
Lehrstuhl für Informatik 4 · Verteilte Systeme und Betriebssysteme

Implementation and Evaluation of Trace-Based Timing
Analysis

Julius Wiedmann

Bachelorarbeit im Fach Informatik

2. Dezember 2019

Please cite as:
Julius Wiedmann, “Implementation and Evaluation of Trace-Based Timing
Analysis”, Bachelor’s Thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU), Dept. of Computer Science, December 2019.

www4.cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Verteilte Systeme und Betriebssysteme

Martensstr. 1 · 91058 Erlangen · Germany

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angege-
benen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenom-
men wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance from third parties.
I certify that the work has not been submitted in the same or any similar form for assessment to any
other examining body and all references, direct and indirect, are indicated as such and have been
cited accordingly.

(Julius Wiedmann)
Erlangen, 2. Dezember 2019

A B S T R A C T

Many embedded software tasks require for their correct scheduling in real-time systems knowledge of
their worst-case execution time (WCET). Eventually, this upper bound is calculated by static analysis
tools that rely on precise hardware models of the target architecture. Since modern micro-processors
often contain undocumented or unpredictable components, these static analysis methods are for
these kinds of processors overly pessimistic, leading to a demand for new analysis approaches. This
thesis depicts the implementation and evaluation of a hybrid WCET analysis approach based on
non-intrusive instruction-level trace measurement. By doing so, it shows the general benefits of the
hybrid analysis compared to a static analysis, the risk of underestimation due to cache effects as
well as the influence of statement and path coverage on the accuracy.

v

KU R Z FA S S U N G

Oftmals basiert die korrekte Ausführung von eingebetter Softeware auf der Definition ihrer längsten
Ausführungszeit (WCET). Diese Obergrenze wird in vielen Fällen von statischen Analysewerkzeugen
berechnet, welche ein präzises Hardwaremodell der Zielarchitektur benötigen. Da allerdings neuere
Prozessoren oftmals undokumentierte oder unvorhersehbare Komponenten enthalten, sind diese
statischen Analysemethoden für diese Arten von Prozessoren übermäßig pessimistisch, was zu
einem Bedarf an neuen Herangehensweisen führt. Diese Arbeit erläutert die Implementierung und
Evaluation einer hybriden WCET Anaylse basierend auf berührungsfreien Ausführungsmessung auf
Instruktionsebene. Dadurch wird sowohl der Vorteil der hybriden gegenüber der statischen Analyse,
die Gefahr ihrer Unterabschätzung durch Cache-Effekte sowie der Einfluss von Anweisungs- und
Pfadüberdeckung auf den Genauigkeitsgrad gezeigt.

vii

C O N T E N T S

Abstract v

Kurzfassung vii

1 Introduction 1

2 Fundamentals 3
2.1 WCET Analysis in General . 3

2.1.1 Real-Time Systems . 3
2.1.2 The Worst-Case Execution Time . 4
2.1.3 The Worst-Case Execution Time Analysis . 4

2.2 Measurement-based Analysis . 5
2.2.1 General Approach . 5
2.2.2 Coverage Metrics . 5
2.2.3 Advantages and Disadvantages . 5

2.3 Static Analysis . 6
2.3.1 Representation of the Program Flow in a Control Flow Graph 6
2.3.2 The Difficulties of Implementing an accurate Hardware Model 6
2.3.3 Using the Implicit Path Enumeration Technique in order to reduce Complexity 6
2.3.4 Advantages and Disadvantages . 8

2.4 Conclusion . 8

3 Related Work 9
3.1 Hybrid Analysis in General . 9

3.1.1 Extraction of Trace Information . 9
3.1.2 Analysis Steps . 9
3.1.3 Evaluation of the Results . 10

3.2 Related Work . 10
3.3 Summary of Conventional Methods and Distinction of this Approach 11

4 Approach and Implementation 13
4.1 Approach . 13

4.1.1 The General Analysis Process . 13
4.1.2 Input Format of the Program . 13

4.1.2.1 Executable Binary File . 14
4.1.2.2 Flow Facts . 14
4.1.2.3 Partitioning on Object Code Level . 14

ix

Contents

4.1.3 Measurement of the Execution Time . 14
4.1.3.1 Execution of the Program on a Chip Simulator 15
4.1.3.2 Extraction of the Execution Time . 15

4.1.4 Computation of the WCET . 15
4.1.4.1 Representation of the Program Control Flow in a Graph 15
4.1.4.2 Determination of the Worst-Case Path 15

4.2 Implementation . 15
4.2.1 Input Format of the Program . 16

4.2.1.1 The RISCV Architecture . 16
4.2.1.2 Pragma Platina Flow Facts . 16
4.2.1.3 The Program Metainfo Language . 16

4.2.2 Measurement of the Execution Time . 17
4.2.2.1 The Rocket Chip Simulator . 17
4.2.2.2 Parsing the Instruction Executions . 18

4.2.3 Computation of the Upper Bound . 18
4.2.3.1 The Platin Toolkit . 19
4.2.3.2 Embedding of the Measurements . 19

4.3 Summary . 20

5 Evaluation 23
5.1 Qualitative Analysis . 23

5.1.1 Setup . 23
5.1.2 Fundamental Properties of the two Hybrid Analysis Strategies 23

5.1.2.1 Micro-Benchmark . 24
5.1.2.2 Results . 24
5.1.2.3 Explanation . 25

5.1.3 The Analysis’s Ability of Measuring Cache Behavior 26
5.1.3.1 Micro-Benchmark . 26
5.1.3.2 Results . 27
5.1.3.3 Conclusion . 27

5.2 Quantitative Analysis . 30
5.2.1 Setup . 30
5.2.2 Quantitative Evaluation of the Subset Size . 31

5.2.2.1 Benchmark . 31
5.2.2.2 Results . 31
5.2.2.3 Conclusion . 31

5.2.3 Quantitative Evaluation of the Overall Performance 31
5.2.3.1 Benchmarks . 33
5.2.3.2 Results . 33
5.2.3.3 Conclusion . 34

5.3 Summary of the Evaluation Results . 34

6 Conclusion 37

Lists 39
List of Acronyms . 39
List of Figures . 41
List of Tables . 43

x

Contents

List of Listings . 45
Bibliography . 47

xi

1I N T R O D U C T I O N

With the recent increase of embedded systems in areas like automotive electronics or avionics, a
demand for tools has arisen that analyze the timing behavior of the tasks executed on these so called
real-time systems. Otherwise, a miscalculated timing behavior could cause in embedded systems an
entire system failure. Since such a failure in a car or an airplane can lead to heavy danger for human
life, industries like these are often subject to safety standards that require reliable upper bounds
for the longest possible execution time for each performing task, like for example the certification
processes described at the DO-178C [10] in commercial aircraft software.

One way to estimate these upper bounds is through static analysis. This approach relies on
abstraction of the performing task and a hardware model of this real-time system. However, the
recent rise of hardware complexity and the fact that some processors contain undocumented parts
makes this approach increasingly difficult [7].

One approach of providing an analysis for these undocumented respectively unpredictable
processors is through exhaustive end-to-end measurement of the task for different inputs. Since its
upper bound estimations lack in reliability, this approach cannot be the solution for safety critical
systems.

The idea of designing a hybrid analysis by combining elements from the static analysis with
measurements has been applied in a huge amount of research papers in the last years [7, 4, 3, 14,
5]. Their goal is to evaluate the possibility whether hybrid analyses could close the gap for the kind
of hardware on which the static analysis approaches fails and an end-to-end measurement-based
analysis could not provide with the needed safety.

The motivation for this thesis is to implement a hybrid analysis based on the static analysis tool
platin [6]. Its objective is to design an approach combining design choices of previous papers like
the non-intrusive measurement execution [7] with so far untested elements like the measurement
aggregation on instruction level or the trace extraction with a cycle-accurate chip simulator.

The underlying goal is to answer the question whether the effects of measuring executions
on instruction level improve or deteriorate the overall estimation performance of the analysis.
Furthermore, the hybrid analysis results are discussed in the light of a possible underestimation due
to unmeasured cache effects.

1

2F U N DA M E N TA L S

This chapter gives a short introduction on the field of worst-case execution time (WCET). The first
section gives an insight into real-time systems and why it is necessary to define their longest possible
execution time. The following sections discuss established analysis methods on this field. In that
process, it is the goal of this chapter to point out the problems of these conventional approaches
and to show the necessity for the design of new methods.

2.1 WCET Analysis in General

Before understanding worst-case execution time analysis methods and their concept, one has to
understand at first the underlying problem. Therefore, the following section gives a short introduction
why real-time systems need to be analyzed with regard to their longest execution time.

