a sample environment variable called ev1 and its value of 1 is
also submitted. This is the resulting call of srun:

1 srun --export="ev1=1" testjob

Upon submission, the srun binary parses the input for options, the job-binary name to be executed,
and, if present, its parameters. The resulting information is saved into an internal data structure,
which gets passed on to the control daemon slurmctld.

slurmctld then checks whether required resources have been specified. In this example, the user
has not specified any resources as required. Therefore, slurmctld is free to select any of the currently
available nodes. It is assumed that there is exactly one idle compute node available at the time of job
submission, called cnode1. After the node selection and allocation of cnode1 is complete, slurmctld
transfers information about which node has been allocated back to srun. Srun then attempts to
establish communication with cnode1’s instance of slurmd.

If communication was established successfully, srun passes all available job execution information
to cnode1’s slurmd. In this example’s case, the transfered information is the job-binary name testjob
and the environment variable env1=1. Next, slurmd sets the transmitted environment variables
locally at cnode1, and afterwards initiates execution of the binary testjob. Upon termination
of testjob, whether successful or not, cnode1’s slurmd returns the results back to the control
node’s srun.

srun notifies slurmctld that the job’s execution is finished, and slurmctld subsequently marks
cnode1 as free for future allocations. Srun then displays the returned results to the user either by
console output, or, if configured that way, by writing to an output file. This marks the end of the
sample execution.

User

slurmctld
(Control Daemon)

• Set Environment Variables
• Initiate Job Execution

• Select and Allocate Nodes
• Free Nodes after Execution

slurmd
(Compute Daemon)

Job Request Information

Job Execution Information

Resource Freeing Trigger

Call with Parameters • Parse Input
• Save to Internal 

Structure

srun
(User Command)

Job Execution Result

Job Execution Result

Target Node Information

Figure 3.2 – Sample job execution
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3.2.2 Plug-In Infrastructure

With individual components and commands and their tasks and interactions discussed, the next
major part of SLURM’s architecture is the available plug-in infrastructure. Plug-ins are an easy way
to extend or modify SLURM’s functionality beyond the default. A SLURM plug-in is a dynamically
linked code object which is loaded explicitly at run-time by the SLURM libraries [37].

Each plug-in has to select one of many available application programming interfaces (APIs) to
implement, for example cryptography, network topology, or custom scheduling. Common C and
SLURM-specific libraries are both available for use. Additionally, each API provides access to built-in
methods tailored to the specific field of use.

Therefore, plug-ins represent a simple way to integrate custom code into SLURM without
significantly modifying its full architecture. This is taken advantage of to implement the modifications
to SLURM which are necessary to adapt it to heterogeneous clusters, as described in Section 3.3.
Selecting which plug-ins are to be loaded is set in SLURM’s configuration file, which is the subject
of the next sub-section.

3.2.3 Configuration

Configuring SLURM is achieved by editing an external configuration file, usually called slurm.conf.
slurm.conf is an ASCII file which describes general SLURM configuration information, the nodes to
be managed, information about how these nodes are grouped into partitions, and various scheduling
parameters associated with those partitions [38]. General configuration information includes which
particular plug-ins are to be loaded and allows setting values for custom variables specific to certain
plug-ins. The configuration file needs to be present on, and should be consistent across, all nodes in
the cluster, including the master nodes.

Besides general setup like node and partition configuration, the field SchedulerType is important
for this thesis. It determines which scheduler plug-in is to be used. The default plug-in is called
sched/builtin. Therefore, the specific line in slurm.conf looks like this:

1 [...]
2 SchedulerType=sched/builtin
3 [...]

The sched/builtin–plug-in represents a first-in–first-out (FIFO) scheduling queue that additionally
supports job priority sorting. It serves as the code base for most of the modifications applied to
SLURM in this thesis. The following Section 3.3 presents and discusses those modifications.

3.3 Design & Implementation of SLURM-HC

Most scheduling and resource-management software, including SLURM, is conceptualized for clusters
with partitions that consist of mostly equal systems. Usually, these systems only differ in small
details like support for certain software or hardware features, or amount of RAM. Therefore, similar
execution-times and energy-consumption values for any single workload are expected for all nodes
bundled into a partition. However, a highly heterogeneous partition consists of systems whose
execution times and energy consumption may drastically differ for any single workload, as shown
in Chapter 4.

Existing node selection and scheduling algorithms do not incorporate drastically varying energy
and speed performance between nodes for different jobs, and therefore can not consistently benefit
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from the selection of specialized hardware in a heterogeneous many-node cluster. Thus, modifications
to the node selection and scheduling behavior are likely to improve the energy efficiency.

The following subsections discuss which information needs to be taken into consideration, where
the modifications were made, and a detailed presentation of what modifications were made. The
resulting modified version of SLURM was named SLURM-HC, as in Simple Linux Utility for the
Resource-Management of Heterogeneous Clusters.

3.3.1 Modification Goals

The goal of this thesis is to improve the energy efficiency of a many-node heterogeneous computa-
tional grid by utilizing application-induced energy claims. Considering these claims within SLURM’s
internal logic was achieved by modifying SLURM. The specific goals pursued with the implemented
modifications are presented in this section.

1st Modification Goal: Influence Node Selection

Heterogeneous clusters consist of nodes with hardware varying in processor speed, amount of RAM,
and general processor design like the RISC or CISC architecture. Therefore, any given job will
consume different total energy and time amounts based on which nodes are assigned to it. If a
workload consisting of multiple jobs is distributed to nodes without knowledge of expected execution
time and energy consumption per job, the resulting total consumed time and energy values are
unlikely to be optimal. Therefore, acquiring said knowledge and incorporating it to the process of
node selection is the first goal of modifying SLURM for heterogeneous clusters.

Example for the Impact of Correct Node Selection: To showcase the impact of correct node
selection, the following simple scenario is assumed: A workload consisting of two different jobs is
submitted, called j1 and j2. The partition assigned to the execution of the workload consists of
only two nodes. One system that features a general-purpose processor is called gpn and the other
system, which features a low-power processor, is called lpn. The processor terminology refers to the
classifications introduced in Section 2.2. Since the low-power processor has a reduced clock speed
compared to the general-purpose processor, it is likely to take longer for the execution of either j1

or j2, but consume less energy per second. Previous execution of both jobs on single nodes resulted
in the energy and time values shown in Table 3.1.

Table 3.1 – Execution-time and energy-consumption values of two sample jobs on different
node types

Node Type Job Execution
Time [s]

Energy Value [J] Idle Consumption [W]

General-purpose j1 2 20 5
General-purpose j2 1 30 5
Low-power j1 2 10 1
Low-power j2 3 15 1

18



3.3 Design & Implementation of SLURM-HC

Table 3.2 – Total energy consumption based on node allocation with values from Table 3.1

Job Assigned to gpn Job Assigned to lpn Total Energy Total Energy
(idle) (load)

j1 j2 40 J 35 J
j2 j1 45 J 40 J

Two possibilities exist for allocating the submitted jobs to the available nodes, assuming both
nodes will be allocated: either j1 or j2 will be executed on gpn, and the remaining job on lpn. The
cluster’s resulting total energy consumption Etotal is calculated with the following formula:

Etotal = E j1 + E j2 + |t j1 − t j2 | ∗ Pidle j1/2
(3.1)

E j{1,2}
is the energy consumed by the allocated node during the execution of j{1,2}, and t j{1,2}

the
time needed for the execution. Pidle j1/2

is the idle consumption of whichever node finished first and

idly waits for the other node to complete execution. The time it has to wait for is the timely distance
between t j1 and t j2 .

