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A B S T R A C T

Computing has many applications inducing the deployment of numerous large computer systems,
which require significant amounts of energy, affecting the sustainability of the system and the
supplying power grid. Computer system exhibit sudden changes in power draw, which threaten the
power-grid stability, and the high energy demand requires steady cooling, together causing great
costs. Therefore, a system is presented that obeys power limits, which increases the grid stability,
improves the energy efficiency, which reduces the energy demand and thus the base cost. It also
considers system activity in accordance with electricity prices, which cuts operating costs. The system
achieves this by exploiting heterogeneity in computer systems and purposefully delaying pending
activities. Utilizing heterogeneous processors improves the energy efficiency significantly, while it
allows to adapt to varying power limits. Employing activity delaying allows to shift active times from
periods of expensive electricity towards cheaper periods. Heterogeneous computer systems and
flexible arrangement of activities, allow more ecological and economical operation of computing
infrastructure.
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KU R Z FA S S U N G

Die Datenverarbeitung hat viele Anwendungsgebiete was die Installation von vielen großen Rech-
nersystem zur Folge hat, diese haben einen signifikanten Energiebedarf, welcher wiederum Einfluss
auf die Zukunftsfähigkeit der Anlagen und das versorgende Stromnetz hat. Rechnersystem zeigen
abrupte Änderungen in ihrer Stromaufnahme, welche die Stabilität des Stromnetzes gefährden und
der hohe Energiebedarf erfordert beständige Kühlung, was zusammen große Kosten verursacht.
Daher wird ein System präsentiert, das Leistungsgrenzen einhält, was die Netzstabilität erhöht, die
Energieeffizienz verbessert, was den Energiebedarf und damit die Grundkosten reduziert, welches
ferner den Systembetrieb in Einklang mit Stromkosten betrachtet, was die Betriebskosten vermindert.
Das System erreicht dies durch Ausnutzen von Heterogenität in Rechnersystemen und zielbewusstes
Verzögern von ausstehenden Aktivitäten. Das Ausnutzen von heterogenen Prozessoren verbessert
deutlich die Energieeffizienz und gleichzeitige erlaubt es sich an schwankenden Leistungsgrenzen
anzupassen. Das Einsetzen von Aktivitätsverzögerungen erlaubt das Verlagern der Betriebszeit von
Zeiträumen mit hohen Stromkosten hinzu günstigeren Zeiten. Heterogene Rechnersysteme und
elastisch Anordnung von Tätigkeit erlauben ökologischeren und wirtschaftlicheren Betrieb von
Datenverarbeitungsinfrastrukt.
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1I N T R O D U C T I O N

This chapter gives the context and motivation for this thesis, introduces the problems elaborated by
this thesis, and the strategy and approach used to solve the stated problems.

1.1 Context

Information technologies are used in a wide range of applications (e.g., cloud computing, Internet
of things, machine learning). With the wider spread of the computing sector the electrical-energy
demand increases, too [Qia16]. However, a significant amount of energy demand is caused by the
provisioning of increased compute capacity, only utilized during times of peak loads [Bar05].

The higher energy demand of computing systems causes higher thermal dissipation power, which
in turn requires stronger cooling facilities for the computing systems, and becomes an increasing
concern for system operators. Increasing the energy efficiency of computing systems became an
active filed of research, as one solution in order to economically sustain the continuing growth of
information-technology sector [BH07].

Another aspect of this thesis is motivated by the increasing deployment of renewable energy
sources (e.g., wind turbines and solar panels) into the power grid. This trend poses new challenges
for the grid operators, which have to maintain the grid stability (i.e., the equality between power
generation and demand), caused by the volatility of the renewable energy generation, originating
from natural fluctuations [IA09]. These fluctuations induce strong variations of the electricity price
depending on the availability of renewable power in the grid [Ree17].

1.2 Problem Statement

This thesis elaborates three power-related concerns for operators of current and future large-scale
compute clusters, in order to propose a solution for these: Power-grid stability, energy-demand
reduction, and electricity-price considerations.

First, large over-provisioned server clusters (i.e., servers dimensioned for peak load) are most of
the time utilized between 10 % and 50 % of their available compute capacity [BH07]. Consequently,
at times of peak load the utilization levels rise significantly, causing rapid changes in the cluster’s
power draw. The power grid has to adapted the level of power generation to these changes in power
draw. Since this adaptability is limited, computer systems have to limit their power draw variations,
too, in order to ensure the stability of the power grid and avoid its collapse.

Second, higher energy efficiency reduces the energy demand of systems. This became a major
concern in the sustainability for future compute systems like in exascale computing [Hem10].
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1.2 Problem Statement

Reduced energy demand also affects positively commercial concerns regarding the operation of such
systems [Har+09]. Finally, the increased share of renewable power source, which are subject to
volatile availability, in the power grid have an increased impact on the electricity price, which exhibits
strong price fluctuations in accordance to variations of renewable power output [WS15]. Computer
system operators have to consider these price fluctuations, in order to ensure cost efficiency.

1.3 Strategy

This paper introduces the workload manager Limo1, which is designed to solve the problems given
in the previous section. The following three goals are defined in order to solve these problems:

(1) Operate within a given power limit. A power grid operator can express the manageable
scope of power draw variations, with an upper and a lower power limit. Consequently, Limo
contributes to the grid stability by obeying these limits.

(2) Improve the energy efficiency of the cluster operation. This includes especially the reduction
of the energy demand for the executed workloads.

(3) Monitor the current electricity price and reduce operational electricity cost by preferring
workload execution during times of lower electricity prices.

The proposed workload manager implements a strategy based on the extensive incorporation
of heterogeneous execution hardware, the employment of power caps on the hardware, and the
shifting of load peaks by selectively delayed execution.

Heterogeneous hardware components within a system can significantly increase the energy
efficiency, and thus being already deployed in a variety of systems, for example all of the 19 first
entries in the Green500 list from November 2017, which rearranges the TOP500 list of the worlds
most powerful computer systems by energy efficiency, contain heterogeneity through an additional
accelerator processor such as an graphics processing unit (GPU) [Wan+17; Pro17a]. Beside increasing
the energy efficiency, heterogeneous hardware components have different power-draw levels, which
allows to obey a given power limit by utilizing the component that exhibits a power draw that lies
within the power limit.

Enforcing a software power cap on a processor increases the power efficiency further [Wan+17].
Selectively delaying the execution of jobs allows, on one hand, to further comply with power limits
since job with can not be executed at the given time of submit due to spent power contingent by
other job executions, might be possible at a later point in time. On the other hand, job-execution
delaying can be used to migrate execution from times of high electricity prices to times with lower
electricity prices.

1.4 Overview

This thesis is split into five chapters. The first and current presents the introduction of the thesis, the
second explains the background knowledge for the thesis, the third introduces the Limo concept and
describes the two implementations, the fourth presents the evaluation results of three conducted
experiments, and the last chapter draws an conclusion of this thesis.

1Limo is a German short term for lemonade, drawing an analogy to the workload manager SLURM, because its name is a
lemonade like beverage in fictional world of Futurama [YJG03]. Limo is also the Esperanto word for limit, which highlights
its awareness for power limits opposing to SLURM.
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1.5 Publication

1.5 Publication

This thesis contains research results of the following paper, which have been published in a peer-
reviewed workshop:

[Hön+18] Timo Hönig, Christopher Eibel, Adam Wagenhäuser, Maximilian Wagner, and Wolfgang
Schröder-Preikschat. “How to make profit: Exploiting fluctuating electricity prices
with Albatross, a runtime system for heterogeneous HPC clusters.” In: Proceedings of
the 8th International Workshop on Runtime and Operating Systems for Supercomput-
ers (ROSS ’18). ACM. Tempe, AZ, USA, 2018, pp. 1–9.

In [Hön+18], I contributed the implementation of one prototype and its evaluation for the paper.
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2B A C K G R O U N D

This chapter provides the background knowledge such as terminology and introduces the conven-
tional concepts, which are the base of this thesis. Followed by the discussion of related work.

2.1 High Performance Computing

High performance computing (HPC) means any sort of computing which involves higher execution
power then a single machine can provide. Therefore, HPC involves computing on a number of
physical machines. This compound is called a cluster, and each machine a node. The following
introduces terminology and

2.1.1 Workload Semantic

Many different domains make use computations (e.g., cryptography, physics simulation, web ser-
vices). And those different applications have different characteristics and requirements. For instance,
physics simulations are rather compute intensive and long running tasks. Whereas, web services are
on average less demanding but require fast responses. Therefore, essentially two operation modes
based on the application can be differentiated:

(1) Batch operation, where each task takes quite long, but are more flexible regarding the duration
until the job finished.

(2) Interactive operation, where each task needs less time and resources, but responses are expected
nearly immediately.

The batch operation might be considered the prevalent operation mode in HPC, since it is suited for
heavier jobs, while the interactive operation prevalent in web oriented applications.

2.1.2 Workload Managers

Because HPC requires a lot of compute power one single computer is not sufficient for larger
applications. Therefore, multiple machines are employed in order to rise the compute power. Each
machine is called a compute node or just node. While all machines together are referred to as a
cluster. The cluster is supposed to work as if it were one single powerful machine. So all nodes need
to work somehow together. This collaboration in turn requires organization of the nodes in the
cluster. One approach is to instate one machine—a master node, which take the task of managing
the others (e.g., by distributing incoming work among the compute nodes).

5



2.1 High Performance Computing

The software performing the management of a cluster is called a workload manager. It is a
distributed system running on all nodes, while usually the the master node takes a special role in
the system which makes it a centralized distributed system. Formally, the workload manager is a
program which takes as input a executable (a job) which is then executed by the system and finally
returns the result of it (e.g., the standard output stream). The core feature of such a system is to
distribute with constraints (e.g., number of compute nodes, amount of memory, hardware type)
the given jobs among the available compute nodes. However, if the constraints can be fulfilled,
there might remain a lot of options how, when, where to execute the job. These options allow for
optimization of some aspect (e.g., energy efficiency, execution duration).

2.1.3 Benchmark

A benchmark is a reference point for comparing elements. In computing a benchmark is usually a
program, the elements are different computer machines, and the values being compared are for
instance the execution time or the energy consumed during that program execution. One important
point to notice about evaluating benchmarks in computing is, that they commonly measure non-
functional characteristics. It is generally expected that a benchmark would always produce the same
functional result, however regarding floating-point arithmetic the results differ between architectures
because their precision varies [HL04]. Furthermore, computer systems are today complex systems,
designed to maintain only functional aspects. Therefore, non-functional aspects are subject to very
high variations caused by a variety of sub systems and events. These variations are called system
noise, because it appears as a noise in the evaluation data caused by the operating system [Tsa+05].

2.2 Programming Paradigms

In HPC applications a variety of programming languages and addition to existing programming
languages have been developed. One might say that one of the earlier HPC languages is Fortran, as
is a language developed to be used for solving numeric problems, which still occupy a large use-case
for HPC systems. Despite, Fortran in used until today, it no longer widely used. The C programming
language is neither developed for solving numeric problems nor for parallel computing, needed for
todays multi core and many core processors, which also make up HPC clusters. Nevertheless, C
become a quite popular language and is used in many domains. In order to exploit that popularity,
several additions have been developed for the C language.

2.2.1 OpenMP

One such extension of the C programming language is open multi-processing (OPENMP) from the
OpenMP Architecture Review Board. OPENMP is a paradigm which requires support of the C compiler.
But is therefore platform independent like C itself, and even available for accelerators. OPENMP is
intended to simplify the development of parallel applications [Ope13].

2.2.2 OpenCL

Open computing language (OPENCL) instead is a C compatible application programming interface
(API) from the Khronos Group. This means, that no special compiler support like for OPENMP is
required. But instead a special run-time environment on the target system needs to be available,
which is an OPENCL loader and at least one OPENCL driver for an OPENCL capable device [Khr15].
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2.2 Programming Paradigms

An OPENCL application is split into a host code (e.g., normal central processing unit (CPU) binary
utilizing the OPENCL API) and device code or kernel (i.e., the part of the application than is executed
on the OPENCL device). One specialty of OPENCL is that kernel source code must be present for the
application at run-time, because it is just-it-time compiled, which allows OPENCL to be platform
independent [Khr15].

2.2.3 CUDA

Compute unified device architecture (CUDA) from the Nvidia Corporation is very similar to OPENCL
and bases on similar programming paradigm. CUDA applications are also split into host and device
code, however, the device code is compiled in advance. This in turn is possible because only the
GPUs from Nvidia are supported, which is ensured by Nvidia because the CUDA API is proprietary
standard unlike the OPENMP and OPENCL [Nvi18].

However, it exist claims that applications based on CUDA run faster and more efficient on Nvidia
GPUs than the an equivalent application based on OPENCL, and the results presented in this thesis
also show that the CUDA implementations are mostly more energy efficient than the respective
OPENCL implementation.

2.3 Energy

This section introduces terminology related to energy and power.

2.3.1 Energy Efficiency

Efficiency is the avoidance of overhead. Usually used in a graduated sense, and thus the reduction
of overhead. Energy efficiency means therefore the reduction of dissipation power. Since computer
systems run on electrical power, and thus having an energy demand, energy efficiency applies to
them. However, there are plenty of points introducing overhead.

For example, assume a mathematical calculation, which here is the purpose to be carried out.
Since mathematical calculation do not inherently require any energy, all energy used during the
execution of the calculation poses overhead. The energy needed is the electrical energy dissipated by
the hardware machine on which the calculation is carried out. First of all the power supply unit and
every conductor within the machine have a efficiency factor (i.e., a metric of efficiency where 1 is
prefect efficiency and 0 means only overhead) less than 1. Further the CPU requires specific amount
of energy for each instruction carried out. Next, the OS adds additional instructions in order to carry
out is purpose, which however, is overhead regarding the actual task. Last, the implementation of
the mathematical algorithm might contain unnecessary instructions adding further overhead.

One application of energy efficiency is to be used in HPC benchmarks, to compare HPC systems
by energy efficiency. In order to compare them, a metric describing energy efficiency is required. A
simple metric is to compare the energy demand of the system required to process the benchmark.
When confronted with multiple benchmarks other metrics are used, which are independent from
the benchmarks such as operations per energy (i.e., Op/J) metric [Har+09].