2.1.1 Real-Time Systems

The special property of real-time systems is that their correctness does encompass more than the
logical correct calculation of the output. In addition, this output must be delivered in a certain
predefined response-time. Failing to meet this time constraint can lead to various consequences
ranging from performance decrease to complete system failure. Depending on the impact of these
consequences real-time systems can be classified in three categories.

• Hard real-time systems

• Firm real-time systems

• Soft real-time systems

In hard real-time systems the response-time has to be satisfied at all costs. Otherwise it would
lead to the consequences of a system failure. In firm real-time systems the computation process has
also hard deadlines, but a missing of these deadlines can be tolerated by the system. If a violation of
a timing constraint only leads to a performance decrease of the systems, it is called a soft real-time
system [2]. In order to guarantee the safety of the real-time systems, it is therefore necessary for the
developer to not only test a task on its logical correctness but also to detect the longest possible
execution-time this task could have.

3

2.1 WCET Analysis in General

2.1.2 The Worst-Case Execution Time

Generally, the execution time of a real-time task varies for each input data. The dark bars in
Figure 2.1, for example, depict the time distribution of all possible execution of an exemplary
program. The shortest possible execution on the left is called best-case execution time (BCET) and
the longest possible execution time on the right is the so called worst-case execution time (WCET).
The whites bars below depict the time distribution of the already measured executions. It is clear
that the WCET cannot be attained with full certainty without measuring the execution times for
all possible inputs. A program with only one 32 Bit Integer as input, for example, would have
232 = 4.294.967.296 different input variations. Due to this combinatorial explosion it is impossible
to measure the program for all of these inputs which leads to the demand of a more structural
method for the analysis of the WCET.

2.1.3 The Worst-Case Execution Time Analysis

In practice, there are two approaches of WCET analysis. One method relies on exhaustive end-to-end
measurement of all input variations, the so called measurement-based analysis. The other way of
WCET analysis uses the implicit path enumeration technique (IPET) in order to analyze the programs
structure. It is called a static analysis. The main criteria for the evaluation of these analysis methods
are precision and safety. Precision means the ability of the analysis to produce upper bounds that
are close to the actual WCET. Safety describes the confidence that the actual WCET is not higher
that the WCET upper bound [15]. The analysis’s ability to produce safe and precise upper bounds
is called estimation performance in this thesis. As the following sections show, the main difference
of these two WCET analysis approaches lies not only in their different implementation but more
importantly in the tradeoff between the criteria safety and precision.

Figure 2.1 – The black bars show the actual execution time distribution of an exemplary real-
time task. The white bars below show the distribution of the execution times measured while
testing. The figure shows therefore the problem of estimating the WCET without knowledge
about the execution time for unmeasured input data. The figure is taken from [15].

4

2.2 Measurement-based Analysis

2.2 Measurement-based Analysis

One way of WCET estimation is the simple approach of exhaustive end-to-end measurements of the
program. A concept closely linked to that approach involves the metrics in order to evaluate the
measurement progress.

2.2.1 General Approach

The general approach of gaining knowledge about the execution time distribution shown in Figure 2.1
is end-to-end measurement, a method commonly used in the industry [15]. The goal is to measure the
execution time of the whole task for as many different inputs as possible and therefore approximate
the WCET. The longest execution time that occurs while measuring is called worst-observed execution
time (WOET).

2.2.2 Coverage Metrics

Since it is practically impossible to cover all input variations in programs with higher complexity,
there is a set of coverage metrics, to evaluate the possibility that the actual WCET might be still
higher that the WOET. Two very important ones are code coverage (in this thesis called statement
coverage) and path coverage. Statement coverage describes the proportion of the statements that
are covered in the measurement process in relation to the set of statements of the task in total.
Path coverage calculates the share of the covered paths in relation to all possible paths [11]. It is
important to stress the point that a full statement coverage does not imply a full path coverage. In
the program of Listing 2.1 two of the paths are enough to cover all statements, for example one
path covering the two then-blocks and one paths covering the two else-blocks leaving the then-else
respectively else-then combination uncovered.

1 void f(int input){
2 if(input % 3 == 0){
3 /* then -block */
4 }else{
5 /* else -block */
6 }
7 if(input % 2 == 0){
8 /* then -block */
9 }else{

10 /* else -block */
11 }
12 }

Listing 2.1 – The structure of the consecutive if-else statements enables four different paths
through the program. Yet two of them are enough to reach full statement coverage.

2.2.3 Advantages and Disadvantages

The advantage of the end-to-end measurement is its simple design and implementation. On the
other hand it does not produce safe upper bounds because executing the program for all input
variations is impossible. The analysis method of the following section solves this problem by using
the IPET in order to reduce its complexity.

5

2.3 Static Analysis

2.3 Static Analysis

This sections explains the implementation of a static analysis based on the approach of PLATIN [6].
It shows not only the functionality and purpose of its two main steps but also its overall strengths
and weaknesses.

2.3.1 Representation of the Program Flow in a Control Flow Graph

The basis for the analysis is the initial representation of the input program. This can be for example
the source code as well as the binary code. In PLATIN it is the program’s binary and a compiler
generated representation of the programs control flow. The first task of computing the WCET is to
create a representation of the programs control flow. One way of doing this, is the construction of a
control-flow graph (CFG). An exemplary CFG is displayed in Figure 2.2. It shows a program, which
contains at first an if-else statement, followed by a loop. While the nodes in the graph represent the
basic blocks of the program, the directed edges show the possible ways a specific execution can take
trough the program. A basic-block is a sequence of instructions on object code level, that contains no
branch instructions except on its end. A possible execution would be for example the evaluation of
the condition as true, the execution of the then-block and 5 iterations in the following loop. The goal
of this first step of the computation is to assign an execution time to each of these basic blocks, by
adding up the execution times of each single instruction of this block. In a static analysis this means,
that for every instruction its longest possible execution time must be calculated. An other challenge
of static analysis is the correct estimation of the execution time of a loop. So, the programmer must
provide additional information about a theoretical upper bound for loop iterations, the so called
flow facts.

2.3.2 The Difficulties of Implementing an accurate Hardware Model

Since there is a huge influence of underlying hardware on the execution overall time, it is a complex
task to estimate a safe and precise worst-case execution time for each instruction. A very important
influence of the hardware is for sure the effect of caching since cache hits and cache misses produce
very different execution times. A cache hit means that the accessed data is already in the cache and
a cache miss means that the accessed data is not in the cache and has to be fetched from the RAM.
Since the hardware model has to be implemented for every CPU platform PLATIN does not provide a
modeling of the cache state for every architecture. For the instruction set architecture (ISA) used
in this thesis, for example, it always calculates with the most pessimistic outcome in a situation of
uncertainty. It is this pessimism due to insufficient modeling of hardware effects like pipelining or
caching in the target architecture that makes the application of static analysis for processors with
undocumented or unpredictable paths increasingly difficult [7]. Further, the complexity of these
hardware make it hard to construct a correct model of it what eventually leads in a underestimation
through static analysis [12].

2.3.3 Using the Implicit Path Enumeration Technique in order to reduce Com-
plexity

Given that there is a GFG and each of the blocks has its execution time assigned to it, the task of
the second step in a static analysis is to transform the problem of finding the most expensive path
though this CFG into an equivalent integer linear progam (ILP) optimization problem, described in

6

2.3 Static Analysis

Figure 2.2 – The CFG of this exemplary program contains an if-else statement followed by a
loop.

the following way. Given that there are n ∈ N edges and a0, a1, . . . , an−1 ∈ N edge weights, find a
set of x0, x1, . . . , xn−1 ∈ N, representing the execution frequency of the edges, in order to maximize

a0 x0 + a2 x2 + . . .+ an−1 xn−1∀x i ∈ N, 0≤ i < n

By solving this optimization problem the values of x0, x1, . . . , xn−1 represent these execution
frequencies in the CFG, which together form the most expensive path through the program. In
addition, there is also a mathematical expression containing constraints on x0, x1, . . . , xn−1 and
only if a instance of x0, x1, . . . , xn−1 represents a feasible path this expression is evaluated as true.
For example, given that x j would represent the transition from the if-else-condition block to the
then-block in the program of Listing 2.1 and xk would be the representative for the corresponding
else-block, x j + xk = 1 would be a constraint saying that either the then-block or the else-block is
possible but neither both or none of them. The advantage of now using the IPET can be seen by
looking at the code snippet of Listing 2.2.

The function rand() in this example returns a random number between 0 and 1. Therefore,
there are two optional paths inside of each loop iteration leading to a total of 2100 paths. The
problem of an explicit examination of each path is not only impossible but also most likely not
necessary if you consider that j++ and k++ have the same timing costs. The main contribution of

7

2.3 Static Analysis

1 for (i=0; i<100; i++) {
2 if (rand() > 0.5){
3 j++;
4 }else{
5 k++;
6 }
7 }

Listing 2.2 – The loop contains 2100 different paths making an explicit examination of each
path impossible. Taken from [9]

this IPET is therefore to implicitly consider both paths inside the loop as part of the worst-case path
instead of explicitly enumerating all 2100 variations [9].

