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Abstract

Compile-time configurable system software requires a thorough design and im-

plementation of the resulting variability. The Linux kernel constitutes a prominent

example of such system software; Linux v3.12 ships over 12 000 configurable features

with dozens of supported hardware architectures. Previous research shows that

the Linux kernel suffers from hundreds of variability related defects. In this thesis,

I shall present an empirical case study of variability defects in 24 versions of the

Linux kernel, and present a tool that checks GIT commits for such bugs in order to

avoid the introduction to the source code.

i





Kurzfassung

Konfigurierbare System Software erfordert einen modularen Softwareentwurf, der

in vielen Fällen durch die Instrumentierung eines Kompilierers umgesetzt wird. Der

Linux Betriebssystemkern sei hierbei mit über 12 000 konfigurierbaren Merkmalen

(Version 3.12) und zahlreichen unterstützten Hardware-Architekturen besonders

hervorgehoben. Die daraus entstehende Variabilität wurde vielfachs untersucht, und

führt zu hunderten von Software-Fehlern und Variabilitätsdefekten. Diese Arbeit

umfasst eine empirische Studie von Variabilitätsdefekten in 24 Versionen des Linux

Kerns, und stellt ein Software-Programm vor, dass die Analyse von Variabilitätsde-

fekten in GIT Commits ermöglicht.
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Chapter 1

Introduction

System software is a typical use case for compile-time configuration in order to

tailor the system with respect to a broad range of supported hardware architectures,

application domains and use cases. A major example is the Linux kernel. The

Linux kernel constitutes an important subject to variability research with more than

12 000 configurable features in Linux v3.12 and almost 30 supported hardware

architectures, including several sub-architectures. The variability management

of such software is a difficult and error-prone task. Various layers and different

programming languages need to be considered to get a holistic view of the feature

definitions and the actual implementation of such in the source code. In case of Linux,

variability is implemented by means of different tools and languages such as the

C preprocessor (CPP), the GNU C compiler (GCC), KCONFIG (configuration system),

KBUILD and MAKE (build system). A feature as well as its type and dependencies is

defined in the KCONFIG language, whereas the actual feature implementation takes

place in the source code which is conditionally compiled by means of KBUILD, the CPP

and the GCC. The result is two different but related models in the feature distribution

of Linux. The configuration space which constitutes the intended variability, and the

implementation space, the implemented variability.

Tartler et al. [2011, 2012] and Sincero et al. [2010] show that the interaction

of these models cause variability related defects and anomalies, that can lead to

well manifested errors in the operating system [Abal et al., 2014]. Nevertheless,

these works are mostly presenting problems – variability defects in Linux. Only few

[Nadi et al., 2013] studied the cause and effect of defects by analyzing previously

applied patches from Tartler et al. [2012] and by mining the stable GIT repository

of the Linux kernel. Furthermore, only a few Linux versions have been subject of

investigation. As a consequence, a holistic view on the problem is barely possible

and leads to wrong assumptions of the problem’s size and complexity in general.
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Despite thorough research in the field of variability related defects in system software,

and despite the fact that tools to automatically detect such defects exist for several

years, the Linux kernel still suffers from a considerably high number of variability

defects. Such defects constitute well manifested errors in the operating system, and

potentially lead to NULL pointer dereferences, buffer overflows, and application pro-

gramming interface (API) violations [Abal et al., 2014]. I blame state-of-the-art tools

to be too unpractical for conventional Linux development, and, as a consequence,

not being used by developers. Furthermore, only few research is dedicated to the

analysis of variability defects which, in addition, present questionable results and

do not cover all classes of variability defects.

In this thesis, I will present the first empirical case study of variability related defects

and present a tool, UNDERTAKER–CHECKPATCH, that analyzes GIT commits to avoid

the introduction of variability defects to the code base of Linux. First, we shall discuss

the nature of variability related defects in Linux and how they arise during the build

process of the Linux operating-system kernel (Chapter 2). Second, I will describe my

approach of detecting, tracking, and analyzing variability defects over 24 versions of

the Linux kernel and evaluate the results (Chapter 3) which will present a different

quality and quantity of variability defects than described in previous research papers.

In Chapter 4, I shall describe the implementation of the tool and how I use the results

of the precedent case study to detect, analyze and report variability defects in GIT

commits. Finally, I evaluate the tool on previously analyzed GIT commits and on the

current development branch of Linux v3.16 (Chapter 5), and discuss the usability

and benefit of the tool in daily Linux development (Chapter 6).



Chapter 2

Variability in Linux and Problem Statement

Operating systems and software systems in general demand a highly modularized

design [Parnas, 1972]. Various software features, such as scheduling strategies

or memory-management internals as well as the support of different hardware

architectures and application domains, require substantial configuration mechanisms.

The Linux kernel, a prominent example of such system software, contains more

than 12 000 configurable features with a growing number by each new release. In

general, we can identify several variation points in the Linux kernel that contribute

to and make use of the system’s variability:

Hardware Architectures The operating-system kernel is the closet software ab-

straction layer to communicate with the underlying hardware. The Linux kernel

supports more than 60 different hardware platforms such as ia32, DEC and sun-4,

which are organized to the correspondent architectures in the arch/ directory in the

source tree of the kernel. Linux v3.12 supports 30 different hardware architectures

(e.g., i386, ARM, Sparc, M68k), including dozens of sub-architectures.

Subsystems The kernel subsystems are independent from the underlying hard-

ware architecture, and can be classified as follows [Sincero et al., 2007]: kernel

(architecture-independent kernel code, e.g. IRQ-handling, process scheduler, etc.),

fs (file systems implementation), init (kernel initialization routines), mm (memory

management), sound (sound subsystem), block (abstraction layer for disk access), ipc

(inter-process communication), net (network protocols), and lib (library functions,

such as CRC and SHA1 algorithms). The drivers subsystem constitutes with 60 percent

of source lines of code (v3.12) the biggest subsystem of the Linux kernel.
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Configuration Options A software feature1 is defined as a distinguishing

characteristic of a software item (e.g., performance, portability, or functionality) and

also helps to reduce code redundancy [Lopez-herrejon, 2005]. Software features can

be used on a very fine-granular level to modularize smaller code artifacts, such as

functions, data structures, or interfaces. However, modularization may also happen

on a coarse-grained level to control the inclusion and exclusion of entire subsystems

(modules) in the software system. In the context of operating systems, such software

features can be closely related to hardware architectures (x86, ARM, etc.), hardware

features (paging, interrupts, etc.) or devices (drivers). Other features may relate to

a software module (e.g., scheduling). The features of the Linux kernel are defined in

and distributed with the KCONFIG tool. A user can define a feature and its type and if

desired, she can define further dependencies and constraints. Linux developers use

such features to define logic constraints in KCONFIG, a processor’s frequency value

in form of an integer, a simple version string, or a boolean to conditionally compile

source code units. Additionally, KCONFIG ships a tristate type; a special boolean switch

to optionally compile software modules as runtime loadable kernel modules (LKMs).

Today, the Linux kernel runs on various devices in various application domains.

It constitutes the operating system base for thousands of millions of Android smart

phones and tablets as well as the base for over 97 percent of the top-500 supercom-

puters2. The rapidly growing variety of supported hardware and application domains

requires substantial configuration mechanisms and a robust implementation of the

resulting variability in the system. As a consequence, the number of configurable

features in the Linux kernel nearly tripled since the year 2005 (Figure 2.1 on page 5).

These configurable features distribute and implement variability in the Linux kernel

to conditionally compile software modules and source-code artifacts. In Section 2.1,

I will explain how this variability is realized in order to transfer the conditionally

compiled source code into an executable operating-system kernel.

1IEEE Std. 829-1998
2http://en.wikipedia.org/wiki/TOP500, accessed 08-11-2014

http://en.wikipedia.org/wiki/TOP500
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Figure 2.1 – KCONFIG feature evolution from Linux v2.6.12 (2005) until
v3.12 (late 2013).

2.1 The Linux Build Process

The implementation of variability in the Linux kernel is realized by means of

different tools and languages such as KCONFIG, KBUILD and MAKE, the GCC and

the CPP. Variation points for the same feature may occur on different layers and

of course in different source files and languages but, nevertheless, they remain

interlinked as they derive from a common source: a KCONFIG configuration with

which the kernel is compiled. This user-selected configuration dominates the build

process as it determines the evaluation of features, as well as the compiling process;

from including and excluding entire compilation units to fine-granular source code

selection. As a matter of fact, feature implementations and the corresponding

variability in Linux happen on very different but interacting layers, which we

will examine separately to fully understand the variability implementation in the

Linux kernel. In the following, I describe how Linux’ variability is realized in the

configuration system and the build system, and how the process instruments the

user-selected kernel configuration to conditionally compile source code artifacts and

software modules.
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2.1.1 The Configuration System

Linux’ features are designed and implemented in the KCONFIG language. KCONFIG

defines features and their constraints (intended variability) and provides interfaces

to specify, edit and manage a concrete kernel configuration. The user selects during

the configuration process a Linux configuration in KCONFIG, which is accordingly

saved to a .config named file. Linux v3.12 contains 12 764 of such features,

defined in 133 222 lines spread over 1030 KCONFIG files. A feature is defined via an

identifier, a type (integer, hex, string, boolean, tristate) and additional dependencies.

Listing 2.1.1 depicts a KCONFIG feature definition from the x86 hardware architecture.

HOTPLUG_CPU is the unique identifier in the configuration space of the architecture.

This feature has a boolean value and depends on another feature, namely SMP. A

dependency puts certain constraints on the decision if a feature can be selected

or not. In general, a dependency is a boolean formula to conditionally evaluate

if a KCONFIG feature can be selected or not. In this example, HOTPLUG_CPU can

only evaluate true if SMP is true; SMP may entail further feature constraints. Note

that feature dependencies in KCONFIG can be arbitrarily complex boolean formulas

combined with arbitrarily complex conditional assignments in KCONFIG (if-else).

Figure 2.2 on page 8 shows an exemplary feature selection saved in the .config

file.

config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
depends on SMP
---help---
Say Y here to allow turning CPUs off and on. CPUs can be
controlled through /sys/devices/system/cpu.
( Note: power management support will enable this option
automatically on SMP systems. )
Say N if you want to disable CPU hotplug.

Listing 2.1.1 – KCONFIG feature definition example from arch/x86/Kconfig
(Linux v3.12). HOTPLUG_CPU can only evaluate true if SMP is true; SMP may
entail further feature constraints. Note that feature dependencies in KCONFIG

can be arbitrarily complex boolean formulas combined with arbitrarily complex
conditional assignments in KCONFIG (if-else).

2.1.2 The Build System

The feature selection (.config file) is further interpreted by the build system, KBUILD,

which constitutes coarse-grained variability by including and excluding complete

translation units during the build process. The generated build product includes

object files, loadable kernel modules and the bootable kernel image.



7

KBUILD transforms the KCONFIG-encoded .config file into further representa-

tions: a Makefile (auto.make) and a CPP-header (autoconf.h). The auto.make

file is generated for KBUILD itself and contains the user selection in MAKE-syntax

as illustrated in Listing 2.2. The “CONFIG_” string is a reserved prefix for feature

identifiers in the implementation space and the build system. This representation

is used afterwards during the build process in Makefiles and KBUILD files to condi-

tionally include and exclude translation units. An exemplary Makefile-snippet of

this process is depicted in Listing 2.1.2. Due to the expansion of MAKE-variables,

the corresponding object files and the arm/ directory are added to internal lists.

Depending on the value (obj-{y,n,m}), the objects are then statically compiled (y),

compiled as a LKM (m), or excluded from compilation (n). This process can also be

applied to conditionally add linker and compiler flags. The idea of this pattern dates

back to 1997. It was proposed by Michael Elizabeth Castain3 under the working title

“Dancing Makefiles”. Linus Torvalds began shortly before the release of Linux v2.4 to

adopt this concept to Makefiles of the Linux kernel [Dietrich et al., 2012].

obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o
obj-$(CONFIG_SMP) += locks.o
obj-$(CONFIG_APM) += apm.o
obj-$(CONFIG_ARM) += arm/

Listing 2.1.2 – Makefile/Kbuild example. Due to the expansion of MAKE-
variables, the corresponding object files and the arm/ directory are added
to internal lists. Depending on the value (obj-{y,n,m}), the lists are
then statically compiled (“y”), compiled as a LKM (“m”), or excluded from
compilation (“n”).