Assuming the previously recorded values will reoccur, allocating j1 to gpn results in 40 J total
energy consumption, whereas the other option results in 45 J total energy consumption, as seen in
Table 3.2. Hence, correct allocation saves 5 J in this example. Even under the assumption that nodes
in an HPC cluster should never be idle, and thus disregarding idle consumption in Equation (3.1),
Table 3.2 shows that 5 J can again be saved by correct allocation. Therefore, correct allocation can
improve the energy efficiency of a heterogeneous cluster.

2nd Modification Goal: Adapt Job Configuration

Another possibility for saving energy based on previous knowledge is correctly adapting the jobs to
their allocated node’s specification. An example: Assuming a job which supports multi-threading, by
manipulating the number of threads the job will be executed with, based on the allocated node’s
hardware specifications, may again improve performance or energy efficiency, as shown in Chapter 4.
This can, in some cases, be achieved by manipulating environment variables on the target nodes.
Since the user has no knowledge which nodes will be assigned to his job submission unless he
specifies them, he cannot set the optimal number of threads himself. Hence, adding environment
variable manipulation to the node-selection logic can be beneficial to improving the energy efficiency
of a heterogeneous many-node cluster as well.

3rd Modification Goal: Introduce Power Caps

The final option to adapt scheduling and resource-management software to heterogeneous clusters
is enforcing custom power caps, introduced in Section 2.4, on the nodes based on the submitted
job. Power caps allow the limitation of the maximum power consumed by a node’s CPU, limiting
CPU clock speed. This affects both execution time and energy consumption of a job, as shown
in Chapter 4. Even though execution time is generally increased by enforcing power caps, the
resulting total energy consumed can often be reduced, as shown in [23]. This is known as the
“race-to-sleep vs. crawl-to-sleep” debate [23]. But the optimal value for power caps can differ for each
job, as shown in Chapter 4 as well. Hence, pre-determining the exact optimal values for power caps
for all combinations of known jobs and nodes and enforcing them after node selection is potentially
beneficial to the goal of improving energy efficiency of a heterogeneous many-node cluster.
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To conclude, pre-recording performance values and setup specifics, such as number of threads or
power caps, for jobs on a per-node base, and incorporating this knowledge into the node-selection
logic of scheduling and resource-management software shows promising results. Therefore, adapting
existing software to the task of managing heterogeneous clusters is likely to increase the cluster’s
energy efficiency.

3.3.2 Integration into SLURM

With three goals (i.e., node selection, configuration of thread numbers, enforcement of power caps)
for modifications introduced, the next task is to find the right spot within the existing software
architecture of SLURM to implement these modifications. The modifications require alteration of
existing behavior and introduction of novel logic. Therefore, editing or expanding the code base
is necessary. As presented in Section 3.2, three components are available: slurmctld, slurmd, and
srun. Since most of the modifications alter the process of node selection, which happens on the
master node, slurmd is automatically excluded because it runs on the slave nodes. SLURM’s plug-in
infrastructure, introduced in Section 3.2, represents the most simple way to alter existing and
introduce new behavior. However, since srun is compiled as a separate stand-alone binary, plug-ins
do not directly affect it. Hence, slurmctld remains as the component to be modified.

Since it was determined that slurmctld will be modified, the appropriate plug-in API has to be
found. The modifications need to alter node selection, and therefore presumably have to happen
before or during that process. However, SLURM’s node selection is a rather complex algorithm and
is therefore hard to alter without causing unexpected behavior. Hence, the modifications should, if
possible, happen before node selection is actually started. But all plug-in APIs supported by SLURM
will only be triggered after node selection is complete. Therefore, the only possible spot left for
the proposed modifications is directly after node selection, by implementing the modifications
and re-initiating the process of node selection. The next-in-line plug-in API is the scheduler. Two
scheduler plug-ins are part of default SLURM, sched/builtin and sched/backfill. With the
former being less complex, and neither being suitable for heterogeneous clusters, an altered version
of the existing sched/builtin plug-in has been created.

However, not all modifications can be implemented in the altered scheduler plug-in. Information
about the environment variables to be exported to the compute nodes is only available within srun
and cannot be modified directly from the outside. Therefore, srun needs to be slightly modified
as well, even though the plug-in cannot directly affect it. The detailed implementation of the
modifications in both the scheduler plug-in and srun is discussed in the next section.

3.3.3 Detailed Implementation

Modifications are implemented in two distinct parts of SLURM’s architecture. The resulting modified
version was named SLURM-HC. An altered version of the default scheduling plug-in sched/builtin
modifies the node-selection process and manages power caps. It is called sched/slurm_hc, following
the introduced name of the modified SLURM version. The other part is a slightly modified version
of srun, called srun_hc, which modifies the to be exported environment variables to adjust the
number of threads a job will be executed with.

API Modifications

First, the API and important parts of sched/builtin’s code structure are presented. The plug-in
consists of three separate code files: builtin.c contains all methods and therefore the main logic
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of the scheduling plug-in; builtin.h is the respective header file to be included in other C files
wishing to interact with the plug-in; and builtin_wrapper.c, which implements the mandatory
interface, connecting method calls of external code with the correct internal methods implemented
in builtin.c. The only interface method that was modified is the following:

1 int
2 slurm_sched_p_newalloc( struct job_record *job_ptr )
3 {
4 return SLURM_SUCCESS;
5 }

It is called whenever a new allocation of resources for a job is completed by the node-selection
process. The struct job_record contains all internally available information regarding the job that
was allocated, including the name of the job and which nodes where allocated to it. This is exactly the
information which needs to be modified before the node selection is manually re-initiated. Therefore,
the modified version of this interface method, now implemented in slurm_hc_wrapper.c, redirects
the code sequence to a new method within slurm_hc.c:

1 int
2 slurm_sched_p_newalloc( struct job_record *job_ptr )
3 {
4 return slurm_hc_newalloc(job_ptr);
5 }

This new method, named slurm_hc_newalloc, contains the logic which implements the proposed
modifications.

Scheduling Plug-In Modifications

Next, the logic implemented in slurm_hc_newalloc is detailed. To function correctly, the modified
method requires knowledge about detailed data recorded during previous executions of jobs on
nodes: specifically, a combination of node name, job name, enforced power caps, and resulting
execution time and energy consumption. This information could for example be stored in the form
of lists sorted by the optimization criteria. Based on this information, the optimal available node for
the submitted job will be allocated and, if supported, the power cap enforced on the respective node.
“Optimal” in this case refers to whichever node consumed the lowest amount of energy. Selecting the
optimal node based on different criteria, for example execution time or energy–delay product (EDP),
introduced in Section 4.2, has not been implemented. This leaves potential for future work, as
discussed in Chapter 5. The implemented logic is detailed in Algorithm 3.1. Therefore, two key
functionalities are implemented in slurm_hc_newalloc: overwriting the default node selection to
ensure the optimal available node is selected; and configuring both the workload and the node’s
execution environment to ensure the best energy efficiency.