2.3.2 Power Grid

The power grid the infrastructure that connects the electrical power produces (i.e., power plants)
with power consumers (e.g., computation center). The operator of the power grid is responsi-

7



2.3 Energy

ble for ensuring the grid stability, by balancing the amount of produced and consumed power.
Strong variations in voltage or utility frequency indicate weaken grid stability (see Figure 2.1).
An emerging challenge for the grid operators pose the rising incorporation of renewable energy
sources (e.g., photovoltaics and wind turbines), because there varying availability threaten the grid
stability [IA09].

(a) Central Europe (b) Great Britain

Figure 2.1 – Variation of utility frequency over 48 hours for two european countries [Wik11].
Shows differences in the grid stability.

2.3.3 Energy Management

Energy or power management is a hardware feature of electronic systems such as computer. It
is intended to reduce the power draw and/or energy demand of the system. This is achieved by
switching off unused subsystems, entering sleep states (i.e., reducing the activity by slowing the
clock) such as P-states during idle periods. Computer systems provide power management via
the advanced configuration and power interface (ACPI) and advanced power management (APM)
standards. One feature and API that allows fine grain power management for a software application
is Intels running average power limit (RAPL) on x86 CPUs [Int18]. RAPL allows especially to specify
a power cap, which effectively limits the power draw of the CPU. The presented features are all
CPU related, however, GPU manufacturer also implemented power management features. One
GPU-related power-management tool is nvidia-smi for Nvidia GPUs [Nvi16]. It support voltage and
frequency scaling as well as power caps. However, the Nvidia Quadro P2000 used is the evaluation
of this thesis did not implement all the power-management features supported by nvidia-smi, and
only frequency scaling is available.

Further concepts in the domain of energy or power management are dynamic voltage scaling
(DVS), dynamic frequency scaling (DFS), and the combined dynamic voltage and frequency scaling
(DVFS). These concept propose to variate the voltage and frequency of a processor at run-time, in
order to adapt the processor performance to the current needs of running application. Consequently,
these concept are implemented in software at OS level (called power governor under Linux), or at
application level. The implementations using feature offered by ACPI, APM and RAPL.

8



2.3 Energy

2.3.4 Power Limit

In contrast to a power cap from the previous section, a power limit is constraint for subject system.
It is specified as a power value L. The subject system is required to have a power draw P, which is
below the specified value such as P  L.

2.4 General Terms

This section introduces further terminology and concepts.

2.4.1 Heterogenety

Heterogeneity in computer systems is a rising phenomenon. An increasing amount of systems
incorporate heterogeneity for various reasons (e.g., to conserve energy or to optimize particular
tasks). There are essentially two sorts of heterogeneity: 1) systems consisting of nodes with the
same architecture but different compute power such as ARM big.LITTLE [ARM13], 2) systems
consisting of nodes with different architectures (e.g., CPU and GPU). There are different scopes of
heterogeneity: 1) system scope, 2) component scope. 3) configuration scope.

2.4.2 Client–Server Model

Take two machine and put a conductor between them, call the first server and the second client.
Now the client issues a request via the conductor and the server replies. We shall call this the
client–server model. A common protocol used today is transmission control protocol (TCP) which is
placed in the transport layer of the international organization for standardization (ISO) open systems
interconnection (OSI) network model and hence usable for applications. The other protocols used in
that network stack involves Ethernet, internet protocol (IP) and said TCP.

2.4.3 Weak Symbol

Weak symbols in programming are a way of declaring optional symbols within a program. Programs
and object files (i.e., a compiled C module) such as executable and linkable format (ELF) files contain
symbols. Symbols similar to functions and variables in C are either declared (e.g., an extern global
variable in C) or defined (e.g., a function with body). If defined, a symbol contains an arbitrary
value such as the memory address of a variable, or if declared, the symbol is required from another
object file, but might be used as if locally defined.

In order to be executable, all declared symbols of program must have exactly one definition.
However, weak symbols have here a different semantic: weakly defined symbols might be overridden
by a strong symbol (any non-weak symbols), and a weakly declared symbol does not need to have any
definition, and defaults to zero. The latter can be used to declare an optional feature (e.g., a function)
and test at runtime if the address of the feature is zero (i.e., not present) or not (i.e., available).

2.4.4 Quality of Service

Quality of service is the ‘totality of characteristics of a telecommunications service that bear on its
ability to satisfy stated and implied needs of the user of the service’, as defined by the ITU [ITU08].
This means that QOS is the accumulation of service characteristics which has significance to the user
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(e.g., duration until the end of execution). This thesis will especially consider QOS such as energy
demand of the execution and power draw exhibited during the execution of an job.

A user of a service with QOS would state (explicitly or implicitly) levels of quality (e.g., an
maximum amount of energy which might be used for the execution and the latest point in time the
execution should finish). Such a statement is called QOS requirements of user.

2.5 Related Work

This section presets the research conducted prior to this thesis and discuses the differences and
improvement of this thesis over the previously conducted work.

Lin et. al. presented user-driven frequency scaling (UDFS), which is driven by the user feedback,
and process-driven voltage scaling (PDVS), which is driven by recorded optimal voltages for CPU
given frequency and temperature. This work requires direct manual user input, which is assumed
to be a burden for the user. Instead, this thesis proposes an automated system which requires no
manual input at run-time [Lin+09].

Meisner et. al. proposed the approach PowerNap, which reduce the energy demand of servers by
switching them off, while no clients are using the respective server. This approach can only exploit
true idleness of a single machine. In contrast, the approach of this thesis utilizes gradual methods
(e.g., Intel’s RAPL), which allows to reduce energy demand at arbitrary level of machine utilization,
even during full load [MGW09].

Mei et. al. conducted an elaborated impact analysis of GPU voltage and frequency scaling on the
application execution. This analysis is very similar to the first experiment of this thesis. However,
there are discrepancies in the results. Notable, Mei et. al. report impact of memory frequency scaling,
which on the contrary, was not observed in the experiment of this thesis. An additional difference
is the evaluated hardware, Mei et. al. evaluated a Nvidia GTX980 and GTX560Ti, whereas this
thesis evaluates a Nvidia Quadro P2000. Finally, this thesis focuses on exploiting results instead of
analyzing them in great detail [MWC17].

Wang et. al. presented a benchmark suit, which bases significantly on the Rodinia suit also
evaluated in this thesis, and use it evaluate different processor including an ARM Cortex-A53, which
is also evaluated in this thesis, an Intel Xeon E5-2630v3, which is similar to the Xeon evaluated in
this thesis, and a Nvidia GTX980 like Mei et. al. did. Wang et. al. evaluated the energy demand
for these system during execution of their benchmark suit. Additionally, they evaluated the impact
of thread counts on the CPUs and frequency scaling on the GPUs. This paper researches similar
characteristics as the first two experiments of this thesis, however, the same discrepancies regarding
the GPUs as compared to the results of Mei et. al. are shown. Further, this thesis evaluates the
impact of power caps on the Xeon CPU [Wan+17].

Feature Tivoli Moab Univa SLURM SLURM-HC LIMO

Job pinning 7 7 3 3 3 3
CPU allocation 3 3 7 3 3 3
Quality of service 7 3 3 3 3 3
Generic resources 7 3 3 3 3 3
Cluster status 3 3 3 3 3 3
Heterogeneity aware 7 3 3 7 3 3
Power/price aware 7 7 7 7 7 3

Table 2.1 – Comparison of different workload managers [Hön+18].
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Table 2.1 table the feature set of Limo compared with four other workload managers. Trivoli
shows the least feature set is not further discussed, in favor of the workload managers with richer
feature set. Commercial workload managers such as Univa Grid Engine [Uni18] and Moab [Ada18]
are already prepared for heterogeneity support, however, in contrast to Limo, they do not take power
or energy demand into consideration.

The SLURM workload manager by Yoo et. al. served as inspiration for Limo, thus both workload
manager share many features and concept, as well as the similarly named SLURM-HC by Wagner.
Wagner extended the feature set of SLURM by heterogeneity awareness. Limo further add power
and price awareness into the workload management [YJG03; Wag17].

In summary, the basis of this thesis are already covered in the scientific community and parts of
the presented experiments were already conducted before. Though, the innovation of this thesis is
the combination of these primary results and the further exploitation of them to obey power limits
and to direct electricity-price aware operation.
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3D E S I G N & I M P L E M E N TAT I O N

In this chapter, the concept and prototype implementations of Limo are described. The first section
starts to outline how workload managers work in general and continues with the approach of Limo,
which considers energy efficiency aspects, power limits and price awareness. In order to achieve
this, Limo requires additional information. One way to provide them is to generate them in advance.
Section 3.2 describes a prototype implementation of a generator for profile data in the domain of
interactive applications. The last section (Section 3.3) puts the pieces of this chapter together. It
presents the prototype implementation of an HPC-suitable workload manager for batch applications,
which concentrates on power awareness and price awareness.

3.1 Limo

Workload management is the distribution of jobs over a compute-node cluster in accordance with a
set of constraints (i.e., QOS requirements of user) (see Section 2.4.4). As explained in Section 2.1.2,
after taking the constraints into account, the workload manager still has some degrees of freedom
for distributing a job. This freedom allows to select a node regarding special criteria and thus
optimizing the operation along that criteria. Contemporary workload managers already implement
some optimization goals such as minimizing execution time through preferring the most powerful
nodes first, or increasing load balancing by giving each node the same amount of work.

However, common workload managers allow only to select constraints out of a predefined set,
which rarely includes a power limit (see Section 2.3.4. Similarly, workload managers which allow
to optimize operation towards better energy efficiency are quite rare, as well as the awareness
for heterogeneity (see Section 2.4.1) within the cluster. Therefore, the concept of the workload
manager Limo is introduced, which is well aware of the cluster heterogeneity, and exploits it in
order to improve energy efficiency in accordance to a given global power limit (see Section 2.3.4).

The combination of heterogeneity, energy and power awareness is quite reasonable. First,
heterogeneity in computer systems is a rising phenomenon. An increasing amount of systems
incorporate heterogeneity for various reasons (e.g., to conserve energy or to optimize particular
tasks). There are essentially two sorts of heterogeneity: 1) systems consisting of nodes with the same
architecture but different compute power (e.g., ARM big.LITTLE [ARM13]), 2) systems consisting
of nodes with different architectures (e.g., CPU and GPU). Second, such heterogeneity is a notably
good base for improving energy efficiency and maintaining a power limit. This is because as shown
in Section 4.3, the same task has different execution times and different power draws on diverse
hardware, which means it consumes different amounts of energy. Also the same hardware is variously
utilized by diverse tasks, which causes the hardware to draw varying amounts of power.
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Knowing the impact of heterogeneous compute nodes, Limo optimizes energy efficiency by
selecting the best compute node for each given job. This requires detailed information about the
characteristics of the expected jobs, hardware, and the results of running the one on the other.
Therefore, Limo maintains a profile database about the energy demand and time consumption of
previous job executions.

3.1.1 SLURM Workload Manager

Limo is a specialized workload manager, which concentrates on energy aspects (e.g., obey power
limits, improve energy efficiency). Section 2.5 presents several contemporary general-purpose
workload managers. SLURM is one of them which has a quite rich feature set and is open-source
software (OSS), which makes it ease to work with, and hence, SLURM is chosen as base for Limo,
which essentially extends its feature set. In order to introduce to the fundamentals of Limo’s concept,
the core components of SLURM are presented.

s�urmct�d

s�urmds

srunUser

Figure 3.1 – Overview of SLURM’s components (based on [YJG03]).

SLURM is composed of three core components, which are named after the executable imple-
menting that component. Figure 3.1 shows these components: the job submission interface (srun),
the management unit (s�urmct�d), and the executors (multiple instances of s�urmd). Deployed
as a workload manager of a cluster as introduced in Section 2.1.2, s�urmct�d runs on the master
node, while s�urmd runs on each compute node. srun is either executed on the workstation of the
user or, depending on the deployment, when the user has accesses directly the master node, it is
executed there.

The srun command connects the user with the s�urmct�d process, and manages input and
output forwarding to and from the user. Unlike the other executables, srun is an ad-hoc command,
which is just running when the user has currently a job in execution.

On the contrary, s�urmct�d is a daemon processes, which is active all the time and waits for
the submission of jobs. Whenever the user submits a new job with srun, it sends s�urmct�d the
specification of the job (e.g., the executable and the constraints regarding its execution). s�urmct�d
then searches for an available compute node which fulfills the given constraints (e.g., hardware
features). If there is no such node, SLURM delays the job until an appropriate node becomes
available. If there are multiple matching nodes, SLURM takes just one of them. And, the job is
transmitted to the s�urmd of the selected node.

The s�urmd daemon of a compute node waits until it receives a job. When it gets one, s�urmd
and srun establish a data connection between each other for input transmission. Then, s�urmd
executes the requested job and sends the result back to the originating srun.

3.1.2 The Limo Components

As earlier discussed, SLURM ignores heterogeneity of the compute nodes. Hence, if SLURM is
used with a heterogeneous cluster (e.g., with nodes of divers compute power), it could lead to
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quite poor job distribution resulting in non-optimal load balance within the cluster (see [Wag17]).
Consequently, SLURM also misses to exploit such heterogeneity to improve energy efficiency and to
maintain a power limit.

Therefore, Limo extends SLURM by three more components which provide the further information
used to improve the job distribution algorithm. First, an energy meter measures the present and
actual power draw of the cluster and provides that information to the master component. Second,
an energy spot-market–price monitor provides the current energy price. Third, a grid power-limit
monitor provides the effective power limit for the cluster.

Master

Slaves

�runUser

Grid
Spot

market

Energy
meter

Figure 3.2 – Overview of Limo’s components.

Figure 3.2 shows the components of Limo. The �run, master, and slaves elements correspond
to the srun, s�urmct�d, and s�urmd elements respectively in Figure 3.1 of SLURM’s components.
Since these executable where prefixed by an S for SLURM and are now prefixed with an L for Limo.
In contrast, the grid, spot market, and energy meter elements represent the introduced components.

The grid and spot-market components are some sort of gateway components, which request
information from some remote resource (e.g., via a web API) and present them to the �master
in a convenient format. The energy meter is a different component, which requires some sort of
additional hardware to perform the measurements, such as an external power meter or a special
CPU which integrates a feature for power measurement such as Intel’s RAPL feature of x86 CPUs,
which enables the CPU to measure its own power draw.

3.1.3 Power-Aware Job Distribution

The major extension by Limo is not directly shown in Figure 3.2, since it is the improvement in the
job distribution algorithm with the additional information provided by the added components by the
implementation in s�urmct�d resulting in Limo’s �master component. This additional information
information is composed of the actual cluster power draw, the power limits, and the energy price.