2.1.3 The C Preprocessor

KBUILD implements variability on a coarse-grained level, where configurable feature-

switches include and exclude entire compilation units. The C preprocessor makes

use of CPP #ifdef macros on the level of source code and thereby implements fine-

grained variability. Such blocks are part of the compilation units, if and only if the

#ifdef condition of the block (implementation space) can evaluate true under the

constraints of the selected KCONFIG features (configuration space). Linux v3.12

contains 34 238 of such variation points in C source files. However, an additional

normalization step is required for an adequate treatment of tristate features. Many

features, especially in the Linux driver subsystem, can be statically compiled into

the kernel image or as loadable kernel modules. To ease the use of #ifdef items as

well as to guarantee a consistent representation of tristates (yes, no, module) across

different layers, the representation of tristates is suffixed with “_MODULE” in the CPP

3https://lkml.org/lkml/1997/1/29/1

https://lkml.org/lkml/1997/1/29/1
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and MAKE syntax. During the build process, the build system (KBUILD) generates

a C header file (autoconf.h) that contains this representation, and is used in a

following step by the C preprocessor to conditionally include and exclude #ifdef

blocks in the compilation units.

HOTPLUG_CPU = y

SMP = y

ARM = n

APM = m

#define CONFIG_HOTPLUG_CPU

#define CONFIG_SMP

#define CONFIG_APM_MODULE

#undef CONFIG_ARM

#undef CONFIG_APM

au
to
.m
ak
e

autoconf.h

.con g

CONFIG_HOTPLUG_CPU := y

CONFIG_SMP := y

CONFIG_ARM := n

CONFIG_APM := m

Figure 2.2 – Linux feature representations in KCONFIG, KBUILD and the
C preprocessor.

The Build Process

To conclude, KCONFIG dominates the entire build process as an entry point and

interface to the user. KCONFIG features are distributed over the entire system and

are used to implement variability in the following, summarized steps (Figure 2.3 on

page 9):

Ê The configuration system (KCONFIG) defines features and their constraints

(intended variability) and provides interfaces to specify, edit and manage a

kernel configuration. Thereby the user selects a concrete configuration variant

which is accordingly saved to the .config file.

Ë The build system (KBUILD) constitutes coarse-grained variability by including

and excluding complete translation units in the build process. The generated

build product includes object files, loadable kernel modules and the bootable

kernel image. KBUILD translates the user-selected .config file into MAKE and

CPP representations.

Ì The C preprocessor implements fine-grained variability on the source-code

level by including and excluding #ifdef blocks in the preselected translation

units. The outcome of the following compilation process (GNU C compiler) is

the executable Linux kernel image – the implementation variant.



9

Root Feature

CONFIG_HOTPLUG_CPU

...

Makefile

arch/x86/init.c

arch/x86/...

arch/x86/init.c

lib/Makefile

kernel/sched.c

...

ld numa.o <...> -o vmlinux 

drivers.kovmlinuz

4

#ifdef

#endif

gcc -c numa.c -o numa.o

Build scriptsKcon g selection

Source les

Figure 2.3 – The Linux build process: KCONFIG dominates the entire process
as an entry point and interface to the user. KCONFIG features are distributed
over the entire system and are used to implement coarse-grained variability
by including and excluding entire complete translation units by KBUILD. The
C preprocessor implements fine-grained variability by selecting units on the
source-code level.

2.2 Variability Defects and Anomalies

As aforementioned, there are two different but related models in the Linux feature

distribution and variability implementation. On one side, there is KCONFIG spanning

the configuration space which describes the intended variability. The actual imple-

mentation of such takes place in the implementation space by means of KBUILD, the

C preprocessor and the GNU C compiler. The interaction of those two spaces is a

common cause of variability related defects in the Linux kernel [Tartler et al., 2011].
Such defects can be classified as symbolic integrity violations (Section 2.2.1) and

logic integrity violations (Section 2.2.2).

2.2.1 Symbolic Integrity Violations

A symbolic integrity violation is any reference on an undefined KCONFIG feature. Un-

defined KCONFIG features always evaluate false and can thereby cause contradictory
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constraints in KCONFIG itself, and #ifdef blocks to never or always be selected in

the compilation process.

Listing 2.2.1 shows a PATCH from Tartler et al. [2011] that fixes a symbolic integrity

violation in the source code by renaming the referenced KCONFIG item. The previously

referenced identifier CONFIG_CPU_HOTPLUG did not reference a defined KCONFIG

feature (typo) so that the #ifdef block has never been part of a compilation unit.

As such defects are caused by misleading references, they are also called referential

anomalies [Nadi et al., 2013] or missing defects (see Section 3.1.2) and will be used

synonymously in my thesis.

diff --git a/kernel/smp.c b/kernel/smp.c
index ad63d85..94188b8 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -57,7 +57,7 @@ hotplug_cfd(struct notifier_block *nfb, ...

return NOTIFY_BAD;
break;

-#ifdef CONFIG_CPU_HOTPLUG
+#ifdef CONFIG_HOTPLUG_CPU

case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:

Listing 2.2.1 – Patch-snippet for a symbolic integrity violation in
kernel/smp.c (Linux v2.6.30). The previously referenced identifier
CONFIG_CPU_HOTPLUG did not reference a defined KCONFIG feature (typo)
so that the #ifdef block has never been part of a compilation unit.

In general, there are various possibilities to fix such defects in the implementation

space as well as in the configuration space. Nadi et al. [2013] state that up to

54 percent of symbolic bug fixes take place in the source code (CPP patches), whereas

3 percent are fixed by changes to KCONFIG files. Figure 2.4 on page 11 shows the

evolution of such defects between Linux v2.6.29 and v3.12. We see that symbolic

defects are rapidly repaired in the first seven Linux versions (v2.6.30 – v2.6.36),

what I attribute to the results of previous research work and related contributions

[Tartler et al., 2010, 2011, 2012]. My observation of decreasing symbolic anomalies

in this version interval aligns with previous results from Nadi et al. [2013].
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Figure 2.4 – Evolution of symbolic integrity violations in Linux

2.2.2 Logic Integrity Violations

A symbolic integrity violation indicates a mismatch of the configuration and the

implementation space with respect to a feature identifier, and thereby violates the

referential integrity of the system. However, variability related issues also occur on

the level of feature constraints; so called logic integrity violations. A logic integrity

violation describes contradictory KCONFIG and CPP constraints which lead to (a)

unintentionally dead or undead KCONFIG features, or (b) to dead or undead #ifdef

blocks. Dead features and #ifdef blocks always evaluate false, undead always

evaluate true.

Listing 2.2.2 shows the fix of a logic integrity violation. The PATCH removes the

entire #ifdef block but keeps the source code of the #else block – the dead block

is removed, the code of the undead block is made unconditional. The cause of the

variability defect in this case is that the displayed code artifacts are further enclosed by

another #ifdef block which references CONFIG_DEBUG_OBJECTS_RCU_HEAD. This
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KCONFIG feature depends on CONFIG_PREEMPT so that the precondition of the

#ifndef block is a contradiction. As a consequence, the displayed #ifndef block

always evaluates false.

diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c
index a23a57a..afd21d1 100644
--- a/kernel/rcupdate.c
+++ b/kernel/rcupdate.c
@@ -215,10 +215,6 @@ static int rcuhead_fixup_free(void *addr, ...

* If we detect that we are nested in a RCU rea...
* section, we should simply fail, otherwise we...
*/

-#ifndef CONFIG_PREEMPT
- WARN_ON(1);
- return 0;
-#else

if (rcu_preempt_depth() != 0 || preempt_count()...
irqs_disabled()) {

WARN_ON(1);
@@ -229,7 +225,6 @@ static int rcuhead_fixup_free(void *addr, e...

rcu_barrier_bh();
debug_object_free(head, &rcuhead_debug_descr);
return 1;

-#endif
default:

return 0;
}

Listing 2.2.2 – Excerpt of patch fixing a logic integrity violation in ./ker-
nel/rcupdate.c in Linux v2.6.30. The cause of the variability defects is that
the displayed code artifacts are further enclosed by another #ifdef block,
which references CONFIG_DEBUG_OBJECTS_RCU_HEAD. This KCONFIG feature
depends on CONFIG_PREEMPT so that the precondition of the #ifndef block
is a contradiction. As a consequence, the displayed #ifndef block always
evaluates false.

In principle, logic defects can stem from a tautology or a contradiction in

the configuration space (dependencies and constraints), a mistake in the build

system [Dietrich et al., 2012] or from contradictory preconditions of #ifdef blocks

(implementation space). As a consequence, there are two subclasses of logic integrity

violations, that indicate which of both spaces is involved in the defect. Kconfig

defects are caused by contradictions that occur in the interaction of constraints

from KCONFIG with constraints from the #ifdef blocks, so that both spaces are

involved. Code defects indicate that the defect is caused by a contradiction in

the CPP structure of #ifdef blocks. Such defects solely affect the implementation

space and thereby do not require any additional information from the configuration
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space, namely KCONFIG. Code defects mostly stem from redundant double-checks of

KCONFIG features in nested #ifdef blocks.

Figure 2.5 depicts the evolution of logic defects in the Linux kernel. In general,

there are much more symbolic than logic defects. Nevertheless, the percentage

share of logic defects is growing (19 percent in v2.6.30, 26 percent in v3.12) since

the number remains at a comparatively constant level of two hundred defects per

version, whereas the number of symbolic defects is decreasing at the beginning of the

investigated period of time.

Figure 2.5 – Evolution of logic integrity violations in Linux from v2.6.30 until
v3.12.
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2.3 Problem Statement and Related Work

Variability related defects present a delicate and error-prone issue to the Linux

community: “The tricky parts these days are configuration issues, i.e. code that fails

to build for certain configurations, due to various reasons (forgot to handle a case in

another #ifdef branch, code inside vs. outside #ifdef, different indirect includes

on different architectures [...]” 4. Such bugs are hard to analyze and oftentimes

manifest in critical errors to the system, such as NULL pointer dereferences, buffer

overflows, or API violations [Abal et al., 2014]. Despite the fact that tools to detect

such defects exist for more than four years [Tartler et al., 2010], the Linux community

still suffers under the problem of managing the system’s variability and its defects.

I blame the usability of current research tools and the underlying approaches to be

too unpractical for a Linux developer’s work flow. I believe that tools which allow a

seamless integration into the work flow of Linux development, or tools that can run

independently on dedicated servers, can be a significant contribution in the context

of variability related defects. As a consequence, it is my desire to develop a tool

that can actually be used by the Linux community to reveal and analyze variability

defects. I want to achieve this goal by developing a tool, that checks PATCH files for

variability related defects.

The Linux kernel is developed using the distributed source-code management

system GIT5 which bases on the idea of patching source code with so called GIT

commits. As matter of fact, every new line of source code is added via the integration

of GIT commits. Consequently, every Linux developer is forced to use this tool; I

consider GIT as the perfect candidate to achieve a seamless integration into the work

flow of a developer. To conclude. I will present a tool that is (a) checking PATCH files

for variability related defects, (b) that integrates seamlessly into the work flow of a

Linux developer and (c) that is able to further analyze a defect’s cause to help to

repair the defect.

However, only few research is dedicated to the analysis of how variability bugs

are caused and fixed in the Linux kernel – this knowledge is mandatory for my

approach. Nadi et al. [2013] took previously applied patches from Tartler et al.

[2011] to investigate how variability defects can be repaired. By manually analyzing

the 106 patches they found out that over 90 percent of patches are related to dead-

code removals. The remaining 10 percent add, edit or delete KCONFIG features in the

source code as well as in KCONFIG files. Nevertheless, they all fix bugs in the Linux

source code. In addition to the analysis, the authors describe a mechanism to semi-

4http://lists.linuxfoundation.org/pipermail/ksummit-discuss/2014-June/001010.
html, Geert Uytterhoeven on Ksummit-discuss

5https://git.kernel.org/

http://lists.linuxfoundation.org/pipermail/ksummit-discuss/2014-June/001010.html
http://lists.linuxfoundation.org/pipermail/ksummit-discuss/2014-June/001010.html
https://git.kernel.org/
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automatically map defects in several Linux versions to GIT commits that introduce

or repair the corresponding variability defects. In this case, the paper focuses on

referential integrity violations. Besides the fact that there is no such research work

on logic integrity violations, the presented work suffers from several drawbacks:

The presented data bases on patches from Tartler et al. [2011], where most of

the submitted patches entered the mainline kernel tree during the merge window of

Linux version v2.6.36. Due to the short time frame, I do not consider this data as

sufficiently representative for todays Linux kernel development in general. Personal

correspondence with Greg Kroah-Hartman on the topic of variability related defects

manifested my doubts on older data, since (a) today, the kernel team includes devel-

opers looking for KCONFIG related defects, and (b) kernel developers restructured

many #ifdef blocks until today. Furthermore, the authors use a deprecated version

of the UNDERTAKER6 tool that they instrument to report variability related defects

in the Linux source. This version of the UNDERTAKER tool reported a considerably

high number of hundreds of false positives and also failed in the detection of some

defects (see Chapter 3, and Chapter 6). As a consequence, I assume the presented

data to be contaminated with false positives. For my approach, I am in need of (a) a

more holistic view on all variability related defects, and (b) I am in need of current

data from state-of-the-art research tools.

The results of the paper show that the used approach to mine the main GIT repository

of Linux fails in the automatized mapping from defects to patches. A big share of

referential anomalies could not be mapped to GIT commits at all, whereas 73 percent

of mapped commits are false positives. As a consequence, I need to develop a more

robust approach without threats to validity.

