Se———= == == = FRIEDRICH-ALEXANDER
= 4———== = UNIVERSITAT
= &= === ERLANGEN-NURNBERG

Masterarbeit im Fach Informatik

September 10, 2014

Please cite as:

Bernhard Heinloth, “Automatic Tailoring of the Multi-Purpose Linux Operating
System on Embedded Devices”, Master’s Thesis, University of Erlangen,
Dept. of Computer Science, 2014.

Friedrich-Alexander-Universitat Erlangen-Nurnberg
Department Informatik
Verteilte Systeme und Betriebssysteme

MartensstraBBe 1 - 91058 Erlangen - Germany

www4.informatik.uni-erlangen.de

https://www4.informatik.uni-erlangen.de

Automatic Tailoring of the Multi-Purpose
Linux Operating System on Embedded
Devices

Masterarbeit im Fach Informatik

vorgelegt von

Bernhard Heinloth

angefertigt am

Lehrstuhl fiir Informatik 4

Verteilte Systeme und Betriebssysteme

Department Informatik

Friedrich-Alexander-Universitit Erlangen-Niirnberg

Betreuender Hochschullehrer: Dr.-Ing. habil. Daniel Lohmann

Beginn der Arbeit: 1. April 2014
Abgabe der Arbeit: 10. September 2014

Abstract

Today’s system software can typically be configured at compile time using a com-
fortable feature-based interface to tailor its functionality towards a specific use
case. However, with the growing number of features, this manual tailoring process
becomes a more and more tedious and difficult task: As a prominent example,
the Linux kernel in v3.15 provides nearly 14,000 configuration options to choose
from. Even developers of embedded systems refrain from trying to manually build
a minimized distinctive kernel configuration for their device — and thereby waste
memory for unneeded functionality which increases per-unit costs and restrains the
adoption of Linux in cost-sensitive embedded systems.

In this thesis, I present an approach for the automatic use-case specific tailoring
of system software for special-purpose embedded systems. By the example of Linux
I compare the proposed approach with an existing technique employing virtual
machines and evaluate the effectiveness on real hardware by generating tailored
kernels for well-known applications of the Raspberry Pi and the Google Nexus 4
smartphone. Compared to the original configurations, my approach leads to memory
savings of up to 70 percent and requires only little manual intervention.

ii

Kurzfassung

Moderne Systemsoftware kann iiblicherweise zur Ubersetzungszeit unter Verwen-
dung einer komfortablen Oberfldche an die Bediirfnisse eines bestimmten Einsatz-
szenarios angepasst werden. Aufgrund der steigenden Anzahl an konfigurierbaren
Merkmalen wird diese manuelle Anpassung jedoch zu einer immer schwierigeren
Aufgabe: Ein prominenter Vertreter ist dabei der Linux Kernel, welcher in der Version
3.15 knapp 14 000 wéhlbare Konfigurationsoptionen bietet. Selbst Entwickler von
eingebetteten Systemen vermeiden das manuelle Erstellen einer an das System
angepassten, minimalen Konfiguration — und verschwenden dadurch Speicher fiir
nicht benoétigte Funktionalitit, was die Stiickkosten erh6ht und damit den Einsatz
von Linux in den kostenempfindlichen Bereich der eingebetteten Systeme behindert.

Diese Arbeit prasentiert einen Ansatz fiir eine automatische, an das Finsatzszena-
rio angepasste Malischneiderung von Systemsoftware fiir spezialisierte, eingebettete
Anwendungen. Am Beispiel von Linux wird dieser Ansatz auf einer virtuellen Ma-
schine mit bestehender Technik verglichen. Eine Evaluation der Leistungsfahigkeit
auf tatsachlicher Hardware erfolgt durch die Benutzung angepasster Kernel in gan-
gigen Einsatzbereichen des Raspberry Pi und des Google Nexus 4 Smartphones.
Im Vergleich zur urspriinglichen Konfiguration kann die Dateigrof3e um mehr als
70 Prozent verringert werden, zugleich ist nur ein geringes manuelles Eingreifen

notwendig.

iii

Erklarung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
dhnlicher Form noch keiner anderen Priifungsbehérde vorgele gen hat und von
dieser als Teil einer Priifungsleistung angenommen wurde.

Alle Ausfiihrungen, die wortlich oder sinngemaf3 {ibernommen wurden, sind als
solche gekennzeichnet.

Alle URL-basierten Quellen wurden, soweit nicht anders angegeben, am 1. Septem-
ber 2014 auf ihre Giiltigkeit gepriift.

Declaration

I declare that the work is entirely my own and was produced with no assistance
from third parties.

I certify that the work has not been submitted in the same or any similar form for
assessment to any other examining body and all references, direct and indirect, are
indicated as such and have been cited accordingly.

Unless stated otherwise, all URL-based references were checked for validity on
September 1st, 2014.

(Bernhard Heinloth)
Erlangen, 10. September 2014

Contents

Abstract ii
1 Introduction 1
2 Background and Scoping 4
2.1 VariabilityinLinux 4
2.2 Basic Concept for Automatic Tailoring 5
2.3 PreviousWork 6
2.3.1 Procedure 6

2.3.2 Limitations e 7

2.4 GoalsofthisThesis 8
2.4.1 Suggested Approach 8

2.4.2 Procedure 10

243 Challenges. 10

2.5 RelatedWork 11
2.6 SUMMATIY . . . ¢ vt ottt e e et e e e e e e e e 13
3 Design and Implementation 14
3.1 Problems on Code Manipulation 14
3.2 Prototype o it e e e e e e e 15
3.2.1 Codelnjection 16

3.22 KernelModule 17

3.2.3 FunctionInjection 17

3.2.4 BlockInjection 18

3.3 Finalversion 20
3.3.1 PUMA. . . e e e 20

3.32 LIVM/CIang v v o et e e e e e e e 20

3.3.3 Coccinelle 21

3.4 SUMMATIYot 23

Contents

4 Evaluation on ARM Platforms

4.2

4.3

4.1.1 Coder. e
4.1.2 OnionPi
4.1.3 RaspBMC e
4.1.4 Comparison with FTRACEo v it
Google NexuS 4 ot ittt e
4.2.1 UbuntuTouch.........,
4.2.2 Comparison With FTRACE oo vttt e
SUMmAryt e e e e e e e e

5 Emulation Framework for Approaches

5.1
5.2
5.3
5.4
5.5
5.6

Environment for Virtual Machine
Emulator-based Code-Point Recording
Scopeof Evaluation
Automatic Generation of Whitelists

Evaluationof Test Series o it i i ittt

6 Discussion

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8

ACCUraCy o i e e e e
Selection of Features oo v vttt
Granularity e
COmPIELENESS . . . v v vt e e e e e e
6.4.1 Use of Configurability in Linux
6.4.2 Testrequirementsoutiuno...
Untraceable and Alternative Features
Impact on Non-Functional Properties
Dependency Modelling Defects

Generalization beyond Linux

7 Conclusion and Perspectives

Appendices

A Development

Al
A2
A3
A4

Injection Examples
Macro Defined Functiont
Excluded Files e
FuiepER in Coccinelle

24
25
25
27
28
30
31
32
33
34

35
37
38
39
40
41
43

45
45
47
48
49
50
50
51
52
52
53

54

56

Contents vii
B Evaluation 65

B.1 RaspberryPi 65

B.2 Google Nexus4t 77

B.3 Emulation. e 81
C About the Author 89
List of Acronyms 90
List of Figures 91
List of Listings 93
List of Tables 94
References 96

Chapter 1

Introduction

Most system software can be configured to a broad range of supported hardware
architectures and application domains. A usual way is the tailoring to one’s need at
compile time, the selection is often supported by formal variability models assem-
bling optional features. The most prominent example is the Linux operating-system
family, which offers close to 14,000 configurable features across 26 architectures in

v3.15 — having an ongoing growth of configurable features by 10-20 percent every

year (Figure 1.1)! 16000
. . software
This growth appears to be in- 14000 ™ hardware
: s Ziall It
evitable, as it is mostly caused by ad- 12000
vances in hardware: About 88 per- 10000
cent of all features directly deal with £ 8000
©
low-level hardware support. Espe- &£
. . 6000 hardware features
cially embedded platforms with many 4000 (in arch, drivers and sound)
derivatives and short innovation cy- 2000
cles have become a driving force in 0 software features (everything else)
i : . U O D > ® o) oD L0 X
this process; above all the ARM ar DO PP PP N
RUSRUGI G IR IR R

chitecture used in smartphones and
Linux kernel
tablets as well as developer boards.

The downside of these expansions: Figure 1.1 - Linux feature growth 2005 — 2014
When configuring a Linux kernel, developers are faced with a way to large number
of options. With thousands of features representing possible choices, finding the
right set of optional features specifically needed for your system is a hard and time-
consuming task — that furthermore requires detailed knowledge about both, Linux
and the platform in use. To suit as many customers and their hardware as possible,
distributors therefore ship a Linux kernel configuration with most optional features
enabled. Instead of per-use-case tailoring, we are practically back to one-size-fits-all

solutions.

1 Introduction 2

Although this seems to be a pragmatic approach for workstations with disk sizes
of 1 TByte or more and several GByte of RAM, you want your system-software as
small as possible if you need it for a special-purpose embedded system. Currently,
Linux is already used in smartphones and is the prevailing operating system installed
on mini computers like the Raspberry Pi. But there are much more specific use cases
for small-scale systems which could be driven by Linux, such as home automation
systems or electronic control units used in the automotive industry, where low
per-unit costs are a crucial requirement [6].

In the case of Linux, this has led to the development of many special minimized
versions, like basicLinux [2], Linux Tiny [34], the commercial Lineo uLinux [32]
and Tiny Core Linux!' [59]. However, these make many assumptions about your
system and its usage, trading flexibility for size. And moreover, even on those
systems a lot of effort is required by the providing developer to find a valid minimal
configuration and keep it up to date for future kernel versions.

I believe it would be easier to take a well maintained standard distribution
and automatically derive a configuration specific to the actual needs, once
they are known.

Based on the previous work of the CADOS [8] / VAMOS [63] research group,
I present a tool-based approach for tailoring Linux on embedded devices by au-
tomatically deriving a minimal configuration for a given use case. The resulting
configuration can be used by a device manufacturer or embedded systems engineer
as a starting point for further refinements. Moreover, this approach is not only
limited to Linux but in principal easily applicable for any large-scale system software,
since it uses code injections before compile time — in contrast to previous work
requiring an extensive tracing environment.

I evaluate the approach on the example of Linux on hardware with two different
ARM-based devices (the Raspberry Pi and the Google Nexus 4 smartphone) in four
real world scenarios — leading to net memory savings of up to 70 percent compared
to the original configurations. Additionally, I establish an emulation framework
providing the ability for a detailed comparison between different implementations,
supporting future improvements by engaging it as a verification platform. Lastly,
this framework can help identifying the limitations of the general approach by

instrumenting a virtual machine.

I Tiny Core Linux is under active development and supports several platforms including Raspberry Pi.

1 Introduction 3

The remainder of this thesis is structured as follows: In Chapter 2, I present an
overview of how variability is implemented in Linux, the concept behind the previous
and the new approach as well as the related work on this topic. I depict a detailed
description about the implementation in Chapter 3, including the reasons for related
decisions made in this project. Subsequently, I demonstrate the application on hard-
ware in various real life use cases with respect to kernel size metrics in Chapter 4 and
an emulation framework with the ability for detailed comparison in Chapter 5. After-

wards I discuss these results as well as the limitations of the approaches in Chapter 6.

Parts of this work have also been published with Andreas Ruprecht and super-
vised by Daniel Lohmann as “Automatic Feature Selection in Large-Scale System-
Software Product Lines” [45] at the 13th International Conference on Generative
Programming: Concepts & Experiences (GPCE’14). While Andreas mainly focused
on the textual part, I was responsible for the development and the evaluation?.
Substantive decision concerning the approach were made together in the VAMOS
research group.

2Since both Andreas and I contributed almost equal fundamental parts, we simply decided the order
of authors by the roll of dice — our normal procedure.

Chapter 2

Background and Scoping

In the following section, I first give an idea how static variability is implemented
in Linux, that is, how configurable features and their constraints determine the
resulting binary code. To retrieve a tailored configuration, a reversed mapping
of used binary code to source code is necessary. An automated process (utilizing
FTRACE) demonstrates the basic approach in the consecutive section. Faced with the
limitations of previous work, I show the need of revising the approach to make it
applicable on embedded devices. Therefore I declare my objectives and outline the
suggested improvements based on code injection. This leads to various challenges,
which I present in the subsequent section before finally examining related work on
this topic.

2.1 Variability in Linux

Configurability in Linux is basically specified using the Kconric language [26]. In
Kconrig, a kernel developer can describe a configuration option — denoted as
feature — which can be selected when specifying features desired in the kernel.
Additionally, constraints and interdependencies between configuration options can
be specified. For example, for a USB audio device it is necessary to build general
USB support into the kernel; the developer would hence describe the configuration
option for the device as dependent on USB support. Due to these obvious feature
dependencies, the KcoNFiG features are organized in a tree-like structure. But
the activation of a feature in one part of this tree does not only enable all parent
feature nodes down to its root — in addition, it can (and often does [4]) trigger the
selection or deselection of features in other branches of the tree®, depending on the

preconditions described by the developer.

3Having these horizontal dependencies the structure cannot always be modelled as a tree but instead
as a directed acyclic graph — although theoretically the Kconrig language allows circular dependencies.

2.1 Variability in Linux 5

Therefore the feature models become quite complex — too complex for a pure
manual configuration of the Linux kernel. In practice, the user first selects the
hardware platform via the ARCH environment variable and can then choose from all
KconFiG features available on this platform with a graphical or text-based configura-
tion tool which ensures that the resulting configuration is valid. Several of these
features cannot only be enabled or disabled, but marked as “Module™, enabling the
kernel to load these features on demand.

All the options selected and deselected are gathered by KconFiG in a single kernel
configuration file called . config inside the kernel source directory.

The configuration is then interpreted by the build system to implement coarse-
grained variability. Depending on the selected features, KsuiLb determines which of
the more than 38,600 files® need to be compiled and linked to include the selected
features. In Linux this is the dominant mechanism to implement variability: In
version 3.15 almost three-quarter of all KconFIG features are used to guide the build
system in this way®.

On the thereby selected source files, the C preprocessor (CPP) is used to imple-
ment fine-grained variability via conditional compilation (#ifdef blocks). In Linux
46 percent of all Kconrig features are interpreted in this step to select from a total
of more than a hundred thousand conditional blocks.

Lastly, MAKE is used to set the correct compiler options, determine the binding
units and generate the Linux kernel image and any corresponding loadable kernel
modules as specified by the Kconrig selection.

2.2 Basic Concept for Automatic Tailoring

In order to obtain a Linux configuration tailored to a specific scenario, I need a
strategy to reverse this process, that is, to find exactly those features that select
(only) the required parts of the code base.

The idea to obtain them is to run a use-case-specific workload and concurrently
observe which parts of the binary code are executed”. You then need to determine
the reverse mapping (via conditional blocks, build rules, and feature model) to those
features that have to be selected in order to have these specific code parts in the

resulting binary.

“4As long the kernel supports loadable modules, triggered by the option CONFIG_MODULES.

SKernel source files (assembly, G code or header) without helper tools/scripts or samples.

%Dietrich et al. [17] published similar results for the Linux kernel version 3.1.

7 A very rough method is already shipped with Linux: make localmodconfig builds a configuration
based on the currently loaded kernel modules. This might be a handy solution for workstation users, but
it is far too imprecise for professional application in embedded systems, since only complete modules
and all statically enabled features are taken into account. Further information can be taken from the
official announcement at http://article.gmane.org/gmane.linux.kbuild.devel/3750.

http://article.gmane.org/gmane.linux.kbuild.devel/3750

2.3 Previous Work 6

2.3 Previous Work

In an earlier approach described in a workshop paper [55], the VAMOS research
group already successfully leveraged the FTRACE infrastructure [20] to automatically
tailor Linux kernels for web server and workstation use.

FTRACE is a frame work built into the Linux kernel which can be used to gain
insight on the control flow within the kernel. The activation of FTRACE on a prepared
kernel provides a profiling interface to the user making it possible to track which
kernel functions are executed during run-time.

2.3.1 Procedure

The traditional tailoring approach consists of four basic steps, which are also depicted

in Figure 2.1:

workload

(2]
observe
—_—

o 481D 9 B23 o
CAFFEE V B42
r 991917 A B13
prepare PACADE map = solve
> 55AA00 V B22
baseline self-reflective trace file feature tailored
kernel kernel conditions kernel

Figure 2.1 — Overview of the kernel tailoring approach

© Preparation: The corresponding KconFiG options® instruct the compiler to use
the profiling functionality: It inserts a call to a specific mcount function at
the beginning of each translated function which is itself implemented by
the FTRACE infrastructure. Activated by additional KconriG options®, the
compiler includes debug information in the binary offering the ability to draw
conclusions from the original source code position.

@ Observation: After booting the system with the prepared Linux kernel, a target
workload — adapted to the use case — will be executed on the system. This
will lead to additional functionality being triggered in the kernel.

The VAMOS tailor tool collects the data from the kernel by reading and parsing
the output pipe of FTRACE while running the workload, as FTRACE can only
buffer a limited amount of information. The addresses of executed functions

are then written into a separate output file.

8Mainly the tracing infrastructure enabled by the feature CONFIG_TRACER.
9Represented by the feature CONFIG_DEBUG.

2.3 Previous Work 7

After the workload has been run, you save the output file for further processing
as described by the following steps.

©® Source code mapping: In this step the information obtained from step @ is
processed. The VAMOS tools use the kernel’s debug information to resolve
the addresses obtained from the output file to the corresponding locations in
the source code.

You now have a list of file names and line numbers of code that have been
executed in the measured scenario. For every item in this list, the precondi-
tions described by the conditional blocks around the code have to contain
dependencies described by Kconric. Tools described in previous work [49, 56,
16] are able to determine the preconditions described in Kconrig and provide
an option to look up the preconditions for a given line.

A description of the complete conditions for the whole scenario observed is

obtained by conjugating all individual conditions into a propositional formula.

® Solving: To derive a valid configuration from this list of features and precondi-
tions generated by step ®, a (boolean) satisfiability problem (SAT) solver is
employed. The resulting assignment of variables represents the selection or
deselection of configuration options for the kernel.

As the configuration system itself might enforce additional constraints not
covered by the extracted dependencies, this partial configuration is lastly
expanded by the Kconric system, generating a fully valid Linux kernel config-
uration. This configuration can either be used to directly compile a tailored

Linux kernel or be used as the base for further refinement by a developer.

2.3.2 Limitations

Utilizing FTRACE to observe which parts of the code were actually executed worked
well on previously tailored x86 machines. However, I discovered it is not generally
applicable for the generation of small kernels on weaker ARM systems, as it induces
high overhead during the observation phase. For example, FTRACE records additional
information about latency and execution time (and presents the data in a comparably
verbose way), therefore taking up a lot of computation time itself. This circumstance
lead me to the next problem: The usage of FTRACE guided by UNDERTAKER tools
in user space causes not only a high resource consumption (both in memory and

computing power) but also many side effects'®. Of course, the approach is only

10You are not only able to discover these side effects in the memory management and process scheduler
but, for example, in the debug- and root file system access, too. The execution of payload will suffer
from the limited memory and computing time and therefore potentially react in particular way.