Besides altering the interface method and introducing the new modification method (and
subsequent helper methods), no further changes to the existing sched/builtin plug-in are made
in sched/slurm_hc, except for the renaming of methods and variables where needed. Therefore,
the full scheduling logic implemented in sched/builtin remains unchanged.

srun Modifications

As mentioned previously, modifying the number of threads by accessing the environment variables
to be exported is not possible from within slurm_hc_newalloc. Therefore, srun needs to be slightly
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Require: Details of the submitted job: I job, pre-recorded execution information: Iexec
1: Store name of previously allocated node in Nalloc
2: Find names of all currently available nodes and store in Nav
3: Iterate over Iexec by node name Ni to find optimal node Nopt
4: if Ni ∈ Nav then
5: Nopt ← Ni
6: Break iteration
7: else
8: Continue iteration
9: end if

10: End of iteration process
11: if 6 ∃Nopt then
12: Exit
13: end if
14: if job supports multi-threading then
15: Store number of threads in I job
16: end if
17: if Nopt supports power capping then
18: Initiate power cap enforcement on Nopt
19: end if
20: if Nopt != Nalloc then
21: Free previous allocation of Nalloc
22: Update I job to request node Nopt
23: Re-initiate node-selection process with updated I job
24: end if

Algorithm 3.1 – Logic implemented in the method slurm_hc_newalloc

modified as well. Part of default srun’s internal logic is depicted in Algorithm 3.2. The modified
version srun_hc features an extended logic, now including modification of environment variables
after setting up the job’s environment. Prerequisite for this is slurmctld providing the necessary
information. The extended logic featured in srun_hc is depicted in Algorithm 3.3.

Concluding this section, all modification goals mentioned in Section 3.3.1 were able to be
implemented without significant changes to SLURM. Node selection and power-cap enforcement
is handled in a modified version of the shipped scheduler plug-in sched/builtin. It is called
sched/slurm_hc. Environment-variable manipulation is incorporated into an extended version of
srun, called srun_hc. This extended version of srun receives and utilizes information processed in
and forwarded by sched/slurm_hc.

1: Parse user input, including environment variables to be exported
2: Transmit job information to slurmctld
3: Wait for node allocation results returned by slurmctld
4: Set up environment for job: E job
5: Communicate with allocated node

Algorithm 3.2 – partial srun default behavior
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1: Parse user input, including environment variables to be exported
2: Transmit job information to slurmctld
3: Wait for node allocation results returned by slurmctld
4: Set up environment for job: E job
5: Look for environment variable values transmitted by slurmctld
6: if environment variable values are found then
7: Add to or overwrite existing environment values in E job
8: end if
9: Communicate with allocated node

Algorithm 3.3 – partial srun_hc extended behavior

3.4 Summary

This chapter presented the design and implementation of modifications beneficial to adapting existing
scheduling and resource-management to the specialized hardware used in heterogeneous clusters.

First, the basic functionality of SLURM was summarized in Section 3.1. Following this, Section 3.2
presented the architecture of SLURM, detailing important components and commands, possibilities
for configuration, and its present plug-in infrastructure. Last, modifications necessary to adapt
SLURM to heterogeneous clusters were discussed in Section 3.3. This section included the goals
that were achieved by implementing modifications, how the modifications were integrated into the
existing architecture, and how they were implemented in detail. The resulting modified version of
SLURM was named SLURM-HC.

In the next chapter, the potential for improving the energy efficiency of a heterogeneous many-
node cluster by modifying existing scheduling and resource-management software is investigated by
evaluating the results of common benchmarks executed on a small heterogeneous cluster with both
SLURM and SLURM-HC.
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In this chapter, the results of tests are presented and evaluated, with the goal of investigating
the effect of utilizing the modifications implemented in SLURM-HC on the energy efficiency of a
heterogeneous cluster.

First, the used evaluation setup, including hardware and software components, is presented
in Section 4.1, detailing hardware specifications, benchmark selection and how time and energy
consumption was recorded. Presenting the setup in detail allows reconstructing the testing envi-
ronment if the results are to be reproduced or extended in future work. Next, the results of the
initial set of tests are presented in Section 4.2. The goal of the initial set of tests was to find the
most energy-efficient configuration and node for each of the investigated benchmarks by measuring
all possible combinations. Based on the results, the modifications detailed in Chapter 3 were de-
signed. Last, the impact on energy efficiency of the modifications implemented in SLURM-HC is
investigated by comparing and evaluating the results of executing multiple benchmarks in parallel
on the evaluation cluster managed by either SLURM or SLURM-HC, presented in Section 4.3.

4.1 Evaluation Setup

The setup used for evaluating the difference in energy efficiency between SLURM and SLURM-HC,
as detailed in Chapter 3, consists of three key components: a heterogeneous cluster, composed of
various employed hardware and software, serving as the execution environment for the evaluation;
benchmarks that allow comparing the performance of the cluster nodes they are executed on; and
an external energy measurement device used to gather on-line energy consumption values of the
executing nodes. In the following subsections, the employed components are presented and detailed,
starting with the cluster itself.

4.1.1 Heterogeneous Cluster Components & Setup

The evaluation cluster consists of four distinct nodes: Two identical general-purpose systems featuring
current Intel Xeon quad-core server processors, and two different generations of the same small
development board featuring low-power ARM processors, the ODROID-C1+ [20] and the ODROID-
C2 [19]. The hardware specifications are summarized in Table 4.1.

General-Purpose Systems

The general-purpose systems both feature the following hardware: an Intel Xeon E3-1275 v5
(Skylake architecture) server processor [29], with four cores clocked at 3.6 GHz base frequency and
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Table 4.1 – Hardware specifications and OSs of evaluation-cluster nodes

Node CPU RAM Storage OS

ODROID-C1+ ARM Cortex-A5
4x1.5 GHz

1 GiB DDR3
792 MHz

16 GiB MicroS-
DHC

Ubuntu 14.04.5

ODROID-C2 ARM Cortex-A53
4x1.5 GHz

2 GiB DDR3
912 MHz

16 GiB MicroS-
DHC

Ubuntu 16.04.1
LTS

Xeon (master) Intel Xeon
E3-1275 v5
4x3.6 GHz

16 GiB DDR4
2,133 MHz

256 GiB SSD CentOS Linux
7.2.1511

Xeon (slave) Intel Xeon
E3-1275 v5
4x3.6 GHz

16 GiB DDR4
2,133 MHz

none (stateless) CentOS Linux
7.2.1511 (image
provisioned)

up to 4.0 GHz in turbo mode, 8 MiB cache, support for up to eight threads due to hyper-threading,
and 64-bit computation; 16 GiB of DDR4-RAM with 2,133 MHz clock frequency; and a 500 W power
supply. Additionally, one of them, which was configured as the master node, is equipped with a
256 GiB SSD used as physical storage for the installed OS and other necessary software. The other
system is operating stateless by utilizing provisioning software, see Section 2.1.2, and therefore
needs no physical storage, reducing its energy consumption. Both are operated by the same CentOS
Linux 7 (release 7.2.1511) distribution for the x86-64 architecture, including the most recent Linux
kernel (Linux 3.10.0-514.16.1.el7.x86_64).