Power limits have the effect of smoothing the cluster power draw curve, because narrow limits
would not leave the space for too strong variations. This effect of fewer power draw variations is
essentially good for the power grid because, rapid power draw variations threaten its stability. The
power grid operator has the obligation to maintain grid stability, and consequently, the operator
has to encourage his subscribers to minimize their variations (e.g., by providing power target and
penalty zones). Computer systems, however, usually exhibit rapid power variations and large-scale
clusters have a significant power draw, which impacts the grid stability. Limo takes such a power
target zone as high and low power limit and tries to stay within those limits. Figure 3.3 visualizes
this concept.
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Figure 3.3 – Dynamic power limits forming penalty zones [Hön+18].

Further, power grids (see Section 2.3.2) with a significant amount of renewable power sources
are subject to high supply fluctuations, originating from power plants such as photovoltaics and
wind turbines, which rely on the presence of sunshine and wind flow, respectively, which in turn are
subject to natural fluctuations (see Section 2.3.2). Some power grids allow energy to be traded at
a spot market, where supply fluctuations result in varying energy prices. Computer clusters with
relaxed job deadlines can exploit these price variations. Hence, Limo shifts job execution towards
times of lower energy cost by best effort.

Considering the energy price and power limits, Limo uses the following job distribution algorithm.
Figure 3.4 outlines the algorithm: when Limo receives a new job, it looks for available compute
nodes which fulfill the stated constraints of the job. If there is no such node, the job gets enqueued
and the processes starts later (e.g., when a slave finished executing a job) again. If one or more
possible nodes were found, then depending on the energy price either the node with the lowest
energy demand or the node with the shortest execution time for the given job is selected. Then
Limo tests if the power draw of the system together with the expected additional power draw would
still conform to the present power limits. The expected power draw is estimated from the recorded
power data of previous executions of that job on the selected node’s hardware. If the power limits
would stay satisfied, the job is forwarded to the compute node and executed. If the power limits
would be violate, the job is enqueued and the process is tried again later.

The reason for the decision to either dispatch a job on the most energy-efficient compute node
or the fastest compute node are as follows: On the one hand, when the energy price is high, saving
energy and therefore cost is quiet reasonable. On the other hand, when the energy price is low, the
fastest execution might be preferred to execute as many jobs as possible as long as energy is cheap.

Node Configuration. A further characteristic, especially regarding energy efficiency of a job–node
relationship is how the power management facility (see Section 2.3.3) of a node is configured. This
includes what OS process governor is in use and to what frequency and voltage the computation
unit is tuned to by the mean of DVFS (e.g., with tools like RAPL) (see Section 2.3.3). As Section 4.2
shows, GPU DFS has an impact on the duration and power draw of the execution and as Section 4.3
shows, DVFS on a CPU has also an impact on the energy efficiency of a complex interactive workload.

High vs Low Power Limit. The job dispatch algorithm of Limo is quite strict about the power
limits, as it is the last check to prevent any limit violation. Anyhow, the test should not be taken
too strict, because if the system is currently below the lower power limit and a small job is about to
be dispatched, it is better to dispatch it even if the system would still draw not enough power, and
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Figure 3.4 – Scheme of Limo’s dispatch algorithm.

thus not meeting this criteria. Therefore, the upper limit is the more important one, and the one
which should be strictly enforced, unlike the lower limit. Nevertheless, the lower limit is an indicator
for Limo to increase its power usage. In order to do so, Limo might rise some power management
values (e.g., increasing a RAPL power limit), or start ad-hoc job if they could be run when needed
(e.g., self-assessment tasks, crypto-currency mining).

Inspecting the power limits further reveals that Limo is just supposed to stay within those limits.
This might be difficult enough assuming a narrow target zone. However, if the target zone is rather
wide, it raises the question whether Limo should rather target for the bottom or the top of the zone.
Just regarding the energy price, the answer is rather simple: target the top during times of low
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energy prices and target the bottom while energy prices are high. On the other hand, it might be
somewhat more complicated in practice, for instance when taking the amount of pending jobs into
account. So if there are many queued jobs during times of high prices it might be still reasonable
to dispatch so many jobs until reaching the high power limit, or if there are just a few jobs while
prices are low, it might be the better choice to stay at the lower power limit, to avoid running out of
executable jobs.

Platform Independence. Giving Limo access to multiple possibilities for dispatching a job helps to
effectively employ Limo. Thus, it is assumed that jobs are platform independent, and can be executed
on any node in the cluster regardless of the architecture of the node. This can be achieved in a number
of ways. One way would be to just package the object code for the different architectures together
into one binary—a so called fat binary [Gor15], this approach allows to directly execute native
executable utilizing all special instructions directly, however requiring to compile the application
explicitly for all available platforms and increasing the size of the executable as many times. An
alternative way to archive platform independence is to use an unified virtual machine, which could
executes a platform-neutral object code on any node [FK97]. The second approach introduces a
just-in-time compilation step which increases run time and might not be as good in utilizing special
hardware features but does not increase the executable size.

This section introduced a concept for a heterogeneous-aware cluster manager which incorpo-
rates power and price awareness, and hence is capable of exploiting varying energy prices while
obeying given power limits. The following section present a prototype program for generating a
profile database necessary for the design and the last section of this chapter present a prototype
implementation of here presented concept.

3.2 Profile Generation

One crucial point for the correct operation of Limo is profile database present at run time for
estimating the power draw of the job execution on compute nodes. While this database can be
extended during operation, it needs first to be initialized. Therefore, this section presents the
prototype implementation of a program, which executes a given job on a specific hardware and
measures the power draw and duration of that execution, which can be used to create such database.

This prototype is specialized to examine interactive workloads (i.e., sets of many short-running
jobs, see Section 2.1.1). To gather reliable data, the prototype needs to exhibit the characteristics of
a benchmark as introduced in Section 2.1.3. The short run times pose a challenge for evaluating
these jobs, because measurements would need to be precisely timed. A common technique to
solve this challenge is to run a job multiple times in a row, which increases the time frame for the
measurement, and the result is the average of these runs, which reduces the impact of system noise.

A speciality of interactive applications (i.e., web servers) is that the system load varies strongly
depending on the number of jobs per time frame (e.g., as a result from the number of users), in
contrast to a batch system, where a single job is usually sufficient to fully occupy the system for a
significant amount of time. The impact of the system load on power draw and energy efficiency in
the job processing is an aspect worth investigating; therefore, the prototype allows to examine the
system at different levels of utilization by considering the number of jobs per time.

In the following, the term workload will be used to refer to one specific set of jobs with only one
type, it is specified by the number, sequence, and input (e.g., a matrix for a matrix-decomposition
job) of the jobs in the set. The prototype is designed to be independent from the type of job, hence
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it is except for the implementation of the jobs’ execution algorithms. The implementation of an
execution algorithm for one job will be called an application.

Next, the general architecture of the prototype is introduced, followed by the presentation
of the client–server communication protocol used (Section 3.2.2), and the details of the client
part (Section 3.2.3) and server part (Section 3.2.4) of the prototype.

3.2.1 Architecture

The software architecture of the prototype bases on the client–server model (see Section 2.4.2),
where the server is the executing part and the client provides the workload, which is entirely
processed during one connection—subsequently called a session. The server handles only one client
at a time, resulting in a one-to-one relationship between client and server, because handling a client
means processing a workload and when handling multiple clients at a time the two processes would
interfere and yield wrong results.

Server

Executor

Application j,v1

Application j,v2

...

Client

Generator

Power Meter

Workload j

Session
TCP

Measurement

Input Creator j

...

Formation

Figure 3.5 – The components of the profile generator prototype.

The motivation for choosing the client–server model is that the system which is measured should
only be occupied with the execution, and the network allows to outsource other tasks such as the
power measurement and job provision. When separating execution and job provision, the jobs need
to be transmitted across the boundary, for which TCP over an IP network is a convenient solution
in the context of client–server architectures, because it is connection based and provides a reliable
stream abstraction on top of IP.

Figure 3.5 shows an overview of the prototype architecture. Summarizing it, there are five
functional units—the modules: executor, applications, generator, power meter, and input creators.
They can be categorized by two characteristics: 1) server and client code—shown from the right to the
left side respectively, and 2) job-specific and job-agnostic code—shown bottom to top, respectively.

The server part represented by the right blue box consists of the executor and applications.
The client side represented by the middle blue box consists of the generator, power meter, and a
workload. The input creators are at the left-hand side of the client. They are not part of the client
scope (blue box), because that scope contains only the relevant components for the client to be
executed where the input creators do not belong to, since they can be run in advance and only a
created workload file is required.

Workload and input creators are indexed with j, because a workload file is specific to one type
of job, and hence requires a proper input creators. The applications are also specific to a type of job
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j and additionally there might be multiple versions (v1, . . . , vn) for the same job type. The other
modules executor, generator, and power meter are generic; that is, they work with any kind of job.

The prototype is mainly implemented in the C99 [ISO99] standard of the C programming
language and the POSIX.1b API [IEE93]. Only the specific application execution modules are
implemented using code written using the _GNU_SOURCE API [Lin17] and one of the three C-based
dialects and APIs: OPENMP, OPENCL, and CUDA (see Section 2.2).

3.2.2 Protocol

The client and server communicate using TCP as transport. Most of the time the client sends jobs
and the server executes them. However, this protocol is not unidirectional because the initialization
and finalization phases require bidirectional communication. This subsection describes the com-
munication protocol between the client side and the server side of this prototype, starting with the
message types and followed by the message sequence required by this protocol.

Listing 3.1 shows the C structures representing the messages used in the communication protocol.
The most frequent message type is the job-transmission message StreamPackage, which contains
the input data for the job executions. The size in the StreamPackage is a signed integer. The
reason for this is that StreamPackage and StreamStatus are actually a union; each transmission
is distingushed by the sign of size or code value, respectively.

Transmissions with negative values are treated as a StreamStatus, thus without an application
invocation. Transmissions containing a positive size value represents consequently StreamPackages,
with a content consisting of as many bytes as size specifies. On special case is a size value of
zero, which is just ignored, because it is assumed that the job processing needs a non-zero–sized
input. The sqn value is a client-specific value, intended for logging and debugging purposes only.

1 struct StreamPackage {
2 uint32_t sqn; // the sequence number of the package
3 int64_t size; // the size of content in bytes
4 char content []; // the app�ication -specific task input
5 };
6

7 struct StreamStatus {
8 uint32_t sqn; // the sequence number of the package
9 int64_t code; // the status code

10 };
11

12 #define STREAM_INIT_NAME_SIZE 0x80
13 struct StreamInit {
14 uint64_t magic; // magic number to guard against random connections
15 uint64_t version; // version number to guard against incompatib�e peers
16 uint16_t app; // the id of the test app�ication to start
17 char name[STREAM_INIT_NAME_SIZE ]; // a custom name for the run
18 };

Listing 3.1 – Connection protocol data

The StreamInit structure is only once transmitted during a session. As the name suggests, it is
used for sending initialization information from the client to the server. It first contains a magic and
a version number which are intended to ensure compatibility between the server and the client.
The magic number is constructed to detect endianness incompatibility between the participants,
which is important because conveniently the host byte order is used in messages. The field app of
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StreamInit is actually the most important value for the purpose of the protocol, it contains the
identifier (ID) of the application module to be used, hence defining the type of the jobs which are
expected to follow.

It is worth mentioning that there are multiple implementations for the same type of job, thus a
job might be processed by different applications, whereas a single application is specific to its type
of jobs. One notable exception is the dummy application, which can process any job, since it just
discards them. Last, the structure contains a session name, which is intended for log-file matching
since the server is supposed to process multiple sessions with possibly different clients. Eventually,
it is used to convey additional application-specific configuration arguments.

Table 3.1 – Protocol status codes

Name Description Type

OK To be ignored Info

ERROR Indicates general error Error
WRONG_VERSION Indicates incompatible peers Error
INVALID_REQUEST Indicates an application ID unknown by the

server
Error

AWAIT_START Signals that the server is ready for the new session Control
ACK_START Marks the server ready to process jobs Control
FINI Introduces the finalization of a session Control
ACK_END Marks the successful end of the session Control

Table 3.1 shows the different code values used in the StreamStatus message. They are subdi-
vided into the three types info, error, and control. The info type consists only of the OK code, which
is essentially a do-nothing operation or no-op. Conveniently, it is encoded as zero and as mentioned
before, this means it represents also a zero-sized package, which in turn is equally ignored. The
second class of status codes are the error codes: ERROR represents any arbitrary error state during
the session, and WRONG_VERSION and INVALID_REQUEST, which both are initialization errors, are
differentiated to give more user-friendly error messages. The final class of status codes are special
control indicators for the session management. The usage of the control codes is shown in Figure 3.6
and explained in the following paragraphs.

The chronological sequence of messages is shown in Figure 3.6. The initiator of the protocol is
the client or more specifically the generator, which starts by opening a connection to the executor
module of the server. Since the executor is designed to process only one client at a time, the
establishment of the connection could take as long as the processing of a preceding client’s session
would take. To minimize inference, the generator waits passively until the executor becomes ready
and sends the AWAIT_START status code. Then, the client creates the StreamInit message and
sends it to the server, which initializes itself for the new session and starts the requested application.
When the initialization has finished, the server answers the client with the ACK_START status code.

Upon receiving the ACK_START status code, the client initiates the time measurement, starts
reading the workload, and transmits the specified jobs with the specified timing (i.e., by waiting
the stated delay before sending it). This process of reading, waiting, and sending is repeated until
the end of the workload has been reached. One may notice that the executor is never responding
to the job execution requests from the client. This is quite reasonable, because the purpose of this
prototype is to measure the energy consumed while processing the workload, not individual jobs.

Furthermore, the client can send with its maximum capacity not required to wait for any response,
if the server dose not acknowledge the processing of a job to the client. This way a single client can
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Figure 3.6 – Profile generator communication protocol.

cause the full utilization of the server. However, if the sever can not keep up with the load from the
client, TCP will employ its flow control mechanism slowing down the client transmission.

Finally, after transmitting the last job, the generator sends the FINI status code to the executor.
After processing all buffered jobs the executor terminates the application and returns the ACK_END
status code to the generator. The generator stops the time measurement on arrival of that status
code, which concludes the session.