2.3 Previous Work 8

applicable on specific traceable kernels compiled with both debug information and
activated tracing/profiling environment.

Since FTRACE uses the profiling environment triggered only on function calls the
granularity of the traditional approach is basically limited to function level — the
fine-grained variability implemented by conditional compilation is not taken into
account.

Last but not least, the portability of this approach to further operating systems is
limited as it requires an extensive tracing infrastructure — even Linux itself does not
provide tracing support for every supported architecture: For example, the Motorola
68000 series is not supported. Therefore, I assume a generalization of this existing
approach to other operating systems and software product lines is quite difficult to

manage.

2.4 Goals of this Thesis

To make an automated tailoring applicable for resource constrained embedded
devices, it is necessary to reduce the overhead by avoiding the extensive FTRACE
environment. Therefore, I have to develop a less-invasive code-point recording
method regarding computing time and memory consumption. By keeping the
interaction in userspace as small as possible, I will be able to reduce undesirable
side effects.

Previous work only verified a small number of manually guided tailoring exam-
ples since this process can be quite time consuming*!. This might be necessary to
demonstrate the practical relevance, but it is not suitable for a detailed comparison of
different approaches: Because of the manual intervention, the interactions involved
in processing slightly varies and produce imprecise results. Due to this limitation, I
prefer a methodical evaluation: Having an identical environment and automatically
triggered interactions I expect better comparable results. To achieve this, I suggest
building a framework engaging a virtual machine with the possibility to take all
approaches into account. It should be embedded in the CADOS infrastructure for
regression testing and supporting future developments.

Since its development is (in principal) straight forward, I will develop this

framework after successful investigation of the new code recording approach.

2.4.1 Suggested Approach

For any method based on tracking kernel activity the principle remains the same
— it is necessary to indicate executed code which depends on kernel configuration

111t usually takes more than five hours from the generation of the traceable kernel to a ready-to-use
tailored kernel — without calibration of whitelist files, of course!

2.4 Goals of this Thesis 9

choices. To meet the disadvantages of the previous FTRACE based version, I suggest
a lean and simple approach: At the beginning of each function a specific statement
logs its execution. This level will suffice for most features in the Linux kernel
because the gross of them are a rough granularity: They only affect whole functions
or files [17]. At least in theory the new approach offers possibilities to increase the
detection: Because of the fact that configurability inside source code is mostly done
by CPP controlled blocks, it is possible to cover almost the complete configurability
by injecting into these blocks.

It seems that the easiest way to fulfil these requirements is a source code mod-
ification before compile time — due to the fact that compilers perform CPP and
code analysis in different steps. For this purpose I inject specific commands (as
CPP macro) to each of these major feature-dependent code block (demonstrated
in Listing 2.1). During the execution, an injected command switches a unique
boolean value marking the code point as ‘executed’. For the sake of simplicity, each
boolean value is a particular bit in an exportable global memory map. Since the job
is basically just flipping bits, for better understanding this new concept is referred to

as FLIPPER for the remainder of this work.

1 #include <linux/do_sth.h>
+#include <linux/macro.h>

3 void baz (){

+ INSERT_MACRO1_HERE ()
do_sth (42);

}

#ifdef CONFIG_FOO

int foo(int i){

+ INSERT_MACRO2_HERE ()
9 return do_sth(23%i);
10 }

11 #endif

® N o v oA

13 int bar(int x){
+ INSERT_MACRO3_HERE ()
14 int i=0;
15 #ifdef CONFIG_FOO
+ INSERT_MACRO4_HERE () ;
16 i=foo(x);
17 #else
+ INSERT_MACROS5_HERE () ;
18 i=x;
19 #endif
20 return i;

21 }

Listing 2.1 — Example of code injection concept

2.4 Goals of this Thesis 10

2.4.2 Procedure

The procedure will be similar to the one described in previous work, Figure 2.2
illustrates the differences:

(1] (2] (3]
prepare % observe ﬁ map
= A¢ — BRI

self-reflective trace file
kernel

Figure 2.2 — Modified steps in the newly suggested kernel tailoring approach

O Preparation: FLippEr analyses and patches the Linux source code before the
compilation starts. Similar to mcount in the FTRACE approach it places an
instruction at the beginning of each function. Its task simply consists of
switching a specified bit in a global bitmap. Moreover, this instruction can be
placed in every feature-dependent block (denoted by the #ifdef directive).

@ Observation: Using the system in a predefined scenario ensures all required
functionality of the kernel will be called. In doing so the newly injected
commands from step @ are executed, allowing us to draw conclusions from
the code actually used in the workload. Unlike the traditional approach, you
only have to read the bitmap from the system once the target workload has
finished running, as the bits have gradually been set during execution.

© Source code mapping: Afterwards you have to evaluate the output bitmap file
from step @. Whenever a bit is set, you collect the associated entry from the
mapping file generated during step @.

Since you have now a list of source code positions, from this point the process
is identical to the FTRACE based approach described in previous work.

2.4.3 Challenges

In order to come up with a thorough solution for deeply-embedded systems, the
approach described has to face some challenges:

Invasiveness Collecting the information about which parts of the code have been
executed must only minimally affect the observed system’s behavior. While
FTRACE was successfully used to tailoring Linux on a high-end x86-64 server
machine, it proves to be too complex for its application in a weaker system.
Trying to use FTRACE on resource-constraint devices results in altered timing
behaviour and important information about executed functions being dropped
from the output buffer, which are then not being accounted for in the resulting

configuration.

2.4 Goals of this Thesis 11

Accuracy At the same time, it is important to gather as much information as possible
to correctly model the configuration requirements for a given scenario. As
described above, FTRACE fails to accurately collect all data due to unneeded
overhead. Especially during the early boot phase, which triggers a lot of
functionality, function calls representing critical features can easily be missed.

Completeness of the recordings By design, my approach can only take informa-
tion into account which has been triggered during the observation phase. This,
however, should not cause the tailored system to fail if additional functionality
related to the triggered functionality — for example, error handling in a driver,
when no error occurred while running the target workload — is needed during

later productive use.

Untraceable features Moreover, some configuration options like errata specific
to a certain processor or compiler flags which do not have an immediate
representation in the control flow, might not even be detectable at all. This
requires external knowledge to be taken care of while deriving a solution.
This particularly applies to KconFiG features of string or numeric type (for
example the kernel command line or section offsets), where an automated

solving approach cannot provide any choice.

Alternatives Some KCONFIG features present a set of alternatives to the user (e.g.,
the choice of a scheduling strategy). From these, the SAT solver will simply
choose one, as there are no further constraints to observe. Additionally, the
default choice provided by the distributor might not fit the systems actual
needs. Thus, the developer needs to be able to specify previously known
selections to integrate his domain knowledge into the tailored kernel.

2.5 Related Work

In earlier work [55, 28], the VAMOS research group has been able to show the
general feasibility of tailoring a Linux kernel to a specific use case, observing im-
provements in binary size and security. As already discussed, however, the approach
presented there needs comparably strong hardware to cope with the amount of
data generated during the observation phase, rendering it useless for application in
embedded systems.

There are a number of other researchers working in the field of specializing
configurable systems, whose findings I will briefly outline:

As an example, Lee et al. [29] use a graph-based approach to identify the specific

needs of an application and the underlying Linux operating system. They subse-

2.5 Related Work 12

quently remove all code not required by the target application (e.g. unnecessary
exception handlers and system calls) from the source code.

Chanet et al. [9] also propose the analysis of a control-flow graph of both the
applications and the Linux kernel. Instead of patching the source code however,
they use link-time binary rewriting to eliminate unused code from the resulting
compiled kernel.

For embedded devices based on Linux and L4 Bertran et al. [5] suggest a “global
control flow graph”: Their approach eliminates dead code in binaries emanating
from entry points defined by the application binary interface.

A shared drawback of these approaches, however, is that they do not make use
of any configurability options already provided by the kernel, which could eliminate
code as well. Moreover, by patching information out of the binary they are prone
to leaving “loose ends” inside the kernel. My approach in contrast is assisted by
the configuration system itself. This ensures a valid Linux kernel configuration is
derived and used for compiling the tailored kernel.

An approach taking configurability into account when deriving a tailored soft-
ware system has been presented by Schirmeier and Spinczyk [46]. Again, static
analysis is used to determine relevant parts in the code, the authors however only
tested their work on a much smaller and less complex application with only 15
configurable features, already leading to a graph consisting of approximately 600
nodes.

In contrast, Siegmund et al. [47] use interacting configurable features to predict
non-functional properties like performance from a given configuration, and also
developed a method to automatically derive an optimized software variant [48]. Per-
haps it would be interesting to combine these results with my tailoring approach; for
example, the generation of a tailored configuration could not only consider selecting
as few features as possible, but rather select features optimal for non-functional
properties deemed important for the target use case, e.g. power consumption in an
automotive scenario.

On the other hand, my results could be used to extend their work onto the
Linux kernel. While this has not been feasible to date due to the massive amount
of KconFig features in Linux, the authors could reduce the problem to the features
(and their possible alternatives) identified by the tailoring approach.

To integrate preferences of the user while optimizing a configuration for non-
functional properties, Soltani et al. [50] model the selection of features as a
Hierarchy Task Network (HTN) planning process. Due to the run-time of their
approach already rising strongly when applied to a random model consisting of only
200 features, its adaption to a real-world large-scale system could prove to be very
difficult, if not impossible.

2.5 Related Work 13

Guo et al. [23] present a genetic algorithm to find an optimal feature selection
incorporating resource constraints in a software product line, which also performs
well for a randomly generated model consisting of 10,000 features. The generated
configuration, however, is not use-case specific: The optimization is performed using
cost vectors associated with every feature (i.e., CPU or memory consumption) rather
than considering specific functionality requirements deduced from actual system
use.

2.6 Summary

Tailoring an extensive Linux configuration of a standard distribution down to ones
need can be achieved by recording the actual executed code while running an
exemplary work load. The previous approach presented by the VAMOS research
group is based on the Linux tracing infrastructure FTRACE, which is either too
resource intensive or even not available on some architectures. As a solution, I
suggest injecting special instructions into the source code before compile-time to
record the executed code points. I will evaluate the new approach both on real
hardware to demonstrate its application and — for better comparison with the
previous approach — in an emulation framework.

In contrast to the approaches presented by other researchers, this work focuses
on a transferable solution which can support system engineers since it makes use of
KconFig (the Linux configuration system) and is applicable for daily use in real-world

scenarios.

Chapter 3

Design and Implementation

With respect to the difficulties on manipulating C source code with CPP macros
(briefly described in the following section), I decided to develop a rough proof-
of-concept prototype from scratch to gain experience about the new code-point
recording approach. For the final version I consider several third-party tools focusing
on source-code transformation and take the experience made with the previous

prototype into account.

3.1 Problems on Code Manipulation

While the transformation of source code to an abstract syntax tree (AST) is a
well explored challenge, the source-to-source transformation of C code including
CPP macros remains a hard problem [51]: Due to historical reasons, the macro
language is not part of the AST but a line based preprocessor task before the actual

C compilation.

The preprocessor was originally considered an optional adjunct to the
language itself. [...] This attitude persisted, and explains both the
incomplete integration of the syntax of the preprocessor with the rest of
the language and the imprecision of its description in early reference
manuals. (Dennis Ritchie, inventor of C [44])

Compilers process C code (to an AST) after successful interpretation of all CPP

12 __ while output as pure C code is still possible!®, the full procedure

macros
regarding macros is non-reversible. The preprocessor has the ability to include

files (#include), expanding macros and controlling compilation of code segments

12According to the standard [24], the evaluation of the preprocessor directives and macros (and
deletion of all remaining ones) is the fourth step of the translation phase, while the AST is generated
after finishing all eight preprocessor steps described in the standard.

13This is often used to format/beautify code (also called “pretty printing”).

14

3.1 Problems on Code Manipulation 15

(#ifdef, which is mainly responsible for the fine-grained variability in Linux). In
particular, the use of the compilation control is not limited to complete C statements
but can slice expressions in several parts — therefore it is not possible to consider
them in the C-AST. However, only the AST allows an automatic source modification
(without accidentally changing semantics).

Notwithstanding, several researchers tackled this problem and developed C
source manipulation tools like PUMA with the ability to preserve CPP macros. But
using them is not trivial at all, because of either extensive application programming
interface (API) or lacking documentation. Hence they are initially not taken into
account at the development of the prototype, while — after successful investigation
of said prototype — a full featured version regarding such C source transforming

projects is developed.

3.2 Prototype

Since wide parts of the Linux kernel source really comply the coding guidelines
[33], it seems to be sufficient to use regular expression (RegExp) to analyse the
structure of the C source. Therefore, I choose PERL as the implementation language
for the prototype because of its comprehensive RegExp support including recursive
patterns'# (which are necessary for parsing unlimited nested parentheses). Unlike
compilers, my tool processes lexical and syntax analysis together in one step. Using
fixed-point iteration algorithms, irrelevant lines are reduced according to the C
grammar [27, p. 193ff], leaving just a basic structure of the source. Of course, this
tentative implementation is not focused on incorporating the whole grammar —
for my prototype I concentrate on its main parts used in the Linux source, always
bearing possible flaws in accuracy in mind.

To prevent extensive processing of all Linux source files each time deploying the
approach to the kernel with its 38,600 source files, I prefer patch file output (in
“unified diff format” [15]) as an intermediate step instead of direct file modification:
Only a single analysis run is required for each kernel version and it takes only
seconds to apply these preprocessed changes to the Linux source.

For better comprehension in the later parts I named the prototype DURDEN — in

contrast to the final tool named FLipPER (according to the concept).

4«Regular expressions” within the meaning of formal language theory are only able to match patterns
in regular languages (type-3 grammars in Chomsky hierarchy [10]). But since most programming
languages are context-free (type-2 grammars) — for example, they allow recursive structures — only the
expanded PerL-RegExp implementation has the ability to deal with these languages.
Note: Due specific constraints in its standard, C is in fact a context-sensitive language (type-1 gram-
mar) [21] — but this has no influence on the development of the prototype.

3.2 Prototype 16

3.2.1 Code Injection

Special FLiPPER commands need to be inserted in source code locations indicating a
feature-dependent code block.

Since the kernel will execute the injected code many times — thus, having a big
influence on overall performance —, it needs to be as slim as possible. Instead of
the concrete implementation, my approach introduces a CPP macro to each code
point enabling me to choose the concrete implementation afterwards.

Each inserted macro has just a single argument: A unique number as identifier
(ID) indexed by the injection routine. This ID allows the identification of the
corresponding memory allocation and enables linking executed macros to a concrete
source line.

After compilation, every injection enlarges the kernel — depending on the
architecture and optimization flag — by a net amount of one (x86 with optimization
enabled) up to eight (ARM without optimization) instructions (cf. Table 3.1 for a

more detailed comparison).

target compiler instructions'® for performing

architecture optimization bit flip byte set
disabled 8: 1dr 1dr 1drb orr uxtb 1ldr 1ldr strb 3: 1dr mvn strb

arm (RISC)
enabled 4: 1dr 1dr 1ldrb orr strb 3: 1dr mvn strb
disabled 3: movzbl or movb 1: movb

x86 (CISC)
enabled 1: orb 1: movb

Table 3.1 - Comparison of required assembly code instructions for approaches
compiled on ARMv6 and AMD64/x86-64 architecture using Gcc with optimizer
flag -02 (or -00 in case of disabled optimization)

In practice, the concept of flipping just a single bit suffers from concurrency
flaws: On many architectures it is not possible to do an atomic bit flip. But since it
is possible to have multiple injected macros executed at the same time on multicore
(or during scheduling even on single core) systems race conditions can occur. While
a mutual exclusion lock (mutex) for each macro seems to incur too much overhead,
I prefer solving concurrency by using the smallest, direct addressable data type'®
for each macro instead of a single bit. On the one hand this increases the size of
the map by the number of bits used in this data type'’, but on the other hand no
additional expensive locking operations are necessary. This option can be activated

by module configuration.

15This collection lists only the machine code instructions directly involved in the macro. Additional
instructions to recover registers may be inserted depending on the code as well as two additional words
required for bitmap memory address computation on arm.

16Usually a one byte character.

17 Obviously eight times for byte-wise access.

3.2 Prototype 17

3.2.2 Kernel Module

To handle and retrieve the data collected by FLiPPER, I decided to create a kernel
module with a userspace interface. Each bit in a global bitmap represents a well
defined code point — relocatable by the identifier. On execution, the injected macro
propagates the usage of the code point by activating the corresponding bit in a
global map. The kernel module deals with exporting this bitmap as a symbol in
order to make it accessible from anywhere in the kernel — including loadable kernel
module (LKM) — and implements a char device providing the ability to access its
data. The bitmap size is hard-coded at compile time; to configure the size of the

bitmap, KconFiG is employed*8.

3.2.3 Function Injection

Injecting a function with the basic source structure is quite easy: The tool performs
a macro injection at the first position immediately after any initial variable decla-
rations'®. Only a single restriction is necessary: You must not apply the macro to
source files employed outside the kernel context since you cannot access the global
map from the kernel module in these cases (and, moreover, these parts are mostly
not relevant for tracing). Basically the Linux kernel has three types of such source
files:

* Tools only involved in the kernel compilation process

* User space libraries

* Routines utilized on early boot (such as unpacking the kernel)

The automatic detection of such files is a give-away of the build system: The
compilation process will report a missing symbol (referring to the global bitmap).
In order to address this issue, I incorporated a blacklist which avoids the parsing
of defined files. It turned out that these problematic files are pretty static — once I
set up the blacklist (presented in A.3), there was no need to change them later (not
even when switching the Linux kernel version).

However, LKMs can be triggered even if there was no actual module inter-
action since Linux provides initialisation calls: The function referred to by the
module_init () macro is automatically executed after the module was successfully
loaded into memory. To avoid this, I prevent functions denoted by such special

macros from being injected?°.

181t is absolutely necessary to choose a size at least of the quantity of all injection points — otherwise
overflows can occur, which may cause a kernel panic or an undefined behaviour.

98ince the kernel compiles with the flag -Wdeclaration-after-statement, this is necessary to
avoid a flood of warnings at compile time.

20However, my detection method is limited: For example, it does not support special handling for
helper functions called from the initialisation routine — once helper functions are triggered by the tool,
these may mislead the SAT solver to include unused modules. For further information see Section 6.1.

3.2 Prototype 18

3.2.4 Block Injection

As mentioned earlier, features can sometimes be very fine-grained (although it does
not happen often): It is possible that a configuration choice enables just a single
source-code line within a function — or even just a part of it — by using CPP macros.
To cover all code variability, I implemented a heuristic routine to handle these
feature-depended CPP blocks in the Linux source code. The fundamental procedure
is similar to functions: My tool has to introduce code at the beginning of each
CPP block. While the macro injection of blocks containing only complete simple
statements?! is easy, I was faced with a wide range of more complex applications??:
 Compound statements?> may require extra treatment: A block inside a switch
case statement including multiple cases needs to be injected multiple times
— the macro must be placed after each case (or the default) keyword to
guarantee its execution on every condition value (an example is provided in
Listing A.2). Cascaded else if conditions are handled in a similar way:.

» Single statement blocks without curly braces (appearing after compound
statements) require special treating, too. I figured out that instead of applying
the block indicating braces, the comma operator is the least invasive injection
(like shown in Listing A.1). The broad range of possible applications is
especially shown in case of using the shorthand if syntax, but this comma
operator injection seems to be the best practice in complete expressions
anyway (similar to Listing A.3): First the corresponding code of the macro is
evaluated (while its return value is discarded) and the result of the second

(original) statement is used after its evaluation for the further proceeding.