Low-Power Boards

Two different generations of the ODROID-C series of low-power development boards were used.
The older version is the ODROID-C1+, released in July 2015. It features: an AmLogic S805 ARM
Cortex-A5 [39] (ARMv7-A architecture) quad core low-power processor with 1.5 GHz clock frequency
and only 32-bit support; 1 GiB DDR3 SDRAM with 792 MHz clock frequency; and physical storage
memory in the form of a 16 GiB MicroSDHC flash card plugged into a UHS-1 SDR50 slot. The
installed OS is Ubuntu 14.04.5 with the Linux 3.10.96-151 ARMv7l kernel, the official version
supplied by the board manufacturer.

The ODROID-C2 represents the succeeding generation of ODROID boards, released in spring
2016. It features an Amlogic S905 ARM Cortex-A53 [3] (ARMv8-A architecture) quad core low-
power processor with 1.5 GHz clock frequency and 32/64-bit support; 2 GiB DDR3 SDRAM with
912 MHz clock frequency; and physical storage memory in the form of a 16 GiB SDHC flash card –
the same model as used for the ODROID-C1+ – plugged into a UHS-1 SDR50 slot. The employed
OS again is the official version supplied by the board manufacturer: Ubuntu 16.04.1 LTS with the
matching Linux 3.14 LTS kernel.

Cluster Setup and Software Components

The presented systems were connected with Gigabit Ethernet to form a heterogeneous cluster. One
of the Xeon systems was configured to act as the master node, whereas the remaining Xeon and both
ODROID systems served as slave nodes. The same version of scheduling and resource-management
software was installed on all nodes: SLURM 15.08.7. The installed version of SLURM-HC, the
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modified SLURM version presented in Chapter 3, is based on SLURM 15.08.7 as well. In addition,
an open-source implementation of the Message Passing Interface (MPI), Open MPI v1.10.2 [40],
was installed on all nodes, with the distributions matching the specific installed OSs. MPI is required
for the execution of the benchmarks detailed in Section 4.1.2. Furthermore, the WAREWULF [15]
v3.6 toolkit was installed on the master node to enable OS-image provisioning, as described in Sec-
tion 2.1.2. This allowed the slave Xeon system to operate without physical storage memory, reducing
its energy consumption. No other software toolkits were installed on any of the cluster nodes. In
the next section, the selection of benchmarks used to compare performance across the cluster nodes
is presented.

4.1.2 Selected Benchmarks

Benchmarks allow the comparison of the performance of systems with different hardware specifica-
tions and/or software configurations. To evaluate the performance of highly parallel clusters, such
as HPC clusters, benchmarks need to mimic the computation and data movement characteristics of
workloads commonly submitted to such clusters. One group of benchmarks designed specifically
for the evaluation of highly parallel systems are the NAS parallel benchmarks (NPB) [41]. They
are derived from computational fluid dynamics (CFD) applications [42], a typical field of use for
many-node computational grids. Originally, the NPB suite consisted of eight different benchmarks:
five kernels and three pseudo-applications. The kernels are called IS, EP, CG, MG, and FT; and the
pseudo-applications BT, SP, and LU. Full documentation on represented algorithms and signature
behavior is available in [41] or at [42]. The initial suite has been extended to include multi-zone
versions of BT, SP and LU, consistently called BT-MZ, SP-MZ, and LU-MZ. These multi-zone versions
support multiple levels of parallelism by dividing the problems into zones distributed to a number
of outer threads, which then redistribute them to their own set of inner threads.

All eleven benchmarks can be adjusted by two parameters: number of threads and problem
size. In the case of BT-MZ, SP-MZ and LU-MZ, the number of inner and outer threads can be
configured separately. An implementation of the NPB using the OpenMP programming model [43],
which is supported by Open MPI, is available. Using the OpenMP version of the NPB, configuring
thread numbers is achieved by setting values for the environment variables OMP_NUM_THREADS
(general/outer threads) and OMP_NUM_THREADS2 (MZ-only: inner threads).

The benchmark problem sizes are predefined and referred to as classes S, W, and A to F [42].
The letters represent the following sizes:

• Class S: a small size designed for quick tests

• Class W: a slightly larger size designed for workstations used in the ’90s [42]

• Classes A, B, C: the standard test sizes, increasing by roughly 4x in size from class to class

• Classes D, E, F: significantly larger test sizes, increasing by roughly 16x in size from class to
class

Detailed information on problem sizes and parameters for each benchmark and class is available
at [44]. Selecting a benchmark’s problem size is achieved by setting a parameter before compilation.
Hence, there are separate benchmark executables for each class. In the upcoming sections 4.2
and 4.3, the results of tests including the presented benchmarks – configured with different thread
numbers or combinations, and problem-size classes – will be detailed and evaluated. Problem sizes
of class D or higher require more RAM than available on the ODROID boards and were therefore
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excluded from the tests. For the remainder of this thesis, problem-size classes will be directly
annotated to the benchmarks’ names in the following way: nameclass, for example EPA.

To evaluate the cluster’s energy consumption during the tests, on-line energy measurements
were performed utilizing an external energy measurement device. The used device is presented in
the following subsection.

4.1.3 Energy Measurement Device

The external energy measurement device used for recording the energy consumption of the systems
evaluated in this chapter is the Microchip MCP39F511 Power Monitor Demonstration Board [45], a
single-phase power and energy monitoring system designed for real-time measurements of input
power for AC/DC power supplies. It is depicted in Figure 4.1. The device measures electric current
based on the voltage drop across a 2 mΩ shunt resistor, and voltage across a 1000:1 voltage divider.
The measured current and voltage values are then used to internally calculate power and energy
with a maximum error of 0.1 % across a dynamic range of 4000:1. Therefore, the results are highly
accurate for both low and high input voltage and current values. Recording the results is achieved
by connecting the board via USB to a system, and utilizing specialized software, such as the supplied
Power Monitor Utility [45].

The results for total energy consumption presented in the following sections were calculated
by recording power-consumption values with a resolution of 2 ms, multiplying the current power-
consumption value with the difference in system time between the current and previous time steps,
and adding the resulting energy value to the sum of previous values until the last recorded time
step has been included into the calculation. The total recorded time is calculated by subtracting the
system time of the first recorded step from the system time of the last recorded step. The results of the
initial set of tests on the evaluation setup are presented and evaluated in the following Section 4.2.