3.2.3 Client

The purpose of the client is to send a set of jobs to the executor in a comparable way, hence is should
be a benchmark (see Section 2.1.3), and measure the power draw of the server. This subsection
explains the operation logic of the client, starting with the workload definition, followed by the
client-side processing of the workload, the power measurement and the workload creation.
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Workload Format

In order to cause different utilization levels of the executor, the client includes some delays between
the single jobs of the given workload. However, the concrete specification (i.e., the length and
frequency) of the delays could cause variations between sessions, and consequently different mea-
surement outcomes, which is contradictory to a benchmark. In order to avoid this randomness, the
client expects the workload to be in a particular format (see Production hworkload i of Grammar 3.1),
which explicitly specifies the delays to be made.

hworkload i ::= hpackage i
| hpackage i hworkload i

hpackage i ::= ‘#’ h text i hnl i
| hnumber:delay i ‘:’ hnumber:size i hnl i hbytes(size):content i

hnumber i ::= hdigit i
| hdigit i hnumber i

hdigit i ::= ‘0’ | . . . | ‘9’

hnl i ::= the newline character ascii(10)

h text i ::= any text excluding the newline character hnl i
hbytes(n) i ::= n consecutive bytes

Grammar 3.1 – Workload file format, starting with hworkload i

Production hworkload i is a sequence of hpackage is, of which each is either a comment (first
rule) or a delay–size pair (second rule) followed by job data. The workload file format is primarily
textual, hence each package contains a newline character (hnl i) as mandatory header separator
and the numbers are textually decimal encoded (see hnumber i). The delay of the hpackage i is
specified in microseconds and the size is given in bytes.

The reason for choosing a textual format is that the first job data used were textual, and such a
format allows for easy inclusion of debugging comments, hence, makes textual format a convenient
choice. However, the job data content is counted in bytes and not determined by any internal syntax,
thus allowing non-textual binary-encoded data to be contained.

The generator is application and job agnostic, in spite of the data which is job specific. This is
possible because the size of the data is specified and the generator just needs to forward that data
to the executor. This keeps the algorithm of the generator compact, as shown in the next paragraph.

Job Transmission

The processing of the workload file by the generator is shown in Algorithm 3.1. The generator
expects the workload to be sent as input stream W in the format specified by Production hworkload i
of Grammar 3.1, and as output, a stream connection E to the executor. It loops as long as there
remains data in the stream W . In each iteration the generator reads one line of text into the local
variable L (l. 2), which represents the first part of both hpackage i rules. In line 3, it distinguishes
between the two rules—a comment and a job package. Comments are ignored (l. 4), while for
all other lines, the header each read package is split into the delay D and the size S (l. 6), both
parsed for their textual represented integers defined by hnumber i. Line 7 completes the hpackage i
production by reading the final S bytes of the rule into C , which allows the next iteration to continue
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Require: W  Input stream from workload file
Require: E Output stream to executor

1: while not end of stream of W do
2: Read from W next line L
3: if L starts with ‘#’ then
4: Discard L
5: else
6: Split L at ‘:’ into D and S
7: Read from W next S bytes C
8: Wait D microseconds
9: Write C to E

10: end if
11: end while

Algorithm 3.1 – Generator algorithm

with the next hpackage i. In order to achieve the intended executor utilization level, the generator
waits the specified D microseconds (l. 8) before finally sending the data C to the executor E (l. 9).

A further consideration regarding the comparability of the generated data stream is the precise
timing of the transmission. Using relative wait calls as the command in line 8 seams to be, has the
strong drawback of accumulating the system noise regarding additional delays resulting from the
wait invocation itself as well as the read and write operations. Therefore, the actual implementation
saves the absolute timestamp at the start of the session (i.e., t0 in Figure 3.6) and adds the given
pauses to that timestamp resulting in the absolute point in time to wait for (i.e., ti). This method
effectively eliminates accumulative delays, however short-term delays may remain. Also, if the
executor can not keep up with the amount of jobs, the generator will be slowed down as well, since
the sending of the jobs via TCP will eventually block until the executor reads some of them.

Power Measurements

The presented algorithm for the client does not include the power measurement despite being a
component of the client. The reason for that is that the presented generator does not carry out the
measurement. Instead, the client relies on an external utility, which utilizes an external power-meter
device. However, the generator, as presented in Figure 3.6, determines the start timestamp t0 and
the end timestamp tend , both being important for a precise measurement. Therefore, the generator
provides these timestamps to the power-measurement component, which initiates and terminates
the measurement accordingly, or extracts the results within this time frame from a possibly long
measurement. These two timestampes also mark the two reference points for determining the
duration of the processing.

Workload Creation

The final yet unaccounted piece on the client side of the prototype is the origin of the workload
files. As already mentioned, the generator expects such a file in a specific format and in advance.
However, unlike the generator itself, the creation of this file is job specific. Hence the input creator
is the only module on the client side which is job specific. Furthermore, it is the only module of
the entire prototype, which can be and has to be executed in advance, hence the workload input
creators for the jobs are separate executables.
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3.2.4 Server

The server accepts sessions from clients and their jobs. This functionality is provided by the executor
module, however, the executor does not, unlike the the name suggests, execute any job. It rather
functions as the link between the client provided jobs and the applications. This way, each application
can build on this facility of the executor and does not need to handle the clients itself. This subsection
first presents the algorithm of the executor and continues with its API for job processing applications.

Executor

The name originates from the concept implemented by the executable containing the executor. As
mentioned before, the prototype is intended for rapid interactive workloads. In order to optimize
the performance of each job’s execution, the server has all the applications build into its binary.
This prevents the executor from forking and execute external programs and thus reduces the delay
between job processing. Therefore, the server is created as a sort of fat binary, containing various
applications, however, unlike the purpose of the previous introduced fat-binary approach, which
supplies various equivalent implementations for different platforms, here the fat binary supplies
different applications for the same host, the host might still contain heterogeneous components.

Require: Server socket S
Require: Set of applications Apps

1: loop
2: Accept from S client C
3: Read from C the StreamInit I
4: Select application A out of Apps by ID Iapp
5: Initialize A
6: while valid connection to C do
7: Read from C the StreamPackage P
8: Forward data Pcontent to A
9: end while

10: Destroy A
11: end loop

Algorithm 3.2 – Executor algorithm

The algorithm of the executor is outlined in Algorithm 3.2. The executor expects a valid server
socket S and the set of available applications Apps. To serve more than a single client, the executor
runs within an endless loop with each iteration handling one session. The executor starts a session
by accepting a client (l. 2) and sending the AWAIT_START status code. The client answers with a
StreamInit message (l. 3), which contains the ID of the application to use. If the server knows this
application (i.e., it is contained within Apps), the executor selects it for the current session (l. 4) and
calls the initialization method for that application (l. 5). The executor enters a while loop to process
the stream of incoming packages. This loop reflects the loop of the client (see Algorithm 3.1) over
its workload, consequently they have the same amount of iterations. In each iteration, the executor
reads a package from the client (l. 7) and gives it to the active application (l. 8). Eventually, when
the client reaches the end of its workload, it will send the FINI status code to the executor, which
ends the while loop and finalizes the application (l. 10).

25



3.2 Profile Generation

Application Interface

The executor relies on a given set of applications to successfully process a job. As earlier mentioned
executor does not know the specific applications, consequently, the executor has to use a generic
interface to communicate with them—an API, which is presented in Listing 3.2.

1 struct Task {
2 size_t size; // the number of bytes with in the task data
3 char *data; // the pointer to the first byte of the task data
4 };
5

6 struct App�ication {
7 // initia�izes the environment for one session
8 boo� (*init) (char* mode);
9 // processes one task

10 void (* process) (struct Task packet);
11 // c�eans up the environment after a session
12 void (*fini) (void);
13 };

Listing 3.2 – Application interface

The interface consists of the two structures Task and App�ication. Task is intended to enclose
the job-specific data from the workload, thus it has a data field and size field to specify the
number of bytes in the data field. The actual communication is done via the functions provided by
the App�ication structure, each represents exactly one application. It consists of three function
pointers: 1) init prepares the represented application for one session (e.g., initializing OPENCL
structures), 2) process takes one job and executes the intended algorithm, 3) fini cleans up the
session (e.g., free structures, allocated in the init function).

The decoupling of executor and application is done by:

(1) The executor and each application is placed in its own compilation unit. Thus the not all
applications have to be compiled, for example if an application can not be compiled because
it requires an API not available for the target.

(2) Each application defines its application structure as a public symbol with a unique name.
All other symbols, including the functions referenced in the application structure, should be
declared local (i.e., static in C).

(3) The executor declares the total set of the applications as weak symbols (see Section 2.4.3).
Declaring the applications as weak symbols, prevents the necessity that they are all defined,
allowing to link the server without the requirement to include all of them.

(4) At runtime, the executor tests which of those weak symbols are actually provided (e.g., if the
address of such a symbol is non zero).

Listings 3.3 and 3.4 show an example using weak symbols. The first listing shows the implemen-
tation of the dummy application, consisting of an init, process, fini function, and the application
structure with the symbol app_dummy. Listing 3.3 defines an example entry function main which
uses the weakly declared symbol app_dummy. It is important to first test the address of app_dummy
against zero (l. 4–5) prior to using it, otherwise the program would fail uncontrolled instead of
handling the absence of dummy properly. A proper test for the availability of an application is
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1 static boo� init(char* mode) {
2 printf(�[Dummy] init\n�);
3 return true;
4 }
5

6 static void process(struct Task job) {
7 printf(�[Dummy] process job\n�);
8 }
9

10 static void fini() {
11 printf(�[Dummy] fini\n�);
12 }
13

14 struct App�ication app_dummy = {
15 .init = &init ,
16 .process = &process ,
17 .fini = &fini ,
18 };

Listing 3.3 – Example implementation of the application interface

1 extern struct App�ication app_dummy __attribute__ ((weak));
2

3 int main() {
4 struct App�ication *app = &app_dummy;
5 if (!app) {
6 printf(�No such app!\n�);
7 } e�se {
8 app ->fini();
9 }

10 return 0;
11 }

Listing 3.4 – Weak application declaration

relevant, because the executor is part of the server component, which should not crash because of a
single client requesting an unavailable application.

This section presented the implementation of a program which is able to evaluates different jobs
on given target hardware, focusing on the energy demand caused by varying levels of utilization of
the target platform.

3.3 Cluster Manager

The previous section introduced a program for generating a profile database, which is used to
operate Limo. Consequently, this section presents a cluster manager which makes use of such a
profile database—a prototype implementation of Limo. The prototype specializes in managing batch
workloads (i.e., set of long-running jobs), suitable for HPC clusters. It implements the power and
price awareness introduced by the concept and is later in this thesis compared to the general-purpose
cluster manager SLURM, which is actually used in HPC clusters [Pro17b].
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First, the following section presents the overall architecture of the prototype, continued by the
explanation of the communication protocol used between the cluster-manager nodes in Section 3.3.2.
Finally, Section 3.3.3 presents the algorithm that is implemented by this workload manager.

3.3.1 Architecture

According to the concept introduced in Section 3.1, the prototype workload manager consists of
three programs (see Figure 3.2): �run, �master, and �s�ave, which are intended to be executed
on user nodes, master nodes, and slave nodes, respectively. �run is the program for job submission,
�master is the central manager program, and �s�ave is the executor for the compute nodes.

User node

�run

I/O forwarding

Master node

�master

I/O forwarding

Slave Node

�s�ave

I/O forwarding

Application

Figure 3.7 – Workload manager components.

Figure 3.7 shows the three nodes (i.e., machines) of the prototype, which have the following
purpose: 1) the user node is controlled by a user who wants to submit jobs via �run, 2) the slave
nodes are used to execute those jobs and run an �s�ave instance each, 3) the master node manages
the slave nodes and assigns user jobs to an appropriate compute node (i.e., slave node).

Additionally to the three Limo executable, each node consists of an input/output (I/O)-forwarding
component, which jointly forward the stdin and stdout streams from the user to the slave node
and vice versa, respectively. The stderr stream is merged with the stdout stream to avoid the need
for a further stream to be forwarded. The slave node contains also the job binaries, which will be
called applications, similar to the previous section. However, unlike the applications of the previous
section, in this section, applications are standalone executables and not linked into �s�ave.

Having three distinct machines involved within the design, requires communication between
them, which is shown in Figure 3.7 by the horizontal arrows. The top line shows the job submit,
originating from the user node propagated via the master node to one slave node. The second
horizontal lines shows the I/O communication between the user and the running application been
relayed over the master node.

3.3.2 Inter-Node Communication Protocol

The communication between the three nodes takes place via TCP over IP. The master node opens
the TCP server socket to which the others (i.e., �run and �s�ave) connect to. This architecture is
the reason that the user and slave have to relay their I/O forwarding over the master—they can not
connect directly without establishing further TCP server sockets and connections, which in turn,
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would just complicate the design without essential impact on the important aspects of the prototype
(e.g., energy-efficient job distribution).

1 struct Type {
2 uint32_t type;
3 };
4

5 struct B�ock {
6 uint32_t size;
7 char data [];
8 };

Listing 3.5 – Workload manager protocol data—Type and B�ock

Listing 3.5 defines the basic data structures used in the communication. The communication
is message based, each message starting with a Type structure that defines the meaning of the
message and the data expected to follow. Variably sized data is packaged into a B�ock and a list of
strings (e.g., the name of an executable with its command-line arguments) are packed together into
one B�ock of null-terminated strings.

The protocol of the Limo prototype consists of exactly six different message types, each repre-
sented by one of the following C structures: NewS�ave, SendExec, DoExec, JobAck, StreamData,
TypeConf. The next paragraphs explain these six message types in detail.

1 #define PACKAGE_TYPE_NEW_SLAVE 0x102
2 struct NewS�ave {
3 char name [40];
4 uint64_t hardware_bits;
5 };

Listing 3.6 – Workload manager protocol data—NewS�ave

Whenever a new slave (i.e., �s�ave) wants to join the cluster, it sends the NewS�ave (see List-
ing 3.6) message to the �master. With that message the slave sends a name by which it wants to
be referred to, but it also has a debugging purpose in log files since a symbolic name can be better
recognized than an IP address or any other numeric ID. Because of this debugging-only purpose,
the name is not required to be unique.

Second, the NewS�ave message contains hardware-specification bits, which indicate what plat-
forms the slave is running (e.g., when component-level heterogeneity is available, for instance a
CPU and GPU). These bits are used by the �master to determine what jobs are appropriate for this
slave (e.g., if a job can only be executed on some hardware) and they are used to estimate the power
draw and time requirements of this slave for any given job.

The SendExec message (see Listing 3.7) is sent by �run to �master in order to submit a job. The
message contains a flag indicating that the job might be delayed or has to be dispatched immediately,
which would return an error if not possible. This flag is followed by the packed string of the
command-line list (i.e., executable name and argument list) of the job to execute.