* Conditional blocks can — and will — occur inside expressions. To place my
macro, I make use of the comma operator again and construct an identity
transformation®*: The first operand utilizes the activation of the corresponding
bit, while the second one is just the constant “0”: (MACRO() , 0).

The algebraic addition operator (denoted by the plus sign “+”) concatenates
the new expression to the existing one inside the block — its position naturally
depends on the placement of the previous operator (cf. Listings A.4 and
A.5). Although this solution works in practice with current Linux kernel
versions without restrictions, hypothetically this procedure can change the

semantics of the code: Multiple expressions connected by operators with

21For example, assignments and function calls.

221 jebig, Kistner, and Apel [31] denoted them as “undisciplined annotations”, accounting about
4 percent of the CPP usage in the Linux kernel v2.6.28, besides 3 percent blocks which could not be
classified.

23Like conditions and loops — characteristic trait: It includes additional statements.

24An operation which does not change the value.

3.2 Prototype 19

different precedence are evaluated according to the order of operations —
the example Listing 3.1 will accidentally multiply the identifier b with the
constant “0” and actually erase its value. At first sight, the multiplication
operator (denoted by the token “¥”) in conjunction with the constant “1”
seems to be the better identity relation referring to its operator precedence.
Since it is not possible to use the multiplication operator on pointer type
expressions (this will cause a compile time error), I refused this concept as

the tool will not perform type checking.

1a =D>b *
2 #ifdef CONFIG_FEATURE
3 +((SET_DURDEN_BIT(23)) , 0) +

4 c +
s #endif
6 d;

Listing 3.1 - Pathological example presenting limitations of the approach

Nevertheless, there still remain a few special constructs, which I cannot correctly
cover by my common heuristics mentioned above. Their detection is not trivial: A
flawed injection can either cause a compile time error (in case of invalid syntax),
lead into run-time errors or — even harder to recognize — incorrect behaviour
without visible errors by changing the semantics. An exemplary code snipped from
Linux kernel v3.6 is presented in Listing 3.2. However this particular code was
revised in later versions?®, I could find similar examples in each kernel version,

especially located in the drivers section.

686 entry.saddr =

6s7 #if IS_ENABLED (CONFIG_IPV6)

688 (entry.family == AF_INET6) ?

689 inet6_rsk(req)->loc_addr.s6_addr32

690 #endif

691 &ireq->loc_addr;

Listing 3.2 — Example of Conditional block inside expression with prefix

operator (Linux v3.6 source file net/ipv4/inet_diag.c)

For testing purposes, I overcome this problem by blacklisting such files as a short
term solution; I was able to figure out about twenty files with incorrect injections
(files listed in A.3).

25But this code was part of the kernel for eight years: It was introduced in kernel version 2.6.10
(December 2004) in net/ipv4 /tcp_diag.c!

3.3 Final version 20

3.3 Final version

After extensive testing of the prototype DURDEN, the experiences are taken into
account to develop the final version. Due to the problems in modifying CPP macros
(see 3.2.4), I decided to abandon the concept of CPP block injections: Comparison
of various tests revealed no notable difference to a configuration file obtained with
only function entries patched?® — actually I was not even able to create a single
Linux test case which perceptibly benefits from the additional block injections.

The final version, called FrLippER (corresponding to the approach), only adopts
the principle of injecting whole functions once from the prototype (described in
3.2.3), which allows me to record just the execution of every function. This decision
ensures a long-term application of the approach without the need to care for a new
file blacklist in each new version.

In contrast to the prototype, third party tools are involved to guarantee a seman-
tically correct macro injection. I choose PUMA, LIVM/CLANG and COCCINELLE for

further investigations.

3.3.1 PUMA

The PURE ManipuLATOR (PUMA) used in AspEcTC++ [1] (and UNDERTAKER) has
the ability to handle CPP code while manipulating C sources. It is integrated in the
UNDERTAKER tool, and the VAMOS team is familiar with its interface. However, its
development has almost stopped and the AspEcTC++ team announced the integra-
tion of LLVM/CLANG instead of PUMA for the upcoming version 2.0%7, which could
indicate the definite end of its development. Under these circumstances I considered

an implementation based on this library disadvantageous and discontinued work.

3.3.2 LLVM/Clang

Due to historical reasons, Linux is closely connected to the GNU ComPILER COL-
LECTION [22] (Gcc), although the young project Low LEVEL VIRTUAL MACHINE [60]
(LLVM) with its C language frontend CLaNG [12] is becoming more and more popular
in the last few years. Recent projects®® try to port the kernel to the LIVM/CLANG
compiler, though these projects have unsolved issues and are not in a stable state
yet. One advantage of CLANG is the well-documented and simply modifiable code

base?” compared to GCC.

26A more detailed description can be found in Section 6.3.

27 As announced by a AspEcTC++ project member in a personal conversation.

281 ike the popular LLVMLINUX project [35].

29This advantages are claimed by the developers on their official comparison site: http://clang.
1lvm.org/comparison.html.

http://clang.llvm.org/comparison.html
http://clang.llvm.org/comparison.html

3.3 Final version 21

Providing tools for modifying the AST and rewriting source makes CLANG a
perfect starting point for a clean implementation. However, first attempts of the
source-to-source transformation pointed out that the AST is generated after handling
the CPP macros with the available context information: CPP blocks enabled by
KconrFiG options are ignored in the AST. At the code rewrite step, these ignored

parts are pasted untouched to their origin code points.

1 int foo(){

7 return 23;

s }

9

10 #ifdef CONFIG_BAR
1 int bar (){

12 return 42;

13}

14 #endif

Listing 3.3 — Code injection by CLANGS source rewrite engine ignores

KconriG enabled conditional blocks

Since the KcoNFIG macros are evaluated at kernel compilation time, they are
not available during preparation. Combining the steps code analysis, patching and
compiling could be a solution, but I rejected this approach owing to its need for
extensive modifications and the open issues in the LIVM kernel projects mentioned

earlier.

3.3.3 Coccinelle

In contrast to the traditional patch format, the semantic patch language (SmPL)
suggested by Laboratoire d’Informatique de Paris 6 is independent from line numbers:
Source-code lines are referenced by their semantic structure. Moreover, a single
patch is not limited to a single file but can modify thousands of files without
knowing them at creation. Since the beginning of development, Padioleau, Lawall,
and Muller [39] focused on Linux as primary target with the purpose to get a grip
on the collateral evolution problem (and it already made its way into the Linux
kernel source).

Even though their open-source application CoccINELLE is the only available tool
able to interpret this language, SmPL seems to fulfil my requirements: I decided to
base the final version upon CoccINELLE/SmPL.

Although the language was not originally created for targeting use cases like
described in this thesis, the integrated PyTHON support enables a wide range of

functionality beyond source code modification: The generation of the mapping file

3.3 Final version 22

(consisting of bit field number, file name and line number for each entry) as well as
the blacklisting engine make use of PyTHON. Hence it is sufficient to run a single
CoccineLLE instance with the full Linux directory as argument instead of employing
an additional script guiding through the files.

Albeit CoccINELLE can modify the Linux source directly, I suggest generating a
traditional patch file for the whole source as common usage. My experiences with
the prototype exposed this progression as best practice: A portable patch can be

applied to an appropriate kernel version in seconds — and be revoked easily.

Drawbacks

Although the code parsing of the new approach is based on — theoretically — the
full C language grammar (instead of the partial implementation in the prototype
parser), and I was able to significantly improve the code readability of my tool at
the same time, there are still some noticeable drawbacks left:

* Since the source code injection of a file with the CoccINELLE approach requires
the generation of a complete AST, it is a more time consuming procedure than
the prototype. For instance, the final FLIPPER version processes a Linux kernel
in about 90 minutes while the prototype DURDEN needs less than five minutes
on the same software/hardware configuration.

* Unlike the prototype, it is not able to patch null functions: Due to limitations
of SmPL in the latest version, it is not possible to address empty function
bodies for inserting the macro. Although this affects about 1,500 functions, I

figured out that the missing lines have no measurable impact.

* Similarly to above, it turned out that an insertion of #include directives using
this tool is not as simple as you could expect: Since SmPL needs semantic
context to attach new code, you cannot address the top of files without other
CPP directives in it. I handle this special case by inserting a directive in
front of each patched function — with include guards®® solving the possible
occurrence of multiple insertion.

* Lastly, CoccINELLE mismatches functions defined in multiline CPP macros
as normal functions (like A.6). Performing an injection to files with such
definitions will invalidate the syntax and lead to a Linux compile error. Since
the interpretation of such code in the AST is an incorrect behaviour and
just about a dozen files in the current kernel are affected, my preliminary
solution is quite simple: I add the files to the blacklist until the developers of
CoccINELLE fix the problem.

30A common way to prevent multiple processing, described in https://gcc.gnu.org/onlinedocs/
cpp/0Once-0Only-Headers.html.

https://gcc.gnu.org/onlinedocs/cpp/Once-Only-Headers.html
https://gcc.gnu.org/onlinedocs/cpp/Once-Only-Headers.html

3.4 Summary 23

3.4 Summary

Automatically injecting code in all Linux C source files without changing (or break-
ing) semantics is a difficult task. I developed a prototype from scratch with not
only the ability to extend all functions in Linux by a recording macro, but also
(correctly) inserting such macros into most of the conditional blocks present in the
source. Only a few occurrences could not be assigned to the right working set, thus
leading to incorrect behaviour as long as you do not manually exclude the respective
source files. However, it turned out that I get the same result, whether I just tracked
function calls or in addition enabled the extensive block recording — but having a
higher overhead and error rate in the last case.

Therefore, I rejected the idea of a special treatment for CPP blocks and developed
a maintainable tool incorporating in functions only. The revised version®! is based

on COCCINELLE — a tool which is predestined in modifying Linux source files.

31The complete source of this implementation is annexed in Listing A.7.

Chapter 4

Evaluation on ARM Platforms

To show the broad applicability of the new approach in various real-world use cases,
I evaluate FLIPPER on two distinguishing devices based on the ARM architecture in
four different scenarios and compare the results with the baseline kernel.

The Raspberry Pi is my first platform for evaluation: With over 3 million delivered
units®? it is probably the most popular low cost mini computer on the market. While
it is used in very different purposes this evaluation tries to cover a part of the variety
by selecting three distinct situations:

* Using the Raspberry Pi as media center running “raspBMC”

* Learning to write web browser applications on “Coder”

* Setting up a wireless access point which makes the user’s web traffic anony-

mous by routing it through the Tor [61] network (called “OnionPi”)

In contrast to the resource-constrained mini computer, the second part is fo-
cussing on a high-end smartphone: The LG E960, also known as Google Nexus 4.
This choice allows the demonstration of the approach on high-performance devices
with more specific hardware and higher throughput due to its multicore processor.
The smartphone with the development version of Ubuntu Touch as the operating
system is used in a typical manner including making calls, taking pictures and data
exchange with external devices.

The overall structure of the trace test runs remains the same, which I denote
as twenty minute approach: After booting the device with a prepared kernel, it is
allowed to settle for ten minutes to avoid potential inferences of any initialization
code run after startup. During the next ten minutes the use-case-specific actions are
performed manually in a pre-defined schedule. Afterwards, the backup of the trace

file and the shutdown is initiated automatically.

32Source: http://www.raspberrypi.org/raspberry-pi-at-buckingham-palace-3-million-sold/

24

http://www.raspberrypi.org/raspberry-pi-at-buckingham-palace-3-million-sold/

4 Evaluation on ARM Platforms 25

Note: For a fair comparison, the term “features” denotes only binary and ternary
Kconric features in this chapter since the rare value features are not handled by
the VAMOS tools. A detailed documentation of the results for each test cases with

respect to these items can be found in in the Appendix B.

4.1 Raspberry Pi

To evaluate the effectiveness of the proposed approach, I generate a configuration
from the data collected by FLipPER and measure the reduction achieved in terms of
Kconric features, text segment size and the number of source code lines compiled
compared to the baseline kernel.

I performed all trace (and verification) runs on identical Raspberry Pi in hardware
revision 2 (2011.12) with 512 MByte memory>>, the operating system and userland
was transferred on 16 GByte Class 10 SD cards. The following steps were performed
on a 16 core®* (Intel Xeon E5620) server machine with 24 GByte memory — but in
principal any current desktop machine model with a similar amount of memory
could do as well, of course. Mapping the bitmap to source code locations, correlating
these to configuration items and generating the solution with the given setting takes
around 10 minutes, with the latter part taking most of the time.

I was able to successfully boot the tailored kernels, after I put 14 test case-
independent features onto a whitelist (listed in B.2), which I identified manually by
comparison with the original configuration. This was less tedious than it sounds, as
the items provided were mainly specific to the hardware (for instance, to bypass

ARM errata) or other low-level features that I could identify by their name.

4.1.1 Coder

Google developer Jason Striegel published his open source project Coder [13] in
September 2013%°, which turns the Raspberry Pi into an educational web developer
platform assisting in learning HTML, CSS and JavaScript: The mini computer acts
as a server providing an easy to use web-based application manager and editor
with a few sample apps. For the evaluation, I used version 0.4, which comprises a
Linux kernel 3.6.11. As the system is running as a server and only used via network,
no keyboard or screen were connected; the only external cable besides the power
supply was an Ethernet cable (RJ45).

33Full hardware specification can be found at B.1.

341n fact, multiple cores are not necessary at all for this step: The tool is only running single threaded!

350fficial announcement in GoogleDev blog: http://googledevelopers.blogspot.de/2013/09/
coder-simple-way-to-make-web-stuff-on.html.

http://googledevelopers.blogspot.de/2013/09/coder-simple-way-to-make-web-stuff-on.html
http://googledevelopers.blogspot.de/2013/09/coder-simple-way-to-make-web-stuff-on.html

4.1 Raspberry Pi 26

The schedule (Figure 4.1) was quite simple: I connected to the service after ten
minutes of idling, changed some of the code provided in the default installation
package and executed a web application.

Time in min
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

system boot4y ~ ~
1dle

login and navigation -
modifying code L
space rocks]
shutdown '3

Figure 4.1 — Schedule for collecting addresses at the Coder scenario on Rasp-
berry Pi

The results provided in Table 4.1 show that the number of enabled Kconrig
features is reduced by about 74 percent, leading to a text segment by almost a fifth
of its original size. Using DWARF debug information, I also determined the number
of source code lines actually compiled into the kernel. The reduction is similar to
the other metrics, with savings reaching more than 70 percent.

Metric Baseline Tailored
KcoNriG features 1,678 429 (25.6%)
Text segment (byte) 22,621,072 4,835,648 (21.4%)
Source code lines 845,627 239,680 (28.3%)

Table 4.1 — Results for the Coder scenarios using three metrics. Percentages
shown are quotients between the FLippER tailored version and the correspond-
ing original configuration file

Using the tailored kernel, I was able to use all functionality provided by Coder:
Modifying code on the web interface as well as running the sample applications
worked perfectly. Connecting additional devices (not used in the tracing scenario)
like monitor or keyboard has (as expected) no effect since these drivers are removed
during the tailor process.

This lead me to the question: How do uninitialized hardware components
influence the power consumption?

To answer this question, I employed a digital multimeter>® which allows me
to measure (and record) the electric current of the USB power supply by using a
constant voltage of 5V DC.

36HAMEG HM8012 with a DC current measurement resolution of 1 mA, connected to a PC using the
RS-232 interface.

4.1 Raspberry Pi 27

500

450
400 | IR)] | | L L

350
300
250
200
150
100

50

Amperage in mA

— baseline
— FLIPPER

0 100 200 300 400 500 600
Timeins

Figure 4.2 — Comparison of power consumption between original and tailored
kernel in the Coder scenario

Comparing the power consumption (Figure 4.2), I was able to observe reductions
of around 1-2 percent with my tailored kernel: While the baseline kernel has
an average consumption of around 391 mA after finishing boot (with frequently
occurring amplitudes of 426 mA), my tailored kernel needs about 376 mA in this
stage (with less amplitudes). Although there is a very slight improvement, I do not
think this is really a notable difference. Therefore I decided to refuse a detailed
investigation in the later scenarios as long as a quick examination does not indicate

a significant change.

4.1.2 OnionPi

The second scenario employs the Raspberry Pi as a proxy for the Tor anonymity
network. This is done by installing the Tor client software on top of a standard
Raspbian Linux distribution using the Linux kernel version 3.6.11. The OnionPi was
set up according to instructions®” provided by Aparruit [36], a company operating
an online platform (and selling enhancements) for educational electronics like the
Raspberry Pi.

Connectivity to the internet is provided via the Ethernet port, while a miniature
USB wireless adapter®® is used to establish a WiFi network. Traffic sent through this
network will subsequently be routed via ToR.

To reconstruct normal usage, a computer connected to the WiFi network after
the settling phase, visited web sites using a browser and fetched emails from a server.
After five more minutes, a smartphone logged into the network and was then used to

visit web sites. A graphical representation of the schedule is provided in Figure 4.3.

37The version and available software packages of September 27th, 2013 were used.
38Model EW-7811UN by EDIMAX, supporting IEEE 802.11b/g/n.

4.1 Raspberry Pi 28

Time in min
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

system boot4y ~ <
1dle

connecting with laptop [)
web browsing C
retrieving mails)
connecting mobile phone (]
mobile browsing)
shutdown 'S

Figure 4.3 — Schedule for tracing OnionPi on Raspberry Pi

The results for the tailored Linux kernel are provided in Table 4.2. As with
the previously presented test case, the number of features present in the tailored
configuration file is reduced to a fourth, the text segment shrinks to 22 percent its
original size and the number of source code lines mentioned in the DWARF debug
information is decreased to less than a third.

Metric Baseline Tailored
KcoNriG features 1,678 426 (25.4%)
Text segment (byte) 22,688,201 5,041,604 (22.2%)
Source code lines 846,554 252,362 (29.8%)

Table 4.2 — Results for the OnionPi scenarios using three metrics. Percentages
shown are quotients between the FLipPER tailored version and the correspond-
ing original configuration file

The tailored kernel was tested with the schedule again and provided the same
functionality as before without any problems or noticeable performance degradation.
Additionally, I let the Raspberry Pi provide a WiFi hotspot in the departments
laboratories for a period of over two weeks. Daily use with various devices proved
the tailored system to be stable and to perform without any problems in a realistic

environment.

4.1.3 RaspBMC

In this scenario, which resembles the very common usage of the Raspberry Pi as
a media center, the Raspberry Pi is connected to a screen via HDMI, speakers are
plugged into the audio port, internet connectivity is provided using Ethernet and a
USB keyboard® (with media key extension) is used to handle the machine. I used

39CYA Model 210XX by Cherry

4.1 Raspberry Pi 29

the December version*® raspBMC, running on a Linux kernel 3.10.25. The available
extra video decoding hardware (both MPEG2 and VC-1) is enabled by adding the
corresponding license keys to the Raspberry Pi boot configuration.

After the settling period mentioned earlier, I first started an integrated app
to show the current weather. Subsequently, a video clip was streamed from a
remote SFTP server, followed by multiple accesses to the web front end for remote
controlability. Lastly, two more video clips were played. A detailed description can
be obtained from Figure 4.4.