The paper does not examine logic integrity violations. This defect class describes

bugs that occur due to contradictions in preconditions of #ifdef blocks or KCONFIG

itself. As a consequence, I need to present a first case study about the analysis of both

defect classes. I expect that an analysis of logic defects will reveal a different image

than symbolic defects. 90 percent of referential anomalies of Tartler et al. [2011] are

fixed by simply removing dead code. Logic defects may be repaired without removing

code at all.

Furthermore, the authors state that "KCONFIG patches are those which modify a

feature definition in KCONFIG "[Nadi et al., 2013]. However, variability related defects

6http://vamos.informatik.uni-erlangen.de/trac/undertaker

http://vamos.informatik.uni-erlangen.de/trac/undertaker
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can also be caused by broken references in the constraints of a KCONFIG feature7.

Furthermore, the authors claim that symbolic defects can only be caused by changes

to KCONFIG files. I also disagree with that statement, as the authors completely

ignore the fact that changes to the source code may cause such defects as well.

All in all, the mentioned drawbacks of Nadi et al. [2013] suggest a different, more

holistic approach on the analysis of variability defects in Linux. On one side, statistics

based on 106 patches (of one source) can be highly imprecise. More patches of more

Linux versions need to be taken into account so that we get a better understanding

of the qualities and quantities of the defect classes. On the other side, only a

few Linux versions (10) have been subject of analysis, which gives a rather small

snapshot of one year and nine months of Linux GIT history. This short interval

has a significant impact on the precision of presented data such as the lifespans of

defects. Consequently, more Linux versions and a better tracking of defects is needed.

In the following chapters, I will present first how I address the difficulties in gen-

erating empirical data on variability related defects (Section 3.1), second how we

can analyze and map such defects to GIT commits (Section 3.1.4), and third I will

describe (Chapter 4) and evaluate (Chapter 5) the tool.

7In the context of the paper [Nadi et al., 2013], a modification of feature definition is described
as renaming the identifier or deleting the feature itself. Other papers may attribute constraints to the
feature’s definition as well.



Chapter 3

Feature-Consistency Analysis in Linux

Before the implementation of a tool that checks PATCH files for variability related

defects, we need to gain a thorough understanding in the detection and analysis of

such. In principle, we have to answer the following question:

⇒ How are variability related defects caused and fixed in the Linux kernel?

We need this data, (a) to understand the actual needs of developers and how

we can help to avoid and fix variability defects, and (b) to implement metrics and

algorithms to automatically analyze such defects. Until now, only few research

papers are dedicated to an empirical analysis of variability related defects in the

Linux kernel. As aforementioned in Section 2.3, I do not consider the results of

previous research [Nadi et al., 2013] to be a sufficiently meaningful data base.

Consequently, I need to develop a more robust approach to generate empirical data

on variability related defects in the Linux kernel.

This chapter describes my overall approach to generate the desired data. I make

use of existing research which I improve in order to gain in depth knowledge of

variability bugs in Linux. First, I describe my approach and the tools I use to detect

variability related defects in the Linux kernel, how I track them over different Linux

versions and how I map them to the defect introducing and fixing GIT commits.

After that, I present the results of the generated data and describe the causes and

complications of the aforementioned defect classes. Finally, I conclude the examined

results and explain how they can be used to implement a tool that is checking GIT

commits for variability related defects.



18

3.1 Approach

Tartler et al. [2011] present an approach to automatically check for configurability

related implementation defects in large-scale configurable system software. They

implemented a tool, the UNDERTAKER8, to reveal variability related defects in the

source code of the Linux kernel. Figure 3.1 illustrates the working process of the

tool, which bases on the extraction of a boolean formula from the configuration

space (KCONFIG) and from the CPP structure of the source files. The formulas are

then used to instrument a satisfiability solver (SAT) to detect contradictions and

tautologies in the preconditions of CPP #ifdef blocks. Thereby the UNDERTAKER

tool detects symbolic integrity violations (Section 2.2.1) and logic integrity violations

(Section 2.2.2).

KConfig
files

config HOTPLUG_CPU
  bool "Support for ..."
  depends on SMP && ...

DEFECT
REPORTS
defect
reports

undertaker

CPP
Parser

SAT
Engine

KConfig
Parser

crosscheck

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

Linux
source

Figure 3.1 – Defect analysis with the UNDERTAKER tool: after extracting vari-
ability artifacts from the configuration space (KCONFIG) and the implementation
space (source code), the tool instruments a SAT solver to reveal variability
related defects.

All in all, the UNDERTAKER tool provides the functionality to analyze the source

code of the Linux kernel and to report variability related defects. Consequently,

I instrument this tool to detect such defects. The boolean formulas base on the

extraction of variability models from the configuration space (KCONFIG) of Linux.

These models are needed to reveal contradictions with a SAT solver. In the following

section, I shall explain how we can extract these models in order to detect variability

defects in Linux.

8http://vamos.informatik.uni-erlangen.de/trac/undertaker
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3.1.1 Extraction of Variability Models

The UNDERTAKER tool detects variability defects by instrumenting a SAT solver. This

process requires the extraction of variability models from the configuration space

of Linux; the models map all feature definitions, dependencies and constraints to

boolean formulas. The variability extractor, UNDERTAKER-KCONFIGDUMP, generates

a model for each supported hardware architecture within a given Linux tree. This

process takes around 2 minutes of computation on a today’s workstation with an

Intel Core i7 Quad-Core processor and 16 GB of RAM. The generated models have a

size ranging from 44 MB in Linux v2.6.29 to 110 MB in Linux v3.12.

In the context of tracking defects over time, the most accurate approach is to im-

plement a mechanism to follow defects from one commit to another. By doing so,

we have an exact mapping to the defect introducing and fixing GIT commit and

the exact life spans of the defect. Consequently, we need to extract new variability

models as soon as GIT commit changes KCONFIG files. However, the consumption

of memory resources and the computational time to extract variability models are

limiting factors, as they make an exact tracking of defects from one commit to

another impossible in an acceptable period of time. Every change to a KCONFIG file

is varying the configuration space of the system, and thereby requires the generation

of new models. Between Linux v2.6.29 and Linux v3.12, 13 807 commits change

18 058 KCONFIG files. As a matter of fact, the generation of models for all 13 807

commits would take more than 25 days and result in an estimated consumption of 1.3

petabyte of memory resources. Both, the computational time to generate the models

and the memory space to store them are complicating the analysis approach.

I solve this problem by considering stable Linux versions as discrete points in

the period of time that is target of analysis. This reduces the problem size to the

computation of 24 models, what takes averagely 45 minutes consuming 1.8 GB of

memory space. Thereby only these 24 discrete versions are subject to a following

dead analysis. As defects cannot be tracked from one commit to another, I need to

find the defect causing and defect fixing GIT commits in a following step.
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3.1.2 Defect Analysis

As soon as all variability models are extracted, we can trigger the UNDERTAKER

tool to generate defect reports for each Linux version. A defect report includes the

source-file location of the #ifdef block and the contradictory boolean formula

that causes the defect. This formula contains the structure of CPP macros in the

source file (implementation space) as well as the constraints and dependencies of

referenced KCONFIG identifiers (configuration space). The reports cover the following

defect classes:

Missing Defects

Missing defects are symbolic integrity violations (Section 2.2.1). “Missing” thereby in-

dicates that at least one of the referenced KCONFIG features (literals in the formula) is

not defined – a referential integrity violation of the configuration space. Missing defects

can stem from misspelled feature identifiers in #ifdef macros (e.g., typos) or from

references on features that are not defined in the configuration space. Such defects can

be caused by broken references in the source code (#ifdef CONFIG_UNDEFINED),

as well as in KCONFIG files (depends on UNDEFINED), see Listing 3.2.1. In general,

such defects are caused by the interaction of the configuration space with the

implementation space with respect to a KCONFIG feature-identifier.

config SERIAL_8250_RM9K
bool "Support for MIPS RM9xxx integrated serial port"
depends on SERIAL_8250 != n && SERIAL_RM9000
select SERIAL_8250_SHARE_IRQ
help

Selecting this option will add support for the integrated serial
port hardware found on MIPS RM9122 and similar processors.
If unsure, say N.

Listing 3.1.1 – KCONFIG snippet of drivers/tty/serial/8250/Kconfig
(Linux v3.8). The displayed KCONFIG feature depends on SERIAL_RM9000,
which has been removed by a GIT commit. As the referenced feature is not
defined in the configuration space, the commit caused a referential integrity
violation. Note that all references on SERIAL_8250_RM9K will result in a
missing defect.
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Kconfig Defects

Kconfig defects are logic integrity violations (Section 2.2.2). “Kconfig” thereby

indicates that the contradictory formula grounds in the feature constraints and

feature definitions in KCONFIG itself. A kconfig defect occurs when KCONFIG features

are referenced in the source code (implementation space), such that the preconditions

of referencing #ifdef blocks result in a tautology or contradiction; the #ifdef blocks

are then always or never selected in the compilation process. Furthermore, kconfig

defects may also be caused by a contradiction or tautology in KCONFIG (implementation

space), so that features evaluate dead or undead. Listing 3.1.3 depicts a kconfig

defect, where the (boolean) preconditions of two blocks cause a contradiction and a

tautology, depending on the affected #ifdef macro. As a consequence, this defect

class affects both, the implementation and the configuration space.

#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
...
#ifndef CONFIG_PREEMPT

WARN_ON(1);
return 0;

#else
if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||

irqs_disabled()) {
WARN_ON(1);
return 0;

}
rcu_barrier();
rcu_barrier_sched();
rcu_barrier_bh();
debug_object_free(head, &rcuhead_debug_descr);
return 1;

#endif
...
#endif

Listing 3.1.2 – This source-code snippet of kernel/rcupdate.c
(Linux v2.6.36) shows a kconfig defect, where the inner #ifndef block is dead
and the corresponding #else block is undead. DEBUG_OBJECTS_RCU_HEAD
depends on PREEMPT, so that the precondition of the outer #ifdef block
contradicts with the condition of the inner #ifndef.
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Code Defects

Code defects are logic integrity violations (Section 2.2.2). “Code” thereby indicates

that the contradictory formula grounds in the source code itself, and solely affects

the implementation space. A code defect occurs due to contradictory usage of at least

one KCONFIG feature in #ifdef blocks, whereas the contradiction is independent

from the underlying variability model of the configuration space. Most code defects

are caused by double checks of the same KCONFIG feature (Listing 3.1.3), resulting in

a contradiction or tautology in the corresponding boolean formula.

#ifdef CONFIG_PPC_ADV_DEBUG_REGS
...
#ifdef CONFIG_PPC_ADV_DEBUG_REGS

if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
current->thread.dbcr1))

regs->msr |= MSR_DE;
else

/* Make sure the IDM bit is off */
current->thread.dbcr0 &= ~DBCR0_IDM;

#endif
}

_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
} else

handle_debug(regs, debug_status);
}
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */

Listing 3.1.3 – This source-code snippet of arch/powerpc/kernel/traps.c
(Linux v2.6.34) shows a real code defect, where the inner #ifdef block is
undead since it double checks the same KCONFIG feature than its enclosing
#ifdef block. Such cases can also lead to dead blocks, depending on the CPP
statement and on the structure of blocks (e.g, a following #else block).

To conclude. Variability related defects occur in the interaction of the two

spaces. On one side, there is KCONFIG, the configuration space, where features

and its dependencies are defined. On the other side, there is the source code,

the implementation space, where the logical structure of C preprocessor macros

adds additional constraints to the decision, if an #ifdef block can be selected

or not. Such defects can be of a symbolic nature, so that references on absent

KCONFIG features cause referential integrity violations. There are also logic defects,

which describe defects that are caused by contradictory constraints of KCONFIG

features. These contradictions can stem from the configuration space as well as

from the implementation space space. Note that the UNDERTAKER tool reports every

contradiction or tautology in a boolean formula as a missing defect as soon as it
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detects a referential integrity violation; regardless if the corresponding formula

contains logic defects as well. However, I identify that almost 30 percent of reported

defects are caused by CPP identifiers that can be related to debugging (i.e., “#ifdef

DEBUG”). I consider such cases as false positives, and, as a consequence, I extend

the UNDERTAKER tool with the following defect class:

No KCONFIG Defects

No KCONFIG defects cannot be directly related to variability related defects in the

context of KCONFIG. “No KCONFIG” thereby indicates that at least one of the refer-

enced literals in the contradictory formula is not related to KCONFIG and is thereby

not prefixed with “CONFIG_”. Such literals can be any defined CPP item outside the

configuration space, such as debug flags or processor frequencies, which are defined

in source or header files. As No KCONFIG defects are not related to KCONFIG, I exclude

such from any of my data sets that are subject of analysis. Note that every defect

with at least one item that is not related to KCONFIG will be classified as a no KCONFIG

defect, regardless if there are missing items or logic defects as well.