The last two fields are optional; that is, they might be an empty list. The member packed_-
inc�ude_hosts lists the host names on which the job may be executed. If empty, all hosts are
considered for the execution. The member packed_exc�uded_hosts lists the hosts on which the job
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1 #define PACKAGE_TYPE_SEND_EXEC 0x101
2 struct SendExec {
3 int8_t is_immediate;
4 struct B�ock packed_command�ine;
5 struct B�ock packed_inc�ude_hosts;
6 struct B�ock packed_exc�uded_hosts;
7 };

Listing 3.7 – Workload manager protocol data—SendExec

may not be executed, and is applied after packed_inc�ude_hosts, which means if a host appears
in both lists, it is excluded.

1 #define PACKAGE_TYPE_DO_EXEC 0x103
2 struct DoExec {
3 struct B�ock packed_command�ine;
4 };

Listing 3.8 – Workload manager protocol data—DoExec

DoExec (see Listing 3.8) is similar to the SendExec message and specifies a job to be run, which
also contains the packed string of the command-line list. Unlike SendExec, DoExec is send by the
master to the selected slave, which just executes it when received.

1 #define PACKAGE_TYPE_JOB_ACK 0x104
2 struct JobAck {
3 // empty
4 };

Listing 3.9 – Workload manager protocol data—JobAck

However, the master has no information if the slave, which could been idle for a long time, is
still active and does really execute the job. Therefore, the �s�ave is required to confirm the start of
execution by acknowledging the receiving of the job with the JobAck message (see Listing 3.9) sent
back to the master.

1 #define PACKAGE_TYPE_STREAM_DATA 0x106
2 struct StreamData {
3 struct B�ock content;
4 };

Listing 3.10 – Workload manager protocol data—StreamData

In order to avoid an additional connection, the I/O forwarding is tunneled through their normal
communication with the StreamData message (see Listing 3.10). That message consists of one
B�ock containing then I/O fowarding data with at least one byte. A StreamData message with a
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block size of zero bytes is used to indicated the end of such a tunneled stream, which is send when
the application execution terminated.

This stream embedding is not a kind of multiplexing and no normal master–slave communication
takes place, which is not required by design. Both the design and the missing multiplexing prevent
simultaneous execution of multiple jobs on the same slave, which is reasonable since SLURM by
default does not allow this feature (called over-provisioning by SLURM [YJG03]) either, and keeps
the comparison fair.

1 #define PACKAGE_CHANGE_CONF 0x107
2 struct ChangeConf {
3 uint32_t conf_type;
4 struct B�ock content;
5 };

Listing 3.11 – Workload manager protocol data—TypeConf

All messages required for the essential operation of Limo have been presented, however, since
this workload manager considers especially power limits, which are subject to change, as earlier
mentioned, one last message type is introduced to reconfigure the workload manager during
execution—the ChangeConf message (see Listing 3.11).

The messaging pattern has the advantage of the possibility to introduce configuration changes
from a remote machine. However, a special executable has been introduced for transmitting those
messages—�conf. Each ChangeConf message consists of a configuration type number (e.g., set
lower power limit, set higher power limit) and the value for this configuration (e.g., the watt value
as 32-bit float).

Figure 3.8 shows the message sequence of the communication between the three nodes. The
diagram starts with the transmission of the NewS�ave message from a slave to the master. Since
first message is only sent once and can be done long before any user gets involved, the figure has
intermission line drawn there. However, with this first message the slave is registered at the master
and available to process jobs.

When users decides to submit a job, they starts �run giving it the name of the executable and
command-line arguments of the job to submit. �run sends this job specification with SendExec to
the master. The master then starts its dispatch routine, which searches an appropriate slave node
for the given job. When the dispatch routine found one such node, the master sends the DoExec
message to it and waits for the JobAck message. If the connection broke down (e.g., if the slave
went offline) or another protocol error occurred (e.g., another unexpected message was received),
the master detects this and lets the dispatch routine choose another slave without loosing the job.

When the slave receives a DoExec message it first replies with JobAck and executes the job.
During the execution of the job, the slave transmits and receives StreamData messages for the I/O
forwarding. Those StreamData messages are extracted at the master and sent as raw data over
the connection to the client, analogous, raw data from the client is packaged at the master into
StreamData messages for the slave. This extraction and packaging of the I/O forwarding encapsulate
it within the master–slave connection, which in turn allows to continue with the protocol between
the master and the slave independent of a correct and successful job execution.

When the execution of a job ends the I/O streams cease too, and the slave transmits an end of
file (EOF) StreamData message (i.e., without any content) to the master, which then marks the
slave as available again and the master closes the connection to the user.
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Figure 3.8 – Workload-manager communication protocol.

3.3.3 Workload Manager Algorithm

The job dispatch algorithm of Limo bases on three parameters: a low power limit, a high power
limit and the current operation mode. The operation mode defines if Limo should try to reach the
upper high power limit or to stay at the low power limit (i.e., utilize more power if electricity is
cheap and less power if electricity is expensive). Section 3.1 introduced the grid and the spot-market
components, consequently grid component provides the power limits and the spot-market component
(see Section 3.1.2), which monitors the electricity price, defines the current operation mode.

The profile database consists of a collection of files within the file system. For each application
there is a separate file listing the power and time requirements for the job for each hardware
type. The files are named by the first string behind the packed_command�ine field of the SendExec
message in Listing 3.7, assuming that the command is a simple name without a path (if there is a
path given, it is ignored when searching for a profile file). The hardware type of a slave is specified
by the hardware_bits in the NewS�ave message of Listing 3.6.

Placing the profiles of the different applications in different files allows to organize them easier
(e.g., creating and removing files). The fully qualified path of an application is ignored in order
to increase the stability of the system, also slaves ignore the fully qualified paths and execute
applications only in there local working directory, for the same reason.

The hardware bit abstraction simplifies the incorporation of multiple slaves consisting of the
same hardware specification. This simplification is appropriated, because the contained values
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are averaged values to be used to make an estimate. Further the contained power values state
the additional power draw, which depends on the actual executing hardware and less on other
components in the system (e.g., an additional graphics card), since there power draw would remain
constant when not used.

Require: List of jobs to be dispatched J
Require: Set of available slaves S
Require: Power limit (Ll , Lh)
Require: Operation mode M 2 {high, low}
Require: Current power draw C
Require: Profile database D : ( j, s)! p, where j is a job, s is a slave, p is an average power draw

1: while J , S not empty and (M = high or C < Ll) do
2: Get from J first element j
3: for s 2 S do
4: Get from D( j, s) as d
5: if M = high and (C + d < Lh or C < Ll) or

M = low and C + d < Lh then
6: Dispatch j on s
7: Remove s form S
8: if dispatch successful then
9: Remove j form J

10: Break for loop
11: end if
12: end if
13: end for
14: end while

Algorithm 3.3 – Job dispatch algorithm of the Limo prototype

Algorithm 3.3 shows the method Limo selects a proper slave for a given job in accordance with
circumstances. The algorithm is dispatches as many jobs as possible in one invocation. It is invoked
whenever there is a chance of dispatching a new job (e.g., when a new slave or job was received,
the limits change, or the execution of a running job has finished). It essentially implements the
introduced concept from the beginning of this chapter (see Figure 3.4).

The requirements of the algorithm are the list of jobs, which are submitted but not dispatched
J . This list is simply maintained, by appending any job received via SendExec, and removing any
successfully dispatched job.

The second requirement S, the set of available slaves, is maintained by adding new slaves
(NewS�ave), removing busy slaves when a job is dispatched to the slave, and adding again slaves,
which finished executing a job. If a slave is broken down (e.g., went offline), is detected when the
next job is tried to been executed on that slave, and the slave failed to send the JobAck message.

As already mentioned, the power limit and operation mode are supposed to be provided by the
grid and the spot-market components, respectively, and the current power draw is supposed to be
provided by the power-meter component (see Section 3.1.2). However since this a prototype, the
current power draw is estimated by the sum of estimated power draws originating form the profile
database, and the power limit and operation mode are specified via the ChangeConf message.

The final requirement of the algorithm—the profile database—is provided in advance. For the
workload-manager prototype the presented profile generator prototype of Section 3.2 can not be used,
because this one is specialized in batch workloads and the other is specialized interactive workloads.
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Therefore, an less sophisticated but practical approach has been used to obtain a profile database:
The whole cluster is measured via an external power meter and each job is executed on each slave one
after another, utilizing the blocking nature of the �run command and the packed_inc�ude_hosts
and is_immediate fields of the SendExec message.

As a result of dispatching as many jobs as possible, Algorithm 3.3 start with a while loop, which
continues as long as there are at least one job and one slave in the sets J and S, respectively, and
Limo is running in high-power operation mode (M = high) or the current power draw (C) is lower
than the low power limit (Ll). This condition terminates the algorithm if either no job or no slave is
currently available, and it terminates if the low power limit has been passed while in low-power
operation mode.

The following line (l. 2) fetches the next job j from the queue. Limo executes jobs (at least
the start of execution) in the order of submit. For the current job all available slaves are traversed,
and the estimated power draw for the combination of job and slave are retrieved from the profile
database (l. 4). The condition in line 5 tests if the current combination obeys the power limits,
one may notice that C is the old power draw and C + d is the estimated new power draw. In the
following, the current power draw will be called Pt := C and the new power draw will be called
Pt+1 := Pt + d. Additionally the while loop gives Pt < Ll if M = low.

The if clause maintains

Ll  Pt+1  Lh (3.1)

in order to obey the power limits using a best-effort approach. The best-effort approach is needed
because this equation can not be satisfied in all cases, assume for example

Pt + a < Ll ,8a 2 D (3.2)

that means the current power draw Pt is so low that there is no combination of job and slave in
the profile database D to yield a Pt+1 := Pt + d, which maintains the power limits described by
Equation (3.1). Consequently, dispatching any job violates Equation (3.1) and therefore the power
limits.

This problem has been discussed in Section 3.1.3, and the proposed solution is the weaken the
constraint. One way would be add as precondition that the current power draw already satisfies the
power limit, which has the draw back that if the power limit is not satisfied, the power limits would
be entirely ignored, possibly changing from violating the lower limit to violating the upper limit.

In order to solve the power limit violation problem by best-effort approach, the following
assumptions are made:

(1) In low power operation mode, violating the low power limit is less serve than violating the
high power limit, because the power draw should be as low as possible.

(2) In high power operation mode, violating the high power limit is less severe than violating the
low power limit, because the power draw should be as high as possible.

Therefore, Equation (3.1) is simplified to Equation (3.3) for the low power operation mode.
Consequently, dispatch until the high power limit is exceeded is valid. However, this does not imply
that the low power operation mode would usually reach the upper limit, since the algorithm given
by the while condition stops in the low power operation mode as soon as the low power limit has
been reached.

Pt+1  Lh (3.3)

The high power operation mode requires an additional term shown in Equation (3.4). The
reason for the implication put in front of the equation is, that the high power operation mode might
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violate the low power limit such as in the case of the above counterexample (see Equation (3.2)),
where the system draw far too less power. Consequently, the algorithm obeys the high power limit
when the limits can be satisfied, which is indicated by the current power draw being above the low
power limit Ll  Pt . Otherwise, for example if the target zone is too narrow, the high power limit
may be violated in order to rise above the low power limit.

Ll  Pt ! Pt+1  Lh (3.4)

Continuing with Algorithm 3.3, the dispatch only happens (l. 6) if the estimated new power draw
holds Equation (3.3) or Equation (3.4) depending on the operation mode. The dispatch consists
essentially of sending the DoExec message, after which the slave is marked as busy and removed
from the available slave list S (l. 7).

The protocol requires the slave to answer the DoExec with JobAck, if the slave fails the send
the message, the slave is assumed broken and the connection between the master and that slave
is terminated. One may notice that the job itself has not been removed for the job list J and the
algorithm—in this case the for loop continues with the next available slave. Since the slave did not
manage to even send a simple JobAck message, it is reasonably safe to give the job another slave for
execution. If t the slave successfully send the JobAck message, the master assumes the execution of
the job and removes it for the job list (l. 9) and continues with the next job by breaking the current
for loop (l. 10).

This section presented the workload manager which considers heterogeneous compute nodes and
exploiting there different power draws it obeys given power limits on a best-effort base. Additionally,
utilizing the two operation modes of this prototype, it is capable of exploiting varying electricity
prices. The effectiveness of the prototype will be demonstrated in the next chapter.

3.4 Summary

This chapter presented the concept of Limo a heterogeneous-aware cluster manager which exploits
this heterogeneous compute nodes and electrical-energy–price awareness in order to enable cost
efficient operation, while it obeys given power limits on best-effort basis.

Following this concept, a prototype for evaluating the potential of heterogeneity on system with
an interactive workload, which can be used to generate profile database for the Limo concept.

Finally, a prototype implementation of Limo was presented which implements heterogeneity
awareness and power awareness, which allows it to stay within given power limits on best-effort
base. The remaining degree of freedom is restrict due the introduction of two dynamic operation
modes, which can be used to exploit varying electricity prices.

In the following chapter, the two prototypes are evaluated and the workload manager is compared
to the SLURM workload manager.
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4E VA LUAT I O N

This chapter presents the evaluation of the previously discussed prototypes. The first section
introduces the evaluation setup (i.e., the hardware and the software used). In the following,
three different evaluation experiments are presented: 1) the results of running a benchmark on
a single graphics board at various frequencies is presented. 2) the results of running the profile
generation prototype (see Section 3.2) on different hardware and at different power management
settings (i.e., frequencies and power caps) is shown. 3) the results of comparing the Limo prototype
(see Section 3.3) with SLURM is presented.

4.1 Hardware and Sofware Setup

This section presents the hardware and software (i.e., the benchmark which have been evalu-
ated) used in this evaluation. Starting with the hardware which has been used. Followed by the
presentation of the used software and benchmarks.

4.1.1 Hardware

Figure 4.1 shows the overall assembly of hardware, which has been used in the following tests. Only
parts of the shown components were used for the first and second part in this evaluation. The last
evaluation part utilizes the entire shown setup.