Time in min
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

system boot4¢y — <
weather app «
MPEG video via network G
keyboard interaction)
ssh access «
web interface @
local MPEG2 video L
local MPEG4 video)

shutdown ®

Figure 4.4 — Schedule for tracing raspBMC

In contrast to the two use cases presented before, the tailored kernel was not
fully functional out of the box: Parts of the frame buffer device*! are configured as
modules — but for successful compilation these options must be statically included.
Since this seems to be a bug in the Linux KconrFiG model, I manually corrected these

options and successfully continued with the process.

Metric Baseline Tailored
KcoNrFiG features 1,819 452 (24.8%)
Text segment (byte) 22,960,278 5,656,040 (24.6%)
Source code lines 842,460 275,403 (32.7%)

Table 4.3 — Results for the raspBMC scenarios using three metrics. Percentages
shown are quotients between the FLipPER tailored version and the correspond-
ing original configuration file

“OAnnouncement and further information at http://www.raspbmc.com/2013/12/
raspbmc-december-update/.
41Conﬁguration options CONFIG_FB and CONFIG_FB_BCM2708.

http://www.raspbmc.com/2013/12/raspbmc-december-update/
http://www.raspbmc.com/2013/12/raspbmc-december-update/

4.1 Raspberry Pi 30

The results provided in Table 4.3 show that the number of enabled Kconrig
features is reduced by over 75 percent and the number of lines compiled into the
kernel is reduced by more than two thirds, leading to the total size of the text
segment less than a quarter of its original size.

Using this generated kernel, I initially tested its functionality by running the tasks
from the workload description again. I was not able to detect any degradation in
performance or usability and could also use features provided by raspBMC I did not
trigger during the observation phase. When I subsequently handed out one of the
systems running on a tailored kernel to fellow researchers, they did not experience
any problems during daily private use as a media center over the course of four
months.

4.1.4 Comparison with FTRACE

When I tested the different approaches, I found FTRACE being capable of collecting
enough addresses to compile a usable Linux kernel. Thus, I also generated config-
urations for all scenarios using the FTRACE collection method. While the kernels
produced were able to boot into the scenarios*?, and the resulting configurations
were even smaller (see Figure 4.5 for a quick comparison, details for each use case
are attached in B.1), a manual comparison showed that especially during boot a lot
of information was lost due to the high load induced by the FTRACE data collection
mechanism. However, the kernel configuration system was luckily able to recover
most* of the required configuration options.

coder onionPi raspBMC

500

400
=)
K
=}
@ 300
CA
1% o w
[w
£ 200 £
g o
L = = modules

100 m = static features

in partial configuration
0 expanded features
Flipper ftrace Flipper ftrace Flipper ftrace

Figure 4.5 — Kconric feature selections for the Raspberry Pi test cases when
using different data collection methods

420nly at the raspBMC use case I encountered a problem while tracing: Since the Linux kernel version
3.10 produces many identically function calls at boot time, the UNDERTAKER tools in default configuration
are not able to process them as fast as necessary, the system will get stuck. Only setting very short flush
cycles for the FTRACE ignore module (about 100 times more flushes than the default one) will allow the
system to start up.

430ne restriction I discovered so far is, a tailored raspBMC kernel is not able to shut down the system
using the graphical user interface — in contrast to the new FLIPPER approach.

4.1 Raspberry Pi 31

The problem is examplarily shown in Figure 4.6 for the raspBMC use case de-
scribed above. During start up and for over five more minutes in the settling phase,
the number of observed code points increases continuously. After this, execution
of the scheduled actions clearly shows the detection of additional functions and
distinctly visible increases in enabled Kconric features. Analysing the same scenario
using the new FLIPPER approach, I find a very different situation: While the function-
ality triggered by the defined actions from the schedule can still be seen as a very
slight increase in the number of code points recorded, the configuration generated is
already almost completely stable from the beginning of my recordings (in both cases,
snapshots of the current tracing progress were collected as early during the upstart
phase as possible). The evolution of features is similar for all use cases I presented
in this work; it is, however, not compulsive for every possible case. Nevertheless,
while the measurement time frame is just long enough for the FTRACE approach to
generate a working tailored kernel, FLIPPER delivers a more comprehensive solution
much earlier during the observation phase.

12000 600
| —
10000 500
8000 400
2}
N T T N S
o 6000 PPTT 3005
o Pide w
o R
4000 = 200

= traced code points

flipper: _ _ _ enabled features
2000 == traced code points 100
ftrace: _ __ enabled features
0 0
0 200 400 600 800 1000 1200

Timeins

Figure 4.6 — Evolution of recorded points in the source code and KconriG
features enabled in the resulting configuration for the raspBMC use case using
both old and new approach

4.2 Google Nexus 4

When running on a smartphone, the need for configurability to support a lot of
hardware vanishes: As almost no peripheral hardware can be connected, the kernel
configuration will not need to provide drivers for them. On the other hand, a
smartphone often uses very special hardware, making it hard for an engineer to
derive a valid initial Linux kernel configuration. Additionally, some phones do not
support SD cards to be inserted for more storage space, thus it would be good to

have an operating system as small as possible.

4.2 Google Nexus 4 32

4.2.1 Ubuntu Touch

Canonical, the company behind the distribution Ubuntu, announced a mobile op-
erating system based on Linux in early 2013*: The Ubuntu Phone* . Started as a
fork of the Android based CyanogenMod [14] it became a stand-alone mobile Linux
distribution with distinctive features. Although currently no preinstalled Ubuntu

d*, the open access to the sources and the early stage of

Touch phones are delivere
development supported my decision to choose it for further investigation with my
approach. Due to the limited number of supported devices, I had to use a Google
Nexus 4* for the evaluation.

The test load defined by the schedule (Figure 4.7) imitates everyday use of
smartphones: After the initial waiting interval, the phone was first used to play
some music stored on the device. Then the internal front and back camera were
used to take pictures, WiFi was enabled and used by the web browser to load a web
site containing a video. After that, one incoming and one outgoing phone call were
initiated. Lastly, the phone was connected to a PC via USB and the images taken
were transferred from the phone to the computer.

As the Google Nexus 4 was the main development platform for Ubuntu Touch, I
presume the developers already have invested a lot of time to reduce the number of
activated Kconric features. Consequently, the number of enabled features in the
baseline configuration is already more than 35 percent lower than in the kernels
provided for the Raspberry Pi. Therefore I assumed, my approach would not be able
to achieve a similar level of reduction in terms of enabled Kconrig features as in the
Raspberry Pi case.

The results are shown in Table 4.4. As expected, the number of enabled Kconrig
features is reduced by only 33 percent, thus lessening the text segment size by
17 percent and the number of source code lines compiled by 12 percent.

Metric Baseline Tailored
Kconrig features 1,119 752 (67.20%)
Text segment (byte) 14,464,220 12,037,224 (83.22%)
Source code lines 564,324 494,082 (87.55%)

Table 4.4 — Results for the automated tailoring of Ubuntu Touch on a Google
Nexus 4 smartphone.

44See http://blog.canonical.com/2013/01/02/its-official-ubuntu-now-fits-phones/.

“During the development the project was promoted with different names like “Ubuntu Phone” and
“Ubuntu Touch” (which both had multiple meanings), while the — currently discontinued — project
“Ubuntu for Android” was promoted as “Ubuntu for Phones” in the beginning. For clearance I denote the
mobile operating system simply as “Ubuntu Touch”.

46According to Canonical Ubuntu Touch based phones are shipped in 2014: http://insights.
ubuntu.com/2014/02/01/mwc-2014-online-press-pack/

47The full hardware specification can be found at B.2.

http://blog.canonical.com/2013/01/02/its-official-ubuntu-now-fits-phones/
http://insights.ubuntu.com/2014/02/01/mwc-2014-online-press-pack/
http://insights.ubuntu.com/2014/02/01/mwc-2014-online-press-pack/

4.2 Google Nexus 4 33

Time in min
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

system boot4r ~ <
ldle

menu navigation -
wlan activation S
outgoing call @
using camera @
web browsing Gl
incoming call ()
USB file access o
usb shell @
brightness o
standby)
shutdown ¢

Figure 4.7 — Schedule for tracing Ubuntu Touch on Google Nexus 4

The tailored kernel was then used for the same purposes as described in the
schedule, and performed flawlessly. Furthermore, it was possible to use previously
untouched functionality: I was able to send and receive text messages, which was
explicitly not part of the test load — this might be an evidence for the coarse-grained
configurability of drivers*S.

While the reduction is not as high as for the Raspberry Pi use case, my approach
is able to slice a third off the number of enabled configuration items. This result
could provide valuable hints to the developers what additional features could be

removed.

4.2.2 Comparison with FTRACE

As for the Raspberry Pi, I tried to generate a tailored kernel using FTRACE. On the
Google Nexus 4, however, FTRACE simply produced way too much output: The heavy
load generated by the continuous evaluation of the FTRACE output pipe most of
the times lead to a watchdog being triggered, effectively breaking boot and my
measurements.

In the rare cases the system was able to boot, the collected data was insufficient,
as too much information was lost due to the limited buffer size of FTRACE: To make
a generated partial solution bootable, over 180 Kconrig features — more than a fifth
of the total number of activated features — had to be added through the whitelist

“48This topic is discussed in 6.4.1.

4.2 Google Nexus 4 34

mechanism, rendering FTRACE practically unusable for data collection for even only

an approximation of an automated solution.

4.3 Summary

Both on the Raspberry Pi and on the Google Nexus 4 smartphone the new FLIPPER
approach is able to clearly reduce the kernel size — without any limitations on the
usability of the particular scenario. About three-quarters of the baseline kernel size
can be cut off in the Raspberry Pi use cases. Although the former FTRACE-based
approach can even enhance this reduction with almost all required functionality,
this is only possible due to the favorable circumstances like the extensive idle time.
In the case of the Ubuntu Touch on a Google Nexus 4 smartphone only the new
FLippER approach is applicable; I was able to reduce the number of features to about
two-thirds compared to the baseline configuration without influencing the necessary
functionality of the workload.

Chapter 5

Emulation Framework for Approaches

I demonstrated the applicability of the new approach in different, manually oper-
ated real-world scenarios. However, the VAMOS/CADOS UNDERTAKER development
toolchain lacks an automatically evaluation environment for the tailoring tools —
therefore I decided to address this subject. For regression testing and a better com-
parability between the different approaches the initial state as well as interactions
with the target system have to be as similar as possible. This can be achieved with a
customizable virtual machine with pre-defined automatic simulation of input. In
addition, such a standardized test suite will offer the ability to verify future develop-
ment in the UNDERTAKER tailor project. In this chapter I first draw the development
of the framework, afterwards I present an evaluation concerning all approaches.

The workflow of the emulation framework shown in Figure 5.1 is completely
automated: At @, required kernel modifications are performed and the baseline
configuration is enhanced (if necessary for the specific approach). The compilation
step @ ships the kernel as a compressed package, which is then installed in the @
virtual machine. After an idle phase, the scheduler executes predefined interactions
on the server. According to the particular approach, the code points are resolved
from the trace file and solved by UNDERTAKER in step @. Then the building steps
are repeated again with the tailored configuration — @ building the kernel and ®
running it in a virtual machine — but without tracing this time. If the interaction
with the tailored kernel returns the same output as the original one, the tailored
configuration is considered fully functional (step @).

Although this framework should be able to cover different use case scenarios,
I revived the web server set up described in previous work for this thesis: A client
performs multiple page requests to the web server and verifies the response. To
simulate administrator access, the client additionally executes a few commands via

a remote shell. A detailed description of the complete schedule is attached in B.10.

35

5 Emulation Framework for Approaches 36

@ @ —
baseline .A
configuration
predefined
disk image

v

VRN

Building Kernel

= .

-

Ll
expanding compiling packing emulation trace
configuration kernel t bitmap

L), J
Y
& .scheduvled
instructions
0 — [3]

patched patch file
kernel source

!
1)

C 3t~

Tailoring

3t
7*
> >
» »

vanilla code point code point
kernel source FLIPPER / DURDEN map list UNDERTAKER
L

| =

Building|Kernel

7

®

i
e

tailored
configuration

verified broken

=2,-0/®

.

Figure 5.1 — Schematic representation of the new approach’ emulation work-
flow

As an additional comparison, the framework performs an extra run without any
UNDERTAKER tailor modifications in the virtual machine while the emulator records
the code points in order to provide the best possible trace results which can be
achieved: Every address is recorded while this approach allows side effect free
analysis* at the same time. This — labelled EMUTRACE — allows me to draw further
conclusions concerning untraceable features and their whitelist items.

49Unlike the UNDERTAKER tool, which is employed as a userspace application during the FTRACE approach
and therefore produces side effects.

5.1 Environment for Virtual Machine 37

5.1 Environment for Virtual Machine

Several systems provide extensive emulation support. Besides QEMU system-mode
emulation with its support for the kernel virtual machine (KVM) the tools BocHs,
VMwaRE and VIRTuALBOXx are perhaps the most popular ones. For the implemen-
tation of the program counter logger, the source code must be accessible. Except
for VMwARE, all tools are available in an open source version. With respect to
performance, the support of hardware virtualization should be favoured. Aside from
BocHs, this is supported by most implementations. The final decisive feature which
convinced me of using QeMu/KVM was its extensive integration in Linux, enabling
an easy utilisation.

Although my framework should be able to be extended to any Linux kernel
and userland, I chose the Debian distribution as the primary target because of its
popularity®®. To be future-proof, I decided to deploy the testing release ‘Jessie”. As
the UNDERTAKER tailor tools were just supporting Ubuntu, I had to expand them on
the functionality of preparing Debian systems>!.

Copy-on-write images allow an identical starting point. I have manually installed
the initial system, containing — besides the minimal Debian Jessie base system —
the Apache 2 web server [58], which operates with the PHP5 [40] script language.
A PHP implementation of the prime number algorithm “Sieve of Eratosthenes” is
responsible for producing workload. No graphic is configured, remote access to the
server is granted by HTTP, HTTPs and ssH (with password authentication only).

The TooL COMMAND LANGUAGE [57] (better known as TcL) extension EXPECT
[18] allows quick scripting of automated interactions using common tools>2, which
are the key requirements for a comparable simulation.

Since the other VAMOS tools’ daily verification is managed using the continuous
integration (CI) tool JENKINS [25], an integration of this framework into the research
groups JENKINS instance suggests itself. Unlike the other projects strict hardware
requirements need to be taken into account: Due to limitations of the SAT solver
the target machine needs to have enough free memory (more than 20 GByte) for
solving extensive trace files.

50gince it is hard to measure distributions popularity, there are no reliable sources. However, according
to websites like http://distrowatch. com/dwres.php?resource=popularity a very high popularity
of Debian (or Debian-based) distribution can safely be assumed.

51Consequently, the tools are now finally able to cover all three main initialisation systems: Beside
UpsTART [62] now SysViniT [53] (for the Raspbian mentioned above in 4.1) and sysTEmD [52] (new
in the upcoming Debian Jessie release like announced (as voting result) on the official mailing list, see
https://lists.debian.org/debian-ctte/2014/02/msg00405 . html).

52In detail: WGET, CURL, ssH and scp are utilized.

http://distrowatch.com/dwres.php?resource=popularity
https://lists.debian.org/debian-ctte/2014/02/msg00405.html

5.2 Emulator-based Code-Point Recording 38

5.2 Emulator-based Code-Point Recording

Although the QMU project is becoming quite complex (with over 1 million physical
lines of code?), the very basic procedure of the dynamic binary code translation
remains clear: For each piece of guest code to be executed, the cache is queried for a
decoded host code representation. Without a representation, it is read and analysed
block wise (that means until the next instruction performing a jump or modifying
the host CPU state) [3]. The following steps have changed in detail by switching
from DYNGEN to TCG (tiny code generation) due to performance issues®*, but both
implement a way of translating the block to host compatible code and executing
it. A good working point seems to be the first part of this procedure: Each time a
new translated block is generated, the program counter (PC) has encountered an
untranslated block and can be taken into the trace file. Certainly this will include
the PC from userland applications (outside of the kernel address space), but this
is not a problem at all: I simply configured the UNDERTAKER tailor tools to ignore
invalid addresses.

Because of the dynamic memory allocation, I cannot support loadable kernel
modules in this approach. Though it is conceptually possible to figure out the
memory position and recompute the code positions, I decided to not carry out this
extension due to its limited application: Just disabling module support appears to
me as a practicable solution for this scenario.

Instead of enhanced modifications using an internal set which manages all logged
addresses, I prefer a simple solution for the new EMUTRACE to ensure backward
and (hopefully) future compatibility®>: My QEmU semantic patch (shown in B.1)
enhances the corresponding function to print relevant data to the standard output
stream. Due to the fact that Qemu entirely flushes the 16 MByte or 32 MByte>®
cache (depending on the version), multiple occurrences of the same address will
certainly happen. However, this is neither a problem for the UNDERTAKER tool nor
a remarkable performance impact: Tests in the simulation process demonstrated
that the output including duplicates is just twice the size of a distinct address list.
Finally, I simply recycle the address lookup tools created for the FTRACE approach
to retrieve the position in the code: I obtain the required information employing
ADDR2LINE in association with a debug kernel, the latter tools in the chain are used

in their usual manner.

53Code evolution visualized at http://www.ohloh.net/p/qemu/analyses/latest/languages_
summary.

54According to the latest QEMU INTERNALS MANUAL [42] ‘2.2 Portable dynamic translation’.

531n fact, my patch is applicable for all versions in the last 10 years since Bellard added the ‘precise
self modifying code support’ (Git commit: http://git.qemu.org/?p=qemu.git;a=commitdiff;h=
d720b93d0bcfelbeb729245b9ed1e5£071a24bd5) — even though there was a code refactoring in
2012: https://lists.gnu.org/archive/html/qemu-devel/2012-12/msg00407 .html!

56 According to the QEMU INTERNALS MANUAL [42]: ‘2.5 Translation cache’.

http://www.ohloh.net/p/qemu/analyses/latest/languages_summary
http://www.ohloh.net/p/qemu/analyses/latest/languages_summary
http://git.qemu.org/?p=qemu.git;a=commitdiff;h=d720b93d0bcfe1beb729245b9ed1e5f071a24bd5
http://git.qemu.org/?p=qemu.git;a=commitdiff;h=d720b93d0bcfe1beb729245b9ed1e5f071a24bd5
https://lists.gnu.org/archive/html/qemu-devel/2012-12/msg00407.html

5.2 Emulator-based Code-Point Recording 39

First tests pointed out that this approach is not as applicable for appropriate
comparisons as expected: The other approaches (the code injection based as well as
the FTRACE based ones) ignore triggering functions involved in module initialisation,
but the EMUTRACE logs — without any exception — every block. To cure this
problem, I have extended EMUTRACE by a new routine to detect and remove code
points which are involved in the module initialisation process®” from the trace file
afterwards®®. For a better understanding the extended version is called EMUTRACE
(NO INIT).

5.3 Scope of Evaluation

Although flexibility was one of the design concepts of this framework and many
architectures can be used®, this evaluation intentionally focuses on the x86-64
platform: Since the FTRACE approach was originally designed for this architecture, I
achieve the best preconditions for a comparison.

This work focuses on the Linux kernel versions released within the last year
(from version 3.10%° to 3.15°!) and employs the latest third party tools involved
in the workflow available: UNDERTAKER in version 1.5, QEMU in version 2.1.0 (both
updated daily from their development repositories) and the release candidate 21
of CocciNELLE 1.0. The virtual machine was configured with 4 GByte RAM and a 4
core symmetric multiprocessor system without graphic or sound support.