Figure 4.1 – The Microchip MCP39F511 Power Monitor Demonstration Board [45]
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4.2 Single Benchmark Execution Tests

The initial set of tests gathered energy-consumption and execution-time data for all available NPBs,
executed on single nodes of the cluster. All test results are averaged over at least five separate runs,
excluding outliers. The energy consumption was measured utilizing the external device described
in Section 4.1.3, with the measurement started directly before job submission via srun and stopped
directly after the call of srun returns. IS, EP, CG, MG, and FT were executed as single-zone workloads
with the maximum number of threads supported simultaneously by the nodes: four on the ODROIDs
and eight on the Xeon system. From the remaining pseudo-application benchmarks, the multi-zone
versions BT-MZ, SP-MZ, and LU-MZ were chosen, configured with varying combinations of inner and
outer thread numbers. Therefore, the effect of varying thread combinations on the systems’ energy
consumption could be observed as well.

In addition to execution time and energy consumption, a third metric is commonly used to
compare system execution performance: the energy–delay product (EDP). The default EDP simply
multiplies consumed energy and time values, weighting both parameters equally. Therefore, smaller
EDP values equal better system performance. Custom weights an increased impact of either value,
for example squaring the time value. Utilizing the EDP allows judging whether an increased energy
efficiency is worth the higher execution time.

The goal of this initial set of tests was to find benchmarks that could be executed more energy-
efficient on the employed ODROID low-power nodes compared to the Xeon system, which would
allow for the cluster’s energy efficiency to be improved by including low-power nodes into the
cluster setup. In addition to investigating the default Xeon node, forcing various power caps on the
Xeon node with the help of the Intel RAPL interface and the resulting change in energy efficiency
was investigated. The best energy efficiency results were observed at power caps of either 10 W or
15 W. Therefore, whenever power caps of the Xeon system are mentioned in the following sections
of Chapter 4, one of these two power caps was enforced, depending on which had better results for
the executed benchmark. The first tests investigated the execution of the single-zone workloads IS,
EP, CG, MG, and FT, and their results(energy consumption, execution time, and EDP) are presented
and evaluated in the following subsection.
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Figure 4.2 – Energy consumption of nodes executing single-zone class A NPB
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Table 4.2 – Execution time, energy consumption, and EDP of single-zone class A NPB on different
nodes

Benchmark Node Execution Time Energy Consumption EDP

CGA ODROID-C1+ 9.10 s 37.30 J 339.43 Js
ODROID-C2 8.00 s 39.45 J 315.60 Js
Xeon 0.58 s 29.91 J 17.33 Js
Xeon (capped) 0.63 s 17.11 J 10.71 Js

EPA ODROID-C1+ 27.92 s 65.73 J 1,835.04 Js
ODROID-C2 12.58 s 55.54 J 697.56 Js
Xeon 1.86 s 124.83 J 232.68 Js
Xeon (capped) 3.05 s 97.18 J 296.42 Js

MGA ODROID-C1+ 14.80 s 35.79 J 529.62 Js
ODROID-C2 7.76 s 41.66 J 323.24 Js
Xeon 1.46 s 61.24 J 89.14 Js
Xeon (capped) 1.52 s 41.29 J 62.76 Js

FTA ODROID-C1+ 55.12 s 225.63 J 12.44 kJs
ODROID-C2 22.80s 123.50 J 2,815.80 Js
Xeon 1.23 s 70.71 J 87.26 Js
Xeon (capped) 1.87 s 50.19 J 93.82 Js

ISA ODROID-C1+ 3.41 s 13.25 J 45.17 Js
ODROID-C2 1.51 s 8.00 J 12.08 Js
Xeon 0.30 s 14.77 J 4.41 Js
Xeon (capped) 0.41 s 10.74 J 4.39 Js

4.2.1 NAS Parallel Benchmarks Single-Zone Tests

In this section, a selection of test results of separately executing IS, EP, CG, MG, and FT on single nodes
is presented and evaluated. It was observed, that the problem class size had no significant impact
on how the nodes performed compared to each other. Therefore, only the results of single-zone
benchmarks configured with problem-size class A are presented in this section. All of the results
referenced in this section are listed in Table 4.2.

Energy Consumption

The initial goal was to find benchmarks that can be executed on the ODROIDs consuming less
energy than being executed on the Xeon system, disregarding the difference in execution time. This
search was successful: certain problem sizes of benchmarks could be executed on the ODROIDs with
reduced energy consumption. In particular, the execution of EPA, MGA, and ISA consumed 42–56 %
less energy on the ODROID boards than on the Xeon. The energy consumption results of tests
on single-zone NPBs with class A are visualized in Figure 4.2. Enforcing power caps on the Xeon
always improved its energy efficiency, reducing the difference to 13–43 %, allowing the Xeon to
catch up to and sometimes (e.g., in the case of MGA) even match the energy efficiency of one of the
ODROIDS – but never both. Therefore, focusing only on energy efficiency, a heterogeneous cluster
could potentially benefit from employing low-power boards, such as the ODROID family.
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Execution Time

Pure energy efficiency at the cost of execution time might not be desired, especially in the context of
HPC. The ODROIDs required significantly more time to execute all of the investigated benchmarks.
In the case of EPA, MGA, and ISA, execution on the ODROIDs took between 5x (ISA) and 10.1x
(MGA) longer than on the uncapped Xeon, comparing only the execution time of whichever ODROID
consumed less energy. Enforcing power caps on the Xeon reduced the gap in execution time: now
execution on the ODROIDs only took between 3.7x (ISA) and 9.7x (MGA) longer than on the capped
Xeon. Still, a significant difference in execution time remains, favoring the Xeon. Therefore, the
ODROIDs are only valid choices for a cluster if the increased execution time is acceptable.

Energy–Delay Product

As listed in Table 4.2, the difference in EDP values between the ODROIDs and the Xeon changes
greatly for each of the investigated benchmarks. In general, the ODROID-C2’s increased processing
power resulted in EDPs significantly closer to the Xeon’s results compared to the ODROID-C1+’s; the
only exception is CGA, where the ODROID-C1+’s EDP was only 7.6 % higher than the ODROID-C2’s.
However, even the ODROID-C2’s EDPs – ignoring benchmarks where the ODROIDs were less energy-
efficient – are 2.75x (ISA) to 5.15x (MGA) higher than the Xeon’s EDPs. Therefore, the ODROIDs can
only be valued higher than the Xeon if energy efficiency is weighted significantly higher than time.
The formula for the EDP with energy weightings is the following:

EDPwE
= texecution ∗ EwE

consumed (4.1)

texecution represents the execution time, Econsumed represents the consumed energy, and wE represents
the energy’s weighting. To highlight the difference in weightings required: even for the results of
ISA – which has the smallest difference in EDPs between ODROID-C2 and the capped Xeon – at
least weighting the energy value to the power of five is required to favor the ODROID-C2. However,
comparing the EDPs of the ODROID-C2 and the uncapped Xeon, weighting the energy value to the
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power of three is sufficient to favor the ODROID-C2. The difference in EDP values for increasing
energy weightings is visualized in Figure 4.3.