Device Processor details Memory

A Hardkernel ODROID-C1+ Amlogic Cortex-A5 (4x 1.5 GHz) 1 GiB
B Hardkernel ODROID-C2 Amlogic Cortex-A53 (4x 2.0 GHz) 2 GiB
C Fujitsu CELSIUS W550 Intel Xeon E3-1275 v5 (8x 3.6 GHz) 16 GiB

D Intel HD Graphics P530 24 pipelines (1.15 GHz) shared
E Nvidia Quadro P2000 1,024 CUDA cores (1.375 GHz) 5 GiB

Table 4.1 – Overview of the evaluated devices with system-scope (A–C) and component-scope
(D–E) heterogeneity [Hön+18].

Table 4.1 lists the different computation hardware, which are shown and marked in the lower
picture of Figure 4.1:
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1 MCP39F511

1

3 Current probe

3

2 PCIe riser card

2

4 Red Pitaya
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C Intel Xeon
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A / B ARM ODROID-C1+/C2

A B

D Intel HD GPU

D

E Nvidia GPU

E

Figure 4.1 – The cluster setup of the evaluation [Hön+18]. The upper picture shows the graphic
board surrounded by the measurement instruments. The lower picture shows an overview of
the compute nodes of the cluster.

A ODROID-C1+ The first of the two ODROID single-board computer (SBC) used. It is the slowest
hardware type in the evaluation but it has also the lowest power draw, which makes it an
interesting platform for a power-aware cluster manager.

B ODROID-C2 The second ODROID board which is an successor of the ODROID-C1+ and
supersedes it by its capability. However, the increased capability of the ODROID-C2 comes
with a higher power draw.

C Xeon A non-consumer high-end CPU from Intel. It is used to compare the other system against
CPU processing. It worth noticing that the Xeon CPU is significantly more powerful (regarding
compute capability) and has and significant higher power draw than the ODROID systems.

D Intel HD The first GPU of the evaluation. It is integrated into the Xeon CPU. Such integrated
GPUs are less powerful than graphic boards, but are shipped together with most CPU and,
therefore, available on a wide range of systems (e.g., the ODROID systems have also an
integrated GPU).
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E Quadro The second GPU is the dedicated Nvidia Quadro P2000 graphics board, which has a
significant amount of parallel processing power compared to the Intel HD and has a much
higher power draw.

Beside the computation hardware a set of measurement devices were also used. First of all the
MCP power meter 1 which was used in all evaluation parts. The other three devices 2 – 4 were
used to examine specifically the power draw of the Quadro E . The detail of these four devices:

1 MCP power meter The MCP39F511 is a power meter from Microchip, which allows to read
out the current power draw via universal serial bus (USB) at sampling rate of 50 Hz and a
measuring error of  0.1 % [Mic15]. It is capable of monitor the power supply, which makes
it the prefect tool to read the total system power draw.

2 PCIE riser card This connector is essentially an extender cable for the PCIE bus. It was used
to make the power supply of the Quadro graphic board, which is included in the PCIE lane
accessible for measurement.

3 Current clamp The MH60 current clamp from Chauvin Arnoux. It measures the current flow
through the wires enclosed by its clamp exploiting the Hall effect. It is has signal bandwidth
of 1 MHz [Cha17].

4 Red Pitaya The STEMLab Red Pitaya board in the 1.1 version [Ste18]. It is used to receive the
high frequency signal from the current clamp and calculate the power draw of the graphics
board.

The results of the power measurement of the Nvidia Quadro showed, that the internal measurment
of the GPU, which is accessible via the nvidia-smi tool are reasonably accurate under all measured
levels of utilization.

4.1.2 Software

The most important software used are the two prototypes introduced Sections 3.2 and 3.3. Beside
those prototypes several benchmarks have been evaluated, which were taken from two independent
benchmark collections: the Rodinia suit [Che+09] and the National Aeronautics and Space Adminis-
tration (NASA) advanced supercomputing division (NAS) parallel benchmarks (NPB) [Bai+91].

LUD

The first two experiment of the evaluation examine benchmark of the Rodinia suit—namely the
kmeans and lower upper decomposition (LUD). However, the presented results are obtained only
using LUD, since the kmeans result were partially incomplete and did not show significant deviations
worth further investigation.

LUD takes an arbitrary sized quadratic matrix and calculates the lower-upper decomposition
(also called factorization) of the matrix, which is used in order to calculate the inverse matrix.
Formally, LUD gets a matrix A and calculates the triangular matrices L and U in order that A= L · U
is true. However, the algorithm is implemented using a 16⇥ 16 sub matrix subdivision and hence
the input matrix dimension must be a multiple of 16.

The Rodinia suit provides the LUD benchmark in a variety of implementations. The three
implementations using OPENMP, OPENCL, and CUDA, respectively, where chosen to be included
in this evaluation. However, the CUDA version was taken form a third party implementation from
Hangchen Yu [Yu+17] while the other version originate form the official implementation [WCS15].
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All three implementation require an invertible matrix (i.e., a matrix which has an inverse) as
input. Unfortunately, a invertible matrix can not be generated simply by random numbers, instead
it the implementations construct a invertible matrix by generation two triangular matrices like the L
and U matrices by random numbers and multiply them.

However, this matrix generation induces unnecessary overhead into the benchmark and the
resulting matrix differs each run, therefore the implementation can alternatively take a textual
encoded matrix generated in advance. Nevertheless, the decoding of the matrix causes still a
significant overhead. This overhead is specifically interfering with the evaluation, because the
decoding is carried out by the CPU, which biases the results when comparing the CPU with an GPU.
This effect is shown as a by-product in Section 4.2.

In order to reduce the overhead of the LUD benchmark, the prototype of Section 3.2 stores its
LUD input in a binary format.

NPB

The workload manager from Section 3.3 targets an HPC environment and is following compared
with a general-purpose HPC workload manager. In order to set the evaluation also into an HPC
environment a different benchmark set, which is widely adopted in this domain, the NPB are used
for that evaluation.

Benchmark Long name Description

CG Conjugate Gradiant Estimate the smallest eigenvalue of a large
sparse symmetric positive-definite matrix
using the inverse iteration with the conju-
gate gradient method as a subroutine for
solving systems of linear equations.

EP Embarrassingly Parallel Generate independent Gaussian ran-
dom variates using the Marsaglia polar
method.

FT Fast Fourier Transform Solve a three-dimensional partial differ-
ential equation using the fast Fourier
transform.

IS Integer Sort Sort small integers using the bucket sort.
MG MultiGrid Approximate the solution to a three-

dimensional discrete Poisson equation us-
ing the V-cycle multigrid method.

Table 4.2 – Description of the benchmarks used in the workload manager evaluation [Bai+91].

Table 4.2 lists the five kernel applications of the benchmark set, which are the five applications
used in this evaluation. In the context of the NPB are three further so called pseudo applications, but
those have not been considered in this evaluation.

The five kernel benchmarks are supposed to reflect the different computation tasks required in a
wide domain of HPC applications. For the evaluation all five programs are used together and each
with the same frequency.

Opposing to the Rodinia suit, the NPB have unified problem size hard coded into the programs,
which are called benchmark classes. Each class is identified by a single character and order in
increasing computation expense [Dun16]:
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S smallest size, intended for test purpose.

W workstation size (assuming a 90’s workstation)

A, B, C standard test problem sizes

D, E, F large test problems

The problem size A showed an adequate execution time for the purpose of this thesis on the
given cluster, hence only size A of the five benchmarks is used in this evaluation.

In order to execute the benchmarks on the evaluated GPUs, an implementation in OPENCL is
required, however the official NPB web page lists no such implementation [Dun16]. Therefore, the
unofficial OPENCL implementation of the NPB from Sangmin Seo, Jungwon Kim et al. from the
Seoul National University have been chosen [Kim+12; Seo+13].

4.2 GPU Frequencies

In the first experiment of this thesis the Nvidia Quadro P2000 E executes the LUD and kmeans
benchmark from the Rodinia suit in the CUDA implementation at varying core frequencies of the
GPU, and different job sizes (e.g., matrix dimensions). The power draw of the system and duration
the execution is measured and compared between the different core frequencies.

The goal of this experiment was to analyse the energy efficiency of the different GPU frequencies.
However, the benchmark is not suited to examine the energy efficiency of its execution. And only
the results of LUD benchmark and huge matrix size are shown to visualize the occurred issue.

The given Nvidia GPU supports configuration via the nvidia-smi tool, which is a Linux program
that communicates with the GPU driver and allows to readout internal values (e.g., temperature,
utilization, power draw) and to reconfigure setting of the GPU such as the clock frequency (called
clocks.applications by nvidia-smi). This clock frequency is two fold, consisting of the memory clock
frequency and the graphics clock frequency.

Both frequencies have to be set together, however the configuration space of 290 valid settings of
the Quadro P2000 allows to nearly independently choose the graphics clock and memory clock. The
memory allows only three different values: 405 MHz, 810 MHz and 3504 MHz, whereas the graphics
clock allows a range of 139 MHz–1721 MHz in 12.66 MHz steps (as integers of MHz). However, if
the memory is set to 405 MHz the maximum frequency for the grapics clock is 607 MHz.

Figure 4.2 shows the impact for the 290 frequency configurations of the Quadro on the execution
duration of the LUD benchmark with a matrix size of 16384⇥16384. The x-axis shows the frequency
of the graphics clock, the y-axis shows the total duration of the execution. There are four graphs
plotted into the figure.

The first three graphs (solid lines) show the impact of the graphics clock frequency on the
execution duration, each for a different the memory frequency. Since the three lines have only a
mean deviation of 0.38 s from each other, it can be assumed that there is no impact of memory
frequency on the execution duration.

The observation of the missing memory frequency impact is no measuring error, because further
investigation of the matter using nvidia-smi revealed that the actual GPU memory clock (called
clocks.current.memory) is always on 3504 MHz when the GPU is utilized despite any specified
memory clock (called clocks.applications.memory) which is displayed to be set to the requested
value. Therefore, the missing effect of the memory clock frequency is either a bug in nvidia-smi,
the Nvidia GPU driver or the GPU itself.
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Figure 4.2 – Impact of all configurable GPU frequencies on a Nvidia Quadro P2000 execution
LUD of a 16384⇥ 16384 Matrix—Execution Duration

Another observation of the three graphs is that the graphics clock frequency has an overall
expected impact on the execution duration; that is, the lower the frequency is the longer takes the
execution. However, variation of the frequency does not have a continuous impact on the execution
duration. The are discontinuities in the execution duration above 240 MHz and 493 MHz, and
constant duration areas between 139 MHz and 240 MHz, 253 MHz and 493 MHz, and 1265 MHz
and 1721 MHz. Only in the remaining space from 506 MHz to 1265 MHz, an continuous effect of
the changing graphics clock can be observed.

Finally, the last graph (dotted line) in Figure 4.2 shows the actual execution duration of bench-
mark, the so called kernel, which is executed on the GPU. Though the kernel takes on average
56.90 s less than the total execution time, which is a significant offset, and indicates a massive
overhead. Furthermore, the overhead is not impacted by the change of the GPU frequencies.

Investigation of this anomaly revealed that the additional time is spend by the CPU instead,
and before the GPU executes the actual benchmark routine. The source code revealed that the
extra time was caused by reading the input matrix from a textual encoded file. The utility function
create_matrix_from_fi�e of the benchmark, which read a matrix (i.e., array of floats) form a
file, contains the following lines; size denotes the dimension of the matrix, fp the input file pointer,
and m the matrix array:

1 for (int i=0; i < size; i++) {
2 for (int j=0; j < size; j++) {
3 fscanf(fp , �%f �, m + i*size + j);
4 }
5 }

In the present evaluation, the 16384⇥ 16384 matrix causes the above fscanf function to be
invoked over 268 million times and each decodes one float value from text, which in this evaluation,
took roughly 57 seconds. However, this was not intended to be evaluated, and the reason that the
prototype evaluated in the next section does not decode its input from text but instead reads the
matrix as one binary large object (BLOB) and casts it into a float array.
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Figure 4.3 – Impact of all configurable GPU frequencies on a Nvidia Quadro P2000 execution
LUD of a 16384⇥ 16384 Matrix—Average Power Draw

Figure 4.3 shows the power draw during the same benchmark execution. The x-axis shows again
the frequency of the graphics clock, and the y-axis shows power draw. There are also four graphs
plotted into the figure.

The first three graphs (solid lines) show this time the impact on the average power draw of the
system. The memory frequency has no impact on the power draw either, and the graphics clock
frequency has only a slight impact on average power draw.

Nevertheless, three discontinuities in the power draw curve are visible, the first two discontinuities
just above 240 MHz and 493 MHz are at exactly the same frequencies as the duration discontinuities.
The third and most significant discontinuity is just above 1265 MHz, which is the still a noticeable
frequency in Figure 4.2. One may assume that the duration discontinuities at this frequency too, but
too less to be noticeable.

The last graph in the figure shows the maximum power draw reached by the GPU. Interestingly,
this graph shows that the graphics clock frequency acts indeed as a power cap on the GPU, because
at lower frequencies the power draw of the Quadro peaks at a significantly lower level. This graph
shows surprisingly even a forth power draw discontinuity just about 1620 MHz, also this graph shows
the continuous impact between the same frequencies as in Figure 4.2 form 506 MHz to 1265 MHz.

However, it might be assumed that this peak power draw shown in the last graph is the proximate
power draw of the GPU during the execution. The reason that its significant increase in power
draw does only slightly affect the average system power draw is two fold: 1) the already discussed
overhead applies here too, causing a strong background power draw, which reduces the effect of the
power draw during the kernel execution on the system power draw, 2) the increased power draw at
higher frequencies correlates with shorter execution duration, which further reduces the effect on
the system power draw.

The final figure of this experiment (Figure 4.4) shows the efficiency of the evaluated benchmark,
regarding the benchmark goal. As mentioned, the evaluated LUD benchmark is not suited to examine
energy demand, because it has an significant input overhead (i.e., reading the matrix), compared to
the actual benchmark routine (i.e., decomposing the matrix).

The x-axis of the figure shows still the graphics clock frequency, and the y-axis shows a proportion.
In this case the only graph in the figure shows the share of the kernel execution on the entire
benchmark duration, which is quite low. It peaks at the lower frequencies at 63 % and declines down
to 16 % at the higher frequencies. The average is 26 %, which is too low to gather reliable energy
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Figure 4.4 – Impact of all configurable GPU frequencies on a Nvidia Quadro P2000 execution
LUD of a 16384⇥ 16384 Matrix—Benchmark efficiency

demand data. The value is impact by the graphics clock, because it increases the kernel execution
time while the overhead stays constant, hence it the efficiency higher at the lower frequencies where
the kernel takes the most time.