Although the schedule is very similar, some specific settings and interactions
depending on the approach must be performed:

DuRrDEN is the prototype version of the new concept. For the evaluation, the block
injection described in 3.2.4 is disabled due its drawbacks. At the end of the
simulation, the map is gathered using remote file transfer (SCP).

FLipPER denotes the revised (final) version of the new approach. Its results differ
slightly from the prototype because of the limitations of CoccINELLE (described
in 3.3.3). Besides this code patching, the framework handles tailoring with

the final version in the same way like the prototype.

57Functions referred by the module_init () macro.

58However, since the detection only covers the static initialisation functions itself — but neither helper
functions nor CPP macro generated initialisation routines —, this is not a complete removal and therefore
it may lead to over-approximate results.

59Depending on QemMU — which currently supports over two dozens hardware targets according to its
documentation [41] (1.1 Features).

60pyblished June 30th, 2013; release message http: //article.gmane.org/gmane.linux.kernel/
1518301.

61published June 8th, 2014; release message: http://article.gnane.org/gnane.linux.kernel/
1720707.

http://article.gmane.org/gmane.linux.kernel/1518301
http://article.gmane.org/gmane.linux.kernel/1518301
http://article.gmane.org/gmane.linux.kernel/1720707
http://article.gmane.org/gmane.linux.kernel/1720707

5.3 Scope of Evaluation 40

FTRACE based approach (described in previous work). The framework installs the

UNDERTAKER tracing tools remotely according to the TailorHowTo [54].

FTRACE (EARLY BOOT) is the enhanced version utilizing special kernel boot parame-
ters to start tracing in an early stage of system start up. Although the amount
of additionally logged addresses is strictly limited®?, it provides better results
compared to the FTRACE approach. Additional to the FTRACE set up, the kernel

parameters are modified in the boot loader.

EMUTRACE, like described above, requires no interaction within the virtual machine,
but for the emulation a modified version of Qemu (without KVM support) is
engaged. Due to the slow software emulation a significantly higher idle time

after boot is granted.

EMUTRACE (No INIT) is identical to EMUTRACE concerning the trace file creation
— only an additional step removing module_init () entries is appended

afterwards.

5.4 Automatic Generation of Whitelists

Instead of generating whitelists with domain knowledge, I am now able to auto-
mate its generation employing this environment (according to the trail and error
principle): At first, a complete run is performed without any whitelist involved. If
the resulting kernel runs well, no whitelist is necessary. Otherwise, every feature

item only present in the original configuration®® (but not in the resulting) requires

Whitelist items

EMUTRACE (NO INIT)
v3.14

0 1 2 3 4 5 6
v3.10 E
5 B FLIPPER
2 312 E B FTRACE
= B FTRACE (EARLY BOOT)
3
2 va13 E = EMUTRACE

v3.15

Figure 5.2 — Necessary items in whitelist depending on method and kernel
version

52Due to its design as a ring buffer and memory constraints, its usability depends on the scenario.

631n most cases this will result to several hundreds of items. However, it seems to be sufficient to use
a previous successfully tailored configuration for comparison. This trick will lead — depending on the
quality of the previous tailoring — to only a dozen of items left and can be processed in a few hours
(instead of weeks)!

5.4 Automatic Generation of Whitelists 41

a detailed evaluation: For each case a temporary whitelist is constructed, containing
all items missing in the new configuration but without the selected one. If the later
steps (tailoring, compilation, simulation) are successfully performed, the selected
item is not necessary for the whitelist and is dropped.

Of course minimizing of an existing, perhaps over-approximated whitelist to
only necessary items can be done in a very similar way, just by testing each item on
the whitelist in the way described before.

configuration feature count
CONFIG_UNIX 36
CONFIG_BINFMT_SCRIPT 36
CONFIG_RD_GZIP 16
CONFIG_DEVTMPFS_MOUNT 12
CONFIG_INOTIFY_USER 10
CONFIG_OPTPROBES 3

Table 5.1 — Accumulated occurrence of whitelist items after minimization
in the emulation framework for every version and approach (in total 36
whitelists)

Applied to the relevant Linux kernel versions above, I am able to minimize the
whitelist — depending on the case — down to only one or two entries. The fairly
evenly sizes in Figure 5.2 (listed in detail at B.3) seem to be no coincidence at all:
Only 6 distinct whitelist items are present in all cases (listed in Table 5.1). While
CONFIG_UNIX and CONFIG_BINFMT_SCRIPT are needed independently of approach
or version, items like CONFIG_DEVTMPFS_MOUNT and CONFIG_INOTIFY_USER are

only (or, in case of CONFIG_RD_GZIP at least mainly) used in the FTRACE variants.

5.5 Evaluation of Test Series

I performed every approach on each kernel version with the corresponding whitelist.
Every run was able to generate a fully functional tailored kernel on the first try,
however the amount of reduction varied markedly between the different collection
approaches.

5.5 Evaluation of Test Series 42

collected code static summarized
Method -

addresses points features modules features
Baseline 1,402 2,741 4,143
DURDEN 13,860 13,860 674 97 771 (18.61%)
FLIPPER 13,064 13,064 673 96 769 (18.56%)
FTRACE 7,731 7,009 421 17 438 (10.57%)
FTRACE (EARLY BOOT) 7,388 6,767 435 17 452 (10.91%)
EMUTRACE 14,128,732 84,577 988 2,502 3,490 (84.24%)

EMUTRACE (NoO INIT) 20,284,134 76,962 931 1,706 2,637 (63.65%)

Table 5.2 — Collected data and the resulting features by automated tailoring
with different approaches (Linux kernel v3.15), compared to the Baseline.

EMUTRACE logs more than 14 million memory addresses®* in the latest Linux
kernel v3.15, which can be resolved using debug information to almost 85,000
unique code points (Table 5.2). Although the number of collected addresses is a
thousand times higher than the other approach, these values should not be overrated:
Only the code points are really important for the further processing, which is only
about six times higher than Fripper. The feature reduction is only about 16 percent,
while the removal of module_init () in EMUTRACE (No INIT) clearly improves the
result to about 36 percent. However, the modules still clearly remain the main

t%. The new approaches achieve a decrease of

course for this insufficient tailor resul
about 81 percent compared to the baseline configuration, while the FTRACE based
approaches both produce a set containing only a ninth of its original items — a

reduction of 89 percent.

Method code size (in bytes) compiled C lines
Baseline 73,499,239 2,494,433
DURDEN 9,865,887 (13.42%) 394,160 (15.80%)
FLIPPER 9,866,461 (13.42%) 394,333 (15.81%)
FTRACE 5,574,146 (7.58%) 233,056 (9.34%)
FTRACE (EARLY BOOT) 5,678,067 (7.73%) 237,098 (9.51%)
EMUTRACE 53,297,546 (72.51%) 2,226,537 (89.26%)

EMUTRACE (NO INIT) 41,454,897 (56.40%) 1,735,278 (69.57%)

Table 5.3 — Comparison of tailored kernel binaries (Linux kernel v3.15)

641n fact, this number can vary considerably in the emulation based approaches (the v3.15 EMUTRACE
(no ntT) lists 20 million memory addresses) — but in this case these are not only unique addresses: Due
to the flush mechanism in Qemu (described in 5.2) the quantity differs much without having an effect on
the resulting code points.

5Obviously code outside module_init () is executed during module initialisation — but since the
EMUTRACE approach was created to identify the limitations of the general approach (and successfully
does), I rejected to carry out a further investigation to solve this problem.

5.5 Evaluation of Test Series 43

Comparing the binaries of the resulting kernel, I can observe a reduction to
only 8 percent of machine code instructions at the FTRACE based approaches, while
the new FLIPPER approach reaches about 13 percent of the original code size (cf.
Table 5.3). The number of (unique) compiled C lines are with about 9 percent and
16 percent respectively in an equal proportion. However, the kernel created using
the emulation approach is about 56 percent up to 73 percent the size of the baseline
kernel (depending on the handling of initialisation functions), with 70 percent to

almost 90 percent compiled C lines.

4500
4000
3500
3000 Baseline
]
g 2500 DURDEN
2 M FLIPPER
& 2000 B FTRACE
1500 B FTRACE (EARLY BOOT)
1000 B EMUTRACE
EMUTRACE (NO INIT)
500
0
v3.10 v3.11 v3.12 v3.13 v3.14 v3.15
Linux kernel

Figure 5.3 — Number of enabled features depending on approach and kernel
version

Figure 5.3 depicts that the results for each approach are pretty static and fairly
independent from the underlying Linux kernel version. Detailed information on this
evaluation of additional versions is provided in B.3. In fact, I was not able to track
significant changes in over 350 runs, neither did I find a constellation where even a

single approach failed with a valid whitelist®®.

5.6 Summary

With employing Qemu and standard Linux tools, I established a framework which
supports regression testing for further development and provides an easy to use
interface for detailed comparison of the existing approaches. I successfully verified
the test against all six Linux kernel versions published within the last year, effectively

7

without manual guidance®” since the framework has the ability to automatic gener-

ate (or minimize) whitelists, too. Due to the weak limitation of resources®® in this

66The only problems I encountered were defects in the Linux variability model, which are not fixed in
previous versions (like the missing dependency of CONFIG_IRQ_DOMAIN in CONFIG_GENERIC_IRQ_CHIP
in v3.12 and earlier) — I solved them by backporting the bugfix patch.

57In two cases a manual intervention in the Linux kernel source was necessary since the older kernel
versions had unresolved bugs.

8The resource settings of the emulation framework used for the evaluation of this chapter can be
compared with a current desktop workstation: 4 GByte RAM and 4 core symmetric multiprocessing.

5.6 Summary 44

evaluation, the findings are comparable to the Raspberry Pi (described in Section
4.1): Kernels tailored with the FLiPPER approach are more extensive than those
generated using FTRACE, but require less guidance (by whitelists) and computing
time.

Since the software emulator interprets every instruction®, I can achieve the prob-
ably highest accuracy possible in the general approach with the new emulator-based
code-point recorder EMUTRACE. Together with an automatic whitelist generation/re-
duction script it discovered untraceable features — the only additional features
necessary for tailoring a fully functional kernel with my new FLipPER approach,
whereas the former FTRACE approach requires additional guidance in the whitelist.
However, due to the lack of a comprehensive removal routine for initialisation
functions (discussed in 6.1), the high accuracy lead EMUTRACE to generate large
kernel configurations — far too much for a fair comparison with the remaining

approaches.

%Having the hardware acceleration KVM disabled, of course.

Chapter 6

Discussion

Although I successfully developed a code recording tool which deals with limited
resources on embedded systems, I did not implement all of my initial objectives —
like the manipulation of conditional blocks — into the final version. In the following
section I will discuss the limitations and challenges of my approach in respect to

existing techniques.

6.1 Accuracy

The completeness of data collected by FTRACE becomes significantly worse when
aiming for smaller systems: Even if you are lucky and a tracing infrastructure is
available on your target system, the low computing performance is a big issue: The
slower the FTRACE output can be produced and parsed, the higher is the probability
to lose potentially important functions which were executed. Setting a bit, on the
contrary, will not affect performance as badly. In my test cases, the overhead induced
was less than five percent. Nevertheless, I would like to point out that (as opposed
to the old FTRACE version) the FLIPPER approach cannot be disabled at run-time: The
small overhead will always be present during the observation phase.

The most obvious difference between the old and new approach is the tracing
speed: FLipPER almost instantly collects the code points, while the old approach
needs several minutes (more than seven minutes in the raspBMC scenario for
instance) until a saturation is reached and no new code points are triggered.

Another important difference is the point of time at which the collected data
starts: Using FTRACE, you can in principal only collect data as soon as the file systems
have been mounted by the kernel and an initialization script can be executed”®.

70An enhancement using the kernels ability of early boot FTRACE logging into memory slightly improves
the number of traced code points like presented in the emulation evaluation (Table B.3). Because of the
restricted amount of reserved memory, this finally causes just an increase of up to a fifth more data —
with a very limited impact on the resulting configuration (only up to 3 percent new features).

45

6.1 Accuracy 46

This inevitably leads to missing data from the very beginning of the boot process,
which provides important information about features corresponding to the hardware
Linux is running on. This turned out to be the case: Using the FrLipPER method,
which can effectively begin to collect data in the very first function the (unpacked)
kernel executes, I was able to identify more relevant configuration options.

In comparison with the FTRACE approach, there is still another improvement in
accuracy: Inlined functions (no matter if instructed by the inline keyword or not)
are usually not accounted by FTRACE since the compiler performs the responsible
profiling enhancements only after performing all code optimizing steps’. This is
— besides the code points triggered at boot time — a reason for the increase of
traced code points: For example, in the raspBMC use case the FTRACE approach
identified about 6,700 called functions, while the FLiPPER method found more than
11,000 relevant places. Moreover, a relation between the whitelist and the number
of trace points can be clearly observed in the emulation approach: While the new
approach logs up to twice the number of real code points (and in the worst case at
least 150 percent), the number of necessary whitelist items has clearly decreased.

This higher accuracy on the other hand had an unforeseen impact: When using
a kernel without loadable kernel module support, Linux probes the devices. Thus, it
will invoke the initialization routines for every driver very early during boot — even
if the device itself is not present. For this case, an execution of the module_init ()
function’? is not sufficient to determine if a driver is needed. But if more functions
in the driver are called, the device is most likely present in the system.

While FTRACE is not able to detect these initialisation calls, I currently handle this
situation in FLIPPER by excluding functions linked in the module_init () macro from
being patched. For the EMUTRACE approach, the triggered functions are removed
from the trace file before further processing continues, which results in the same
outcome as the FLIPPER procedure.

If the initialization function calls other functions itself, they will still be registered
in the FLIPPER bitmap and their configuration requirements will be accounted for
in the generated configuration. However, I found the over-approximation in terms
of enabled Kconrig features to be reasonably small — the functions called by the
initialization functions are mostly related to memory and data structure allocation —
and, moreover, helpful to accurately detect more functionality being exerted during
the test run.

But in the case of EMUTRACE, the tailored kernel size remains disproportionately

high. Closer examination reveals that initialisation routines are still the reason: For

71Because of the Gcc option -fearly-inlining (enabled per default), it is not possible to indicate
such inlined functions in the optimized intermediate code — they appear to be a regular part of the code
block.

72In fact, several initialisation hooks exist, but module_init () is the only one available for modules.
For a detailed list of these macros take a look at /include/linux/init.h of the Linux source.

6.1 Accuracy 47

example, the CPP macro module_hid_driver’?, a helper macro for registering
human interface device (HID), is used in every HID driver. During compilation, this
macro expands to a new initialisation function, which is executed automatically
at boot — with the result that every HID driver from the original configuration is
triggered by EMUTRACE and hence in the tailored configuration. Since I developed
the EMUTRACE for comparison only, I refrain from expanding the removal procedure.
It becomes clear that approaches with higher accuracy need smarter routines to
handle automatically called initialisation functions to prevent an over-approximated

configuration.

6.2 Selection of Features

As can be seen from Figure 6.1, the Linux kernel generated using FLIPPER in the
Raspberry Pi scenario has about a third more KconriG features enabled in its con-
figuration when compared to the FTRACE result. The features contained in this set
are either a result of the higher accuracy by detecting the inline functions or mainly

used for low-level purposes’#.

Baseline
1874 features

126 additional features

with FLIPPER compared
to FTRACE approach

350 core features
in every kernel

FTRACE
364 features

W 7 unique feature by
FTRACE approach

features not
present in the
baseline
8 features by 13 extra features
FLIPPER approach in both approaches

Figure 6.1 — Quantitative comparison of contained Kconric features (includ-
ing value features) between the original kernel and tailored version in the
raspBMC use case

73Defined in /include /linux/hid.h of the Linux source.
74For example, they specify parts of the block device hardware support and other hardware probing
routines.

6.2 Selection of Features 48

A remarkable fact is that almost all features of the configuration created by the
FTRACE approach are part of the FLIPPER solution — in contrast to the (expected)
behaviour by comparison with the baseline: Since both approaches can only remove
features, it is not surprising that their results are mostly a subset of the default
configuration. The few features”> enabled only in the generated configuration
and not present in the original Linux kernel arise from the SAT solver approach:
Some KconrFiG variables in the formula neither have been directly required during
workload execution nor do appear in other features’ dependencies. Thus, they will
be seen as free variables; enabling or disabling them is at the SAT solver’s discretion.
One target for future work is to identify such free variables and provide guidance
to the SAT solver; for example it could be instrumented to prefer the assignment
present in the initial configuration file or to preferably consider options which

optimize desired properties of the target system.

6.3 Granularity

One goal for the FLIPPER approach was to achieve a more accurate and fine-grained
result for the feature-dependent blocks contained in the code, thus defining stronger
dependency requirements and generating a configuration matching the use case
more exactly.

Indeed, the majority of feature based code blocks is handled by conditional CPP
directives, but since the possibilities of compiler optimization made their way into
developers head, you can observe a slight opening for alternative feature handling.
The usage of the IS_ENABLED macro’® demonstrates this development: Introduced
in Linux kernel version 3.1 it is used both in CPP and C code to evaluate feature
dependent blocks”’. It can be safely assumed that this development of using C
conditions (instead of CPP ones) will keep increasing in the upcoming versions like
shown in Figure 6.2. While this clearly enhances the sources readability, it does
not only prevent an easy injection (without control flow analysis), but also requires
a extensive enhancement of tools developed in the VAMOS project (especially
UNDERTAKER).

Even if just #ifdef blocks are taken into account, it does not run like clockwork:
As described in 3.2.4, I was confronted with uses of CPP in the Linux source code,
where the insertion of additional instructions is a very hard task — these occurrences

must be solved manually.

75A detailed list of the particular items and a short explanation is provided in B.1.

76Defined in include/linux/kconfig.h.

771t was figured out building a macro for both CPP and C code to check if an argument is defined or not
is quite tricky — a solution posted to Linus Torvalds Google Plus code challenge https://plus.google.
com/+LinusTorvalds/posts/9gnt jh57dXt made its way directly into kernel since v3.4 (rc4).

https://plus.google.com/+LinusTorvalds/posts/9gntjh57dXt
https://plus.google.com/+LinusTorvalds/posts/9gntjh57dXt

6.3 Granularity 49

v3.0

v3.1 M C expressions

v3.2 M preprocessor conditions
ng o affected files

V3.4 e

V3.5 e

Linux Kernel

0 500 1000 1500 2000 2500
Number

Figure 6.2 — Usage of the IS_ENABLED macro in the Linux kernel versions for
the last three years

I filtered-out such problematic points in the code, ran the same test schedule
and generated a configuration from this more exact approach. A first preliminary
comparison revealed no notable difference to a configuration file obtained with only
function entries patched.

From this, I conclude that conditional blocks inside a function’s body do not
contribute as much to the total variability as expected, therefore it is sufficient to
collect data at a function level granularity; thus, my patching tool only inserts the
bit-set operation into the beginning of every function definition encountered.

6.4 Completeness

During the observation phase, an application will most likely not trigger every single
functionality it could. For example, certain errors and thus, execution of error
handling code, might not occur during the test run, while they could arise during
later, more extensive use of the tailored system.

This is a principle problem of the approach: If you can only track events that
are actually triggered, and no errors occur during observation, you can not prove
that every functionality possibly required later will be included in the resulting
configuration.

In practice, this problem seems to be less severe than it appears to be: In all of
my test cases (including those from previous work of the VAMOS research group,
where we tailored a server system and a workstation [55]), I did not encounter
a single situation where any required functionality was missing — even though
me and my colleagues have been using the tailored devices for a period of several
months and exerted previously unused functionality such as sending text messages
from the Google Nexus 4 phone.