2.3.4 Advantages and Disadvantages

In summary, the main advantage of the static analysis is its ability to produce safe upper bounds.
But the downside of this safety is often the lack of precision in a case of missing information about
the hardware state.

2.4 Conclusion

The most important aspect of these conventional analysis approaches is the tradeoff between safety
and precision. Indeed the static analysis is able to construct a safe upper bound for the WCET.
But this often happens at cost of precision due to insufficient hardware modeling. This tradeoff
between static and measurement-based analysis is the reason why there are many publications in
recent years combining design elements of these two analyses in order to gain better results for
undocumented/unpredictable processor architectures, as the following chapter shows.

8

3R E L AT E D W O R K

The previous chapter depicted the static and measurement-based WCET analysis. The approach of
taking design elements from the conventional static analysis and combining themt with measurements
is called a hybrid WCET analysis. Its goal is to provide precise WCET estimations for CPUs whose
hardware cannot be modeled and therefore a static analysis is infeasible. In addition, its estimations
are expected to be more safe compared to a pure end-to-end measurement as the following section
shows.

3.1 Hybrid Analysis in General

The industry-grade tool for hybrid WCET analysis is the TimeWeaver from AbsInt Angewandte
Informatik GmbH [7]. It conducts a WCET analysis by combining trace information on instruction-
level with the static analysis approach of aiT tool chain.

3.1.1 Extraction of Trace Information

The trace information is provided by embedded trace units. While the processor executes the given
program these units deliver information of the programs control flow in form of trace segments and
trace events. A trace event is an instruction that could change the value of the program counter.
The instructions between these trace events are the trace segments. Later in the analysis these
trace events are mapped to the trace points in the CFG, the segments to the paths between these
points in the CFG. The advantage of this approach is that these trace snippets provide execution
time information without a theoretical modeling of the processors hardware. Thus, this approach
tries to avoid the pessimism of many static approaches.

3.1.2 Analysis Steps

The analysis contains four steps all depicted in Figure 3.1. The first task is the Decoding Phase. It
is mainly the same as in the static aiT tool. The goal is the construction of a CFG. Then the trace
information is gathered in the Microarchitectural Analysis Phase. The timing information of these
trace snippets are then embedded in the CFG, that is transformed to an ILP in the Path Analysis
Phase and solved by an ILP solver. In order to make an assessment of the analysis results possible at
last a Visualization Phase was added.

9

3.1 Hybrid Analysis in General

Figure 3.1 – The analysis of the TimeWeaver contains the Decoding Phase, the Microarchitectural
Analysis Phase, the Path Analysis Phase and a Visualization Phase.

3.1.3 Evaluation of the Results

Finally, the results of the TimeWeaver are compared to the WOET extracted from the measured
traces. By that, the difference between these two WCET estimation is taken in order to evaluate the
performance of the hybrid analysis. The results of that can be seen in Figure 3.2. The difference of
the hybrid analysis is because of its ability to compose maximum execution times of code segments
from multiple trace snippets. Therefore, the hybrid estimation is always a little bit higher than the
WOET in the traces. Although the difference of these two estimation performances is very little,
the validity of the evaluation itself is questionable. It does not compare the hybrid results with the
actual WCET or the upper bound of the static aiT analysis, which is due to the missing of a timing
model of the used processor.

3.2 Related Work

In general, the field of WCET estimation has seen a large amount of research in recent years, with
many papers proposing a great variety of approaches. While most of the publications chose an
analysis based on object code level, there are papers like [14], [3] that analyze the program based
on the source code level. Although this approach benefits from the high portability of programming
languages like C, the approach in [14] requires additional instrumentation code in order to create the
timestamps for the measurement. Since this alteration of the program code changes the execution
of the task the consistency of the execution time in measurement and application can not be assured,
leading to the so called probe effect. In contrast to that, the TimeWeaver[3] proposes a mechanism
that enables a hybrid WCET analysis at source-code level by collecting the timestamps at object-code
level instead. Therefore, it can operate without intrusive instrumentation code and in this way
without the probe effect.

10

3.2 Related Work

Figure 3.2 – The TimeWeaver estimation performance compared to the WOET shows little
difference. Taken from [7].

Another difference among many publications is the representation of the programs control flow.
B. Dreyer et al. proposed a non-intrusive hybrid WCET analysis with usage of a CFG in [5] and
one using a waypoint graph in [4]. The papers showed that a context-sensitive execution time
measurement is possible with both methods, context-sensitive meaning in this case the consideration
of the hardware state triggered by previous executions and therefore enabling the distinction between
different loop iterations. The question of whether the data is gathered offline like in [3] or online
like in [5] is another important aspect of execution time measurement. The advantage of the online
data aggregation of [5] is that the data that is provided by a field-programmable gate array (FPGA)
is continuously fed into the trace extraction module. In an offline data aggregation the raw trace
data is at first stored in total thus leading to a large storage usage. [3] stated that their approach
produced 160MB per second. In summary, all four approaches use the collection of measurement
data on the level of basic blocks respectively the code segments between waypoints.

3.3 Summary of Conventional Methods and Distinction of this
Approach

In summary, a common approach of many papers is an object-code level based analysis with offline
measured block execution times. A common strategy of avoiding the probe effect is the usage
of embedded trace units in processors of FPGA. In contrast to that, the approach presented in
this thesis relies on measurements by trace segments of cycle-accurate chip emulators. A second
significant difference is the extraction of measurement data on instruction level, as described in the
next chapter.

11

4A P P R O A C H A N D
I M P L E M E N TAT I O N

This chapter illustrates the general approach and implementation of the used hybrid analysis. The
overall goal is not only to show its functionality but in addition its possible weaknesses and strengths.

4.1 Approach

This section describes the design of the hybrid WCET analysis. At first, there is an overview of
the general approach. After that, the following three sections relate to the three main parts of the
analysis process. Each of these sections gives a general description of the design concept and has a
counterpart in Section 4.2, which depicts the concrete implementation of the underlying technique.

4.1.1 The General Analysis Process

In order to study the effects of variations in the implementation in later stages of this thesis, the
whole design concept is subject to a fully modular construction. This enables not only a easier
modification of the implementation but also a better evaluation of possible interim results. In general
the analysis process contains three main parts, of which each of them can be further divided into
separate sub-parts. These are

• preparation of the analysis input format

• measurement of the execution time

• computation of the WCET

Figure 4.1 illustrates the process as a whole. The first stage shows the compilation and preparation
of the analysis input. The next stage contains the actual program execution and the transferring of
the measurement results in a form, which can be embedded in the last phase, the computation of
the WCET.

4.1.2 Input Format of the Program

In order to execute the program in the measurement process and to conduct the computation of
the WCET, the initial file not only needs to be compiled but also analyzed with regards to its inner
structure and program flow. The tasks of this preparation phase are described in the following.

13

4.1 Approach

Figure 4.1 – The general analysis process contains the three phases. The first phase prepares
the format of the program. The second phase measures the execution time. The last phase
computes the WCET.

4.1.2.1 Executable Binary File

In general, different WCET tools work on different representation levels of the program. As described
in Section 2.3, these representation levels describe the format, in which the program is passed to
the analysis. Since the last stage conducts its computation of the WCET based on object code level,
the initial file in C code needs to be compiled and passed to the second as well as to the last stage.

4.1.2.2 Flow Facts

Flow facts are necessary in order to perform a correct computation of the WCET, see Section 2.3.
After the compilation they are passed to the computation process through the binary file and are
used at the definition of an ILP, that is part of Section 4.1.4.2. Since these flow facts are needed in
order to perform a correct computation in the last stage of the analysis, they have to be defined in
this approach in the preparation phase manually.

4.1.2.3 Partitioning on Object Code Level

The last task of the first stage is the transformation of the program in a form, which can be used to
extract the program flow. This happens through partitioning on object code level. The goal is to
divide the program into basic blocks, see Section 2.3. The result of this partitioning serves as the
foundation of the construction of the CFG.

4.1.3 Measurement of the Execution Time

The task of this phase is the execution of the previously created binary file and the extraction of the
measurement times, which are then passed to the computation phase. These two steps are described
in the following two sections.

14

4.1 Approach

4.1.3.1 Execution of the Program on a Chip Simulator

In this approach the program is not executed on a real hardware. The execution is emulated by
a chip simulator, that provides a logging of the instruction by instruction execution in the CPU as
an output file, which yields various measurement information about the execution of instructions,
blocks and the whole program.

4.1.3.2 Extraction of the Execution Time

This task serves as the adapter between the output of the chip simulator and the computation
process, by extracting the two important measurement information out of the output file. First of all
it provides the measurements times of each instruction executed in the CPU. Second it delivers the
execution time of the whole program execution. Both information are passed to the last stage, the
computation of the WCET.