To summaries this section the change of the graphics clock frequencies has an impact on the
execution duration as well as power draw of the Quadro, but the high overhead of the evaluated
benchmark makes the comparison of the energy efficiency among the different frequencies unreliable.

4.3 Interactive Workload Characteristics

The workload generator presented in Section 3.2 has also the ability to show the potential of the
Limo concept by evaluating the differences in energy demand among the different compute hardware
components, which is the goal of the second experiment of this thesis.

This section presents the result of running 20 different workloads on three different compute
nodes (Xeon C , Intel HD D , Quadro E ) in three different software implementations (OPENMP,
OPENCL, CUDA) of the LUD benchmark from the Rodinia suit. However not all implementation
could be run on every hardware, CUDA for instance runs only on Nvidia graphic boards such as the
Quadro, resulting in 5 different combinations of hardware and benchmark implementations—the
targets: OPENMP on the Xeon, CUDA on the Quadro, and OPENCL on all three.

Additional, the effect of RAPL power caps and different GPU frequencies were evaluated by
running the benchmarks with different power management configurations (i.e., power caps and GPU
frequencies). Seven different power caps (8 W, 12 W, 16 W, 22 W, 30 W, 40 W and 60 W) plus no
power cap, and three different GPU graphics clock frequencies (810 MHz, 1075 MHz and 1240 MHz)
were evaluated.

Table 4.3 lists the 20 LUD workloads evaluated in this experiment, all have an goal duration
of roughly 60 s. They vary in job size (i.e., the dimension of the matrices) and computational
throughput, and are grouped by there job size (second column).

The workloads are randomized and consist of matrices with varying dimension. The name of
each workload states the goal dimension and the second column of the table the actual average
matrix dimension.
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Name Matrix size Matrices Job sizea Throughputa Duration

m16_i0 23⇥ 23 2.22⇥ 106 33.5 kOp 1.21 GOp/s 61.3 s
m16_i10 24⇥ 24 2.03⇥ 106 33.5 kOp 1.12 GOp/s 60.4 s
m16_i50 24⇥ 24 1.49⇥ 106 33.5 kOp 819 MOp/s 60.7 s
m16_i200 24⇥ 24 743⇥ 103 33.5 kOp 409 MOp/s 61.0 s

m64_i0 79⇥ 79 221⇥ 103 2.54 MOp 9.16 GOp/s 61.3 s
m64_i10 79⇥ 79 202⇥ 103 2.54 MOp 8.38 GOp/s 61.3 s
m64_i50 80⇥ 80 148⇥ 103 2.55 MOp 6.13 GOp/s 61.3 s
m64_i200 80⇥ 80 73.6⇥ 103 2.56 MOp 3.07 GOp/s 61.3 s

m256_i0 319⇥ 319 15.1⇥ 103 178 MOp 43.7 GOp/s 61.4 s
m256_i10 320⇥ 320 13.7⇥ 103 178 MOp 39.9 GOp/s 61.4 s
m256_i50 320⇥ 320 10.1⇥ 103 179 MOp 29.3 GOp/s 61.3 s
m256_i200 318⇥ 318 4.99⇥ 103 177 MOp 14.4 GOp/s 61.4 s

m1024_i0 1285⇥ 1285 943 11.9 GOp 182 GOp/s 61.6 s
m1024_i10 1297⇥ 1297 846 12.1 GOp 165 GOp/s 61.7 s
m1024_i50 1303⇥ 1303 627 12.0 GOp 123 GOp/s 61.5 s
m1024_i200 1268⇥ 1268 336 11.0 GOp 60.1 GOp/s 61.7 s

m4096_i0 5323⇥ 5323 21 914 GOp 284 GOp/s 67.7 s
m4096_i10 4848⇥ 4848 24 729 GOp 254 GOp/s 68.9 s
m4096_i50 5426⇥ 5426 16 813 GOp 190 GOp/s 68.3 s
m4096_i200 4546⇥ 4546 11 520 GOp 85.1 GOp/s 67.2 s
a The number of operations are calculated using Equation (4.1). Op is used as unit for operations.

Table 4.3 – Specification of the workloads used in the evaluation Section 4.3.

The first workload of each group (i.e., those with name suffix i0) contain that many matrices
that at least one of the targets could execute it in just the specified duration. However, some of the
i0 workloads do not utilize all targets at full capacity, because the used prototype has to transfers the
workload over the network to the target and some workloads are limited by the network throughput
of the installed Gigabit Ethernet (1000BASE-T) connection with 1 Gbit/s. The i0 workloads have a
size of 5.6 GiB–6.5 GiB, causing network traffic of 91 MiB/s–111 MiB/s.

The other workloads in each group have a reduced amount of matrices compared with the
respective i0 workload. The workloads i10 have 91 %, i50 have 67 %, and i200 have 33 % the
matrices of the respective i0 workload.

Finally, for better comparison of the workloads an empirical metric has been defined, which
estimates the computational expense of an LUD job in operations. It was derived from the analysis
of the source code of the OPENMP implementation. The metric is defined as following, Nd is the
estimated number of operations to decompose a matrix with the dimension d.

Nd = 16896 · d3 � 21120 · d2 + 6824 · d (4.1)

Using this metric, the Table 4.3 shows the estimated average operation count per job (i.e., a
matrix) of the workload and the average computational throughput caused by the processing of the
workload in operations per time.

45



4.3 Interactive Workload Characteristics

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Time [s]

P
o

w
e

r
d

r
a
w

[W
]

RAPL 8 W
RAPL 12 W
RAPL 16 W
RAPL 22 W
RAPL 30 W
RAPL 40 W
RAPL 60 W
No RAPL

Figure 4.5 – The effect of DVFS on CPU via RAPL. Shows OPENCL on Xeon executing m4096_-
i200.

Figure 4.5 shows the power draw variations of the Xeon total system power draw during the
execution of the m4096_i200 workload using the OPENCL implementation at different CPU power
caps. The x-axis shows the time-line of the execution and the y-axis shows the power draw of the
entire system.

The first observation is that the power draw is not constant, is this case 11 power peaks and
one small peak at the beginning of the graph are visible as almost all graphs, notice the notch at
38.2 s splits the apparent peak 37.2 s–38.7 s into two. These 11 peaks correspond to the 11 matrices
in this workload, each one represents the processing of one matrix by the Xeon. In the mean time
between two such matrices, the Xeon is just idle, which is not uncommon for systems with interactive
workloads, and hence draws less power.

The small peak in the beginning at 0.9 s is the typical overhead of OPENCL, compiling the textually
given kernel code, which is the actual processing routine. This is outstanding among the evaluated
implementations, since OPENMP is directly compiled into the binary, without the need of an run
time compilation step, and CUDA which has an similar concept of an separate kernel code, uses so
call PTX code—an assembly code for faster compilation and so called cubin object code in order to
avoid the run time compilation entirely [Nvi18].

The graphs show further that all matrix processing peaks (if the preceding already ended) start at
exact the same point in the respective time-line, which shows that the delay timing of the workload
is implemented as intended. Also the processing duration of the different peaks in each graph vary,
because the individual matrix size is randomized.

The final observation is that from Figure 4.5 is that the set RAPL power cap has an effective
impact in limiting the power draw, while gradually increasing the processing duration. Obviously,
the shown system power draw is far higher that the given power caps for the respective graph, since
the power cap limits only the CPU and the measured power draw includes the power draw of all
components of the machine and power dissipation (e.g., from the power supply unit).

However, the power draw steps slightly different from expectations: Increasing the power cap
from 8 W to 12 W rises the peak power draw by only 1.8 W, increasing the power cap further by
4 W up to 16 W in turn rises the peak power draw by 8.3 W—more than twice the amount, the next
step in the power cap by 6 W to 22 W rises the peak draw by also 8.3 W. With the following step
of 8 W to 30 W cap, the peak draw rises by 11.2 W, ind for the step of 10 W to 40 W cap, the peak
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draw rises by 13.6 W. The last increase of the power cap by 20 W to 60 W cap, causes only the peak
power draw to rise by 9.7 W. The run with out a power cap (dotted line) is similar to the graph of
60 W power cap, though it shows a slightly higher power draw of in average 0.3 W

The observation of the higher system power draw rises compared to the increase of the power
cap can be explained with proportional increase of power dissipation and the overall rise of system
activity due the effective higher activity of the CPU.

The anomaly at lower power caps can be explained by a base power draw of the CPU, which
might be approximated with 10 W. A power cap further below this base power draw does not cause
any further effect and the CPU keeps drawing the base power level. Therefore, the 12 W power
cap is presumably just 1.8 W above this base draw, and thus increases the power draw by just this
amount.

On the other hand, the anomaly at high power caps can be explained by reaching the maximum
power, which the given implementation can cause on the present CPU. This effect becomes notably
from the run without the power cap, which results in a system power draw of the peak by 88.2 W
(ignoring the peak at the end of the peak) and the run with a cap of 40 W draws there already
81.4 W, which makes it reasonable that further increases of the power cap would cause reduced
effects.

RAPL cap Duration System avg. Power Energy

8 W 88.71 s 38.07 W 3377 J
12 W 67.44 s 38.70 W 2610 J
16 W 67.42 s 41.24 W 2780 J
22 W 67.40 s 42.89 W 2891 J
30 W 67.39 s 46.15 W 3110 J
40 W 67.39 s 50.05 W 3373 J
60 W 67.39 s 51.99 W 3503 J
no cap 67.40 s 52.29 W 3524 J

Table 4.4 – Results of OPENCL on Xeon executing m4096_i200 with different RAPL settings.

The presented results of Figure 4.5 are summarized in Table 4.4. The first column identifies
summarized graph by the used RAPL power cap. The next two columns show the duration and
average power draw of the system. The last column shows the required energy of the processing of
the entire workload, which was the same in all listed cases.

The third column shows the already noticed reduction of the average power draw when the
RAPL power cap is reduced. At the same time, reducing the power cap causes potentially an increase
in the total processing duration. The reason that above a power cap of 22 W no further reduction
can be noticed, is that the workload has a goal duration with inflicts delays, which compensate
slight variation in actual processing time.

The energy values of Figure 4.5 show that there exists an optimal power cap (i.e., configuration)
when the energy demand should be minimized. In this evaluation a power cap of 12 W required the
minimal energy demand. If the too low power cap is chosen, the execution duration rises stronger
then the power draw can be reduced, which causes higher energy demand. On the other hand, if
the power cap is increased the rise in power draw becomes dominant over the reduction in the
processing duration, which also causes higher energy demand.

However, should be highlighted again that the here evaluated workloads have a defined goal
duration and faster processing than the goal duration causes the system to idle until the time is
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eventually up. It reason behind implementing this goal duration is that in the context of application
with interactive workloads, which are subject of this experiment, exists server which run a fix
amount of time (e.g., the entire day), which is independent of the actual utilization of the system
(e.g., amount of users sending request to the server). For example a server providing a service might
run day and night to keep the service available, regardless that it might be used less intensive during
the night time.

The evaluation of the effect of the configuration on the processing of workloads revealed two
further results: First, the Quadro showed variations of the power draw when the GPU frequency is
changed, however, the impact of the RAPL power cap on the CPU has a significantly higher effect on
the power draw. The reason for this is, that on the one hand, the evaluated frequencies are rather
close together leaving out the more extreme variations of the corner cases (circumstances limited
the amount of frequencies to evaluate). On the other hand, during the execution of the kernel on
the GPU runs one busy thread on the CPU presumably polling for the end of the kernel execution.

Second, the Intel HD is subject to RAPL power cap, because it is contained in the power domain
controlled by RAPL. Unlike the Xeon, the Intel HD shows a maximum performance at a power cap of
roughly 30 W. A lower power cap degrades the performance by the enforced the limit like shown for
the CPU. However, with a power cap higher than 30 W or no power cap the performance degrades
too, which seams to be unintended like a bug within the RAPL feature.
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Figure 4.6 – Energy usage by job size, shows the workload with suffix i0.

Figure 4.6 shows the energy demand of all five target executing the workloads with the suffix i0,
each point shows the value of the configuration with the lowest energy demand for given combination
of workload and target. The x-axis shows on a logarithmic scale the computational expense of a
single job (i.e., estimated number of operation to decompose a single matrix) within the workload,
which identifies the workload. The y-axis shows the energy demand for the execution of the specific
workload on the specific target.

The graph shows the that the different targets execute the various workload requiring different
amounts of energy. It can be seen that the Xeon executes the workload with the lowest job size
significantly more efficient then the other target. In contrast, the Quadro processes the workload
with the highest job size most efficiently.

Each job causes static execution overhead (i.e., calling the decomposition routine). This overhead
is quite different for the different targets: the Xeon does a simple function call, while the GPUs
targets the received job has to be forward to the GPU, which causes significant overhead.
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This overhead becomes dominant for the GPUs smallest two job sizes, causing CUDA on Quadro
and OPENCL on Intel HD to require up to 22 times and 27 times more energy, respectively, in
processing the workloads compared to OPENMP on Xeon.

On the other hand, OPENMP on Xeon requires up to 4 times more energy than CUDA on Quadro
for the workload with largest jobs. The reason for this is that the with such huge jobs the static
execution overhead becomes negligible, a the more efficient parallel processing capacity of the GPUs
becomes dominant.

Finally, the Figure 4.6 shows there is a job size (1.77⇥ 108 operations, workload m256_i0), which
requires relatively similar amount of energy of each target. At this job size, the least efficient target
(OPENCL on Intel HD) requires only 1.77 times the energy of the most efficient target (OPENMP on
Xeon). On average the if the worst target has 3.7 times the energy demand of the best target for the
respective workload.
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Figure 4.7 – Energy demand by throughput.

Figure 4.7 shows the energy demand of all five target executing the all workloads, each point
shows the value of the configuration with the lowest energy demand for given combination of
workload and target. The x-axis shows on a logarithmic scale the computational throughput of the
workload (see Table 4.3), which identifies the workload. The y-axis shows the energy demand for
the execution of the specific workload on the specific target.

It is worth noticing that the shown throughput does not always pose a relation to level of
utilization of the targets, because the different job sizes cause also varying levels of throughput,
while keeping similar levels of utilization.

The figure shows essentially that the metric of computational throughput is insufficient for
drawing conclusions regarding energy demand, because the energy demand of a single target has
strong discontinuities along the throughput axis when the job size changes. For example OPENCL
on Intel HD (the brown dots) shows monotonic energy demand when the throughput rises from
4⇥ 108 Op/s to 1.2⇥ 109 Op/s, as well from 3⇥ 109 Op/s to 9⇥ 109 Op/s, but the energy demand
discontinuities from 62 kJ to 5.4 kJ between these two segments, because the job size is increased,
which reduces the relative overhead. Therefore, the following two graphs each show only the results
of the same job size, starting with the smallest job size.
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Figure 4.8 – Energy demand by throughput for the smallest job size.