Analysis of Defects

In total, I analyze 24 versions of the Linux kernel (v2.6.29 – v3.12). I trigger the

UNDERTAKER tool on each version separately with the corresponding variability

model from Section 3.1.1. This process takes 3 hours and 40 minutes in total, and

generates 34 724 defect reports which consume 919 MB of memory space. Due to the

new defect class, I can remove all No KCONFIG defects from the set of reported defects

and can thereby reduce the amount of defects from 34 724 to 26 873. Figure 3.2

compares the evolution of symbolic, and logic integrity violations, which are further

split in kconfig and code defects. Throughout all analyzed Linux versions, there

are much more (two to four times more) missing defects than logic defects. This

is an interesting observation, since missing defects can be detected comparatively

easy by cross-checking referenced KCONFIG features with the implementation space.

I conclude, that most of such defects occur due to insufficient review processes, what

enforces the need of a tool that avoids the integration of such defects.
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Figure 3.2 – Evolution of symbolic and logic integrity violations.

3.1.3 Tracking of Defects

In the aforementioned steps, I first extract variability models from the configuration

space of Linux, and then generate defect reports with the UNDERTAKER tool. At

this point, I need to develop a mechanism to track the reported defects over time;

it allows the additional aggregation of data such as the life span of defects, and

the defect history (e.g., changes to CPP macros and referenced KCONFIG features).

Consequently, I need to find the correlation of #ifdef blocks in the set of defect

reports and thereby answer the following question:

⇒ Which block in Linux version A corresponds to which block in version B ?

I realize the required tracking functionality by using GIT to generate a DIFF

between two versions for each defect affected source file. In a second step, I parse

the DIFF file to update the blocks’ line ranges; now there is an exact mapping of blocks

between two Linux versions. To realize this process, I extended the UNDERTAKER

with the functionality to display a list of all #ifdef blocks and the corresponding

line ranges of a specified source file.

The described process maps the previously generated 26 873 defect reports to

4727 unique defects, whereas 923 are introduced and fixed in the analyzed period of

time. The remaining exceed the analysis interval and, as a consequence, are ignored

in further analysis steps as a mapping to the introducing or to the fixing commit, or

both, is not possible. I implemented this process in a PYTHON script, which takes 17
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minutes on average on a machine with an Intel Core i7 Quad-Core and 16 GB of

RAM.

3.1.4 Mapping Defects to GIT Commits

The mapping from defects to GIT commits entails several challenges. If we want

to find the introducing and fixing GIT commit of a variability defect, we need to

understand the defect first. However, the analysis of a defect can be arbitrarily

complex since the underlying boolean formula may contain hundreds of thousands

of literals – the manual identification of the defect causing KCONFIG features is barely

possible. In addition to that, there is no tool to analyze such defects; the UNDERTAKER

simply detects defects, but does no further analysis of the defect’s cause and effect.

Previous research shows that automated approaches to analyze missing defects

caused by typos produce intolerably high rates of up to 73 percent of false positives

[Nadi et al., 2013]. Missing defects caused by typos are the most trivial case as they

are solely introduced and fixed by changes to CPP items in the source code itself.

However, missing defects can generally stem from changes to the configuration space

as well. Logic defects have not been subject of analysis at all, and, in addition to

that, they constitute a finite limit of automated analysis approaches; it is generally

impossible to automatically detect a single defect causing literal in a boolean formula.

This issue exceeds the complexity of decision problems and further complicates

automated mapping approaches.

Consequently, I decide to drive a manual analysis approach entailing the addi-

tional advantage of gaining expertise in the analysis of variability related defects.

In the following, I shall describe my approach of manually analyzing variability

defects, how to map them to GIT commits, and describe the scripts I developed

during analysis.

Missing Defects

A missing defect is caused by at least one referential integrity violation in the pre-

condition of the corresponding #ifdef block. In other words, some literals of the

boolean defect formula are not defined in KCONFIG and are thereby absent in the

underlying variability model. As a consequence, the analysis of missing defects can

be reduced to searching strings. All we need to do, is to parse the boolean formula

and then check if the referenced KCONFIG features are defined in the corresponding

variability model; undefined features directly contribute to the defect and must be

reported as defect causing.

At this point, we know which KCONFIG features are absent in the configuration

space and thereby cause the missing defect. Now, we need to find the defect causing

and defect fixing GIT commit, what can be simplified by making use of GIT internal
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functionality, mainly git log. With this function, we reduce the search space of

GIT commits to those that (a) are in the given life span of the defect, and (b) that

change the defect causing KCONFIG feature.

Kconfig Defects

Kconfig defects are comparatively hard to analyze since they ground on a contradiction

or a tautology in a boolean formula with up to hundreds of thousands of literals.

Therefore, a colleague and I extended the UNDERTAKER tool with the functionality

to generate a minimally unsatisfiable subset (MUS) [Liffiton and Sakallah, 2005]
of the contradictory boolean formula. The MUS only includes items that are part

of the defect causing constraint, and thereby significantly reduces the potential

search space from hundreds of thousands of literals to two to ten. The usage of this

functionality is a fast and easy way to find the defect causing KCONFIG features for a

given Kconfig defect.

Listing 3.1.4 depicts such a minimally unsatisfiable subset of a Kconfig defect,

which we previously examined in Section 3.1.2, Listing 3.1.3. The displayed boolean

formula of the dead #ifndef block contains information from the configuration space

(KCONFIG features), as well as information from the implementation space, namely the

CPP structure of the affected source file (./kernel/rcupdate.c). B{3,4} denote

the third and the fourth #ifdef block in the file. The formula thereby gives us two

important informations: (a) the defect is caused by the conflicting preconditions

of the CPP block B3 and block B4, and (b) the defect is further caused by logical

conflicts among the displayed KCONFIG features.

Once you generated a MUS, I recommend to check the CPP structure of the

affected #ifdef blocks first and then to further examine the constraints of the

affected KCONFIG features.

(B3) ^ (!CONFIG_PREEMPT) ^ (!B4) ^ (B4) ^

(!B3 v CONFIG_DEBUG_OBJECTS_RCU_HEAD) ^ (CONFIG_PREEMPT) ^

(!CONFIG_DEBUG_OBJECTS_RCU_HEAD)

Listing 3.1.4 – The displayed boolean formula of the dead #ifndef block
(see Listing 3.1.3) contains information from the configuration space (KCONFIG

features), as well as information from the implementation space, namely the
CPP structure of the affected source file (./kernel/rcupdate.c); B{3,4}
denote the third and the fourth #ifdef block in the file. The formula thereby
gives us two important informations: (a) the defect is caused by the conflicting
preconditions of the CPP block B3 and block B4, and (b) the defect is further
caused by logical conflicts between the display KCONFIG features.

The mapping to the defect causing and defect fixing GIT commits is orthogonal

to missing defects, whereas we need to extend the search space to the KCONFIG
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definitions of affected KCONFIG features; a Kconfig defect can also be caused and

fixed by changes to the dependencies of a feature.

Code Defects

Code defects are caused by contradictory CPP structures such as the double check of

KCONFIG features. The detection of code defects is independent from the underlying

variability model as only the information from the implementation space is mandatory.

Consequently, such defects are comparatively easy and fast to analyze, since we

only have to examine the CPP structure of the defect affected #ifdef block. In

this context, I recommend to use a built-in functionality of the UNDERTAKER which

displays the CPP precondition of a specified block. The precondition instantly

indicates which KCONFIG features directly contribute to the contradictory formula.

Figure 3.3 shows the precondition output of the UNDERTAKER for a code defect

in ./drivers/usb/core/hub.c in Linux version v3.10. The affected block B9 is

enclosed by another block B8 which references the same KCONFIG item, making

block B9 undead.

B9

&& ( B9 <-> B8 && CONFIG_PM )

&& ( B8 <-> CONFIG_PM )

&& B00

...

2724 #ifdef CONFIG_PM

... 

2830 #ifdef CONFIG_PM

...

3250 #endif

...

3780 #endif

$ undertaker -j blockpc ./drivers/usb/core/hub.c:2831:1

CPP structure

block precondition

Figure 3.3 – UNDERTAKER: precondition of a code defect in
./drivers/usb/core/hub.c, Linux v3.10. The affected block B9 is enclosed by
another block B8 which references the same KCONFIG item, making block B9
undead.

The mapping to the defect causing and defect fixing GIT commits is orthogonal

to missing defects, whereas code defects can only be caused by changes to the

implementation space. Thereby, we can reduce the search space to the defect affected

source file, and take the KCONFIG features of the block’s precondition (see Figure 3.3)

as search identifiers for Git log.
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3.1.5 Work Flow

The entire process of feature consistency analysis in Linux is illustrated in Fig-

ure 3.4. First, I extract variability models Ê from the configuration space of Linux,

namely KCONFIG. These variability models cover the boolean feature constraints

of KCONFIG, which I use in a second step to detect variability related defects Ë by

making use of the UNDERTAKER tool. At this point, I use self-developed PYTHON

scripts to find the mapping of defects between different Linux versions. Thereby, the

mapping allows us to track variability related defects Ì over time in the Linux GIT

repository. Finally, I manually identify the causes and effects of the tracked defects

and map them to the introducing and fixing GIT commits Í.

During the manual analysis of defects in the mapping process (Í), I experienced the

need of tools that help to analyze the causes and effects of variability defects. The

results of my empirical case study are needed not only to have a better understanding

of such defects, but also to identify the most common mistakes in Linux development.

I use this data for the implementation of my tool, UNDERTAKER–CHECKPATCH, to

further analyze the causes and effects of detected defects. I present the results of

the analysis in the following sections separately for each defect class.

undertaker -j dead -m models

2 Defect Analaysis

3

BA

...

B0

B1

B2

B3

B0

B1

B2

B3

Mapping to 
Commits

4

c121c5063c0674fad6811f...

610c6502e0d51415dd1e4...

22ac3e82e1d3e5cad9253...

1 Variability Extraction

Tracking of Defects

Root Feature

Figure 3.4 – Tool chain of feature consistency analysis in Linux. After the
extraction of variability models (1) from Kconfig, I instrument the UNDERTAKER

tool to report variability related defects (2) in the source code of the Linux
kernel. In a following step, I track the previously generated defects (3)
throughout all analyzed versions of Linux (v2.6.29 – v3.12). Finally, I manually
identify the causes of tracked defects and map them to the introducing and
fixing GIT commits (4).
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3.2 Symbolic Integrity Violations

Symbolic integrity violations are known to show a higher distribution than logic

defects [Nadi et al., 2013, Tartler et al., 2011]. This observation aligns with my data

of tracked defects between Linux v2.6.29 and Linux version v3.12. 768 of 923 tracked

defects in this period of time are reported as missing and constitute a total share of

83.21 percent of defects. The majority of symbolic defects occurs in the hardware

abstraction layer (63.41 percent) and the drivers subsystem (31.25 percent). The

remaining 5.31 percent of symbolic defects occur in the subsystems file system (fs),

kernel, memory management (mm), network (net) and the sound subsystem (sound).

In total, I manually analyzed 277 of the 768 tracked symbolic defects, what I consider

to be representative enough to (a) cover all possible defect causes and fixes as well

as to (b) generate meaningful data that can be used and referenced in future research.

Symbolic integrity violations are described to stem from broken references in

the source code [Nadi et al., 2013, Tartler et al., 2011], such as an #ifdef block,

which references an item that is not defined in KCONFIG and thereby leads to a

defect. However, I discover another cause of symbolic defects that primarily affects

the configuration space, namely KCONFIG itself. In those cases, missing defects are

caused by broken dependencies in KCONFIG, where referenced items from #ifdef

blocks depend on at least one feature that is not defined in KCONFIG and thereby

cause a violation of the referential integrity. Listing 3.2.1 illustrates such a violation,

where one KCONFIG feature depends on another, which is not defined in KCONFIG

and is thereby absent in the variability model.

config SERIAL_8250_RM9K
bool "Support for MIPS RM9xxx integrated serial port"
depends on SERIAL_8250 != n && SERIAL_RM9000
select SERIAL_8250_SHARE_IRQ
help

Selecting this option will add support for the integrated serial
port hardware found on MIPS RM9122 and similar processors.
If unsure, say N.

Listing 3.2.1 – KCONFIG snippet of drivers/tty/serial/8250/Kconfig
(Linux v3.8). The displayed KCONFIG feature depends on SERIAL_RM9000,
which has been removed by a GIT commit. As the referenced feature is not
defined in the configuration space, the commit caused a referential integrity
violation. Note that all references on SERIAL_8250_RM9K will result in a
missing defect.
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None of the previous research papers [Nadi et al., 2013, Sincero et al., 2010,

Tartler et al., 2011, 2012] discusses the fact that missing defects can be caused

by broken dependencies. In my data set of analyzed symbolic violations, four

defects are directly caused by such dead references in dependencies of KCONFIG

features. Although the number of broken dependencies in KCONFIG is minute,

the potential consequences of such bugs can cause well manifested errors in the

system, as to be seen in the code example of Listing 3.2.2. The referenced KCONFIG

feature CONFIG_HIGHMEM_START_BOOL in the C preprocessor macro depends on

CONFIG_HIGHMEM which is not defined for the Microblaze architecture. As unde-

fined items evaluate false, the #ifdef block is dead and the #else block is undead.