4.1.4 Computation of the WCET

In the last stage of the WCET analysis the previous created files and measurement results are used
in order to estimate a theoretical upper bound for the worst execution time. In this approach, the
foundation of this computation is a conventional static analysis, as described in Section 2.3. But in
addition, the measurement results are embedded in this static analysis process.

4.1.4.1 Representation of the Program Control Flow in a Graph

In this approach the transformation of the program flow into the CFG is part of the platin analysis
process. The important part of this step is the embedding of the measurements into the static analysis
on instruction level. Since the previous stage measures in general more than one path there is the
possibility for multiple measurements for one instruction. In this analysis this conflict is solved by
computing always with the worst-case execution. If one instruction is not covered my any measured
trace there are two possible ways of replacing that missing information, see Section 4.2.3.1 for
further description.

4.1.4.2 Determination of the Worst-Case Path

The determination of the WCET is part of the ILP solver though IPET of platin. In summary of the
whole analysis approach, the overall concept is designed in this modular way not only to simplify
possible modifications, but also to facilitate the application of existing tools. The selection and
integration of these tools into this hybrid analysis is described in the following chapter.

4.2 Implementation

The in the Section 4.1 described design of the three main analysis parts now have to be further
specified in respect of their implementation. Therefore it is the goal of this chapter, to show which
tools were chosen in this hybrid analysis and how they are embedded into the hybrid analysis.

15

4.2 Implementation

4.2.1 Input Format of the Program

At first, the tasks of the preparation phase have to be implemented. This includes the selection of
the compiler for a specific architecture, the coding of the flow facts into the source code and the
partitioning of the programs control flow.

4.2.1.1 The RISCV Architecture

Since the results of the preparation phase are passed to the later stages of the hybrid analysis, the
right compiler has to be chosen to fit the needs of the measurement and the computation phase.
Further, the decision about the CPU architecture, on that the program later gets executed on, has to
be made. For CPU architecture the RISC-V ISA RV32IM [13]. Compiled was the program with an
clang front end based on the LLVM toolchain [8].

4.2.1.2 Pragma Platina Flow Facts

The process of specifying the flow facts in the source code of the program is showed with the
following example Listing 4.1. Since it contains an if-else statement followed by a loop, the control
flow of function f is equivalent to the one in the CFG depicted in Section 4.1.4.2. Like described in
Section 4.1.4.2, there is the need for information about feasible and infeasible paths through the
program. In the case of a loop, this information can not be extracted solely by the analysis of the
branch instructions, but must be stated in form of a loop bound. This loop bound is essential for
the ILP solver in order to find the longest path through the program without assuming an infinite
number of loop iterations.

In the example of Listing 4.1 the loop bound is defined by the statement depicted in Listing 4.2.
By coding it in front of the loop head it gets assigned to it.

Therefore it limits the variable x j ≤ 5, with 0< j < n, which represents the edge from the node
loop body back to its predecessor condition. It must be remarked, that finding a correct and tight loop
bound is not always as easy as in this example, since in the case of a more complex loop condition,
the maximum number of possible iterations is not as obvious as in line 6.

4.2.1.3 The Program Metainfo Language

As described in Section 4.1.2.3, it is the last task of the preparation phase to transform the program
in a form, which can be used to extract the program flow. This is covered by the clang compiler front

1 int f(int input){
2 int output = 0; // start
3 if(input > 0){ // condition
4 output += input; // then
5 }else{
6 output -= input; // else
7 }
8 for(int i=0;i<5;i++) { // condition
9 output += output; // loop body

10 }
11 return output; // end
12 }

Listing 4.1 – The initial code of the exemplary program did not contain any flow facts.

16

4.2 Implementation

1 #pragma loopbound min 0 max 5
2 for(int i=0;i<5;i++){ /*...*/ }

Listing 4.2 – In order to assign a bound to the loop, a certain statement has to be defined
in front of the loop.

end, which produces a program metainfo language (PML) file. This file contains all the information
about the basic blocks necessary for the build process of the CFG and gets therefore passed to the
last stage [6].

4.2.2 Measurement of the Execution Time

Given that the PML file is created, the initial C file is complemented with the necessary flow facts
and compiled, the next step in the analysis process handles the measurement execution. This section
describes the chip emulator, that is used for this program execution, while focusing on the structure
of the output file. Hereafter the process of extracting the execution time of each instruction is
explained.

4.2.2.1 The Rocket Chip Simulator

For the simulation of the program execution the Rocket Chip Generator was used [1]. It contains
the needed tools in order to generate designs of integrated circuits. Since its processor generators
are written in a hardware construction language [1], this implementation design opens up the
possibility for the evaluation of variances in the underlying hardware and its effects on the overall
WCET estimation performance. Looking back to the exemplary function in Listing 4.1, a execution
of a program, calling this function, would result in a step by step execution of every instruction. The
ouput file of the rocket chip therefore contains the logging information of the CPU state for every
cycle while the execution is simulated. For further explanation of the structure of the simulation
the loop body of Listing 4.1 is consulted. On object code level the loop body block contains the
instructions from Listing 4.3.

It loads the value of the output variable into register a0, adds it up with itself onto a0, which
results in output += output; on C code level, and finally stores it. The last instruction of the block
is the jump instruction of the second condition block, which was also the predecessor block of the
loop body. Executed on the rocket chip the output file therefore contains the sequence depicted in
Listing 4.4.

Each line stands for one CPU cycle, which is the first number after CPU core. In addition, in each
cycle the executed instruction is given in from of its object code and position in the RAM.Further,
each line shows the position of the program counter defined by the value of pc. The number left of

1 0x800010c0 : ff042503 lw a0 ,−16(s0)
2 0x800010c4 : 00a50533 add a0 , a0 , a0
3 0x800010c8 : fea42823 sw a0 ,−16(s0)
4 0x800010cc : 0040006 f j 800010d0 <f+0x88>

Listing 4.3 – Instrucions of the loop body from Listing 4.1 on object code level.

17

4.2 Implementation

1 281545 [1] pc=[800010c0] . . . i n s t=[ff042503] lw a0 , −16(s0)
2 281546 [0] pc=[800010c0] . . . i n s t=[ff042503] lw a0 , −16(s0)
3 281547 [1] pc=[800010c4] . . . i n s t=[00a50533] add a0 , a0 , a0
4 281548 [1] pc=[800010c8] . . . i n s t=[fea42823] sw a0 , −16(s0)
5 281549 [1] pc=[800010cc] . . . i n s t=[0040006 f] j pc + 0x4

Listing 4.4 – The output of the Rocket Chip Simulator, depicting the loop body from
Listing 4.3.

the program counter is of particular importance. The [1] at cycle 281548 for example signifies a
valid instruction in the writeback stage, which is in this case the store word command at 0xfea42823.
A [0], like as in cycle 281546 shows, that there is no valid instruction on the writeback stage. But
the most important thing that can be seen in this example of the rocket chip output file is, that
a instruction execution can last longer than one cycle in the writeback stage, like the load word
operation at 0xff042503. Looking at the whole log one can see that even the execution time of the
same instruction can vary in the progress of the program because of cache and pipeline effects. The
solution for the definition of a instructions execution time by analyzing this output file is content of
the following chapter.

4.2.2.2 Parsing the Instruction Executions

Understanding the process of parsing the execution times is important in order to understand
the output of this stage of the WCET analysis. The measurement was conducted on statement
level, meaning that for every instruction its execution time was extracted. In addition the parsing
process measures the whole program execution time for later evaluation of the hybrid analysis with
a conventional measurement based WCET analysis. In this approach the execution time of one
instruction was defined by the time between its first valid appearance in the writeback stage of the
pipeline until the next valid instruction is in the writeback stage. This implementation approach
has advantages and disadvantages. On the one hand it is a simple solution for measuring the
execution time of blocks and the program as a whole, because the execution times of sum of the
single instructions added up equals the execution time of the entire program respectively block. On
the other hand it fails at defining the execution time of the instruction itself, as the example from
Listing 4.5.

In this segment a value of a specific data element gets incremented by one in cycle 434760. For
that, the memory position of this data element is calculated in the previous instructions. As it can
be seen, the parser assigns the value 28 to the addi instruction of 0xe2050513, although a addi
instruction is rather simple and the delay in the program execution is caused more likely by the
successing add instruction at 00a58533 due to data hazard because of dependency to the value of
register a0.