Figure 4.8 show the result of executing the workloads with the job size of 33.5 kOp: m16_i200,
m16_i10, m16_i50, and m16_i0. The x-axis shows the computational throughput of the workload,
and the y-axis the required energy demand of the execution of the workload on the specific target.

The graphs show independent of the target a nearly linear relation between the throughput and
the energy demand. Additional, the figure shows that in this graph the OPENMP on Xeon is in all
shown cases the most energy efficient target. However, Figure 4.6 that for other job size different
target are the most energy efficient ones.
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Figure 4.9 – Energy demand by throughput for the smallest job size.

However, Figure 4.9 shows that there are job sizes which do not exhibit a linear energy–throughput
relation. This figure has the same x-axis and y-axis as Figure 4.8 and shows the results of the
workloads with a job size of 178 MOp: m256_i200, m256_i10, m256_i50, and m256_i0.

The presented Figures 4.6 to 4.9 showed that the depending on job size and computational
throughput, different targets are the most energy efficient ones. Next the impact of the configuration
(i.e., RAPL power cap and GPU frequency) on the energy efficiency will be discussed.
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Figure 4.10 – Energy reduction by applying the most energy efficient configuration compared
to the default settings.

Figure 4.10 shows the energy saving of choosing the most energy efficient configuration compared
to the energy demand when executed with the default configuration (e.g., no RAPL cap). The x-axis
shows on a logarithmic scale the computational throughput of the workload (see Table 4.3), which
identifies the workload. The y-axis shows the relative energy demand reduction for the specific
workload and target.

The graph shows very strong fluctuations among the share of energy that can be saved. The
highest saving was 40.5 % and the lowest 1.1 %, with an average saving of 19.4 %. The highest
saving is achieved by OPENMP on Xeon with in average 30.5 %, whereas the lowest saving is achieved
by OPENCL on Quadro with an average saving of 8.6 %,

m16_i0 m256_i10 m4096_i50

OPENMP on Xeon, RAPL cap 8 W 12 W 22 W
OPENCL on Intel HD, RAPL cap 12 W 12 W 22 W
CUDA on Quadro, RAPL cap 12 W 8 W 8 W
CUDA on Quadro, GPU graphics clock 1075 MHz 1240 MHz 810 MHz

Table 4.5 – The optimal power configuration for selected targets and workloads.

Table 4.5 shows for some targets and some workloads the respective most energy efficient
configuration. The table shows that there is not a single configuration, which is always the most
efficient one, instead each target requires for the different job sizes different configurations, to
operate energy efficient.

In summary, the experiment presented in this section showed the energy demands of a set of
heterogeneous hardware, and the impact of different configurations (e.g., RAPL power caps) on the
energy efficiency of the execution on those components. It has been shown that choosing the right
configuration reduces the energy demand by 19.4 % on average. It has been further shown that the
least energy efficient target required on average 3.7 times the energy of the most energy efficient.

These two observation show that heterogeneous execution components can reduce the energy
demand, which can be further reduced by using an optimal power cap or operation frequency.
However, there is no target or configuration, which had always the most energy efficient operation.
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This requires careful evaluation of the workloads and compute devices, as well as careful application
of the found results. This becomes a tedious task if the number of hardware devices, size of the
configuration space or number of jobs increases.

Consequently, using an automated tool such as a workload manager, which is aware of these
parameters and can asses them automatically, will significantly reduce the work for the user and.
Therefore, the thesis has introduced the concept of an workload manager Limo, which is aware of
heterogeneity and the potential of exploiting this in order to increase the energy efficiency of the
managed cluster (see Chapter 3). The following section compares Limo with an general-purpose
workload manager, and thus shows its capabilities.

4.4 Workload Management Limo vs. SLURM

This section evaluates the effectiveness of the Limo prototype (see Section 3.3.1), by comparing it with
the general-purpose workload manager SLURM. For the comparison, a one-hour workload composed
of the NAS parallel benchmarks is executed by both workload managers. During the execution,
varying power limits for the cluster are imposed and a real electricity price trace is projected into
the evaluated hour, in order to calculate electricity cost generated by the two workload managers.

The cluster consists of four machines, two Xeon based machines (Xeon1 and Xeon2), one ODROID-
C1+, and one ODROID-C2. The Xeon2 has additionally one Intel HD and one Quadro. With this
hardware setup yields four compute nodes (the four machines), however, one of them has additional
GPUs,which yields six execution units for an heterogeneous aware workload manager.

SLURM, which is not heterogeneous aware, ignores therefore the two GPUs and distributes its
job only among the four compute nodes. On the contrary, Limo considers the GPUs and distributes
its jobs among all six execution units.
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Figure 4.11 – Power and time requirement of the different compute nodes by benchmark.

Figure 4.11 shows the power draw and duration of each benchmark by the different execution
components available in the cluster. The x-axis of the figure shows the duration of the execution,
and the y-axis shows the average power draw during the execution. Each benchmark has six points
in the figure, one for each of the six execution units.

The figure shows that for each benchmark there are options to execute it with low power draw
(dots along the x-axis) and alternatively to execute it with high power draw (dots along the y-axis).
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4.4 Workload Management Limo vs. SLURM

Limo uses these alternatives once to implement the two operation modes (low power and high power,
see Section 3.3.3) and adapt its operation to low power limits and high power limits, respectively.
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Figure 4.12 – Power and time distribution of the NAS benchmarks by compute node in loga-
rithmic scale on both axes. The dotted lines show the energy levels.

Figure 4.12 shows the same scatter plot as Figure 4.11, but the dots are distinguished by execution
unit and both axes have logarithmic scaling. The x-axis of the figure shows the duration of the
execution, and the y-axis shows the average power draw during the execution.

One speciality of this plot is that the energy demand of all dots along one dotted line (or any
parallel line) is the same. Therefore, the figure shows also energy demand of each result for example
the four dots enclosed by the 1 J and 10 J level are the results with the lowest energy demand of
less than 10 J each.

Further, this figure reveals that the wide range of execution power draws for each benchmark
originate from specific power draw level the different execution units exhibit. For example the
Quadro contributes the results with the highest power draw for each benchmark and the ODROID-C1+
contributes the results with the lowest power draw, respectively.

Time Job count Low limit High limit

0 min 4 times 39 W 60 W
10 min 4 times 60 W 90 W
20 min 4 times 39 W 60 W
30 min 2 times 65 W 95 W
40 min 1 time 100 W 160 W
50 min 1 time 80 W 150 W

Table 4.6 – Specification of the workloads used in the evaluation Section 4.4.

The workload used in this experiment is designed to run of 60 min and is divided into six sections
of 10 min duration. At the beginning of each section a new set of jobs is submitted to the workload
manager and a new power constraint is set. Table 4.6 lists the six sections and there specification.
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4.4 Workload Management Limo vs. SLURM

Each of the five NAS parallel benchmarks is used with the same frequency and all five benchmarks
are submitted at once. Therefore, the the table lists only the submission count of the NPB set in the
respective workload segment.

In the following, the results of executing this workload on the evaluation cluster once managed
by SLURM and once by Limo are presented and analyzed regarding the obedience of the power limit
and the generated electricity cost.
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Figure 4.13 – Power draw over time

Figure 4.14 – Comparing Limo with SLURM regarding power constraints [Hön+18].

Figure 4.14 shows the total power draw of the evaluation cluster during execution of the workload
of both workload managers, the dashed and dotted lines show the active power limits. The x-axis
shows the execution time line, and the y-axis shows the power draw of the entire cluster.

The figure shows that SLURM executes the job immediately following their submission at the
beginning of each section, regardless of the active power draw limits, which causes the cluster
power draw to be only 16.9 % of the time in accordance with the power limits. The graph of SLURM
demonstrates the power draw behavior of an workload manager that is not power aware, it exhibits
significant and rapid power draw changes at on each, job submission and execution end of over
50 W. On the other hand, following the rapid execution times the cluster remains idle.

Opposing, Limo keeps the power draw of the cluster 97.5 % of the time within the given limits,
the only exceptions are after 20 min and before 60 min. The first exception is caused by the reduction
of the power limit, since Limo dose not implement job preemption, the running job exhibiting the
allowed power draw of the previous section to continue until finished. The second exception before
60 min is caused by Limo running out of queued jobs.

Another difference between the power draw of SLURM and Limo is that Limo causes only power
variations only within the allowed limits except for final power drop before 60 min.

Figure 4.15 shows an example of caused electricity cost, the electricity price is take from the
European energy stock exchange from a four day period between 26 and 29 October 2017 [Fra17],
the power draw of Figure 4.14 is projected into this time frame resulting the shown cumulative cost.

The two x-axes in the figure show the time line of the execution, the y-axis of the upper graph
shows the stock-exchange electricity price, and the y-axis of the lower graph shows the cumulative
electricity cost of the cluster.

The price graph features negative electricity prices in the second half of the time frame. Limo
shifts some of the plenty jobs submitted in the first half of the time frame into the second half, as
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Figure 4.15 – Comparing Limo with SLURM regarding electricity cost [Hön+18; Fra17].

shown in the previous figure (see Figure 4.14) by the power draw. Therefore, Limo profits stronger
from the negative electricity prices than SLURM, at the same time, Limo saves cost in the first half
of the time frame, where the electricity price is high.

As a result, Limo processes the given workload and gains a profit of 0.10e, while SLURM causes
costs of 0.05e in electricity cost, processing the same workload at in the same time frame with
regards to the electricity pricing.

In summary, the experiment presented in this section showed that the evaluated hardware
components can execute the benchmarks with a wide variety of power draw. Exploiting this variety,
Limo can execute a given workload in accordance with various power limits and even take advantage
of fluctuating electricity prices. In comparison with SLURM, Limo obeys the power limits in 97.5 %
of the evaluated time, SLURM obeys it only 16.9 % of the time. At the same time, Limo generates
a profit of 0.10e, whereas SLURM causes costs of 0.05e. This shows the effectiveness of the
prototype regarding its power and price awareness.

4.5 Summary

This chapter showed first that a power cap can be formed for a Nvidia Quadro P2000 GPU using only
frequency scaling. Following, it shows that heterogeneous hardware as well as enforcing appropriate
power caps can reduce the energy demand by up to 73.0 % and 19.4 %, respectively, which is a
significant increase of energy efficiency. Finally, this chapter showed the variety of execution power
draws achieved available in an heterogeneous compute cluster, and that this can be exploited to
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4.5 Summary

obey given power limits 97.5 % of the time compared to 16.9 % achieved by a workload manager
which is not power aware, and by delaying execution of workloads Limo generates 0.10e compared
to a cost of 0.05e caused by an workload manager which is not price aware.

56



5C O N C LU S I O N

This chapter finally summarizes the results of this thesis and gives a prospect for future work.
Centrally, this thesis regards power-grid stability, energy-demand reduction, and electricity-price
considerations in the context of cluster computing. Problems in this domain are rapid power draw
changes, high energy demand, and expensive electricity costs of the clusters.

Therefore, the concept of the workload manager Limo was presented, in order to propose a
system that solves these problems. Limo obeys a given power draw target zone, which reduces
its power draw changes. It improves the energy efficiency of the cluster, which reduces its energy
demand, and Limo monitors the electricity price to priories job execution during times of lower
prices, which reduces its operating costs. Limo achieves this goals by exploiting heterogeneity within
the compute cluster,installing software power caps on the compute nodes and selectively delaying
job execution.

Further, the implementation of a utility program for Limo is described, which generates job
execution profile databases, and a prototype of the Limo concept is explained, which implementing
power and price awareness and obeys given power limits while reducing operating costs. The first
experiment conducted for this thesis showed that purposeful specification of GPU clock frequency,
resulted in effective power capping of the evaluated GPU.

The analysis of the results gathered by the utility program reveal a potential of reducing the
energy demand by 73.0 % and 19.4 % by using different execution hardware and installing the
optimal power cap, respectively. The comparison of the Limo prototype with a general-purpose
workload manager that is neither power nor price aware showed that Limo obeys the power limits
97.5 % of the time, compared to 16.9 % achieved by the other workload manager. A projection of
the same results and combination with an actual price curve showed, the the compared workload
manager accumulated 0.05e in electricity cost, while Limo generated a profit from electricity
pricing, which turned temporarily negative, of 0.10e.

In summary, the thesis showed that heterogeneity in a computer cluster exhibits characteristics,
which can be effectively exploited in order to increase energy efficiency, comply with power limits,
and cut operating costs. The first effect of increase energy efficiency have been indirectly shown by
analyzing the execution results of one benchmark on a variety of heterogeneous hardware, while the
latter two effects have been demonstrated by an prototype compared with a widely used workload
manager.

However, the evaluated workload manager was only a prototype which did not efficiently
implemented the effect of increasing the energy efficiency, and dose not trade off the obedience
of power limits against the opportunities (e.g., low electricity price) or risks (e.g., upcoming job
deadlines). Thus, extending the prototype by an multi-goal optimization heuristic would complete its
feature set. Additional features that would improve Limo, are using job preemption like a preemptive
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scheduler, to interrupt jobs when power limits decline, and changing the power caps during the
execution of a job, in order to dynamically adapt the change circumstances (e.g., in power limit or
electricity price).
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ACPI Advanced Configuration and Power Interface

API Application Programming Interface

APM Advanced Power Management

BLOB Binary Large OBject

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DFS Dynamic Frequency Scaling

DVFS Dynamic Voltage and Frequency Scaling

DVS Dynamic Voltage Scaling

ELF Executable and Linkable Format

EOF End of File

GPU Graphics Processing Unit

HPC High Performance Computing

ID Identifier

I/O Input/Output

IP Internet Protocol

ISO International Organization for Standardization

LUD Lower Upper Decomposition

NAS NASA Advanced Supercomputing Division

NASA National Aeronautics and Space Administration

NPB NAS Parallel Benchmarks

OPENCL Open Computing Language

OPENMP Open Multi-Processing
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OS Operating System

OSI Open Systems Interconnection model

OSS Open-Source Software

PCIE Peripheral Component Interconnect Express

POSIX Portable Operating System Interface

QOS Quality of Service

RAPL Running Average Power Limit

SBC Single-Board Computer

SNU Seoul National University

TCP Transmission Control Protocol

USB Universal Serial Bus
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