To summarize, it was discovered that EPA, MGA, and ISA could be executed more energy-efficiently
on at least one of the ODROID boards compared with the Xeon system. However, both the execution
time and the EDP resulting from executing the listed benchmarks on the ODROIDs are significantly
worse than on the Xeon system. Therefore, energy efficiency needs to be weighted significantly
higher than performance to benefit from extending a cluster with the ODROID boards. The results
of tests on the remaining multi-zone benchmarks BT-MZ, SP-MZ, and LU-MZ are presented and
evaluated in the next subsection.

4.2.2 NAS Parallel Benchmarks Multi-Zone Tests

In this section, a selection of test results of separately executing BT-MZ, LU-MZ, and SP-MZ on single
nodes is presented and evaluated. All of the results referenced in this section are listed in Table 4.3.
The goal was the same as in the previous section: finding benchmarks that can be executed on the

Table 4.3 – Execution time, energy consumption, and EDP of multi-zone class W/A NPB on
different nodes

Benchmark Node Threads Execution
Time

Energy Consump-
tion

EDP

BT-MZW ODROID-C1+ (4 1) 15.51 s 64.55 J 1000.98 Js
ODROID-C2 (4 1) 7.22 s 34.24 J 247.33 Js
Xeon (4 1) 0.88 s 58.65 J 51.75 Js
Xeon (capped) (4 1) 1.44 s 46.06 J 66.33 Js

LU-MZW ODROID-C1+ (2 2) 17.81 s 72.91 J 1298.56 Js
ODROID-C2 (2 2) 7.81 s 41.99 J 327.78 Js
Xeon (8 1) 0.48 s 32.24 J 15.35 Js
Xeon (capped) (8 1) 0.81 s 26.25 J 21.27 Js

SP-MZW ODROID-C1+ (2 2) 12.71 s 50.96 J 647.67 Js
ODROID-C2 (2 2) 6.84 s 36.25 J 247.85 Js
Xeon (8 1) 0.38 s 26.96 J 10.27 Js
Xeon (capped) (8 1) 0.63 s 20.55 J 12.95 Js

BT-MZA ODROID-C1+ (4 1) 192.13 s 719.90 J 138.31 kJs
ODROID-C2 (4 1) 78.06 393.64 J 30.73 kJs
Xeon (4 2) 8.68 s 654.83 J 5.68 kJs
Xeon (capped) (4 2) 14.71 s 477.97 J 7.03 kJs

LU-MZA ODROID-C1+ (4 1) 197.73 s 827.81 J 163.69 kJs
ODROID-C2 (1 4) 119.81 s 673.52 J 80.69 kJs
Xeon (2 4) 5.33 s 362.22 J 1.93 kJs
Xeon (capped) (2 4) 8.14 s 271.32 J 2.21 kJs

SP-MZA ODROID-C1+ (2 2) 174.91 s 746.32 J 130.54 kJs
ODROID-C2 (2 2) 99.29 s 545.92 J 54.20 kJs
Xeon (4 2) 7.67 s 367.95 J 2.82 kJs
Xeon (capped) (4 2) 10.92 s 299.00 J 3.27 kJs
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ODROIDS with increased energy efficiency compared to execution on the Xeon system. However,
the multi-zone versions of the NPB introduce another pair of configuration parameters that can be
adjusted individually for each node and benchmark: the number of outer and inner threads. For the
remainder of this thesis, combinations of outer and inner threads will be referred to in the following
way: (#outer threads #inner threads), for example (4 2).

Effect of Thread Combinations

The exact combination of outer/inner threads noticeably affected the nodes’ energy consumption. An
example: When executing LU-MZA on the Xeon without power caps, the thread combination with the
best result (2 4) consumed 24 % less energy than the combination with the worst result (2 1). Limiting
the thread combinations to a total sum of exactly eight threads, the best combination (2 4) still
resulted in 10 % less energy consumption than the worst combination (8 1). The consumed energy
per investigated thread combination is visualized in Figure 4.4. However, the thread combination
producing the best results on any of the given nodes changed for each benchmark, and in some
cases even for each problem class. For example, the most energy-efficient thread combination for
the execution of SP-MZW on the Xeon was found to be (8 1), but for the execution of SP-MZA it was
found to be (4 2), as shown in Table 4.3. Therefore, determining the optimal number of outer
and inner threads is necessary to achieve the most energy-efficient execution for each combination
of benchmark, problem-size class, and executing node. All results presented after this point were
selected to feature the most energy-efficient combination of outer and inner threads, as noted in the
column “Threads” in Table 4.3.
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Figure 4.4 – Influence of thread numbers on energy consumption for LU-MZA, which was
executed on the Intel Xeon
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Figure 4.5 – Energy consumption of nodes executing multi-zone class W NPB

Comparison of Energy Consumption, Run-Time, and Energy–Delay Product

The specific energy-consumption values for the execution of BT-MZW/A, LU-MZW/A, and SP-MZW/A are
compared in Figure 4.5 and Figure 4.6, respectively. It was observed that, even with the most optimal
configuration, the ODROID-C1+ always consumed more energy and required significantly more time
than the Xeon – both with and without active power caps. Therefore, the ODROID-C1+’s test results
are not further evaluated in this section. However, the ODROID-C2 was more energy-efficient than
the Xeon – even with the most energy-efficient power cap enforced – for the execution of BT-MZW and
BT-MZA. In the case of BT-MZW, the ODROID-C2 consumed 41.6 % less energy than the uncapped
Xeon, and 25.7 % less than the power-capped Xeon. For the execution of BT-MZA, the ODROID-C2
required 39.9 %/17.6 % less energy than the uncapped/power-capped Xeon. However, considering
execution-time differences and the resulting EDPs, results similarly unfavorable for the ODROID-C2
as in Section 4.2.1 were observed. Even for the execution of BT-MZW/A, the ODROID-C2’s EDPs were
between 3.7x and 5.4x higher than the Xeon’s. Therefore, the same condition as in Section 4.2.1
needs to be fulfilled: the energy efficiency needs to either be the only criteria or, at least, weighted
significantly higher than the execution time to prefer the ODROID-C2 over the Xeon. No further
benchmarks/problem-size classes were found where the ODROID-C2 was more energy-efficient.

4.2.3 Summary of Single-Benchmark–Execution Test Results

Concluding the presentation and evaluation of test results in the previous subsections, it was observed
that EPA, MGA, ISA, and BT-MZW/A could be executed between 13 % and 56 % more energy-efficient
on at least one of the ODROID boards than on the Xeon system. Enforcing power caps on the Xeon
resulted in reduced energy consumption, but did not allow the Xeon system to match the respective
ODROID board’s energy efficiency. However, the improved energy efficiency of the ODROID boards
comes at the cost of significantly increased execution time compared to the Xeon system. Comparing
the nodes’ resulting EDPs, it was observed that the ODROIDs’ EDPs were 2.75x to 5.4x higher than
the Xeon’s EDPs for the benchmarks that could be executed on the ODROIDs with reduced energy
consumption. Therefore, energy efficiency needs to be valued significantly higher than execution
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Figure 4.6 – Energy consumption of nodes executing multi-zone class A NPB

time to favor the ODROIDs over the Xeon. It was observed that weighting the consumed energy at
least to the power of five favors the ODROID-C2 over to the capped Xeon, whereas weighting the
consumed energy to the power of three is sufficient to favor the ODROID-C2 over the uncapped
Xeon. Additionally, in case of the multi-zone NPB, selecting the correct combination of outer and
inner threads for each benchmark and node was found to improve the energy efficiency as well.