4.2.3 Computation of the Upper Bound

The last stage of this analysis approach is the estimation of the WCET by computing an upper bound
based on the results of the previous stages, namely the PML-file, the binary file and the measurement
results of the parser of the rocket chip’s output file. This sections describes therefore the functionality

18

4.2 Implementation

1 434728 [1] pc=[800013b8] . . . i n s t=[00005537] l u i a0 , 0x5
2 434729 [1] pc=[800013bc] . . . i n s t=[e2050513] addi a0 , a0 , −480
3 434730 [0] pc=[800013bc] . . . i n s t=[e2050513] addi a0 , a0 , −480
4 434731 [0] pc=[800013bc] . . . i n s t=[e2050513] addi a0 , a0 , −480
5 . . .
6 434754 [0] pc=[800013bc] . . . i n s t=[e2050513] addi a0 , a0 , −480
7 434755 [0] pc=[800013bc] . . . i n s t=[e2050513] addi a0 , a0 , −480
8 434756 [0] pc=[800013bc] . . . i n s t=[e2050513] addi a0 , a0 , −480
9 434757 [1] pc=[800013c0] . . . i n s t=[00a58533] add a0 , a1 , a0

10 434758 [1] pc=[800013c4] . . . i n s t=[00052603] lw a2 , 0(a0)
11 434759 [0] pc=[800013c4] . . . i n s t=[00052603] lw a2 , 0(a0)
12 434760 [1] pc=[800013c8] . . . i n s t=[00160613] addi a2 , a2 , 1
13 434761 [1] pc=[800013cc] . . . i n s t=[00c52023] sw a2 , 0(a0)

Listing 4.5 – The execution time of a single instruction can not be extracted from the rocket
chip output. It only shows how long the instruction remains in the writeback stage.

and usage of the chosen tool and the embedding of the instruction execution time in its existing
static analysis.

4.2.3.1 The Platin Toolkit

The applied WCET tool in this approach is the platin toolset. It contains tools for the estimation
of the WCET of a program based on its PML file, which had been generated in the first stage in
this process. Thereby it follows the common concept of a static analysis by generating a CFG as a
formal representation of the program and modeling the underlying hardware. It covers therefore
the two necessary tasks stated in Section 4.1.4. The disadvantage of platin lies in the challenge of
hardware modelation. Since it has no feature of estimating cache behavior of a RSIC-V architecture
implemented, it therefore always calculates with the pessimistic case of a cache miss. In the program
of Listing 4.1 this could have an especially negative impact in the loop at the bottom part of the
program. Because due to memory locality one would expect different execution times for different
iterations. The effect of platin’s missing persistence information with regard to loops can be seen in
the CFG of Figure 4.2.

As one can see, the edge from the loop body back to the incrementation block and the back
to the loop condition block affects the ILP by the factor 5. In an static analysis with persistence
information there would be two edges between the loop body and the loop condition respectively
incrementation block. One edge representing the block cost of the loop body while entering the
loop for the first time and one edge with potentially lower costs for all the following iterations.

4.2.3.2 Embedding of the Measurements

In order to compensate for the insufficient hardware modellation of platin the previously gathered
measurements could help out at estimating a correct yet tight upper bound. Since it can be very
expensive to reach 100% statement coverage in the measurement stage of the analysis, a strategy
for the not measured instruction has to be defined. Per default platin uses in that case the result
of its static analysis, but by setting the option –if-not-measured-zero, it assigns to the uncovered

19

4.2 Implementation

Figure 4.2 – the bottom subpart of the visualized ILP by platin (static analysis)

instruction the value zero. The final results of analyzing the exemplary program of this section,
shown at Listing 4.1, can be seen Listing 4.6.

In that snippet of the final log file two blocks are depicted. The else block, which was not covered
by the measurement and the condition block of the for loop, whose instruction were executed five
times for every iteration and an additional last time at the termination of the loop. Below that one
can see the entire execution time measured at the second stage and the statement coverage. The
last important number is the WCET estimated by the hybrid analysis, 371 cycles.

4.3 Summary

One strength of the analysis approach described in this chapter is its modular construction. While
some other hybrid analysis methods use online aggregation of measurement data, see Chapter 3,
this analysis allows the evaluation of interim results after its second stage.

20

4.3 Summary

1 . . .
2 f 0/2/0 i f . e l s e :
3 0x 80001090 LW NOT MEASURED 17
4 0x 80001094 LW NOT MEASURED 17
5 0x 80001098 SUB NOT MEASURED 6
6 0x 8000109c SW NOT MEASURED 13
7 0x 800010a0 JAL NOT MEASURED 9
8 . . .
9 f 0/4/0 fo r . cond :

10 0x 800010b0 LW using M 1 1 1 1 1 1 1
11 0x 800010b4 ADDI using M 1 1 1 1 1 1 1
12 0x 800010b8 BLT using M 4 1 1 1 1 1 4
13 0x 800010bc JAL using M 2 2 1 1 1 1
14 . . .
15 PATH 30 : 336
16 STATEMENT_COVERAGE : 0.925 . . .
17 . . .
18 −−−
19 − ana l y s i s−entry : main
20 source : p l a t i n
21 c y c l e s : 371
22 cache−max−c y c l e s : 0

Listing 4.6 – Besides the result of the hybrid analysis the output contains information about
the execution time for each block, the execution time for each measured path and the
statement coverage of the previous measurement phase.

21

5E VA LUAT I O N

Looking at the approach and implementation of this hybrid analysis one could expect that its results
differ from these of a conventional static analysis respectively pure measurement based analysis.
The main weakness of the static analysis approach of platin is the missing hardware modeling with
regards to cache effects for the RISC-V architecture. The main weakness of a measurement based
analysis is the uncertainty of its upper bounds. Therefore this chapter evaluates whether this hybrid
approach is now able to make up for these weaknesses.

5.1 Qualitative Analysis

The first task of this chapter is the qualitative evaluation of the analysis. By doing so, one can
observe the fundamental properties of the hybrid analysis and probably some critical effects that
might decrease the analysis performance.

5.1.1 Setup

Before going into further details of the evaluation results, this section illustrates the overall setup of
the test examples. The underlying goal is to define micro-benchmarks that are designed to trigger
specific effects. In the following process, four analysis methods are applied to these benchmarks in
order to compare them with regards to their estimation performance. The following section refers to
the platin analysis as static analysis. The two hybrid analyses are called static-based hybrid analysis,
meaning the execution of the previously defined hybrid analysis with usage of the static calculated
costs for instructions not covered by the measurement and zero-based hybrid analysis meaning the
execution of the previously defined hybrid analysis without usage of the static calculated costs for
unmeasured instructions instead using zero as cost. The measurement-based analysis is defined as
the longest execution path of the whole program measured in the second stage. The setup of this
evaluation follows the design approach in terms of Section 4.1.

5.1.2 Fundamental Properties of the two Hybrid Analysis Strategies

The first evaluation compares the two hybrid strategies. The goal is to show their behavior in
terms of over- and underestimation in relation to path and statement coverage. In addition, a first
comparison between the static-based hybrid analysis approach and the conventional static analysis
can be made.

23

5.1 Qualitative Analysis

5.1.2.1 Micro-Benchmark

In order to do that, a benchmark was designed which executes different paths of the program in
dependence of its input. These paths all cover different amounts of statements in this program.
Cache effects were avoided. This means that the benchmark was designed in such way that it triggers
the same cache hits respectively misses for each executed path. In order to provide that, the program
consists of a series of if-else statements, each performing an addition in its then-block and the whole
program works on one datum, that is incremented in these passed then-blocks. So as a consequence,
no measured path execution time should differ from the effects of a cache miss at the instruction’s
execution time. A snippet of this micro-benchmark is depicted in Listing 5.1.

The paths that were measured in the second stage all differ in respect of the number of then-
blocks they pass. By that a variation in statement coverage can be attained. An illustration of that
approach can be seen in Figure 5.1. While only the red path executes all blocks, each of the other
paths evaluate one more if-condition as false, leaving parts of the code uncovered. Concretely, nine
if-else statements were implemented, and therefore ten different paths were measured.

5.1.2.2 Results

The results of the analysis can be seen in Figure 5.2. Both figures show the comparison between
one hybrid analysis and the WOET. The WOET is in this case the red path in Figure 5.1, with
292 CPU cycles. Since there is no execution path which was not measured in the second stage
this WOET is the WCET. The left figure shows that the zero-based hybrid analysis computes in
general too optimistic upper bounds. With increasing statement coverage and therefore increasing
knowledge about the program, the overall estimation gets more and more accurate. The right figure
shows, that the static-based hybrid analysis computes in general too pessimistic upper bounds. Like
the zero-based analysis, its error between estimated and actual WCET decreases with increasing
statement coverage. In addition, the right figure shows the outperforming of the hybrid analysis
compared to a pure static analysis, since all estimations of the hybrid analysis are less pessimistic.