6.4 Completeness 50

Yet, there are also structural reasons that mitigate the potential risk of missing

some important functionality during the observation phase, as shown below.

6.4.1 Use of Configurability in Linux

Linux mostly uses configurability in a way which leads to related, but possibly
untraced functionality to be included during compilation: As mentioned in Chapter 2,
more than 70 percent of the features in KconFiG are used by KBUILD to determine
whether a source file has to be compiled or not (see Figure 6.3); this particularily
applies to drivers, where the corresponding configuration option will either include
the whole driver for a device or leave it out entirely.

8,666 features (73%) used by KBuiLD 8,960 features (74%) used by KBuILD
6,574 2,092 B33 6,536 2,424 3.183
55 % 18% 27% 54 % 20% 26 %
5,325 features (45%) in code (#ifdef) 5,607 features (46%) in code (#ifdef)
(a) v3.6.11 (used in OnionP1i) (b) v3.15 (latest)

Figure 6.3 — Usage of KconrFic features in different Linux kernel versions

This observation implies that in most cases triggering one single function inside
a source file will be sufficient to have the whole compilation unit present in the
resulting kernel, thus leading to the inclusion of additional unobserved functions,
such as error handling code, from the same file.

In contrast, the 26 percent of KconriG features only present as CPP instructions
implement fine-grained variability. As this technique is mostly used in the central
parts of the kernel, missing functionality or inconsistency would already be detected
as errors during link time or startup.

Note: The remaining features neither used by KsuiLp nor in code (about 17 per-

cent according to Dietrich et al. [17]) are KcoNFiG internal meta features.

6.4.2 Test requirements

For special-purpose embedded systems, system developers typically have to provide
test suites achieving very high or complete coverage of the system anyway (e.g., for
certification purposes). Running these test suites as the workload during observation
will greatly diminish the risk of missing, but possibly required code in the tailored
kernel.

Finally, I would like to point out that the completeness concern would also arise
if an expert manually tailors the system: How can the system developer be sure to
have selected every configuration option required for his needs? Hence, I consider

my automated approach as practically usable.

6.5 Untraceable and Alternative Features 51

6.5 Untraceable and Alternative Features

I employ white-/blacklists to provide user guidance in situations my approach cannot
cover. Since even EMUTRACE (which collects every code point) is not able to generate
a working kernel without a whitelist, I can precisely name untraceable features. The
detailed comparison of the runs performed in Emulation Framework for Approaches
clearly shows that FLIPPER only needs a whitelist with these untraceable features —
in contrast to the traditional approach, which requires additional items to succeed.

The usage of such lists, however, is not an issue: Selecting features necessary
for a certain device can be done once (for example by the subsystem maintainer
for this particular device or a distributor); like shown with a single whitelist for all
Raspberry Pi scenarios it is not dependent on the use case.

It will also be much less work than manually getting a Linux vanilla kernel to
work on a specific device. My tools can directly be used to simplify this process:
When trying to determine features required for a new device, a developer could
generate a configuration without using any lists and specifically search the difference
between this preliminary configuration and the initial file for features relevant for
the architecture or the specific use case. I used this approach to quickly determine
the 14 architecture-dependent Kconric features provided in the Raspberry Pi use
case (listed in B.2).

In theory, it is possible to automate the whitelist creation — although I present a
proof-of-concept in Section 5.4, manual control might be necessary to achieve best
results: Whitelists can be used for further guidance of the feature selection process,
thus allowing domain experts to specify optional Kconric features they identified as
being important for a certain system.

Particularly, for features presenting alternatives it might not be desired to simply
use the (possibly randomly selected) option from the SAT solver, but rather to
provide a choice known to be correct in advance — for example, for the memory
allocator real free alternatives exist: Besides the default SLAB there are SLUB and
SLOB. While every one has its own gain, the SLOB allocator might be predestinated
for use in tailored kernel since it is designed to be memory efficient while having
the smallest code base’®. Once better alternatives are detected, experts can use
whitelists to handle such preferences.

Features of string or numeric type (for instance, the kernel command line) are
automatically taken from the original configuration and used after the SAT solver
has generated an assignment for the binary features: Hence, the corresponding

values in the tailored configuration are simply the same as in the distribution kernel.

78 As announced at http://thread.gmane.org/gmane.linux.kernel/344062.

http://thread.gmane.org/gmane.linux.kernel/344062

6.6 Impact on Non-Functional Properties 52

6.6 Impact on Non-Functional Properties

When optimizing an operating system for use on a deeply-embedded system, binary
size is only one factor to consider. For example, reducing the power consumption of
a long-running embedded device can be seen as highly important to lower not only
the production cost but also the operating cost of a system.

I therefore also conducted preliminary measurements of the power consumption
of the Raspberry Pi in the Coder scenario, but without significant changes. On the
contrary, choosing from observation alone and employing a SAT solver to cover
dependencies might lead to kernels with energy-saving features disabled.

One possible solution for a combined approach to optimize nonfunctional prop-
erties (i.e., power consumption) of the system as well as minimizing binary size
could be the integration of heuristics as proposed by Siegmund et al. [47] for the
impacts of KconFic features on desired properties into the selection process, thus
guiding the approach to be more aware of these properties of the target system.

Again, this expert knowledge can currently be brought into the tailoring process

by putting Kconric features previously identified onto the whitelist.

6.7 Dependency Modelling Defects

The fact that configurability is used for different purposes in the Linux kernel has
lead to problems in the past [56]. This becomes an even bigger issue on the ARM
architecture, with not only the architecture itself, but nearly every single device
having different requirements. Additionally, in the ARM subtree many hardware
peculiarities are modelled using Kconrig. This has made ARM the by far biggest
and fastest-growing subtree in terms of possible KcoNFIG configuration options in
the Linux kernel (Figure 6.4). Unfortunately, this also implies there is a higher
probability certain things might be wrong or wrongly modelled.

Thus, it is extremely important for my new approach to gather as much infor-
mation as possible: While some things (like the aforementioned module_init ()
functions) might lead to an over-approximation, I can overcome possible defects
of the dependency model by supplying much more detailed data to the SAT solver,

thus building stronger constraints and leading to a more solid solution.

6.7 Dependency Modelling Defects 53

1600

1400

am
1200
3
5 1000
3
“é 800 blackfin
[
Qo
§ 600
e powerpc
s MIPS
400 —'__'_'__,_l—'_'_'_'__
x86

b\fl,bt\v\b,(bq,ﬂmvplga,]:bc
@4’”@&‘/4""@@@@@'@@@%

Linux kernel

Vo P 0D oV ¥ o0 o2 O N KX
o ©° Q;n" PR RGO 4’5@5@5\\{\

Figure 6.4 — Feature growth in Linux by architecture since 2006

6.8 Generalization beyond Linux

The approach presented in this thesis cannot only be applied to Linux, but can be
transferred to other operating systems and software product lines.

The FripPER method to prepare the Linux kernel for data collection is directly
applicable to any software project which uses the CPP to implement fine-grained
variability, as it is only necessary to parse the source code and insert an instruction
whenever a conditional block is found.

The harder part is the accurate extraction of models describing the features and
their dependencies, which are required to find the correct mapping from the obser-
vations to their corresponding configuration items. Previous work [16], however,
has shown the portability of the extractors I used for Linux to other software product
lines such as the BusyBox UNIX utility suite [7] and the Fiasco microkernel [19],
requiring only little effort.

Thus, the proposed method makes it feasible to generate small configurations

matching an observed scenario for any configurable software product.

Chapter 7

Conclusion and Perspectives

Configuring system software for a given use case is a very challenging task. With
hundreds of optional features to choose from, finding a small set of configuration
options which includes just the right features is hard, even for a domain expert. This
particularly applies to the Linux operating-system family, which offers nearly 14,000
configurable features.

For use on general-purpose computers, the solution provided by Linux distribu-
tors is to include as many features as possible into their kernel configurations, thus
also increasing the size of the kernel. For the use of Linux in deeply-embedded
systems, however, this is not an option: To keep costs at a minimum, as little memory
as possible is to be occupied by the operating system.

While there are developers manually building small kernel configurations, these
configurations often make assumptions of the usage of the embedded system which
may not be valid for a specific use case.

Tackling these challenges, this thesis presents an automated kernel tailoring
approach which can be used to generate a use-case—specific Linux kernel configura-
tion, which is also suitable for use in resource-constrained embedded systems. As
the resulting configuration might not take domain-specific knowledge into account,
additional information can be brought into the generation process with minimal
effort.

To enable regression testing and support future development, I stated an emula-
tion framework with the ability to compare the new approach with existing ones
by having an identical initial position and a well-defined workflow. Furthermore a
modified emulator discloses the limitations in the basic concept of recording and
evaluating code positions (like untraceable features).

My results show that for Linux, the kernel size can be reduced by up to 70 percent
in real world scenarios. In contrast to the existing approach, the new process is

clearly more resource-efficient and therefore applicable for resource constrained

54

7 Conclusion and Perspectives 55

devices. Results gained with FLIPPER can be used by system developers as a basis to
easily create small, fitted software configurations for their systems, thus opening up
a whole new field of use for Linux inside deeply-embedded systems such as control
units in the automotive industry. Since the new concept basically has no additional
requirements besides configurability, it can be transferred to any large-scale system
software.

Future Work

Although I think the research in the CADOS/VAMOS group has explored a wide area
of applications for the general approach to automatically derive a tailored kernel,
there are starting points for future engagement left.

Using adjusted heuristics, it could be possible to identify more needless modules
and to drive the reduction of code size even further: The approaches described
in this thesis are able to ignore initialisation methods (denoted by the macro
module_init ()) — but neither their called functions nor similar macros. Instead of
just indicating the use of a code point the FLiPPER approach can easily be expanded
to count the quantity of each execution. This will create opportunities to distinguish
between frequently used functions and functions only involved once. By the adoption
important methods are called multiple times and the granularity is coarse-grained
enough, the latter ones can be removed from the traced code point set. Of course, a
categorisation is necessary to prevent the elimination of, for example, important boot
functions which might also be called only once. A solution might be an automated
evaluation of traces on several systems with different configuration to recognize
ordinary frequency.

As an alternative, the system run time can be divided in different epochs”’, to au-
tomatically identify modules only utilized at boot time (because of the module_init ()
function). However, the removal suffers from the same problems as mentioned
above and these concepts favouring a more “slimmer” kernel at the expense of
accuracy and possible missing functionality.

In addition, a prioritization list guiding the SAT solver at alternative features
might be offer possibilities to optimize nonfunctional properties like the power-
consumption or binary size. First of all, the VAMOS UNDERTAKER needs the ability
to incorporate with such feature quantifier. Afterwards, experts can evaluate each
module, either by computing or just by testing. Yet, as fundamental requirements,
both enough real free alternatives and sufficiently fine-grained feature granularity

are necessary to make a measurable difference according to the properties.

79For example, the Linux runlevel can be taken into account to classify (coarse-grained) epochs.

Appendices

56

Appendix A

Development

A.1 Injection Examples

For the code modification I had to consider several different cases. A brief overview
of the most common cases are presented below using real world examples including
the injected code.

Single Statement Block

2 #ifdef CONFIG_X86_32
653 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, \
X86_FEATURE_PSE36))
+SET_DURDEN_BIT (1801) |,
654 c->x86_phys_bits = 36;

655 #endif

Listing A.1 - Injection in single statement blocks without curly braces
(Linux v3.15 source file arch/x86/kernel/cpu/common. c)

Branch Table

274 break;

275 #ifdef CONFIG_DEBUG_HOTPLUG_CPUO

276 case PM_RESTORE_PREPARE:
+SET_DURDEN_BIT (2062) ;

282 if (!cpu_online (0))
283 _debug_hotplug_cpu(0, 1);
284 break;

285 case PM_POST_RESTORE:

57

A.1 Injection Examples 58

309

310

311

312

+SET_DURDEN_BIT (2063) ;

_debug_hotplug_cpu(0, 0);
break;
#endif
default:

Listing A.2 — Conditional block in branch table (switch statement) with
multiple branches

(Linux v3.15 source file arch/x86/power/cpu.c with comments
removed)

Complete Expressions

76

77

78

79

80

81

82

83

84

if (memory_corruption_check == -1) {
memory_corruption_check =
#ifdef CONFIG_X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
+((SET_DURDEN_BIT(1478)) ,
1
+)
#else
+((SET_DURDEN_BIT (1479)) ,
0
+)
#endif

Listing A.3 - Injection in complete expressions
(Linux v3.15 source file arch/x86/kernel/check.c)

Inside Expressions

2303

2304

2305

2306

2307

nested_vmx_entry_ctls_high &=
#ifdef CONFIG_X86_64
+((SET_DURDEN_BIT(2322)) , 0) +
VM_ENTRY_IA32E_MODE |
#endif
VM_ENTRY_LOAD_IA32_PAT;

Listing A.4 — Conditional block inside expression with postfix operator
(Linux v3.15 source file arch/x86/kvm/vmx . c)

A.1 Injection Examples

301

302

303

304

305

306

307

308

309

310

311

size = nlmsg_total_size(sizeof (struct nfgenmsg))

+ nla_total_size(sizeof (struct nfqnl_msg_packet_hdr))

+ nla_total_size(sizeof (u_int32_t))

+ nla_total_size(sizeof(u_int32_t))

#ifdef CONFIG_BRIDGE_NETFILTER
++ ((SET_DURDEN_BIT(28603)) , 0)

+ nla_total_size(sizeof(u_int32_t))

+ nla_total_size(sizeof (u_int32_t))

#endif

nla_total_size(sizeof (u_int32_t))

nla_total_size(sizeof(u_int32_t))

+ o+ o+ 4+

nla_total_size(sizeof (u_int32_t));

nla_total_size(sizeof (struct nfqnl_msg_packet_hw))

Listing A.5 — Conditional block inside expression with prefix operator

(Linux v3.15 source file net/netfilter/nfnetlink_queue_core.c)

A.2 Macro Defined Function

391

392

393

394

395

396

398

399

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)
static ssize_t __FUNC(struct elevator_queue *e,
{
struct deadline_data *dd = e->elevator_data;
int __data = __VAR;
if (__CONV)
__data = jiffies_to_msecs(__data);

return deadline_var_show(__data, (page));

char *page)

P A A

Listing A.6 — Functions definied in macros

(Linux v3.15 source file block/deadline-iosched.c)

A.2 Macro Defined Function 60

A.3 Excluded Files

Files (and directories) excluded from the injection process

all files in /Documentation/ since there are only examples

all files in /tools/ (compile time tools)

all files in /scripts/ (compile time tools too)

all files in /user/ (user space libraries)

all files in boot/ (sub)folders since it is code loading the kernel on early boot
all files in asm/ and asm-generic/ (sub)folders (the presented approach is not
able to patch assembler code)

all files in firmware/ (sub)folders since it contains only binary files

the kernel module of the injection tool itself identicated by the file durden.c
and its header

all files in /trace/ folder and the files ftrace.c and ptrace.c (and their header
files) as patching the trace infrastructure will result in a performance impact
/include /linux/license.h since it has no real variablilty section and is included
in user space

all files in /arch/x86 /vdso/ folder since virtual dynamically linked shared
objects cannot access kernel space

/arch /arm /boot /compressed /misc.c

/arch /arm /kernel /process.c

/drivers /gpu /drm /radeon /mkregtable.c

/include /generated /autoconf-h

/include /linux/decompress /mm.h

/include /linux /zutil.h

/lib /crc32defs.h

/lib /decompress_bunzip2.c

/lib /decompress.c

/lib/decompress_inflate.c

/lib/decompress_inflate.c

/lib/decompress_unlzma.c

/lib/decompress_unlzo.c

/lib/decompress_unxz.c

/lib/gen_crc32table.c

/lib /raid6 /mktables.c

/lib /2lib_inflate /inffast.c

/lib/zlib_inflate /inflate.c

/lib/zlib_inflate /inftrees.c

/lib/2lib_inflate /infutil.c

mach /uncompress.h

A.3 Excluded Files 61

Files only excluded from preprocessor injection:

» Jarch/arm /kernel /process.c

e /drivers /base/node.c

* /drivers/net/wan/sbni.c

* /drivers/net/wireless /rtl8192cu /hal /rtl8192c¢ /rtl8192c_dm.c
* /drivers/net/wireless /rtl8192cu /os_dep /linux/ioctl_linux.c

* /drivers /staging/comedi/drivers.c

* /drivers /staging /prima/CORE /MAC /src /pe/lim /limProcessSmeReqMessages.c
* /drivers /staging/prima/CORE/TL /src/wlan_gqct tl.c

* /drivers /staging/wlags49 h2/hcfic

/drivers /usb /host /dwc_otg/dwc_otg driver.c

/drivers /video /msm/msm_fb.c

* /include /linux/elfcore.h

/include /linux/vmstat.h

/lib/zlib_inflate /inffast.c

* /net/core/net-sysfs.c

* /net/ipv4/inet_diag.c

* /net/ipv4/ip gre.c

A.3 Excluded Files

A.4 FrippER in Coccinelle

In contrast to the PErL-based prototype, the final version of FLiPPER implemented in
SmPL is rather compact. It makes use from the embedded PytHoN functionality and
was successfully tested with the latest CoccINELLE version (1.0.0 release candidate

21 from April 13, 2014).

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

virtual ignoreInitFunctions

@ initialize:python @
m << virtual.mapfile;
ee

import sys

sys.stdout = open(m, "w")

@ script:python initBlacklist @
b << virtual.blacklist;

Qe

global blacklistLastFileCache;
global blacklistRegex;
blacklistLastFileCache=""
import re

blacklistRegex=re.compile (b)

@ currentFile depends on initBlacklist @
metavariable a;

position p;

Qe

a@p

@ script:python checkBlacklist depends on currentFile
p << currentFile.p;
(¢
global blacklistLastFileCache
global blacklistRegex;
if blacklistLastFileCache != p[0].file:
if blacklistRegex.match(p[0].file):

cocci.exit()

A.4 FLIPPER in Coccinelle

63

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

else:
blacklistLastFileCache = p[0].file

@ collectInitFunctions depends on ignoreInitFunctions @

identifier f£f;

declarer name module_init, module_exit;
@@

(

module_init (f);

|

module_exit (f);

)

@ globalHeader depends on checkBlacklist @
Qe
#include <...>

+#include <linux/flipper.h>

@ localHeader depends on checkBlacklist &&
Qe
+#include <linux/flipper.h>

#include "..."