With the help of the observations presented in this chapter, the modified scheduling and resource
manager SLURM-HC was able to improve the node selection and benchmark configuration processes.
How this improved the energy efficiency of the evaluated cluster for the execution of jobs consisting
of multiple benchmarks is evaluated in the following section.

4.3 Multi-Benchmark Parallel Execution Tests

In this section, the results of tests in which jobs consisting of multiple benchmarks were executed
on the evaluation cluster are presented and evaluated. Specifically, it was investigated if utilizing
the knowledge gained through the tests detailed in Section 4.2 could improve the cluster’s overall
energy efficiency. Which benchmarks were chosen and how they were submitted to the cluster is
detailed in the following subsection.

4.3.1 Benchmark Set Components & Submission Method

Multiple benchmarks were submitted to the cluster in parallel using a number of threads, each
requesting the execution of their own set of benchmarks in a consistent, deterministic order. The

Table 4.4 – Distribution of evaluated benchmarks to three parallel submission threads

Benchmark-Set Thread1 Thread2 Thread3

sz-load 1x EPA 1x MGA 16x CGA

mz-load 2x BT-MZW 2x LU-MZA 1x BT-MZW
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parallel submission was realized by utilizing the GNU parallel shell tool [46] to distribute the set of
to-be-submitted benchmarks to three distinct threads. The number of threads was selected to equal
the amount of available nodes, preserving the deterministic order of submission by preventing race-
conditions between multiple threads after one of the benchmarks finished execution. Utilizing GNU
parallel, the order of executed commands per thread is guaranteed to be deterministic. Therefore,
the results of multiple test runs can be combined to calculate averages for execution time and
energy consumption.

The execution of two different sets of benchmarks was tested: a single-zone NPB set called
sz-load and a multi-zone NPB set called mz-load. sz-load consists of one EPA, one MGA and sixteen
CGA benchmarks; mz-load of three BT-MZW and two LU-MZA benchmarks. The exact distribution of
benchmarks to GNU parallel threads is listed in Table 4.4. The specific benchmarks and problem-size
classes forming these sets and the distribution to the threads were chosen to minimize the delay
between the first and last thread finishing if SLURM-HC was responsible for the node selection. In
addition, the specific order of submission was chosen to guarantee that the most energy-efficient
node for each benchmark, based on the results presented in Section 4.2, would be allocated to
the benchmarks by SLURM-HC – with the exception of the single instance of BT-MZW submitted by
Thread3, as listed in Table 4.4, which was executed by the ODROID-C1+. This exception was made
since none of the investigated multi-zone NPB could be executed on the ODROID-C1+ with better
energy efficiency than on the Xeon system – therefore, a benchmark was chosen that required an
execution time on the ODROID-C1+ as close as possible to the total time required for the execution
of the entire mz-load benchmark set.

In the following subsection, the energy consumption, time, and EDP (with the default energy
weighting of 1) results of the evaluation cluster managed by SLURM’s default implementation are
compared to the results of the cluster being managed by the modified version SLURM-HC, which
was presented in Chapter 3, for executing both presented benchmark sets: sz-load and mz-load.

4.3.2 Comparison of Test Results: SLURM vs. SLURM-HC

Before the test results were available, it was assumed that managing the cluster with the help
of SLURM-HC would be more energy-efficient than with the help of SLURM, since SLURM does
not consider the vastly different execution time and energy consumption values resulting from
allocating different nodes to submitted jobs. However, it was unclear how significant the impact
of the modifications implemented in SLURM-HC on both execution time and energy consumption
of the evaluation cluster would be. The results referenced in the following discussion are listed
in Table 4.5 and visualized in Figure 4.7.

sz-load mz-load
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SLURM-HC

SLURM

N
o
rm
a
liz
e
d
E
D
P

sz-load mz-load
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm
a
liz
e
d
E
n
e
rg
y

sz-load mz-load
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm
a
liz
e
d
T
im
e

Figure 4.7 – Comparison of single/multi-zone–test execution time, energy consumption, and
EDP for SLURM and SLURM-HC, normalized to SLURM’s results
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Table 4.5 – Average execution time, energy consumption, and EDP results of benchmark set
tests comparing SLURM and SLURM-HC

Benchmark
Set

Management
Software

Execution Time [s] Energy Consumption [J] EDP [kJs]

sz-load SLURM 20.68 797.04 16.48
SLURM-HC 15.28 544.72 8.32

mz-load SLURM 260.3 4,912.99 1278.85
SLURM-HC 19.2 771.35 14.81

The results of a series of tests on sz-load managed by either SLURM or SLURM-HC show
that by utilizing SLURM-HC, on average 26 % time and 32 % energy could be saved compared to
utilizing SLURM. Therefore, SLURM-HC’s EDP was only half as high as SLURM’s EDP, representing
a significant gain of performance and energy efficiency.

However, comparing this gain to the difference in EDP resulting from tests on mz-load showcases
how inadequate SLURM can – under certain conditions – be for the management of a heterogeneous
cluster: on average, using SLURM-HC resulted in 93 % less execution time and 84 % less energy
consumption than utilizing SLURM. As a result of these immense differences in both time and energy
consumption, SLURM-HC’s EDP was 98.84 % smaller than SLURM’s EDP, completely overshadowing
the EDP gain observed for sz-load.

4.3.3 Discussion

As presented in the previous subsection, SLURM produced significantly worse results for mz-load
than for sz-load. Therefore, the potential reasons for the difference between the results are
investigated in this subsection.

1st Reason: Configuration of Thread Numbers

Based on the fact that SLURM’s results for mz-load are significantly worse than the results for
sz-load, the assumption that executing the multi-zone versions instead of the single-zone versions
of the NPB is inducing this significant difference in results seems natural. Since it was unclear which
node would be allocated by SLURM to each of the executed benchmarks, ensuring that the optimal
number of outer and inner threads is added to the benchmarks’ configurations was impossible.
Therefore, the combination found to be most commonly optimal for BT-MZW and LU-MZA, which –
based on the results presented in Section 4.2.2 – is (4 1), was added to the benchmarks’ configurations
before they were submitted to SLURM. However, executing LU-MZA with the thread combination (4
1) consumed only about 10 % more time and energy than with the optimal combination on both the
Xeon and the ODROID-C1+, and was found to be the most optimal combination for the ODROID-C2
during the tests in Section 4.2. Hence, less-than-optimal thread combinations cannot be the only
reason for an almost 99 % smaller EDP achieved by utilizing SLURM-HC instead of SLURM.