1 int f(int input) {
2 int output = 0; // start
3

4 if(input > 1){ // condition
5 output += 1; // then
6 }
7

8 if(input > 2){ // condition
9 output += 1; // then

10 }
11

12 // ...
13

14 return output; // end
15 }

Listing 5.1 – The micro-benchmark designed for the fundamental strategy analysis contains
a series of if-else statements, each executing an addition. The goal is, to observe the
fundamental properties of the analysis strategies in terms of over- and underestimation.

24

5.1 Qualitative Analysis

Figure 5.1 – The paths that were measured for the evaluation of the fundamental analysis
properties covered all possible ways through the program.

Figure 5.2 – The results of the strategy analysis show on the left side the underestimation
of execution times in the zero-based hybrid analysis and on the right side the pessimistic
overestimation execution times in the static-based hybrid analysis.

5.1.2.3 Explanation

In order to explain the results of the hybrid analysis, it is useful to examine how each strategy
estimated the execution time of one of these then-blocks because the differences in the coverage
of these blocks cause afterwards the differences in the overall estimation. The execution times
calculated by the static analysis can be seen in Listing 5.2.

The static analysis does not know which of these data is cached or not. Therefore, it assumes
a cache miss for each accessed data. But since each block operates on the same data the actual

1 0x 8000109c LW NOT MEASURED 55
2 0x 800010a0 ADDI NOT MEASURED 17
3 0x 800010a4 SW NOT MEASURED 35
4 0x 800010a8 JAL NOT MEASURED 20

Listing 5.2 – In the static analysis the longest possible executions times of the then-block
are calculated, not measured.

25

5.1 Qualitative Analysis

execution time is due to continuous cache hits way shorter. The measured execution times are
depicted in Listing 5.3

This knowledge about the cache behavior is the reason for the outperforming of the static-based
hybrid analysis. Explaining the underestimation of the zero-based hybrid estimation is trivial. For
every instruction that is not covered by the measurement the analysis calculates with the zero costs,
making the overall estimation generally too optimistic. In conclusion, this evaluation shows the
expected fundamental properties of the two analysis strategies, namely a general overestimation
in the results of the static-based hybrid analysis and a general underestimation in the results of
the zero-based hybrid analysis. In addition, it shows a general outperforming of the static-based
hybrid analysis in comparison to the pure static analysis. One major mistake would be however to
generalize the linear decreasing estimation error with increasing statement coverage that could be
observed in both evaluations. This is only due to the inherent structure of the used micro-benchmark,
as the following section shows.

5.1.3 The Analysis’s Ability of Measuring Cache Behavior

The goal of the second experiment is to measure the effect of caching on the analysis strategies.
In addition, this chapter evaluates the concept of multiple path combinations in the computation
phase, which is described in Section 4.1.4.1.

5.1.3.1 Micro-Benchmark

Looking back to the benchmark of the previous evaluation, it was designed to evaluate the funda-
mental properties of the analysis estimation performance by deliberately eliminating different cache
behavior for different paths. In opposition to that, this benchmark is designed in order to trigger
cache misses and cache hits in dependence of the program input. By doing so, an evaluation of the
analysis estimation performance under the cache effect is possible. This micro-benchmark’s CFG is
depicted in Figure 5.3. It contains two consecutive if-else statements. In both then-blocks operations
on an array a are executed. In both else-blocks operations on an array b are executed. This enables
four paths through the program, of which two of them trigger a cache hit and two of them a cache
miss in the second if-else statement. If, for example, the path accesses array a in the first if-else block
it will trigger a cache hit in the second if-else block if it operates again on array a, an operation on
array b would results in a cache miss, since array b was not cached in the if-else statement before.
In contrast to the previous evaluation, this time the computation phase is conducted with multiple
path measurements as input. To be more exact, the hybrid analysis is evaluated on all 15 possible
subsets of the four input paths.

1 0x 8000109c LW using M 2 2
2 0x 800010a0 ADDI using M 1 1
3 0x 800010a4 SW using M 1 1
4 0x 800010a8 JAL using M 1 1

Listing 5.3 – The measured execution times are due to caching way shorter then the
calculated ones.

26

5.1 Qualitative Analysis

Figure 5.3 – The CFG contains two consecutive if-else statements in order to trigger cache
misses and cache hits in dependence of the programs input.

5.1.3.2 Results

The results of this evaluation can be seen in Figure 5.4, depicting the estimation performance in
relation to the statement coverage of the paths used in the computation phase, and in Figure 5.5,
depicting the same results with regards to the number of measurement paths in the subset passed to
the computation phase. Like in the previous evaluation the left sides show the performance of the
zero-based hybrid analysis and the right sides refer to the static-based hybrid analysis. Looking at
the results of the zero-based hybrid analysis, there is no linear relation between statement coverage
and estimation error anymore. In addition, this analysis strategy does no longer produce only too
optimistic results. In 9 out of 15 subsets the computation leads to an overestimation. Looking at
figure Figure 5.5, it gets clear that especially those subsets with a higher number of paths lead to
these overestimation in the zero-based hybrid analysis. The results of the static-based hybrid analysis
again showed less pessimistic results than the conventional static analysis. But for this benchmark
one subset, that consists of only two paths, leads to an underestimation. Understanding these two
occasional effects, namely the unusual overestimation of the zero-based hybrid analysis and the
unusual underestimation of the static-based hybrid analysis, are crucial for the correct application
of the hybrid analysis. Therefore the following section describes them in more detail.

5.1.3.3 Conclusion

In order to understand why the static-based hybrid analysis underestimated the WCET in one case,
one has to look at the composition of the subset, that served as input for the computation phase.
Looking at the log file of that specific analysis results, retracing of the input paths is possible. In this
case it was a subset containing two paths illustrated in Figure 5.6.

The special characteristic of these two paths is that they both trigger a cache hit in the second
if-else statement, so the computation phase is calculating with the shorter execution times for cache

27

5.1 Qualitative Analysis

Figure 5.4 – Depicting the results of the zero-based (left) and static-based (right) hybrid analysis
in relation to the statement coverage of the paths used in the computation phase.

Figure 5.5 – Depicting the results of the zero-based (left) and static-based (right) hybrid analysis
in relation to the path coverage of the paths used in the computation phase.

hits, missing out the information about possible cache misses. Yet, they cover all possible blocks
of the benchmark, so a statement coverage of almost 100% is no longer a valid metric in order to
prevent such underestimation. Like Figure 5.5 shows, an underestimation of the static-based hybrid
analysis can be avoided by using subsets with a high path coverage in the computation phase. But
as described in the following, this may lead to another effect making the estimation performance
less reliable. Looking back to the implementation of the hybrid analysis, the computation stage
calculates the execution time of a block by selecting the longest measured execution time for each
of its instructions. In this way, it is possible that measured instruction executions of different
measurements are combined in one block, even if this constellation of execution times in reality
would be impossible. This can be seen for example in Listing 5.4 the logging of the zero-based
hybrid analysis, executed with the full set of all possible paths.

This block represents the entry block of the micro-benchmark. On the right side there are all
four measured paths. The middle section shows the maximum value of all of the execution times. It
is these values, that add up to the execution time of the entire block. Looking at the execution paths,
one can see that the third part is shorter in terms of executed instructions. In order to understand
this, one has to understand how the condition in the if-else statement is implemented.

28

5.1 Qualitative Analysis

Figure 5.6 – The subset, that lead to the underestimation in the static-based hybrid analysis,
contained two paths. Both of them trigger cache hits in the second if-else statement.

1 0x 80001048 ADDI using M 1 1 1 1 1
2 0x 8000104c SW using M 1 1 1 1 1
3 0x 80001050 SW using M 1 1 1 1 1
4 0x 80001054 ADDI using M 1 1 1 1 1
5 0x 80001058 ADDI using M 1 1 1 1 1
6 0x 8000105c SW using M 6 6 6 6 6
7 0x 80001060 LW using M 1 1 1 1 1
8 0x 80001064 ADDI using M 1 1 1 1 1
9 0x 80001068 SW using M 1 1 1 1 1

10 0x 8000106c BEQ using M 34 1 1 34 1
11 0x 80001070 JAL using M 2 2 2 2

Listing 5.4 – In the computation phase the maximum execution times of all paths
are summed up as the execution time of the whole block, leading occasionally to an
overestimation.

1 if(control == 1 || control == 2)

Listing 5.5 – The condition of the if-else statement is subject to short-circuit evaluation.

29

5.1 Qualitative Analysis

The if-else condition, shown in Listing 5.5, consists of two boolean expressions combined with
an or-conjunction. The shorter path of the first block is that path, that evaluates its first impression
as true and jumps directly into the then-block due to short-circuit evaluation.