@ replace @

identifier f, virtual.macro;
fresh identifier n = "";
declaration d;

statement s,t;

position p;

@Q

£(C...) {

when != t

when any
dep
+;macro(n);

s

when != t

!globalHeader @

A.4 FLIPPER in Coccinelle

64

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

when any
dep
+;macro(n);
)
|
(
+;macro(n);

s@p

@ script:python print depends on replace @

p << replace.p;

n << replace.n;

Qe

print "%013d\t%s:%s" % (float(m), p[0].file, p[0].1line)

@ cleanInitFunctions depends on collectInitFunctions &&
replace @

identifier collectInitFunctions.f, virtual.macro;

Qe

£C..01

-;macro(...);

@ funcHeader depends on replace && !globalHeader &&
!localHeader @

identifier replace.f;

Qe

+

+#include <linux/flipper.h>

£C..001

Listing A.7 — Complete SmPL source of the final FLipPER implementation

Appendix B

Evaluation

B.1 Raspberry Pi

Whitelist

This generic whitelist consisting of 14 items is used in every Raspberry Pi scenario:
* CONFIG_AEABI
* CONFIG_ARM_ERRATA_326103
* CONFIG_ARM_ERRATA_364296
* CONFIG_ARM_ERRATA_411920
* CONFIG_BCM2708_VCHIQ
* CONFIG_DEVTMPFS_MOUNT
» CONFIG_EXT4_FS
* CONFIG_LBDAF
» CONFIG_MMC_BLOCK
 CONFIG_MMC_SDHCI_BCM2708_DMA
* CONFIG_SCSI_LOWLEVEL
* CONFIG_USB_DWCOTG
e CONFIG_VT_HW_CONSOLE_BINDING
* CONFIG_INOTIFY_USER

65

B.1 Raspberry Pi 66

Hardware specification

The Raspberry Pi Model B / Rev 2 (2011.12) technical specification according to
the producer [43]:

System-on-a-chip (SoC) Broadcom BCM2835
CPU (part of SoC) 700 MHz ARM11 ARM1176JZF-S core

GPU (part of SoC) Broadcom VideoCore IV
OpenGLES 2.0
OpenVG 1080p30 H.264 high-profile encode/decode

RAM 512 MByte
Storage none (SD card)
USB 2 (USB 2.0)

Video output Composite video / Composite RCA
HDMI

Audio output TRS connector | 3.5 mm jack
HDMI

Low-level peripherals General Purpose Input/Output (GPIO) pins
Serial Peripheral Interface Bus (SPI)
12C
128
Universal asynchronous receiver/transmitter (UART)

Network 10/100 wired Ethernet RJ45
Power 700mA (3.5W)

B.1 Raspberry Pi

Coder

Summary: My test case used a Coder v0.4 image employing a Linux kernel v3.6.11

while the Raspberry Pi was only connected with wired ethernet.

Using FLIPPER, the tracing lasted 1182s, but the configuration was stable instantly

after finishing boot with 348 enabled features and 81 modules.

With rFTRACE the tracing lasted 1227 s, the configuration was stable 1200 s with 316

enabled features and

55 modules.

time action

1

0s system boot

idling
600s

connecting via web browser

modifying and testing "Space Rocks!"

200s shut down (triggered automatically)

Table B.1 - Detailed schedule for the Coder scenario on Raspberry Pi

Tailored using

Metric Baseline
FLIPPER FTRACE
static features 640 348 (54.38%) 316 (49.38%)
modules 1,038 81 (7.80%) 55 (5.30%)
value features 54 44 (81.85%) 34 (62.96%)
configuration items 1,732 470 (27.14%) 405 (23.38%)
text size (bytes) 22,621,072 4,835,648 (21.38%) 3,484,020 (15.40%)
data size (bytes) 1,437,002 223,132 (15.53%) 182,632 (12.71%)
bss size (bytes) 2,237,125 683,504 (30.55%) 352,656 (15.76%)
compiled C lines 845,627 239,680 (28.34%) 170,114 (20.12%)
compiled C files 4,166 1,465 (35.17%) 1,115 (26.76%)

Table B.2 — Detailed kernel comparison for tailoring of Coder

B.1 Raspberry Pi 68

Statistics for tailoring Coder using FLIPPER

12000

10000 ~

8000

6000

Events

= code points in source
4000
- affected source files

2000

200 400 600 800 1000 1200
Timeins

o

Figure B.1 - Traced events per time during evaluation of Coder using FLIPPER

400

350
300

250
= Enabled by SAT

200 = Modules by SAT
== Enabled (after expanding)

Features

150)
Modules (after expanding)
100
50
0
0 200 400 600 800 1000 1200
Timeins
Figure B.2 - Evolution of features during evaluation of Coder using FLIPPER
1200 m virt
security
1000 H net
Hmm
H kernel
800 mfs
w drivers
o H crypto
% 600 W usr
W sound
400 lib
W ipc
M include
200 firmware
M block
W arch
0

O O ™o o oA d o AN AN AN ANNOMOMOMOMOS I I < <0
<t O0ONO© O T ONO©OTONO©O T ONO©O T 0N O
A A NN NOOIFTITITITOHWOL OO ON~NNOWON®NWDE D

1005
1045
1085
1125
1160

Timeins

Figure B.3 - Traced events per directory and time during evaluation of Coder
using FLIPPER

B.

1 Raspberry Pi 69

Statistics for tailoring Coder using FTRACE

Events

Features

4500

4000 _F—f_/-
3500
3000
2500

2000 = code points in source

1500 - affected source files

1000
500

200 400 600 800 1000 1200
Timeins

o

Figure B.4 — Traced events per time during evaluation of Coder using FTRACE

350

300

250 /
200

= Enabled by SAT
150 == Modules by SAT

= Enabled (after expanding)

100 Modules (after expanding)
50
0
0 200 400 600 800 1000 1200
Timeins

Figure B.5 - Evolution of features during evaluation of Coder using FTRACE

600 '
W virt

security
W net
o mm
u kernel
mfs
i drivers
H crypto
= usr
H sound
lib
W ipc
M include
firmware
M block
M arch

500

400

300

Files

200

100

MMM I I S0 W00nWw I~ I~ NI~ 00 0 0 0 N
N OO T ONO©OOTONOOTOANOOIT N O O
A N NNOOMO T T T W0 (DI\I\OO(DODO’OIE'

Timeins

1049
1089
1129
1170
1210

Figure B.6 — Traced events per directory and time during evaluation of Coder
using FTRACE

B.1 Raspberry Pi

OnionPi

Summary: This test case used a raspbian based image employing a Linux kernel
v3.6.11 with OnionPi applications installed (set up at September 27th, 2013), while

the Raspberry Pi was connected to wired ethernet and a USB WiFi stick.

Using FLIPPER, the tracing lasted 1196, but the configuration was stable instantly

after finishing boot with 349 enabled features and 77 modules.

With rTRACE the tracing lasted 1226, the configuration was stable after 727 s with

287 enabled features and 33 modules.

time

action

Os

600s

900s

1200s

system boot

idling

connection to wlan access point using laptop

browsing websites (http and https)

retrieving mails

connecting via mobile phone
browsing websites

shut down (trigged automatically)

Table B.3 - Detailed schedule for the OnionPi scenario on Raspberry Pi

Tailored using

Metric Baseline
FLIPPER FTRACE
static features 640 349 (54.53%) 287 (44.84%)
modules 1,038 77 (7.42%) 33 (3.18%)
value features 54 43 (79.63%) 34 (62.96%)
configuration items 1,732 469 (27.08%) 354 (20.44%)
text size (bytes) 22,688,201 5,041,604 (22.22%) 3,972,552 (17.51%)
data size (bytes) 1,437,062 310,240 (21.59%) 275,828 (19.19%)
bss size (bytes) 2,237,221 698,924 (31.24%) 368,768 (16.48%)
compiled C lines 846,554 252,362 (29.81%) 197,512 (23.33%)
compiled C files 4,167 1,490 (35.76%) 1,189 (28.53%)

Table B.4 - Detailed kernel comparison for tailoring of OnionPi

B.1 Raspberry Pi 71

Statistics for tailoring OnionPi using FLIPPER

12000

10000~

8000

= code points in source
6000

Events

- affected source files
4000

2000

o

200 400 600 800 1000 1200
Timeins

Figure B.7 — Traced events per time during evaluation of OnionPi using

FLIPPER
400
350
300
., 250
g = Enabled by SAT
§ 200 == Modules by SAT
% 150 = Enabled (after expanding)
Modules (after expanding)
100
50
0
0 200 400 600 800 1000 1200
Timeins

Figure B.8 — Evolution of features during evaluation of OnionPi using FLIPPER

1200 W virt

security
M net
Hmm
m kernel
mfs
w drivers
M crypto
= usr
 sound
lib
Hipc
M include
firmware
® block
m arch

O o = = o N N N N ™
?wN@OVmN@ngN&DOVm
= N NANOMm®m S < 0w O O O

724
764
804
844
885
925
965
1005
1046
1086
1126
1166
1196

Timeins

Figure B.9 — Traced events per directory and time during evaluation of OnionPi
using FLIPPER

B.1 Raspberry Pi 72

Statistics for tailoring OnionPi using FTRACE

Events

Features

Files

6000
5000 -
4000
3000
= code points in source
2000
- affected source files
1000
Q -
0 200 400 600 800 1000 1200

Timeins

Figure B.10 — Traced events per time during evaluation of OnionPi using

FTRACE
350
300
250
200
= Enabled by SAT
150 —— Modules by SAT
100 - Enabled (after expanding)
Modules (after expanding)
50
0 J
0 200 400 600 800 1000 1200

Timeins

Figure B.11 - Evolution of features during evaluation of OnionPi using FTRACE

600 .
W virt
security
500 W net
Hmm
u kernel
400 mfs
m drivers
M crypto
300 P
= usr
W sound
200 lib
M ipc
M include
100 firmware
M block
0 M arch
O =1 N MMM I ITWLOH O© O© O© ONININONWOMOWMM®DWMNDNODNDODDDIDD
T O NOOTONOWOFTONOOST ONOOT ONOO T 0N O© O
HEH NN NOOOTIT TN OO ON~NMNOWOWWONO OO OO N
L e e B B |
Timeins

Figure B.12 - Traced events per directory and time during evaluation of
OnionPi using FTRACE

B.1 Raspberry Pi 73

raspBMC

Summary: This test case used a Raspberry Pi image (from January 1th, 2014
including the “december update”) employing a Linux kernel v3.10.25, while the
Raspberry Pi was connected to wired ethernet, a head phone and a monitor (using
HDMI), having the hardware video decoding enabled.

Using FLIPPER, the tracing lasted 1196, but the configuration was stable after only
20's (after finishing boot up) with 352 enabled features and 100 modules.

With FTRACE the tracing lasted 1218 s, the configuration was stable after 1188 s with
285 enabled features and 45 modules.

time action

0s system boot
idling
600s starting weather app

630s starting video (in MPEG format) located on external device using SFTP
controlling the playback via keyboard media keys

720s non-privileged remote access via ssH, running Top

780s remotely accessing web-based front end
controlling the playback via web front end

870s switching to video (in MPEG2 format)
1020s switching to video (in MPEG4 format)
1200s shut down (trigged automatically)

Table B.5 — Detailed schedule for the raspBMC scenario

Tailored using

Metric Baseline
FLIPPER FTRACE
static features 663 352 (53.09%) 285 (42.84%)
modules 1,156 100 (8.65%) 45 (3.89%)
value features 55 45 (81.82%) 34 (61.82%)
configuration items 1,874 497 (26.91%) 364 (19.71%)
text size (bytes) 22,960,278 5,656,040 (24.63%) 4,458,236 (19.42%)
data size (bytes) 1,437,062 290,716 (18.98%) 268,132 (17.51%)
bss size (bytes) 707,155 351,352 (49.69%) 335,152 (47.39%)
compiled C lines 842,460 275,403 (32.69%) 216,941 (25.75%)
compiled C files 4,223 1,588 (37.60%) 1,301 (30.81%)

Table B.6 — Detailed kernel comparison for tailoring of raspBMC

B.1 Raspberry Pi 74

Feature comparison

By comparing the features of the baseline with the tailored ones, you can observe
13 items not listed in the baseline. Many of them belong to debug purposes.

¢ CONFIG_ARM_PATCH PHYS VIRT

* CONFIG_COREDUMP

* CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE

* CONFIG_DEBUG_BUGVERBOSE

e CONFIG_DEBUG_MEMORY INIT

 CONFIG_DEFAULT_NOOP

* CONFIG_DEFAULT_RENO

* CONFIG_ELF_CORE

* CONFIG_KALLSYMS

* CONFIG_NAMESPACES

e CONFIG_UID16

* CONFIG_UIDGID_CONVERTED

e CONFIG_VM_EVENT_COUNTERS

The eight items only present in the FLIPPER are solely used for different decompres-
sion of the initial ram disk:

¢ CONFIG_DECOMPRESS_BZIP2

e CONFIG_DECOMPRESS_LZMA

* CONFIG_DECOMPRESS_LZO

» CONFIG_DECOMPRESS_XZ

« CONFIG_RD_BZIP2

e CONFIG_RD_LZMA

« CONFIG_RD_LZO

« CONFIG_RD_XZ

The item only present in the FTRACE approach is a memory allocation debugging
routine
* CONFIG_DEBUG_SLAB

B.1 Raspberry Pi 75

Statistics for tailoring raspBMC using FLIPPER

12000

10000

8000
= code points in source
6000

Events

- affected source files

4000

2000

200 400 600 800 1000 1200
Timeins

o

Figure B.13 — Traced events per time during evaluation of raspBMC using
FLIPPER

400

350
300

250
= Enabled by SAT

200 == Modules by SAT
= Enabled (after expanding)

Features

150 X
Modules (after expanding)
100
50
0
0 200 400 600 800 1000 1200
Timeins

Figure B.14 — Evolution of features during evaluation of raspBMC using

FLIPPER
1200 = virt
security
1000 M net
Hmm
u kernel
800 ufs
i drivers
8 M crypto
T 600 B usr
H sound
400 lib
Hipc
M include
200 firmware
m block
0 W arch
CYBNEoIRN2333 33388883388 88888¢%
Timeins

Figure B.15 — Traced events per directory and time during evaluation of
raspBMC using FLIPPER

B.1 Raspberry Pi 76

Statistics for tailoring raspBMC using FTRACE

Events

Features

Files

8000
7000

6000
5000

4000
= code points in source

3000 - affected source files

2000
1000

0 200 400 600 800 1000 1200
Timeins

Figure B.16 — Traced events per time during evaluation of raspBMC using

FTRACE
300
250
200
150
= Enabled by SAT
100 == Modules by SAT
- Enabled (after expanding)
Modules (after expanding)
50
0 —’_‘___—_———r
0 200 400 600 800 1000 1200

Timeins

Figure B.17 — Evolution of features during evaluation of raspBMC using
FTRACE

600 h
W virt
security
500 W net
Hmm
m kernel
400 mfs
w drivers
300 M crypto
usr
u sound
200 lib
Hipc
M include
100 firmware
® block
0 m arch
C BB IEY SN e88 3 I 8882985585888 28
Timeins

Figure B.18 — Traced events per directory and time during evaluation of
raspBMC using FTRACE

B.2 Google Nexus 4 77

B.2 Google Nexus 4

Whitelist

This whitelist consisting of 14 items is used in the Google Nexus 4 scenario:
e CONFIG_BUG
+ CONFIG_DIAG_OVER_USB
* CONFIG_EMBEDDED
« CONFIG_FB_MSM_MIPI_LGIT_VIDEO_ WXGA_PT_PANEL
« CONFIG_KERNEL_MSM_CONTIG_MEM_REGION
+ CONFIG_MMC_MSM_SDC1_SUPPORT
* CONFIG_MSM_CSI20_HEADER
* CONFIG_MSM_N_WAY_SMSM
* CONFIG_NEON
e CONFIG_RD_GZIP
 CONFIG_TOUCH_REG_MAP_TM2000
e CONFIG_USB_EHCI_MSM
« CONFIG_VIDEO_VAL2 SUBDEV_API
 CONFIG_WCD9310_CODEC

B.2 Google Nexus 4 78

Hardware specification

The LG E960 / Google Nexus 4 technical specification according to the producer
[30]:

CPU Qualcomm Snapdragon S4 Pro 1.5 GHz
RAM 2 GByte
Storage 8 GByte
Screen 4.7” 1280x768 (320ppi)

Camera 8 MP (main)
1.3 MP (front)

Sensors Accelerometer
Compass
Ambient light
Proximity
Gyroscope
Pressure
GPS

Network GSM/EDGE/GPRS (850, 900, 1800, 1900 MHz)
3G (850, 900, 1700, 1900, 2100 MHz)
HSPA+

Wireless Wi-Fi (802.11 b/g/n)
SlimPort
NFC (Android Beam)
Bluetooth

Battery 2100mAh

B.2 Google Nexus 4 79

Ubuntu Touch

Summary: I performed the trace on a Ubuntu Touch Saucy (release of November
27, 2013) with Linux kernel 3.4.0, the total tracing time was 1221 s while the
configuration was stable after 877 s with 750 enabled features.

time action
0s system boot
idling
600s activating smartphone (from standby)
navigating through menu
690s activating wireless LAN
connecting to access point
720s outgoing phone call
780s starting camera app
taking pictures with front and main camera (involving flash light)
840s using web browser
900s incoming call (without answering it)
1020s connecting with PC using USB
remote file access
1080s shell access via USB
1110s setting display brightness
1140s switching to standby
1200s shut down (trigged automatically)

Table B.7 — Detailed schedule for tracing Ubuntu Touch on Google Nexus 4

Metric Baseline Tailored (FLIPPER)
features static 974 752 (77.21%)
modules 145 0 (0.00%)
values 67 59 (88.06%)
configuration items 1,186 811 (68.38%)
text size 13,489,768 bytes 12,037,224 bytes (89.23%)
data size 1,206,812 bytes 1,171,756 bytes (97.10%)
vmlinux bss size 2,735,516 bytes 2,587,100 bytes (94.57%)
compiled C code 542,874 lines 494,082 lines (91.01%)
taken from 2,497 files 2,233 files (89.26%)
text size 14,464,220 bytes 12,037,224 bytes (83.22%)
data size 1,312,683 bytes 1,171,756 bytes (89.26%)
total bss size 2,745,447 bytes 2,587,100 bytes (94.23%)
compiled C lines 564,324 lines 494,082 lines (87.55%)
taken from 2,776 files 2,233 files (80.44%)

Table B.8 - Detailed kernel comparison for Ubuntu Touch

B.2 Google Nexus 4 80
Statistics for tailoring Ubuntu Touch (using FLIPPER)
20000
18000~
16000 /
14000-f
12000~
@
g 10000~
“ 8000 = code points in source
6000 - affected source files
4000~
2000
0- . T . T . T . T . T . T
0 200 400 600 800 1000 1200
Timeins
Figure B.19 — Traced events per time during evaluation of Ubuntu Touch
(using FLIPPER)
760
740 4
720
700
1723
¢ 680
3
$ 660~ 7
640
620 = enabled by SAT
600 - - enabled (after expanding)
580 T T T T T T
0 200 400 600 800 1000 1200
Timeins
Figure B.20 - Evolution of features during evaluation of Ubuntu Touch (using
FLIPPER)
2000 ‘ m virt
| security
M net
HEmm
u kernel
ufs
m drivers
8 m crypto
B " usr
H sound
lib
Hipc
M include
firmware
M block
m arch
Figure B.21 — Traced events per directory and time during evaluation of

Ubuntu Touch (using FLIPPER)

B.3 Emulation 81

B.3 Emulation

Qemu Coccinelle

The semantic patch used to enable the tracking of the virtual machines program

counter:

1 @@
2 declaration d;
3 statement s,t;
4 Q@

6 tb_gen_code(...) {

7 ... when != ¢t
8 when any
9 d

10 +printf ("%01611X\n", (unsigned long long int) pc);

1 s

Listing B.1 — SmPL patch for Qemu enabling output of all block starting

addresses

B.3 Emulation

82

Workflow
&
baseline [}
configuration
predefined
disk image

Building Kernel

=

481D
CAFFEE

991917
N

55AA00

expanding compiling packing emulation trace
configuration kernel t file
A4 A A

scheduled
\ instructions /

HJ
0

vanilla
kernel source

specialized
configuration

FTRACE / EMUTRACE list

D6

code point

UNDERTAKER

)

~©

verified

L

3

2]
e

tailored
configuration

[®

broken

Figure B.22 — Schematic representation for the emulation workflow of both
the traditional FTRACE based approach and the Emulator-based Code-Point

Recording

B.3 Emulation

83

Whitelist

BINFMT_SCRIPT

CONFIG_DEVTMPFS_MOUNT

CONFIG_INOTIFY_USER
CONFIG_OPTPROBES
CONFIG_RD_GZIP

Method Kernel

v3.10
v3.11
v3.12
v3.13
v3.14
v3.15

DuRrDEN and FLIPPER

wNo v DN (M

v3.10

v3.11

FTRACE and v3.12

FTRACE (EARLY BooT) V3.13
v3.14

v3.15

<

SNESENENENEN
NESENEN
NN N N NN
92 B2 BT, B0, BN NN, |

v3.10
v3.11
v3.12
v3.13
v3.14
v3.15

EMUTRACE

WNDNDNDNDDN

v3.10
v3.11
v3.12
v3.13
v3.14
v3.15

EMUTRACE (NO INIT)

N N N N N T N N N N N S NENENENS v
LACNANA A48 84A A484848484 44444 4 | CONFIG UNIX

SNESEN
A LWwWwbdNdDDNDDN

Table B.9 — Necessary whitelist items for the emulation based evaluation

B.3 Emulation

Schedule

Although this schedule is the common one, I had to consider use case depended
enhancements: The full emulation is significant slower than the one supported by
the kernel virtual machine. Therefore, I had to increase the idle time (about 30005s).
Anyway, besides this differences in timing, there is no change in the executed actions

nor their order.

time

action

Os

600s

660s

690s

system boot

idling

initial test:

testing SSH connection

fetching static web page via HTTP

fetching static web page via HTTPS

fetching dynamic (PHP) web page via HTTP

testing remote access:
connecting via SsH

executing file system commands
file transfer via scp

testing web server:
fetching bigger sized static web page®® via nrTps

calculating (and verifying) prime numbers in dynamic web page via HTTP

1337th prime number

1111th prime number

flushing PHP OPcAcHE®!