The displayed C source code is a conditional assignment to the base address of the

memory mapped IO address space of the Microblaze kernel. As a matter of fact, the

intentionally conditional assignment is unconditional since the #else block is part

of every compilation unit. This defect clearly violates the integrity of the operating

system since it can manifest in undefined system behaviors as well as in a complete

failure of the system (e.g., NULL pointer dereferences). An even more surprising

fact is that developers were not aware of this defect at all as it was more or less

“accidentally” repaired by defining a fixed base address. Thereby the conditional

assignment has been made superfluous so that both CPP macros have been removed.

Note that this defect was present for two Linux versions (v3.2, v3.3).

#ifdef CONFIG_HIGHMEM_START_BOOL
ioremap_base = CONFIG_HIGHMEM_START;

#else
ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */

#endif /* CONFIG_HIGHMEM_START_BOOL *

Listing 3.2.2 – Missing defect in /arch/microblaze/mm/init.c
(Linux v3.2) caused by a dependency from the referenced item
CONFIG_HIGHMEM_START_BOOL on CONFIG_HIGHMEM which is not the
defined for the Microblaze architecture.

Although only four of the analyzed defects cover exactly this case, I examine

at least eleven cases where missing items are still referenced in other files, such as

source files, header files, MAKE or KBUILD, or even in KCONFIG itself. I will show in

Chapter 5 that KCONFIG patches, that do not properly propagate changes to other

files, are a common cause of symbolic integrity violations. The remaining defects

are caused by broken references from C preprocessor macros. In the following

sections I describe my insights into the 277 analyzed missing defects and how they

are introduced and fixed by GIT commits.
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3.2.1 Causes of Symbolic Integrity Violations

How are missing defects introduced?

The introduction of missing defects to the source of Linux can stem from changes to

source files as well as from changes to KCONFIG files. Nadi et al. [2013] identify two

cases of a patch introducing a referential integrity violation:

Ê A patch removes a feature in KCONFIG

Ë A patch renames a feature in KCONFIG

My results reveal a different image of how missing defects can be introduced to the

Linux kernel, such that they can be caused not only by changes to the configuration

space, but also by changes to the implementation space. Table 3.1 includes the

identified cases of patches that introduce symbolic integrity violations. The data

shows that such defects can stem from changes to KCONFIG as well as from changes

to source files, whereas the majority is caused by renaming a KCONFIG related item

in a C preprocessor macro: 133 of 277 (48 percent) missing defects. 50 defects are

caused by patches adding source files referencing items that are absent in KCONFIG.

A total amount of 37 defects is caused by patches touching KCONFIG files of which

four defects are caused by adding a KCONFIG feature with broken dependencies.

Furthermore, I identify 16 defects as intentional exclusion of source code where

authors “added the symbol to hide the dependent from compilers” 9 as parts of the

code were held back until another driver has been integrated two Linux versions

after.

Cause # Defects

Rename CPP item 133

Add file 50

Add #ifdef block 41

Remove KCONFIG feature 22

Intentional exclusion 16

Rename KCONFIG feature 11

Add KCONFIG feature 4

Table 3.1 – Identified causes of symbolic integrity violations between Linux
v2.6.29 and v3.12

9Linux GIT commit: 7b4050381127ae11fcfc74a106d715a5fbbf888a
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Figure 3.5 illustrates the set of introduced symbolics defects and correlates them

to the total progression of symbolic defects. The graph includes one anomaly in the

progression line at version v3.3 which includes 160 new missing defects. This peak

derives from a single patch changing C preprocessor macros in 26 source files in

the blackfin architecture. Since the renamed item is not defined in KCONFIG, the

patch10 introduces 119 referential integrity violations to the source code by renaming

CPP items to a feature which is not defined in KCONFIG. I am equally surprised that

this patch was not corrected before integration or before the merge window has been

closed in the stable Linux GIT, as well as that the defects could have been avoided by

simply grepping the blackfin KCONFIG file. Developers and maintainers regularly

fail in checking GIT commits for such fairly trivial defects, what I explain with (a)

that developers may not be aware of this problem, and (b) that maintainers do not

have enough time to check GIT commits for such issues. This case enforces the need

of a tool to check configuration-critical patches before submission.

Figure 3.5 – Evolution of introduced symbolic defects in the Linux kernel
correlated to the total progression of symbolic defects between v2.6.29 and
v3.12.

10Linux GIT commit: 7d157fb02bc3f4dc74e6830725864ba501d92da7
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3.2.2 Fixes of Symbolic Integrity Violations

How are missing defects repaired?

The fix of a missing defect is orthogonal to the defect’s cause – you can fix it with

changes to the implementation space as well with changes to the configuration space.

Nadi et al. [2013] identify four cases of a patch fixing a referential integrity violation:

Ê A patch adds a feature to KCONFIG

Ë A patch renames a feature in KCONFIG

Ì A patch removes a CPP condition

Í A patch renames a feature in a CPP macro

I agree with this observation besides the case that a defect can also be fixed by

removing or renaming a dead dependency in KCONFIG. Table 3.2 shows that the

majority of analyzed missing defects is repaired by renaming a KCONFIG feature such

as the previously mentioned defects in arch/blackfin. Furthermore, 52 defects

are repaired by the removal of the entire file. In four cases, a patch removes blocks

as well as a feature in KCONFIG, as the entire functionality was removed from the

source. Fourteen defects are fixed by removing the entire #ifdef block, whereas the

code of the #else block is preserved. I conclude that the reparation of such defects

requires certain domain knowledge of the source code as well as of the feature

model in Linux. In many cases it is the developer’s decision how to fix a bug. As

consequence, it is generally impossible to automatically fix such defects. However, a

tool that helps to analyze and understand a defect’s cause can help developers to

find a correct solution.

Fix # Defects

Rename KCONFIG feature 127

Remove file 52

Rename CPP item 41

Remove #ifdef block 15

Remove if, keep else 14

Add KCONFIG feature 7

Remove block and KCONFIG feature 4

Table 3.2 – Identified fixes of symbolic integrity violations between Linux
v2.6.29 and v3.12
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Figure 3.6 illustrates the set of fixed symbolic defects and correlates them to the

total progression of symbolic defects. I remove such defects from the set of tracked

defects that exceed the left and right border as no mapping to the introducing and

fixing commits is possible. This leads to a chart similar to normal distributions.

Besides Linux v3.4, an average of 27.5 symbolic defects is fixed with each new

Linux version. The peak of fixed symbolic integrity violations in Linux v3.4 can be

attributed to the aforementioned issue in the blackfin architecture. A total of 119

missing defects in Linux v3.3 is caused by a patch that renames KCONFIG features in

C preprocessor macros. These defects are repaired with Linux v3.4 by renaming a

feature in KCONFIG itself to the previously changed CPP item. Missing defects remain

unfixed for averagely 3.65 Linux versions in the analyzed period of time.

Figure 3.6 – Evolution of fixed symbolic defects in the Linux kernel correlated
to the total progression of symbolic defects between v2.6.29 and v3.12.
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3.2.3 Distribution to Subsystems

Thirteen years ago, “Chou et al. [2001] published a study of faults found by applying

a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was

that the drivers directory contained up to 7 times more of certain kinds of faults than

other directories. This result inspired numerous efforts on improving the reliability

of driver code.” [Palix et al., 2014] Until today, this observation has been applied to

variability related defects as well11. However, Palix et al. [2014] discover that faults

in the drivers subsystem of the Linux kernel nowadays are below other subsystems,

such as arch.

My analysis reveals a similar observation. Table 3.3 shows this observation and

contains the amount of missing defects per subsystem, the amount of #ifdef blocks,

the amount of defects per #ifdef block, the source lines of code, and the amount of

defects per one thousand source lines of code. In general, arch shows the highest

amount of missing defects and also the highest rate of defects per #ifdef block and

per one thousand source lines of code (SLOC). We can see that arch contains 17

times more missing defects per one thousand SLOC (0.4149) than drivers (0.0240).

I assume that Linux developers do not use proper tools to avoid the introduction

of variability defects. A tool to identify and analyze such defects in GIT commits

could thereby contribute to the overall quality of the Linux source code and support

developers at work.

Subsystem Defects #ifdef Blocks Defect/Block SLOC Defect/1k SLOC

arch 487 20 613 0.0236 1 173 609 0.4149

arch/arm 289 4172 0.0693 346 137 0.8349

arch/blackfin 110 2436 0.0452 49 603 2.2176

drivers 240 32 839 0.0073 5 373 230 0.0240

fs 24 3220 0.0075 691 789 0.0346

kernel 6 1688 0.0035 123 748 0.0484

mm 3 806 0.0037 56 446 0.0531

net 1 3714 0.0002 512 910 0.0019

sound 7 3690 0.0018 503 548 0.0139

Table 3.3 – The table contains the amount of missing defects per subsystem,
the amount of #ifdef blocks, the amount of defects per #ifdef block,
the source lines of code, and the amount of defects per one thousand
source lines of code. In general, arch shows the highest amount of missing
defects and also the highest rate of defects per #ifdef block and per one
thousand SLOC. We can see that arch contains 17 times more missing defects
per one thousand SLOC (0.4149) than drivers (0.0240).

11Personal correspondence with Tartler et al. [2010].
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3.3 Logic Integrity Violations

Logic integrity violations stem from contradictions and tautologies of a block’s

precondition or contradictory constraints in KCONFIG itself. As a matter of fact,

logic defects are (a) harder to detect and (b) entail a more complex analysis than

symbolic defects. If you want to detect a missing item, it is sufficient enough to

search literals in the boolean formula that are not defined in KCONFIG and, as a

consequence, are absent in the extracted variability model. In contrary, logic integrity

violations require a semantic analysis as the feature constraints of each referenced

item need to be taken into account to detect potential contradictions (dead blocks)

and tautologies (undead blocks). In general, there are two classifications of logic

defects, kconfig defects and code defects which I describe separately in the following

two sections.

3.3.1 Kconfig Defects

Kconfig defects are caused by contradictory boolean formulas, which stem from

contradictory constraints in KCONFIG as well as from conflicting preconditions of

#ifdef blocks. As a consequence, kconfig defects are hard to detect since the final

boolean formulas may contain hundreds of thousands of literals which deludes

human understanding. Furthermore, the analysis of this logic defect class requires

domain specific knowledge and understanding in the feature model of the Linux

kernel.

3.3.1.1 Causes of Kconfig Defects

How are kconfig defects introduced?

In general, there are two cases of kconfig defect that we need to discuss sepa-

rately. First, a kconfig defect can be caused by conflicting preconditions of #ifdef

blocks in the source code. This case can be explained best, if we have a look

at a real defect. Listing 3.3.1 shows the precondition of the CPP block 19 of

/arch/x86/kernel/apic/apic.c in Linux v3.2. Block 19 is an #else branch of

block 18, which depends on CONFIG_INITR_REMAP. Block 18 is further enclosed by

block 17 that references the KCONFIG feature X86_X2APIC. Block 18 is undead, block

19 is accordingly dead. The KCONFIG feature X86_X2APIC depends on INITR_REMAP

so that INITR_REMAP is always true in the enclosing block 17, and thereby causes

a tautology in the precondition of block 18 (undead) and a contradiction in the

precondition of block 19 (dead). These defects occur in the interaction of the logic

CPP structure with constraints of KCONFIG. Hence, I recommend to check the CPP

structure of the source file first, before analyzing the corresponding minimally un-
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satisfiable subset. I analyzed 53 of the 101 tracked kconfig defects; 23 of them are

attributed to a contradictory usage of KCONFIG items.

B19
&& ( B19 <-> B17 && ( ! (B18) ) )
&& ( B18 <-> B17 && CONFIG_INTR_REMAP )
&& ( B17 <-> CONFIG_X86_X2APIC )
&& B00

Listing 3.3.1 – Kconfig defect in ./arch/x86/kernel/apic/apic.c (Linux
v2.6.30). Block 19 is an #else branch of block 18, which depends on
CONFIG_INITR_REMAP. Block 18 is further enclosed by block 17 that references
the KCONFIG feature X86_X2APIC. Block 18 is undead, block 19 is accordingly
dead. The KCONFIG feature X86_X2APIC depends on INITR_REMAP so that
INITR_REMAP is always true in the enclosing block 17, and thereby causes a
tautology in the precondition of block 18 (undead) and a contradiction in the
precondition of block 19 (dead).

The second identified cause of kconfig defects is related to items that are always

on (true) causing tautologies or contradictions, depending on their occurrence in

the corresponding formula. You can examine such items most easily by checking the

extracted variability models, which mark such features as “ALWAYS_ON”. In principle,

these features relate to functionalities that are mandatory to the system, for instance

MMU (memory management unit) or SMP (symmetric multiprocessing). 14 of the 53

analyzed kconfig defects are attributed to references on always on items.