This block, depicted in Listing 5.6, represents the evaluation of the condition’s second expression.
Since in one path the entire condition already is evaluated as true, this part of code is only passed
by the remaining three. In reality, the longest path through these two consecutive code blocks
would be path one and four, each leading to a combined time of 79 cycles. The hybrid analysis,
however, does not take into account that combining the maximum execution time of each instruction
occasionally leads to impossible constellations and therefore overestimates this code section with
an expected time as 114 cycles. Knowing this structural detail in the design, one can not only
explain the overestimation of the zero-based hybrid analysis but also the performance decrease of
the static-based hybrid analysis with the full set of paths compared to the execution with subsets only
covering three paths. It seems like both effects could correlate with the number of paths passed to
the computation stage. In order to gain knowledge about this correlation, the next section evaluates
these two observed effects in a more quantitative approach.

5.2 Quantitative Analysis

Since the previous chapter evaluated the hybrid analysis in a qualitative way, this sections focuses
at first on the evaluation of the previous observed overestimation effect quantitatively and second
on the overall estimation performance on a broad set of benchmarks. At the end of this section a
comparison between hybrid, static and measurement-based analysis in terms of precision is made.

5.2.1 Setup

The goal of the previous evaluation was to trigger specific hardware effects in order to see how
the analysis reacts. This was done by creating micro-benchmarks. The purpose of a quantitative
evaluation is to gain performance information as universal as possible. Therefore this evaluation
must be carried out on the basis of randomly created benchmark, that can represent a broad set
of possible real-world application of the analysis. For that the tool GENE is used [12]. GENE is
suitable for this evaluation approach because it is able not only to create WCET benchmarks but to
predefine its longest execution path. In addition, variables such as complexity or input length of the
benchmark or specific program patterns as loops or branches can be defined.

1 0x 80001074 LW using M 1 1 1 1
2 0x 80001078 ADDI using M 1 1 1 1
3 0x 8000107c BNE using M 60 60 30 60
4 0x 80001080 JAL using M 2 2

Listing 5.6 – The second part of the condition is not executed by the path, that has already
evaluated the first part of the condition as true.

30

5.2 Quantitative Analysis

5.2.2 Quantitative Evaluation of the Subset Size

The first experiment is about the evaluation of the influence of the subset size on the estimation
performance. It can be expected that the results deliver a quantitative relation between subset size
and estimation performance. This information is important because in the next experiment, which
evaluates the overall estimation performance in relation to the conventional analysis methods, one
needs to know which subset size delivers in general the optimal results in respect of underestimation
and overestimation effects.

5.2.2.1 Benchmark

For this first experiment a set of 5 benchmarks were randomly created with GENE , each of them
with a complexity of cost = 1000. The length of the input is 3 bit. Therefore there are 23 = 8
different executions through each of the benchmark. Since it is initial goal of this experiment to
examine the performance of each subset, the hybrid analysis was conducted for all 255 possible
subset variations. The benchmarks is created with the following pattern.

• Arithmetic

• Branch

• ConstantGlobalAssignment

• Consume

Therefore the benchmarks contain branching with arithmetic instructions but no loops. They are
excluded in the first quantitative experiment because their disproportional influence on the execution
time could overshadow the under- and overestimation effect that are subject of this experiment.

5.2.2.2 Results

Figure 5.7 shows the experiment results for all five benchmarks. The x-axis depicts the subset size, the
y-axis the estimation error. Here the estimation error is defined as the difference between estimated
and actual WCET. Like in all previous experiments the estimation performance of the hybrid analysis
executed with mono-path subsets show the fundamental characteristics of underestimation in the
zero-based hybrid analysis and general overestimation in the static-based analysis again. Further, the
multi-path subsets of all five benchmarks confirm the overestimation effect described in Section 5.1.3.
Surprisingly this overestimation does not increase linear with a larger subset size. Instead it grows
with smaller subsets and then hits a limit in every case. The results of the zero-based analysis are
especially clear on that.

5.2.2.3 Conclusion

Because it seems like there is no linear correlation between subset size and overestimation it is
suggested to not limit the size of the path set used in the computation phase and instead incorporate
as many measurements as possible in order to minimize the risk of underestimation, see Section 5.1.3.

5.2.3 Quantitative Evaluation of the Overall Performance

The goal of this second part is to get a quantitative evaluation about the performance of the hybrid
analysis compared to the two conventional analysis methods, the end-to-end measurement-based

31

5.2 Quantitative Analysis

Figure 5.7 – The figure shows the analysis results for all five GENE benchmarks with the goal
of evaluating the overestimation effect in a quantitative way. The x-axis shows the size of the
subset and the y-axis displays the estimation error as the absolute difference between computed
and actual WCET.

32

5.2 Quantitative Analysis

respectively static analysis. By doing so, this sections tries to answer the initial question of the
introduction whether this hybrid approach could outperform the platin analysis on hardware for
which there is no cache prediction so far implemented and at the same time provide safer results
than the measurement-based analysis. Further, this evaluation gives insights on how the hybrid
analysis performs for certain pattern like loops or branches and how infeasible paths influence the
results.

5.2.3.1 Benchmarks

In order to answer this questions a set of four benchmarks is created with GENE , each of them with
a complexity of cost = 4000. The length of the input is now 5 bit. Therefore there are 25 = 32
different executions through each of the benchmark. This limitation in complexity, input length and
number of benchmark is because of the long execution time of the hybrid analysis itself. A larger set
of benchmarks certainly would increase the confidence in the performance evaluation but is due to
its duration so far not possible. Therefore, the subset size has to be equally limited to five so that
a simulation of the analysis’s ability to compensate a lack of path coverage can be attained. Each
subset was created randomly. The foundation of the benchmarks are the same pattern like in the
previous section extended by the MutualExclusivePath pattern. In addition the four benchmarks
represent the four possibilities of combining the two pattern ConstantLoop and InfeasiblePath in such
way that the benchmarks of Table 5.1 are created.

NAME LOOPS INFEASIBLE PATHS
complex 3 3

only-loop 3 7

only-infeasible 7 3

simple 7 7

Table 5.1 – The four benchmarks represent all combinations of the pattern ConstantLoop and
InfeasiblePath.

By doing so, a evaluation of the analysis performance in dealing with these kind of structures
in programs is possible. And thus, the strengths and weaknesses of this thesis’s approach can be
identified. The given relative error is calculated as

est imation_er ror =
est imation−W C ET

W C ET

5.2.3.2 Results

The results of this overall performance evaluation can be seen in Figure 5.8. Each of these figures de-
picts the WCET estimation results with 17 conducted hybrid analyses for each of the four benchmarks
described in the previous section. These are reading top-down complex, only-loop, only-infeasible
and simple. Just like in the evaluation before the y-axis shows the estimation error between actual
and estimated WCET time. The x-axis shows this time the statement coverage instead of the subset
size since all subsets are of size five. Two things are important in this figure. At first, the zero-based
analysis depicted on the left leads in a significant times to an underestimation. The static-based
analysis strategy on the other hand did not show any underestimations. It performed all analysis
examples within a margin of error of about 150% which is quiet small compared to the static analysis
estimations depicted in Table 5.2.

33

5.2 Quantitative Analysis

NAME STATIC ANALYSIS ERROR
complex 693 %
only-loop 442 %
only-infeasible 470 %
simple 461 %

Table 5.2 – The static analysis is less accurate than the hybrid analysis.

The WCET was measured by executing all 32 possible inputs and taking the maximum of the
WOETs. In all four benchmarks the error of the static analysis is multiple times higher then the one
from the static-based hybrid analysis which leads to the following conclusions.

5.2.3.3 Conclusion

The quantitative evaluation of the hybrid analysis has shown that the overestimation effect due to
infeasible paths exists not only in micro-benchmarks but has a real influence in randomly created
benchmarks. Yet, the static-based analysis has proven to produce tighter upper bounds than the
conventional static analysis. While on the one hand the estimation error of the zero-based analysis
is smaller than the one of its static-based counterpart its results lack in reliability making the zero-
based approach inapplicable. The downside in this evaluation is its small number of benchmarks
which limits the possibility of making further generalizations about the hybrid analysis’s estimation
performance with the specific pattern inside the benchmarks.

5.3 Summary of the Evaluation Results

In summary, the evaluation section has shown the benefit of the static interpolation of the static-based
hybrid analysis. Its estimated upper bounds are more precise than the one of the static analysis
and at the same time safer than a pure end-to-end measurement. On the other hand the qualitative
evaluation with micro-benchmarks has shown the steady risk of underestimations despite high
statement coverage, even for the static-based strategy.

34

5.3 Summary of the Evaluation Results

Figure 5.8 – The figure shows the overall estimation performance of the analysis for all four
GENE benchmarks in the top-down order of complex, only-loop, only-infeasible and simple. The
x-axis shows the statement coverage and the y-axis displays the estimation error as the absolute
difference between computed and actual WCET.