2nd Reason: Difference in Execution-Time–Increase

However, there is another key difference between the benchmarks used in sz-load and mz-load:
results in Table 4.3 show that the ODROID-C1+ took 24x longer than the uncapped Xeon for the
execution of LU-MZA, a total of 189.56 s. In comparison to that, results in Table 4.2 show that the
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ODROID-C1+ in the worst case (CGA) took only 14x, or 8.56 s, longer than the uncapped Xeon.
Therefore, the difference of the increase in execution time – caused by selecting the ODROID-C1+
for the wrong workload – between sz-load and mz-load is only 42 % – still not enough to induce
the immense difference in EDP improvement between sz-load and mz-load.

3rd Reason: Node Selection

Hence, at least one more cause for the difference in EDP improvement had to be found. Investigating
how SLURM allocates nodes to incoming jobs was found to be priority-based. The Xeon always was
the first to be allocated, followed by the ODROID-C1+, and last the ODROID-C2. Comparing this
fixed order to the optimal order of allocation realized by SLURM-HC, and the resulting difference in
allocation of nodes to the single components of the benchmark sets between SLURM and SLURM-HC,
another cause for the difference in EDP improvement was found. A comparison of node allocation
to single-benchmark components between SLURM and SLURM-HC is listed in Table 4.6. In the
case of sz-load, SLURM only mistakenly allocated the Xeon once for EPA and, as a consequence,
the ODROID-C2 once for CGA, resulting in the observed negative impact on the EDP compared to
SLURM-HC. However, in the case of mz-load, SLURM not only mistakenly allocated BT-MZW twice
to the Xeon and once to the ODROID-C2, but also allocated LU-MZA once to the ODROID-C1+. This
wrong allocation alone increased the expected total consumed time for executing mz-load by the
previously calculated 189.56 s, almost 10x as much as the total time consumed utilizing SLURM-HC.
Since the energy consumption of all nodes was recorded for the entire duration of the set’s execution,
suddenly both the Xeon’s and the ODROID-C2’s idle energy consumption immensely impacted the
total energy value.

Concluding Discussion

However, in the context of realistic HPC scenarios, leaving a node idle for prolonged periods of time
appears to be a waste of performance. Therefore, it is assumed that an HPC cluster’s nodes will not
remain idle for long. Hence, ignoring the additional energy consumption of idle nodes caused by
increased total execution time, the improvement of energy efficiency observed during the tests on
sz-load appears to be more realistic. However, the benchmarks were submitted in an order which

Table 4.6 – Comparison of node allocation to components of benchmark sets between SLURM
and SLURM-HC

Benchmark-Set Thread1 Thread2 Thread3

Manager Allocated Node Allocated Node Allocated Node

sz-load 1x EPA 1x MGA 16x CGA

SLURM-HC ODROID-C2 ODROID-C1+ 16x Xeon
SLURM Xeon ODROID-C1+ 1x ODROID-

C2, 15x Xeon

mz-load 2x BT-MZW 2x LU-MZA 1x BT-MZW

SLURM-HC 2x ODROID-C2 2x Xeon ODROID-C1+
SLURM 2x Xeon 1x ODROID-

C1+, 1x Xeon
1x ODROID-C2
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guaranteed that SLURM-HC could always allocate the optimal node to each benchmark. Considering
that it seems improbable that the order of submission will always be optimal for SLURM-HC, the
observed increase in energy efficiency is likely the best-case result achievable by utilizing the version
of SLURM-HC presented in this thesis. To showcase the benefits of utilizing application-induced
energy claims, more realistic job batches consisting of many more workloads should be evaluated.
Considering the energy claims during the process of scheduling, SLURM-HC should be able to
improve the energy efficiency of heterogeneous clusters for larger job batches based on the results
observed in this thesis. However, modifying SLURM’s scheduling logic was not investigated in this
thesis, and therefore remains as a potential topic for future work, as mentioned in Chapter 5.

4.4 Summary

In this chapter, the results of two sets of tests were presented and evaluated, with the goal of
investigating the effect of utilizing the modifications implemented in SLURM-HC on the energy
efficiency of a heterogeneous cluster.

First, the used evaluation setup, including hardware and software components, was presented
in Section 4.1, detailing hardware specifications, benchmark selection and how time and energy
consumption was recorded. Next, the results of the initial set of tests were presented in Section 4.2,
which allowed finding the most energy-efficient configuration and node for each of the investigated
benchmarks. Last, the impact of the modifications implemented in SLURM-HC was presented by
evaluating the results of tests in which multiple benchmarks were submitted to the evaluation cluster
in parallel, and the cluster was either managed by SLURM or SLURM-HC. It was found that for
executing the investigated sets of benchmarks, utilizing SLURM-HC instead of SLURM improved
the cluster’s energy efficiency by at least 32 %.
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5C O N C LU S I O N & F U T U R E W O R K

The goal of this thesis was to improve the energy efficiency of a many-node heterogeneous computing
system by utilizing application-induced energy claims. It was discovered that software designed
for HPC environments has to be adapted to the specifics of a heterogeneous cluster. In particular,
the scheduling and resource-management software SLURM does not incorporate the difference
in energy efficiency and run-time between the different nodes present in a heterogeneous cluster.
Therefore, a modified version of SLURM, named SLURM-HC (as in Simple Linux Utility for the
Resource-Management of Heterogeneous Clusters), was designed and implemented. SLURM-HC
incorporated application-induced energy claims, such as run-time, energy consumption and node
configuration, into the node selection process. The specific energy claims were acquired by evaluating
the results of tests in which a series of benchmarks was executed on all of the nodes present in
the cluster individually. With the help of a subsequent series of tests featuring parallel execution
of multiple benchmarks on the entire cluster, it was observed that utilizing SLURM-HC instead of
SLURM reduced the evaluated cluster’s energy consumption by at least 32 %, and the execution
time by at least 26 %. Therefore, the goal of this thesis was fulfilled.

Future work could further improve the presented software for the management of a many-node
heterogeneous computing system. The energy claims were only used during the selection of available
nodes, but not for the management of the scheduling queue. Utilizing the energy claims, a more
sophisticated scheduling algorithm could be developed that considers the gathered energy claims to
optimize its decisions. Additionally, the energy claims were only recorded a priori. The software
could be extended to verify these claims continuously against data recorded during subsequent
executions of the applications known to the management software. This would also allow energy
claims induced by previously unknown applications to be considered. Supplementing the energy
claims presented in this thesis by adding additional criteria to the node-selection process could
further improve the cluster’s energy efficiency. These criteria could, for example, include the accuracy
of the available data on energy claims. Another possibility would be to extend the heterogeneity of
the cluster by including systems featuring other specialized hardware, such as GPUs. Subsequently,
the effect on energy efficiency induced by extending the heterogeneity could be investigated and if,
respectively how, the scheduling and resource-management software would have to be adapted to
the new hardware types. Last, the workloads investigated in this thesis were executed solely on
a single node. Hence, expanding the variety of investigated workloads by including jobs that are
executed in parallel on many nodes at the same time, and varying the nodes allocated to the job’s
parts could be another topic for future work.
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API application programming interface

ARM advanced reduced instruction set computing machine

CentOS Community Enterprise Operating System
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