The remaining kconfig defects are directly caused by conflicts in the feature

model that cannot be resolved and thereby produce dead and undead blocks that

reference affected KCONFIG features. In general, this issue affects any constraint-

defining statement of the KCONFIG language. The following example was present

for 15 Linux versions (v2.6.37 – v3.11) in IA64 and directly affects the architecture’s

root feature CONFIG_IA64. The issue can be described best, when we a look at the

feature’s definition in KCONFIG, illustrated in Listing 3.3.2. IA64 conditionally selects

the features PCI, ACPI and PM and unconditionally selects ARCH_SUPPORTS_MSI

which, due to some constraints, sets IA64_HP_SIM to false. Consequently, all features

are selected (evaluate true) since the condition of the if statements are met. As

IA64 is the root feature of the IA64 architecture (and is thereby always selected),

the listed features consistently evaluate true (always on). As a consequence, the

intentionally conditional KCONFIG feature constraints turn to constants.
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config IA64
bool
select PCI~ if (!IA64_HP_SIM)
select ACPI~ if (!IA64_HP_SIM)
select PM if (!IA64_HP_SIM)
select ARCH_SUPPORTS_MSI

Listing 3.3.2 – An excerpt of the IA64 KCONFIG file (v2.6.37 – v3.11).
CONFIG_IA64 conditionally selects the features PCI, ACPI and PM and
unconditionally selects ARCH_SUPPORTS_MSI which, due to some constraints,
sets IA64_HP_SIM to false. Consequently, all features are selected (evaluate
true) since the condition of the if statements are met. As IA64 is the root feature
of the IA64 architecture (and is thereby always selected), the listed features
consistently evaluate true (always on). As a consequence, the intentionally
conditional KCONFIG feature constraints turn to constants.

Table 3.4 shows the identified cases of how kconfig defects are introduced. A

defect’s cause can stem from various changes to the implementation and configuration

space. Consequently, a kconfig defect can be caused by adding a new block (14) or

renaming a referenced CPP item (7), as well as by changes to KCONFIG such as a

feature’s type (10), a select (1) or a dependency (1).

Much to my surprise, kconfig defects can also ground in removing a KCONFIG

feature (and all references in the KCONFIG space). 10 defects have been caused by

removing a KCONFIG feature that was selected by two others which were located

in the same choice. A choice is used to exclusively select contained features and

thereby forbids to select more than one feature of the same choice; dependencies on

features in the same choice are generally contradictory. However, there is a special

way in KCONFIG to break its own rules. Choice features can depend on each other

if both select a feature outside the choice. Consider two KCONFIG features A and B.

Both are defined in the same choice and select another feature C, which is defined

outside the choice. This special case allows dependencies from A on B, and vice

versa. The exclusive select turns out to be non-exclusive. This was the case for 10

of the analyzed defects which are caused by the removal of the non-choice feature

and corresponding selects from within the choice. Figure 3.7 illustrates the overall

progress of kconfig defects in the analyzed period of time.
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Cause # Defects

Add #ifdef block 14

Change KCONFIG type 10

Remove KCONFIG feature 10

Add file 10

Rename CPP item 7

Add KCONFIG select 1

Change KCONFIG dependency 1

Table 3.4 – Identified causes of kconfig defects between Linux v2.6.29 and
v3.12

Figure 3.7 – Evolution of introduced kconfig defects in the Linux kernel
correlated to the total progression of kconfig defects between v2.6.29 and
v3.12.
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3.3.1.2 Fixes of Kconfig Defects

How are kconfig defects repaired?

Kconfig defects can stem from various changes to the logic C preprocessor structure

of the source code as well as from changes to the configuration space. A block’s

precondition may reference an always on item, it may conflict with the precondition

of the enclosing block, or contain a contradictory formula due to constraints in

KCONFIG. This variety of changes also applies to the issue of fixing kconfig defects.

In stark contrast to missing defects, some kconfig defects can only be fixed either

in KCONFIG or in the source code, depending on a defect’s cause. A contradictory

dependency, for instance, can only be fixed by changes to KCONFIG itself, whereas a

conflict in two block preconditions may be fixed by renaming one of the referenced

KCONFIG features in a source file, or by resolving the contradiction in the constraints

of KCONFIG. However, I identify that most fixes (see Table 3.5) happen in the source

code by removing entire #ifdef blocks (14), removing C preprocessor macros (13)

or by renaming the referenced CPP item (5). Four conflicts are resolved by removing

the #ifdef block whereas the code of the #else block remains untouched. The

problem with dependencies within the same choice (Figure 3.3.1.1) has been fixed

by changing the choice to a KCONFIG menu, which allows such dependencies as the

included options can be non-exclusively selected. Figure 3.8 on page 41 shows the

overall progression line correlated to the identified fixes in the analyzed period of

time. The tracked kconfig defects have an average life span of 3.31.

Cause # Defects

Remove #ifdef block 14

Remove CPP macro 13

Change KCONFIG dependency 6

Rename CPP item 5

Change KCONFIG choice to menu 4

Remove if, keep else 4

Re-factor KCONFIG file 2

Remove KCONFIG select 2

Remove file 2

Table 3.5 – Identified fixes of kconfig defects between Linux v2.6.29 and v3.12
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Figure 3.8 – Evolution of fixed kconfig defects in the Linux kernel correlated
to the total progression of kconfig defects between v2.6.29 and v3.12.

3.3.2 Code Defects

Code defects stem from contradictions or tautologies in the source code itself, for

instance, from double checks in successive C preprocessor macros, or from references

on previously defined CPP items. As a consequence, the analysis of such defects

does not require any variability model as they solely affect the implementation space.

I analyzed all 54 tracked code defects with the following results.

3.3.2.1 Causes of Code Defects

How are code defects introduced?

In principle, you can analyze code defects in the same way as kconfig defects, namely by

checking the precondition of the defect affected block first. The block’s precondition

is a reliable index if the defect is caused by double checked items or not. The second

identified cause of code defects is previously defined or undefined CPP items in the
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source code. Such defines are overwriting the user-selected value from KCONFIG or

even define a new “CONFIG_” prefixed item. Both cases are breaking the integrity of

the configuration space of the Linux kernel as KCONFIG features should only and only

be defined and evaluated in KCONFIG itself. However, these violations regularly occur

in development; I attribute 37 of 54 analyzed code defects to this case. However,

such defects are the consequence of insufficient reviews, as all the identified defines

are leftovers of debugging and testing processes of the affected module. This fact

enforces the need to check GIT commits before submission. Table 3.6 shows the

identified cases of how code defects are introduced to the Linux kernel.

Cause # Defects

Add file 32

Rename CPP item 12

Add block 6

Add #undef 4

Table 3.6 – Identified causes of code defects between Linux v2.6.29 and v3.12

Figure 3.9 – Evolution of introduced code defects in the Linux kernel correlated
to the total progression of code defects between v2.6.29 and v3.12.
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3.3.2.2 Fixes of Code Defects

How are code defects repaired?

68.5 percent of code defects are caused by defining or undefining referenced KCONFIG

features in source files. Such defects can only be fixed by removing the corresponding

defines and undefines from the source code, and optional changes to the CPP

macros and KCONFIG files. The second cause of code defects are double checks

of KCONFIG features in successive CPP macros. You can fix such bugs in various ways,

as the unconditional blocks can be made conditional by (a) renaming a referenced

KCONFIG item or (b) by changing the logic structure of #ifdef blocks. Consequently,

automated fixes of such defects are barely possible since a deeper understanding

of a defect’s context and of the source code is required. The identified cases of

how code defects are fixed are shown in Table 3.5. Most of the defects are fixed by

removing the file from the Linux source (31). The remaining fixes happen in the

C preprocessor macros, for instance by renaming referenced items (14) or removing

superfluous macros (7). The overall evolution of fixed code defects is illustrated in

Table 3.7. The tracked and analyzed code defects have an average life span of 7.59.

Although code defects are easier to detect than missing defects (life span of 3.65) and

kconfig defects (life span of 3.31) they remain unfixed for a longer time. 41 of the 54

analyzed code defects occur in the drivers subsystem, so that I assume that most of

the affected files are less important, and therefore less maintained than others, what

would align with the fact that most defects are fixed by removing the entire file.

Fix # Defects

Remove file 31

Rename CPP item 14

Remove CPP macro 7

Remove #undef 4

Remove #ifdef block 3

Remove #def 2

Table 3.7 – Identified fixes of code defects between Linux v2.6.29 and v3.12
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Figure 3.10 – Evolution of fixed code defects in the Linux kernel correlated to
the total progression of code defects between v2.6.29 and v3.12.

3.4 Summary

Variability related defects present a delicate research field. The analysis of such

defects requires a thorough understanding of the source code and the feature model

of the Linux kernel and is barely possible without proper tool support. In my work,

I make use of previous research work, namely the UNDERTAKER tools, to extract

variability models from KCONFIG and to reveal variability defects in the source code.

In total, I analyzed 24 versions of the Linux kernel which contain 34 724 variability

defects. In a following step, I track the defects over all analyzed Linux versions to

filter which defects correspond between different versions. Thereby, the previously

generated 34 724 defects are reduced to 4727 unique defects of which 923 are

introduced and fixed in the analyzed time interval (Linux v2.6.29 – v.3.12).
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Missing defects constitute the biggest share of tracked defects. 768 of 923 defects

(82.4 percent) are symbolic integrity violations, of which I manually analyzed 277

defects. In comparison to previous research [Nadi et al., 2013], I present a very

different image of symbolic defects, as such may also affect KCONFIG itself with

significant impact on both, the configuration space and the implementation space. In

my results, symbolic defects show an average life span of 3.65, whereas previous

research claims that such defects remain present for 6 Linux versions. I can prove

that this difference is due to (a) inaccuracies in the approach of Nadi et al. [2013],
and (b) due to the inclusion of false positives in previous research studies [Dietrich

et al., 2012, Nadi et al., 2013, Tartler et al., 2011, 2012]. Hence, I introduced a

new defect class to the UNDERTAKER tool, to filter such defects that are not related

to KCONFIG (no KCONFIG defects). However, previous studies include these false

defects and thereby distort all presented results.

Furthermore, my work constitutes the first empirical case study of logic defects.

I analyzed 53 of 101 tracked kconfig defects and all 54 code defects. In this context,

I co-developed a functionality of the UNDERTAKER tool, which is now able to generate

a minimally unsatisfiable subset to simplify the analysis of contradictory boolean

formulas of variability defects.

The final step of my analysis is the manual mapping of analyzed defects to GIT

commits, in order to generate meaningful data of how each defect class is introduced

and repaired in daily kernel development. Nadi et al. [2013] present an automated

approach to find GIT commits that remove or rename a KCONFIG feature without

propagating the change to the source code. However, this approach results in a high

rate of up to 73 percent of false positives. My approach differs in various ways. First,

Nadi et al. [2013] do not describe that missing defects can also be caused by changes

to source files. Second, by using the HERODOTOS tool [Palix et al., 2009], they are

not able to track variability related defects. HERODOTOS bases on COCCINELLE12 to

detect bugs in a semantic context [Padioleau et al., 2006], which does not cover

the configuration space (KCONFIG). Thereby Nadi et al. [2013] are able to check

how long a certain code pattern remained in the Linux source, but are not able to

cross-check changes with the underlying variability models. By the design of my

approach, I avoid such problems as (a) I use a self developed script to track defects

over time, and (b) I manually map the 384 analyzed defects to the introducing

and fixing GIT commits. During the manual analysis, I gained in depth knowledge

of variability defects, how they occur and how they can be repaired. By doing so,

I developed several scripts that help analyzing a defects. In the following subsection,

I shall summarize all these insights which influenced the final tool, as described in

Chapter 4.

12http://coccinelle.lip6.fr/

http://coccinelle.lip6.fr/
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3.4.1 Lessons Learned

All the data and insights of this empirical analysis of variability related defects shall

be used to implement heuristics, metrics and algorithms for my tool, UNDERTAKER–

CHECKPATCH. In the following, I summarize the key points of my analysis and the

challenges the tool needs to address to properly detect and analyze variability defects

in GIT commits:

• We can detect variability related defects with the UNDERTAKER tool, which

generates defect reports containing the contradictory boolean formula of each

defect.

• Missing defects and kconfig defects can be caused and fixed by changes to

KCONFIG and by changes to the source code. Code defects can only be caused

and fixed by changes to the source code, whereas the reparation of such may

include optional changes to KCONFIG.

• The causes of missing defects can be detected by parsing the defect report

and by checking which of the referenced KCONFIG features is not defined in

KCONFIG and thereby absent in the variability models.

• If a KCONFIG feature A depends on an undefined feature B, feature A can

always evaluate true or false. Moreover, all references on feature A cause

missing defects (symbolic integrity violations). Consequently and in addition to

#ifdef blocks, UNDERTAKER–CHECKPATCH needs to analyze and track changes

to KCONFIG files as well. Thereby, all changes to KCONFIG files need to be

cross-checked with the implementation space and the configuration space in

order to detect potential violations, such as broken references.