35

6C O N C LU S I O N

The evaluation has shown that the hybrid approach presented in this thesis is a convenient compen-
sation for undocumented or unpredictable processors for which a static analysis cannot be conducted.
At least, the static-based approach has shown to be applicable. The zero-based analysis strategy
could not provide the safe upper bounds one would expect from a WCET analysis. In conclusion, a
hybrid analysis either has to be conducted with full statement coverage or the missing execution time
has to be replaced by the results of a static analysis. However, this static analysis needs of course
a hardware model, whose absence was the original motivation for the hybrid analysis. Therefore,
this static-based hybrid analysis approach could be used as a supplement for static analysis whose
hardware model is incomplete, for example, because of missing modeling of cache behavior.

The measurement aggregation on instruction level has not shown any positive influence on the
estimation performance. If anything, it opened the possibility for overestimation due to composition
of different execution times that cannot occur in reality. Another important observation of this
thesis’s evaluation is the fact that a full statement coverage does not prevent underestimations
especially if the influence of cache effects on the execution time is very strong.

The main weakness of both the zero-based and static-based analysis is its long execution time
for multi-path subsets which leads to the restriction of traces used in the computation phase and
ultimately to low statement and path coverage. As the quantitative evaluation shows the main
reason for overestimations is still the pessimism of the static analysis results used in the uncovered
code. Future work could improve the runtime behavior of the computation phase with regard to the
number of input traces. By enhancing the number of input traces one could not only reduce the
pessimism of the analysis but also make the analysis results more reliable.

37

L I S T O F A C R O N Y M S

WCET worst-case execution time

IPET implicit path enumeration technique

WOET worst-observed execution time

CFG control-flow graph

ILP integer linear progam

PML program metainfo language

FPGA field-programmable gate array

39

L I S T O F F I G U R E S

2.1 The black bars show the actual execution time distribution of an exemplary real-time
task. The white bars below show the distribution of the execution times measured
while testing. The figure shows therefore the problem of estimating the WCET without
knowledge about the execution time for unmeasured input data. The figure is taken
from [15]. 4

2.2 The CFG of this exemplary program contains an if-else statement followed by a loop. 7

3.1 The analysis of the TimeWeaver contains the Decoding Phase, the Microarchitectural
Analysis Phase, the Path Analysis Phase and a Visualization Phase. 10

3.2 The TimeWeaver estimation performance compared to the WOET shows little differ-
ence. Taken from [7]. 11

4.1 The general analysis process contains the three phases. The first phase prepares the
format of the program. The second phase measures the execution time. The last
phase computes the WCET. 14

4.2 the bottom subpart of the visualized ILP by platin (static analysis) 20

5.1 The paths that were measured for the evaluation of the fundamental analysis proper-
ties covered all possible ways through the program. 25

5.2 The results of the strategy analysis show on the left side the underestimation of
execution times in the zero-based hybrid analysis and on the right side the pessimistic
overestimation execution times in the static-based hybrid analysis. 25

5.3 The CFG contains two consecutive if-else statements in order to trigger cache misses
and cache hits in dependence of the programs input. 27

5.4 Depicting the results of the zero-based (left) and static-based (right) hybrid analysis
in relation to the statement coverage of the paths used in the computation phase. . . 28

5.5 Depicting the results of the zero-based (left) and static-based (right) hybrid analysis
in relation to the path coverage of the paths used in the computation phase. 28

5.6 The subset, that lead to the underestimation in the static-based hybrid analysis,
contained two paths. Both of them trigger cache hits in the second if-else statement. 29

5.7 The figure shows the analysis results for all five GENE benchmarks with the goal of
evaluating the overestimation effect in a quantitative way. The x-axis shows the size
of the subset and the y-axis displays the estimation error as the absolute difference
between computed and actual WCET. 32

41

LIST OF FIGURES

5.8 The figure shows the overall estimation performance of the analysis for all four GENE
benchmarks in the top-down order of complex, only-loop, only-infeasible and simple.
The x-axis shows the statement coverage and the y-axis displays the estimation error
as the absolute difference between computed and actual WCET. 35

42

L I S T O F TA B L E S

5.1 Table showing the benchmarks of Section 5.2.3.1. 33
5.2 Table showing the results of the static analysis. 34

43

L I S T O F L I S T I N G S

2.1 The structure of the consecutive if-else statements enables four different paths through
the program. Yet two of them are enough to reach full statement coverage. 5

2.2 The loop contains 2100 different paths making an explicit examination of each path
impossible. Taken from [9] . 8

4.1 The initial code of the exemplary program did not contain any flow facts. 16
4.2 In order to assign a bound to the loop, a certain statement has to be defined in front

of the loop. 17
4.3 Instrucions of the loop body from Listing 4.1 on object code level. 17
4.4 The output of the Rocket Chip Simulator, depicting the loop body from Listing 4.3. . 18
4.5 The execution time of a single instruction can not be extracted from the rocket chip

output. It only shows how long the instruction remains in the writeback stage. 19

4.6 Besides the result of the hybrid analysis the output contains information about the
execution time for each block, the execution time for each measured path and the
statement coverage of the previous measurement phase. 21

5.1 The micro-benchmark designed for the fundamental strategy analysis contains a
series of if-else statements, each executing an addition. The goal is, to observe the
fundamental properties of the analysis strategies in terms of over- and underestimation. 24

5.2 In the static analysis the longest possible executions times of the then-block are
calculated, not measured. 25

5.3 The measured execution times are due to caching way shorter then the calculated ones. 26
5.4 In the computation phase the maximum execution times of all paths are summed up

as the execution time of the whole block, leading occasionally to an overestimation. . 29
5.5 The condition of the if-else statement is subject to short-circuit evaluation. 29
5.6 The second part of the condition is not executed by the path, that has already evaluated

the first part of the condition as true. 30

45

R E F E R E N C E S

[1] Krste Asanovic et al. “The rocket chip generator.” In: EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[2] Sanjeev Baskiyar and Natarajan Meghanathan. “A Survey of Contemporary Real-time Operat-
ing Systems.” In: Informatica (03505596) 29.2 (2005).

[3] Adam Betts, Nicholas Merriam, and Guillem Bernat. “Hybrid measurement-based WCET
analysis at the source level using object-level traces.” In: 10th International Workshop on
Worst-Case Execution Time Analysis (WCET 2010). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik. 2010.

[4] Boris Dreyer et al. “Continuous non-intrusive hybrid WCET estimation using waypoint
graphs.” In: 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016.

[5] Boris Dreyer et al. “Precise continuous non-intrusive measurement-based execution time
estimation.” In: 15th International Workshop on Worst-Case Execution Time Analysis (WCET
2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

[6] Stefan Hepp et al. “The platin Tool Kit - The T-CREST Approach for Compiler and WCET
Integration.” In: 18. Kolloquium Programmiersprachen und Grundlagen der Programmierung
(KPS) 2015. 2015. URL: http://publik.tuwien.ac.at/files/PubDat_246928.pdf.

[7] Daniel Kästner et al. “TimeWeaver: A Tool for Hybrid Worst-Case Execution Time Analysis.”
In: 19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019). Ed. by
Sebastian Altmeyer. Vol. 72. OpenAccess Series in Informatics (OASIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 1:1–1:11. ISBN: 978-3-95977-
118-4. DOI: 10.4230/OASIcs.WCET.2019.1. URL: http://drops.dagstuhl.de/opus/
volltexte/2019/10766.

[8] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation.” In: Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization. IEEE Computer Society. 2004,
p. 75.

[9] Yau-Tsun Steven Li and Sharad Malik. “Performance analysis of embedded software using
implicit path enumeration.” In: ACM SIGPLAN Notices. Vol. 30. 11. ACM. 1995, pp. 88–98.

[10] Yannick Moy et al. “Testing or Formal Verification: DO-178C Alternatives and Industrial
Experience.” In: IEEE Software 30.3 (2013), pp. 50–57. ISSN: 1937-4194. DOI: 10.1109/MS.
2013.43.

47

REFERENCES

[11] Serdar Tasiran and Kurt Keutzer. “Coverage metrics for functional validation of hardware
designs.” In: IEEE Design Test of Computers 18.4 (2001), pp. 36–45. DOI: 10.1109/54.
936247.

[12] Peter Wägemann et al. “Benchmark generation for timing analysis.” In: 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE. 2017, pp. 319–330.

[13] Andrew Waterman et al. “The risc-v instruction set manual, volume i: Base user-level isa.” In:
EECS Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

[14] Ingomar Wenzel et al. “Measurement-based worst-case execution time analysis.” In: Third
IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05).
IEEE. 2005, pp. 7–10.

[15] Reinhard Wilhelm et al. “The Worst-case Execution-time Problem&Mdash;Overview of
Methods and Survey of Tools.” In: ACM Trans. Embed. Comput. Syst. 7.3 (May 2008),
36:1–36:53. ISSN: 1539-9087. DOI: 10.1145/1347375.1347389. URL: http://doi.acm.
org/10.1145/1347375.1347389.

48