• The causes of kconfig defects cannot be automatically detected. However, we

can simplify the contradictory boolean formula of the defect report. The

UNDERTAKER generates a minimally unsatisfiable subset, which reduces the

search space from hundreds of thousands of literals (KCONFIG features) to just

a few (two to ten).

• A similar problems applies for code defects. But as code defects are independent

from the underlying variability model, the analysis of such can be simplified

by checking the CPP structure of the affected #ifdef block.

In the following chapter, I will describe how my tool, UNDERTAKER–CHECKPATCH,

addresses the mentioned issues.



Chapter 4

Implementation

The UNDERTAKER–CHECKPATCH tool ships the basic functionality to examine a

specified PATCH file for introducing, changing or fixing variability related defects. In

addition to that, the tool can further analyze the causes of defects, parse KCONFIG

files and correlate those changes to variability defects. This chapter outlines each

functionality of the tool and describes the implemented algorithms.

4.1 Reporting of Defects

I instrument the aforementioned UNDERTAKER tool to detect variability bugs. As the

functionality is related to PATCH files, there are two states of the affected files:

• File state A: before applying the PATCH

• File state B: after applying the PATCH

In order to find changes related to variability anomalies, I need to treat both file

states separately, to (a) detect defects, and (b) correlate both versions. The entire

process requires the following successive steps:

Ê Dead analysis of file state A: I utilize the tool lsdiff 13 to get a list of files

that are changed by the specified PATCH. Depending if a model is specified

or not, UNDERTAKER–CHECKPATCH then automatically extracts a variability

model from the given Linux source tree. Afterwards, I trigger the UNDERTAKER

to report variability defects of each file and accordingly assign them to the

#ifdef blocks.

Ë Parsing the PATCH file: As #ifdef blocks are potentially affected by changes

to the source files, UNDERTAKER–CHECKPATCH parses the PATCH file in a second

step to update each block’s line ranges. This step is required to have an exact

mapping from blocks of file state A to the blocks of file state B.
13http://linux.die.net/man/1/lsdiff
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Ì Applying the PATCH, and dead analysis of file state B: As soon as the PATCH

file is applied, the dead analysis on file state B can take place. In case the

PATCH file changes KCONFIG files, UNDERTAKER–CHECKPATCH extracts new

models in order to propagate the changes made to the configuration space.

The defects are accordingly assigned to a new set of blocks.

Í Reporting Defects: At this point, the two sets of blocks can be compared to

check for changes in the blocks. After the blocks of both file states are mapped,

the tool reports all changes to defects such as the introduction, the reparation

of the defect, or changes of the defect’s classification.

To conclude. UNDERTAKER–CHECKPATCH ships the functionality to examine the

changes to variability related defects triggered by a specified PATCH file. It reports

which defects are introduced, changed and repaired at specific source file locations.

Figure 4.1 shows an exemplary defect report of the UNDERTAKER–CHECKPATCH tool.

It checks a GIT commit that introduces missing defects. The output displays that

defects are introduced, with the exact source file locations (including the ranges of

the #ifdef block), and shows the corresponding defect class. The flag “-a powerpc”

specifies that only models for the PowerPC architecture need to be considered; the

specification of an architecture further reduces the execution time of the tool as less

variability models need to be extracted.

undertaker-check-patch -p patch -a powerpc

New defect: arch/powerpc/platforms/wsp/wsp_pci.c:B0:242:244:missing.globally.dead

New defect: arch/powerpc/platforms/wsp/wsp_pci.c:B1:244:247:missing.globally.undead

New defect: arch/powerpc/platforms/wsp/wsp_pci.c:B2:275:277:missing.globally.undead

...

Figure 4.1 – Sample report of the UNDERTAKER–CHECKPATCH tool for GIT

commit f352c7251255effe6c2326190f1378adbd142aa3

4.2 Analyzing Defects

Besides the basic functionality to report changes of variability defects by a specified

PATCH file, the UNDERTAKER–CHECKPATCH tool empowers the user to further analyze

the detected defects. When you enable this functionality (--check), the tool analyzes

each defect class separately, and reports the defects’ causes as far as possible.



49

4.2.1 Analysis of Symbolic Defects

The analysis of referential integrity violations is comparatively fast. A report for this de-

fect class needs to display all KCONFIG items that are causing the missing defect – such

are not defined in KCONFIG and thereby not defined in the extracted variability model.

Consequently, the tool cross checks missing defects with the extracted variability model

of file state B. The introduced missing defects of Figure 4.1 on page 48 are additionally

reported as illustrated in Listing 4.2.1; UNDERTAKER–CHECKPATCH reports that

the referenced KCONFIG feature CONFIG_WSP_DD1_WORKAROUND_DD1_TCE_BUGS“ is

referenced, but not defined”.

Reporting defects :

New defect : ↘
arch/ powerpc / platforms /wsp/ wsp_pci .c:B0 :242:244: ↘
missing . globally .dead

New defect : ↘
arch/ powerpc / platforms /wsp/ wsp_pci .c:B1 :244:247: ↘
missing . globally . undead

...

Analyzing defects :

arch/ powerpc / platforms /wsp/ wsp_pci .c:B0 :242:244: ↘
missing . globally .dead: ↘
CONFIG_WSP_DD1_WORKAROUND_DD1_TCE_BUGS referenced but ↘
not defined

arch/ powerpc / platforms /wsp/ wsp_pci .c:B1 :244:247: ↘
missing . globally . undead : ↘
CONFIG_WSP_DD1_WORKAROUND_DD1_TCE_BUGS referenced but ↘
not defined

...

Listing 4.2.1 – Text snippet of UNDERTAKER–CHECKPATCH output for GIT com-
mit f352c7251255effe6c2326190f1378adbd142aa3. After the reporting of
defects, UNDERTAKER–CHECKPATCH further analyzes the defects (--check)
and reveals the defect causing KCONFIG features.

4.2.2 Analysis of KCONFIG files

Changes to KCONFIG files have a direct impact on the variability model of the Linux

kernel. In Chapter 3 we discussed that such changes are likely to cause referential

integrity violations; a feature may be removed or renamed, or depend on a another

feature that is absent in the configuration space. In most cases, the causing commits

did not propagate the changes made in the KCONFIG space to the rest of the system,
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and thereby manifest in dead and undead #ifdef blocks and KCONFIG features.

Each development cycle of Linux, averagely 600 GIT commits touch KCONFIG files,

and potentially violate the referential integrity of the system.

In this context I implemented the functionality to parse and detect changes

in KCONFIG. Hence, and in addition to the previously mentioned functionality,

UNDERTAKER–CHECKPATCH reports changes to KCONFIG files that cause referential

integrity violations. The reports cover the renaming and removal of entire KCONFIG

features, as well as changes to feature constraints (i.e., dependencies and selects). In

case a feature is renamed or removed, the tool searches for references in file state B,

and reports such to the users. In order to avoid information overload, I decide to only

report files that contain broken references without displaying additional information

(e.g., source lines). By combining the information, which KCONFIG features are

referenced in the contradictory formulae, and which features are removed from

KCONFIG, UNDERTAKER–CHECKPATCH can report the exact cause and effect of changes

to the configuration space. In case a referential integrity violation is met, the tool

reports the affected KCONFIG identifier and the affected files (see Listing 4.2.2).

In case a PATCH renames or adds a dependency or select statement in KCONFIG,

UNDERTAKER–CHECKPATCH checks if the feature is defined in the extracted variability

model of file state B.

Analyzing defects :

Patch removes item CONFIG_USB_MUSB_HOST which is still ↘
referenced in:

arch/arm/mach -ux500 /usb.c

arch/arm/mach - davinci /board -da830 -evm.c

arch/arm/mach - davinci /usb.c

arch/arm/mach -omap2 /board -n8x0.c

Listing 4.2.2 – Text snippet of UNDERTAKER–CHECKPATCH output for GIT

commit 622859634a663c5e55d0e2a2cdbb55ac058d97b3, which removes
several features from KCONFIG but does not propagte the changes to the
rest of the system, such as source files. UNDERTAKER–CHECKPATCH alerts the
user which removed KCONFIG features are still referenced in which files.

4.2.3 Analysis of KCONFIG defects

Kconfig defects occur due to contradictions in the configuration space (e.g., broken

dependencies in KCONFIG), as well as due to contradictory preconditions in the

implementation space. In general, it is beyond our power to reduce a boolean formula

to single literals in order to correct the contradiction or tautology. This fact has

a significant impact on the feasibility of the analysis of this defect class. Hence,
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UNDERTAKER–CHECKPATCH ships the functionality to generate a minimally unsatisfi-

able subset of the contradictory boolean formula. This function reduces the actual

expenditure to analyze a KCONFIG defect. However, the user needs to study the MUS

formula by her own in order to further analyze the problem. Since the generation of

MUS formulae increases the execution time of the tool, this functionality needs to

be enabled via an additional parameter. Depending on the amount of #ifdef blocks

in the file and the size of the underlying variability models, the MUS generation may

take up to 50 seconds per file.

4.2.4 Analysis of Code Defects

The analysis of code defects needs to cover two cases. First, a code defect can be

caused by previously defined features in a source file. Second, code defects may also

stem from double checked KCONFIG features. Hence, UNDERTAKER–CHECKPATCH

first checks if KCONFIG features in the precondition of the defect affected block are

previously (un)defined in the file. In this case, the tool reports the issue. Otherwise,

the precondition of the defect affected block is printed. Again, the user needs to check

the formula by her own. However, such preconditions are human-understandable

and easy to read so that the analysis of the respective defect is simplified in every case.

Listing 4.2.3 shows an exemplary output of a precondition of a code defect in Linux

v3.10; arbitrary complex CPP structures can thereby be reduced to a fairly small

formula that represents the precondition of the defect affected #ifdef block. The

displayed precondition of block B9 indicates that (a) block B9 references CONFIG_PM

and (b) that B9 is enclosed by block B8, which references the same feature.

Analyzing defects :

...

drivers /usb/core/hub.c:B9 :2830:3250: code. globally . undead : ↘
there is a tautology in the block ’s precondition

B9

&& ( B9 <-> B8 && CONFIG_PM )

&& ( B8 <-> CONFIG_PM )

&& B00

Listing 4.2.3 – Text snippet of UNDERTAKER–CHECKPATCH output for GIT

commit 84ebc10294a3d7be4c66f51070b7aedbaa24de9b, which renames
block B8 and B9 to the same identifier and thereby causes a code defect. The
displayed precondition of block B9 indicates that (a) block B9 references
CONFIG_PM and (b) that B9 is enclosed by block B8, which references the same
feature.
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4.3 Summary

I implemented a tool, UNDERTAKER–CHECKPATCH, which analyzes specified PATCH

files and accordingly reports changes to defects such as newly introduced or fixed

defects. Defects can also be correlated to changes in KCONFIG and vice versa.

Additionally, the tool ships the functionality to further analyze the causes of defects,

and displays missing KCONFIG items, a block’s precondition or the defect causing

formula. The tool’s reports cover all defects that can be detected by the UNDERTAKER

tool and reveals changes to defect affected blocks as well as the introduction and

reparation of defects. The tool empowers the user to get a clear overview of how a

PATCH file changes and potentially violates the variability of the Linux kernel. The

additional defect analysis has 100 percent accuracy for symbolic integrity violations.

All missing items can be detected and are reported with care to allow a precise

understanding of a defect’s cause. Furthermore, changes to KCONFIG files are

detected and cross checked with the implementation and configuration space in

order to alert referential violations caused by the respective change to KCONFIG. In

case of logic integrity violations, the tool is checking the aforementioned trivial cases

and otherwise displays a minimally unsatisfiable subset or the block’s precondition,

to simplify further examinations of the problem.

The implementation is influenced by and bases on the insights of my empirical

case study, as described in Chapter 3. Furthermore, the UNDERTAKER–CHECKPATCH

tool extends the state-of-the-art detection of such defects by further analyzing a de-

fect’s cause. UNDERTAKER–CHECKPATCH is implemented in the PYTHON programming

language.
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Evaluation

The evaluation of the UNDERTAKER–CHECKPATCH tool (see Chapter 4) is split into

two phases, on two independent data sets. In Chapter 3, I manually mapped

variability related defects to GIT commits which I will use in the first evaluation.

I will manually validate all reports made by UNDERTAKER–CHECKPATCH and describe

the results. Second, I run the tool on the current development branch of Linux v3.16

to demonstrate how the tool can be used in daily Linux development.

5.1 Evaluation of Previously Matched GIT commits

Chapter 3 describes the processes of how we can detect, track and analyze variability

related bugs in order to find the defect causing and defect fixing GIT commits.

I identified 197 unique GIT commits to cause and fix 277 of 768 missing defects, 53 of

101 kconfig defects and 54 code defects which I detected between Linux v2.6.29 and

Linux v3.12. In this evaluation I generate a mapping in the other direction, from

GIT commits to variability related defects, by running UNDERTAKER–CHECKPATCH on

this set of GIT commits.

I manually checked the validity of each defect report of UNDERTAKER–CHECKPATCH

to be sure that the tool works correctly and that it does not report false positives.

Hence, UNDERTAKER–CHECKPATCH reports that the 199 GIT commits of Chapter 3

cause 404 missing, 63 kconfig, and 100 code defects (Table 5.1), whereas 505 missing,

73 kconfig, and 74 code defects are repaired. The results show that the 199 commits

cause much more defects than I analyzed before (denoted in brackets in the Table 5.1).

I explain this observation with the fact (a) that I did not analyze all detected defects

(277 of 768 missing, 53 of 101 kconfig and 54 of 54 code defects), and (b) that some of

the additional defects exceed the interval of analyzed Linux versions (v2.6.29 – v3.12),

so that they are excluded from previous data. A total sum of 837 missing defects is

reported as unchanged by the tool; such are present before and after applying the
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GIT commit. I explain this number with multiple GIT commits touching the same

files which contain many defects. Especially the blackfin architecture shows a high

defect rate from Linux v2.6.34 until v3.3, where some of the analyzed GIT commits

include more than 100 unchanged missing defects.

Moreover, by using the optional functionality to further analyze reported defects,

the UNDERTAKER–CHECKPATCH tool parses KCONFIG files. In this case, the tool

searches (a) for changes that remove KCONFIG features without propagating the

change to other files (source and KCONFIG), or (b) changes that edit a select or depen-

dency statement of a KCONFIG feature definition. Newly referenced features, which

are not defined in KCONFIG, constitute referential integrity violations. UNDERTAKER–

CHECKPATCH reports 451 referential integrity violations, 23 broken dependencies and

three broken selects.

Defect Class Introduced Repaired Changed To Unchanged

Missing 404 (127) 505 (348) 43 837

Kconfig 62 (9) 73 (20) 1 29

Code 110 (56) 74 (20) 29 38

Table 5.1 – Data of how many additional variability related defects the
UNDERTAKER–CHECK–PATCH tool reveals by checking the previously matched
GIT commits from Section 3.1.2.

Table 5.2 on page 55 shows the benchmarks of UNDERTAKER–CHECKPATCH on a

workstation with an Intel Core i7 Quad-Core and 16 GB of RAM, what I consider to

be a conventional setup of a Linux developer. In all cases, the tool is triggered with

the optional functionality to further analyze detected defects (--check). As a matter

of fact, the runs for GIT commits related to symbolic integrity violations are more time

consuming since they can be completely analyzed to detect the causes of defects.

In contrast to that, commits related to logic integrity violations are faster to analyze

since only the preconditions of the affected #ifdef blocks or previously (un)defined

features are displayed by the tool. However, you may be surprised by the difference

of more than a double of execution time between both defect classes. I found out

that there are many GIT commits in the set of symbolic defects that are touching a

huge amount of files (>100 files) or introduce many defects, and thereby result in

higher execution times. As a result, the measured run-times range from less than a

second to over 20 minutes. The longest measured run of UNDERTAKER–CHECKPATCH

is on a GIT commit that is merging two subdirectories in the drivers subsystem

and thereby touches 571 files, taking almost 21 minutes of execution time.
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GIT Commit of Defect Class Average Run Time

Symbolic Defects 40.50 seconds

Kconfig Defects 18.65 seconds

Code Defects 14.90 seconds

Table 5.2 – Performance measurement of the UNDERTAKER–CHECKPATCH tool
on previously matched GIT commits from Section 3.1.2.

Note, that the benchmarks also include such GIT commits that are changing

KCONFIG files and thereby require the extraction of new variability models from the

source. This process takes two minutes on average but can be significantly improved

when you specify a main architecture (--arch). With a specified main architecture

UNDERTAKER–CHECKPATCH extracts a variability model only for this architecture,

which (a) improves the process of extracting models and (b) reduces the time to

detect variability related defects as the feature constraints of only one model need

to be loaded. However, I recommend to use this functionality only if the specified

PATCH is changing files of one and the same architecture, or if you wish to forcefully

check a single variability model. As a consequence, I decide to leave this choice to

the user to (a) provide a clear and understandable interface and (b) to generate

models for each architecture by default as this avoids reports of false positives; only

such blocks are reported that are dead or undead for all architectures.

5.2 Evaluation on Linux Development Branch

To evaluate the UNDERTAKER–CHECKPATCH tool on an independent data set, I trigger

the tool on the current Linux kernel development branch, Linux v3.16-rc1. The two

data sets are independent from another, since the sets of GIT commits do not intersect

({v2.6.29–v3.12} and {v3.16-rc1}). For this evaluation, I developed a PYTHON script

that runs the tool on each of the 12 078 commits that have been merged into the

main Linux GIT repository of Linus Torvalds between Linux v3.15 and v3.16-rc1.

I want to prove, (a) that the tool is working on a data set that has not been subject

of my analysis, and (b) that the tool performs well and that it can be used in daily

Linux development.

Table 5.3 contains the result of this evaluation process that ran 39.2 hours

(11.68 seconds per commit) on a machine with an Intel Core i7 Quad-Core processor

and 16 GB of RAM. 18 missing and one kconfig defect are introduced, whereas 325

missing, 18 kconfig, and 6 code defects are fixed. I consider this to be a positive

tendency as significantly more defects are repaired than introduced. However, the
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number of unchanged defects is striking the eye: UNDERTAKER–CHECKPATCH identifies

2434 defects that remain unchanged in the analyzed set of GIT commits.

Defect Class Introduced Repaired Unchanged

Missing 18 325 1607

Kconfig 1 18 152

Code 0 6 675

Table 5.3 – Data of how many changes to variability related defects the
UNDERTAKER–CHECKPATCH tool reveals by checking the Linux development
between Linux v3.15 and v3.16-rc1.

Although the number of introduced defects is minute, there is another case of

GIT commits causing variability bugs: changes to the configuration space. Between

Linux v3.15 and v3.16-rc1 590 of 12 078 commits touch KCONFIG files of which

20 commits cause at least 212 referential integrity violations. As aforementioned,

UNDERTAKER–CHECKPATCH is only reporting affected files, so that the number of

actual defects may be higher.

5.3 Summary

I evaluated the UNDERTAKER–CHECKPATCH tool on two independent, intersection free

data sets. First, the tool reveals hundreds of additional variability related defects and

broken references for the set of previously analyzed GIT commits from Chapter 3.

I outline, that the tool’s performance is determined by the size and complexity

of a specified PATCH file. The second data set contains 12 078 GIT commits in the

development cycle from Linux v3.15 to v3.16-rc1. UNDERTAKER–CHECKPATCH reveals

more than 2400 unchanged defects, and reports changes such as newly introduced

or fixed defects. Additionally, the tool identifies that 20 GIT commits are critical to

the referential integrity of the system, as they change the configuration space without

properly propagating the changes to the rest of the kernel’s source code.



Chapter 6

Discussion

The evaluation yields that the UNDERTAKER–CHECKPATCH tool is able to detect, report,

and further analyze variability related defects that are triggered by PATCH files. In

this chapter, I will discuss the usability of this tool, and how I improved the quality

of the underlying UNDERTAKER tool.

6.1 Use Cases

Developer Tool

First, the tool can be used by a Linux developer to check a PATCH file before sending

it to the maintainer or a specific mailing list, and before integrating the PATCH into

the GIT repository. UNDERTAKER–CHECKPATCH empowers the user to check her code

for variability related defects, which are barely possible to detect without proper

tool support. By doing so, the tool additionally reveals such defects that are present

before and after the PATCH. These unchanged defects can then be reported to the

maintainer in charge of the source code or posted in the bug tracking system of the

Linux kernel14. In all cases, UNDERTAKER–CHECKPATCH helps developers to (a) avoid

the introduction of variability defects, (b) it reveals existing defects in the code, and

(c) it helps to analyze and further fix the respective defects.

In personal correspondence via email, Greg Kroah-Hartman15 confirmed the

benefit of tools, such as UNDERTAKER–CHECKPATCH: “We do have people going over

the tree and removing unused config options (options that are never set and the

code that never got built from them.) So that is good work to do, and if you have a

tool to do it, that’s even better.” This issue affects both, referential and logic defects.

14https://bugzilla.kernel.org/
15http://en.wikipedia.org/wiki/Greg_Kroah-Hartman

https://bugzilla.kernel.org/
http://en.wikipedia.org/wiki/Greg_Kroah-Hartman
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Automated Testing Systems

In Section 5.2, I evaluated UNDERTAKER–CHECKPATCH on the current Linux devel-

opment branch (Linux v3.16-rc1) with the help of a PYTHON script, which first

extracts desired GIT commits and then runs UNDERTAKER–CHECKPATCH. The usage

of comparable scripts suggest the second use case: the tool can run on dedicated build

and test servers and send reports to the authors of GIT commits and the maintainers

of affected source files. The realization of such systems puts the quality management

of the Linux kernel on the level of system configurability. Thereby, developers can

be alerted and fix the defects before releasing new versions. My evaluations show

an execution time of 19.5 seconds on average per GIT commit, which I consider

to be sufficiently fast to run on a server. Greg Kroah-Hartman states that "if it is

something to check our code base, sure, we [the Linux developers] should use it, we

have automated testing systems it could be put into."

6.2 Contributions to the UNDERTAKER

UNDERTAKER–CHECKPATCH is determined by previous research work and tools, mainly

by the UNDERTAKER tool. As a consequence, I manually validated all data that is

generated by external tools, and thereby submitted several bug fixes and bug reports

to the UNDERTAKER tool, described as follows:

• I introduced a new defect class to the UNDERTAKER. This class avoids the

inclusion of such defects, that cannot be related to KCONFIG, and thereby

constitute false positives (see “no KCONFIG defects” in 3.1.2).

• One bug is related to the detection of undead blocks. In this case, the

UNDERTAKER did not report certain undead blocks. Such blocks are located in

the first indentation level and are thereby not nested in other #ifdef blocks.

• Another bug is related to the variability models. During manual analysis of

missing defects, I discovered cases of false positives where an inconsistent

mapping of default values for boolean KCONFIG features caused false positives.

• Furthermore, several models of many Linux versions were incomplete or

even absent due to a bug in the variability extractor of the UNDERTAKER; the

extraction terminated while parsing some statements of the KCONFIG language.

The consequence are hundreds of false positives in affected Linux versions.

In addition to previously mentioned issues, I developed an approach to increase

the number of detected defects. In order to detect dead and undead #ifdef blocks,

the UNDERTAKER cross checks the CPP constraints of each source file with the
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constraints of each extracted variability model. Hence, only blocks that are defect

for all architectures are then considered to be a real bug. However, this approach

is not practical for all source files, especially for those in the hardware abstraction

layer (e.g., arch/x86 for the x86 architecture). Such files are architectural dependent

and, as a consequence, shall not be cross checked with other variability models. By

changing this calling convention of the UNDERTAKER, I (a) managed to increase the

number of variability defects, and (b) correct some wrong classifications of defects.





Chapter 7

Conclusion

Variability related defects present a delicate and error-prone issue to the Linux

community: “The tricky parts these days are configuration issues, i.e. code that fails

to build for certain configurations, due to various reasons (forgot to handle a case in

another #ifdef branch, code inside vs. outside #ifdef, different indirect includes

on different architectures [...]” 16. Such bugs require a tool-based analysis and

oftentimes manifest in critical errors to the system, such as NULL pointer dereferences,

buffer overflows, or API violations [Abal et al., 2014].

In this thesis I presented a tool, UNDERTAKER–CHECKPATCH, which addresses the

issue of variability related defects in the Linux kernel. The tool checks PATCH files for

variaiblity related defects, and further analyzes the causes and effects of detected

defects. In addition to that, UNDERTAKER–CHECKPATCH parses changes of KCONFIG

files and reveals potential symbolic integrity violations. The tool is easy to use

and it integrates seamlessly into a Linux developer’s work flow. UNDERTAKER–

CHECKPATCH can be used in the context of continuous integration and quality

management approaches by the Linux community, as it can be used to automatically

report variability defects to the authors of affected GIT commits and the responsible

maintainers.

The implementation as well as the evaluation of the tool are influenced by

my empirical case study of feature consistency and variability related bugs on 24

versions of the Linux kernel. The case study constitutes the first research work on

both, referential and logic integrity violations. My results present a very different

image of the quality and the quantity of the problem than previous research work,

and enforce the need of a tool that can actually be used by Linux developers. As a

consequence, I assume that UNDERTAKER–CHECKPATCH will be gladly accepted by

the Linux community.

16http://lists.linuxfoundation.org/pipermail/ksummit-discuss/2014-June/001010.
html

http://lists.linuxfoundation.org/pipermail/ksummit-discuss/2014-June/001010.html
http://lists.linuxfoundation.org/pipermail/ksummit-discuss/2014-June/001010.html
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