1500th prime number (suitable on most systems with 1 GByte memory)
1800th prime number (suitable on systems with 1 GByte free memory)

2222th prime number (fails on systems with 1 GByte memory)

3000th prime number (suitable on most systems with 4 GByte memory)
3100th prime number (suitable on systems with 1 GByte free memory)

3333th prime number (fails on systems with 1 GByte memory)

27070th prime number (OuT-OF-MEMORY KILLER®? will abort calculation)
concurrent calculation of 1040th - 1050th prime number

concurrent calculation of 1549th - 1555th prime number

transferring trace files
shut down

Table B.10 - Detailed schedule for the automatic simulation actions in the
emulation approach

801 decided to use the JavaScripT based open source browser game “2048” [11] as a real world

example.

810Pcache stores precompiled PHP scripts in memory — for more information take a view at the

official documentation [38].

82Gince the environment is based on DEBIAN JESSIE, which implies strict memory management rules in
its default configuration, the simulation takes account of disruptions caused by the OOM KiLLER [37].

85

B.3 Emulation

GI'€A — €1 €A [9UISY XNUurT 10§ saydeoidde JuaIaIp YIm Surio[rel pajewoine Aq MIIAISAO SINIBSJ PUB BIEp Palda[[o) — [1°d 9[qeL

(%€9Y9) £49C (%L0°29) L69T (%09°69) 086 609°T /8L 0 20y $62°9L €41°889°0T (LINI ON) EOVYNNY
(%£2°58) 2€S‘c (%IS'16) 20ST (%ST'€L) 0€0°T Tev’T 6T8 0 520y 850Y8 SZIV6S0T HOVHINNY
(%TS'11) LLY (%69°0) 61 (%€S2E) 8SY L1 81¢ 0€LCc 8IY¥'T $S0°L SY9°L (LOOE AT¥VH) HOVHLL
(%S8'11) 16% (%69°0) 61 (%TS'€e) 2Ly L1 Sze 04T 611 9€99 9PIL DVALL o0y
(%€8°81) 08Z (%bt'e) ¥6 (%2, 8%) 989 96 €95 0£LC PIY1 9/9CT 949CI MHAdIT]
(%06°81) €82 (%Lb'€) S6 (%98°8+) 889 S6 $95 04T SIY1 L8S€T £8SEI NFadng
[4dN7 YeLT 80%°T surfeseg
(%T6'v9) ¥69C (%ST°C9) 60LT (%9€°0L) S86 TT9°T 164 0 10 6499/ 880°THE'ST (LINI ON) HOVY LAWY
(%1S°S8) 0SS (%TY'16) ¥1ST (%00¥L) 9€0°T ob¥‘Cc 6€8 0 1€0Y L9T%8 0SE'69CY1T OV INNY
(%06°11) 61 (%29°0) LI (%L0YE) LLY ST 62¢ LT OIP'T TCO°L LY¥LL (LOOE ATHVH) HOVULA
(%bS'11) 64% (%29°0) LI (%00°€€) 29% ST 0z¢e LT TIPT 0IS‘9 €S04 DVALL Loy
(%90°61) 164 (%SP'€) S6 (%1L°6%) 969 L6 vLS LT 90VT I186CT 186CI HAddIT]
(%ET°6T) ¥6£ (%6t°€) 96 (%98°6%) 869 96 ¥LS LT LOYT 984°€T 98L°€l NFaUng
0STY 0S.T 00+°1 suesed
(%S9°€9) ££9C (%229 90LT (%I+'99) 1€6 819°T 86/ 0 920Y 969 PETY8TOC (LINI ON) HDVYLANH
(%bTt8) 06v°c (%8T16) ¢0SC (%/LP°0L) 886 1ebC LP8 0 920t LLSY8 TELSTIVI OV [NINY
(%16°01) St (%29°0) LI (%€0°1€) SEY ST 1€€ LELT TIYT 1949 88¢L (LOOd ATHVH) HOVYLA
(%£S°0T) 8¢Y (%29°0) LI (%€0°0€) 1Th ST Tee LELT EIYT 600°Z 1€L°L VAL oroey
(%95°81) 692 (%0S°€) 96 (%00°8%) €49 L6 6LS LELT 8OYT $90°€T +90°€1T "HddIT]
(%T19°81) 144 (%bS€) L6 (%£0°8Y) ¥£9 96 6LS LELT 60VT 098°€T 098°€I NFaQung
AN vLT Tob°1 surfeseg
pozirewuins s[npouwr onels s[mpour d1elIs S[npour dnels sjurod S9ssaIppe o5 [PuIsy
sainieaj papuedxa renaed 9[qesden 2pod P109[[02 POURIN Xnurg

86

B.3 Emulation

CI°'SA — 0T €A [9UISY Xnury 10§ saydeoidde JuaIaIp YIm SurIo[rel pajewoine Aq MIIAISAO SINIBSJ PUB BIBp Palda[[0) — g1°d 9[qeL

(%€€°€9) 995°C (%¥1°09) LO9T (%LS'69) 6¥6 8¢ST 6SL 0 816°€ 060°SZ ¥/6°890CT (LINI ON) HDVYINNY
(%€€°S8) vr'e (%8T'16) 6€FT (%89°€L) SOO'T 89€C 608 0 816°c v€LT8 6¥L°869°CT OV IONY
(%61°C1) T6¥ (%06°0) T (%TE+E) 891 0T 243 899C VLET LES'L 9LL'8 (1004 ATUVH) AOVULA
(%21°CT) 681 (%06°0) T (%60't€) S9t 02 91¢ 899C SLET TeL’'9 oce'L HOVHLA (oo
(%ST61) LLL (%tt'e) T6 (%2T09) S89 96 §ss 899C 0LET 61€CT 61ETI UHddIT]
(%€T61) 9LL (%¥¥'€) T6 (%ST1°09) 89 S6 ¥SS 899C 1/E1 GST'eT SsTel Naqdng
9€0y TLYT Y9€T surfeseq
(%0T+9) ST9C (%¥T'19) 99T (%96°69) 696 89ST TLL 0 6S6°€ Tey'SL 8Y0'SEOTT (LINI ON) EDVYIANY
(%te'S8) SLV'E (%8Y'16) 6SPT (%9€°€L) 9T0°T ¥8€C 818 0 6S6°€ 0ST1e8 6VLTITITI HOVELONT
(%0€°CT) 10S (%8£°0) 1T (%99t€) 081 61 LTE ¥89C S6€°1 T09°L TEV'8 (1009 ATVH) AOVHLA
(%0€°CT) 108 (%8L°0) 1T (%99°¥€) 08¥ 61 LT€ ¥89°C 96€°1 €489 8LEL HOVHLA pyeopn
(%ST61) ¥8L (%Th'e) T6 (%96°6%) T69 Y6 09s ¥89°C T6E°T €6SCI €6SCI HAddIT]
(%ST°61) ¥8L (%cr'€) T6 (%96°6%) T69 €6 6SS ¥89C T6ET 9IS€l 9IS‘el NZaung
€L0Y 889C S8e‘1 surfeseq
(%S€19) 669°C (%SE'T9) 099°T (%81°04) 646 L8ST 18L 0 ¥86°€ S€9°9Z €08°89S°CT (LINI ON) HDVYIANY
(%S2°S8) 961 (%90°16) ¥9¥‘C (%86°€L) TEO'T ov‘c T8 0 ¥86°€ T86°€8 LY1°TILTI HOVYLONT
(%61°CT) 008 (%8£°0) 1T (%bEPE) 641 61 Sce TOLT SOP'T LET'L €108 (1009 ATHVH) FOVHLA
(%S8°TT) 98F (%8L°0) 1T (%€€°€E) S9¥ 61 81¢ TOLT 90V‘T L0L°9 0TT'L HOVELA roon
(%£6°8T) 8LL (%€EE) 06 (%TE 61) 889 S6 8SS ToLT 10V°1 14STT 14ST1 HaddIT]
(%00°61) 64L (%€E€) 06 (%6€°6%) 689 Y6 8SS T0LT TOV'T LOS'€T LOS'ET NFa¥ng
101 90LC S6€°1 suleseq
pozLIewwns a[npout onels a[mpour d1els a[npowr dnels syjutod sassaIppe omony 120N
saInieaj papuedxd rented s[qeaden apod Pa103][0d PO XNury

87

B.3 Emulation

ST'€A — €T €A [oUISY XNUIT 10J SONISIIeIs ATeulq [9UIY paIofieL, — £1°d d[qeL

0£9°Z €8SCYLT 8SP'SISOT 960°S0ET 6v9°SETCy 848°T 140°C $TL9TE $0L0TE'S 960°S0E‘T 18T1CHYZ (LINI ON) HOVYLNWH
I18Y°6 $I8°60TC 66508 TT 9698821 B8LS8IPES 689C 0T0‘CT 80S°96C TE0T6T'S 969°88C‘T 926°8L69 HOVYLONT
SOS‘T 9/£°LET SY6PTIT 941890°T TEF8I8S 0T 0/4T°T 9¥8°08T +9¥'8S6 9LI‘890°T 8S/L‘9CHPY (1009 ATYVH) HOVULI
12ST 926°0vC SL6YTIT $868L0°T 1€T'ST6S 0T 98C‘T L9T%8T +9v'8S6 +86°8L0°T 9S8°0ESY VAL ooy
€2ECT ££9°68¢ 00v°869°S 89L°061‘T +S0°€S86 86 PT8T L9609 t¥L°64T°S 89L06TT TH6TLT9 YAddIT]
02EC 6TS‘68¢ 091°689°S 0T6'S6T‘T SSI‘LS86 66 9Z8‘T TTS09C PvL'64TS 0T6°S6TT S9¥°6SC9 NFaung
68€°0T 66S0LPT LTSTIBL'ET TSSTEET 0SS916TL 0S6C 110°C €8S'T0€ CISTIE'S TSSTEET COS66LL surfeseg
PI9°L 8L00VLT TL6TLPOT 88PTIEET /L8LY8ICH 8881 SEIT OVL‘8CE 968°8CE°S 88PTEET 90L°044°/ (LINI ON) HOVYLONH
€956 T0T°0€TC LVL€P8TT 0P9'STIET LPE080YS 90LT T80°C 1S6°TIE +0L°0CE'S OP9'SIET LOVLSE'L A0V [NINY
ST TLTYPT 6E8°STT‘T 09/°80T‘T €£0°€£0°9 8I IYET COI'86T O0P0°€86 09/°80T°T €£09°€/8tv (L0OOH ATMVH) HAOVHLA
TTST L00‘0YT LO8STI‘T 9S8°€60°T 19C°I¥6°S 81 TCTET T06°C6T 0v0°€E86 9S8°C60°T L9E‘EhL Y DOVELL oy
09€C 0bS‘S6¢E 660°869°S 946°81C‘T 8EFTI90°0T L6 €68T S64°94C 9TY'80E'S 9468TCT 1994999 "HAdIT]
LSET P6ES6E SII°889°S +8EPCTT 9/8°8S0°0T 86 $68°T 90£94C 91H°80€'S ¥8EVYCTT L998H9°9 NFaUNg
9ev0T 6EVE8Y T 869°008°CT 09E°€HET 8LEPSE'CL €S6T 9€0°CT ST9°SOE P0L°0TE'S 09€°CHET 0Eh L16°L aurfeseq
LT9L 8LTSELT VYILOTEOT 0TLETET L68VYSPTIH G881 IT1CT TEEC€TE 8TL'C61'S 0TLETE'T TO6'60P°Z (LINI ON) HOVYINNY
TSS6 LES9TTT Y9T96STT TESTEET 9PSL6TES S69°T 801°C 8SETIE 809°6Lv'S TESTEET 8T LYTL HOVYLONY
60S‘T 860°LET 610°€06 P¥S660°T £L90°8L9°G 8T 60€T £86°06T TS6°G9Z +vPS660°T $SILESY (1L00€ ATYVE) HOVULA
T6V'T 9S0°EET £86C06 9LE°LL0T 9PIVLS'S 8T TO6TT 600°L8T TS6°S9L 9LELLOT ESLYEVY VAL oroey
LSET 091V6¢E 16¥°85S°S 9/£°C€T‘T £88°S98°6 66 988‘T 0TT'SLT 8YT'SLI‘S 9LE'CETT L86°E€ES9 NI@INQ
19€C €EE€V6¢E L06°€9S°S 888°STTT 1949986 86 988‘T 9TL‘SLT TSI691°S 888°STTT £69°€S59 YAddIT]
TOVOT €ESL6LY TISTELET 088VLET 6£T66V'CL E€V6T 6¥0CT 66L°L0€ 9TH‘80E'S 088VLET PSTEE6L surpseq
Sl sauI[ssq ejep 1X9] Sa[l Sa[l sauIy ssq elep 1X9] [ouIaY
901nos paiduod (s214q ur) 9zIs oy’ 901nos paidurod (s914q ur) 9zIs POUISIA XNUuI]

(DI 3urpnpur) [e101

ATuo xnuruA

88

B.3 Emulation

Z1°€A — 0T €A [2UIY XNUIT J0J SONSHEIS ATRUIq [QUIY paIofie], — +1°d dqeL

681°Z TI8YL09°T 16S°TvC0T CLYV6TT 8S8°1CS'8E €8L°T 600C 062°60€ ¥YL64TS TLYP6CT 1ST00CL (LINI ON) EDOVHNNY
1506 €6S°€60C TS99PS‘IT TLTI8CT TE6°0ST0S €€9°C 9S6°T LSP98C +92°6ST'S TLTISTT 1CTTIL9 HOVYLONT
TCST 08€‘0re 80006Z°S 9T9°00T‘T 8/S5°698'S ST S8CT SE6C8T 94SYPI‘S 919°00T°T +H9C0SY (L0O0E ATYVE) AOVULA
TCST 18T0vC 088°G6Z°S TSITOT‘T +¥8L°L98°S ST G8TT T98°C8T 9LSYPI‘S TSICOTT v6L°TOSY VAL (100
€42°C 92T I8¢ 8ICTYY9‘S 896P8I‘T 0ETIEE'6 L6 18LT 696°GSC 9L69¥T°S 8964811 1584800 YAddIT]
89C°C 099°08¢€ SP9‘€E9°S 800°T6T‘T 0L8°SIE'6 L6 T8LT LTP'SST 946°9¥T‘S S800°T6T‘T LI9TLO9 NFaung
9896 LSY962°C €hP66¥CT 880°€8T‘T SITE6C99 TLST 8¢6‘T v¥9°16C TEOT6T'S 880°C8TT 865 LYY L surfeseg
PSEL €ET€99°T PPETCEOT 091°8CET L6L°868°6E LTSI I11°C SOLYPE 0ZEPLOE'S 091°8CE‘T TLP 9808 (LINI ON) HOVYLNNH
G8T°6 9EP9TIC 0THP'6L9TT ¥HSE€6TT 16948605 +S9°C L66°T €PL06T 8V9°SLT'S PPSE6TT SLTIESD HOVHINNY
9IS‘T €L°'0bC 0ZvSOT‘T +OT°680°T 10£°688°S T €8C°T 089°€8T 89EvS6 POI680°T 0L6°CCSY (1009 ATVH) HOVHLA
9IS‘T €LL°'0tC 0Z+°SOT‘T +OT°680°T 10€°688°S CCT €8C°T 089°€8T 89€vS6 POI680°T 0L6°CTSY HOVELL ooy
L6TT SE6°€8E 104°459°S 9TP'T0CT 8/9°0¢¥‘6 96 TI8T 980°6SC ¢CSSIZTS 9I¥I0TT 8£9°881°9 "HAdIT]
€62°C tSE‘e8e 080°Z¥9°S 800°80C°T 099CI¥'6 96 €I8‘T $€9°8SC TSSILT'S 800°80C°T 1TS'SLIQ NFaUNg
9€8‘6 TTI8CET TISLTI9CT 89£°00€T LPILSOL9 888°C 0L6T YI9V6C 0TEPOE'S 89€00ET €¥L°09S°L aurfeseq
12S°L SI6TCLT 8hP IPPOT 89T°LEET 886°08STH THB'T 0€TI‘CT 89€°6TE +TT00E'S 89TLEET LTITT1L°Z (LINI ON) HDVYINNH
6SE€6 LI6°L81T 61E°STLTT 0TITSET 89/4°L08TS £S9T €50C 60vvIE TE0T6T'S 0OTITSET €6STESL HOVYLONY
PTST 1LE°chT LEOOCTIT +CHTOTT 69v486°S ¢CCT 88C‘T TE9'SST 89E€VPS6 vehTOTT S61°CLSY (1009 AT4Vd) HOVULA
SOS‘T 860°6€T S00°0CT‘T ¢S6°S80°T 8TEPS8'S ¢¢T 69C°T L8YPIST 89E€PS6 TS6°S80T 8T9‘SHPy VUL oy
10€C $OTLSE 6£0°969°S 8¥9°0TICT‘T ¥60°61L6 +6 808‘T S8S‘09C 8+9°SLT'S 8¥9°0IT‘T SH8I+T9 yaddIT]
L62C ¥1598¢ 8/G6°G89°S 0OYCLICTT SOTI0L'6 +6 0T8T 8EI‘09C 8Y9°SLT'S OYTLITT 896°8CC9 NFaung
6STOT LP6°SYP T vPE6ELET 09E°€IET 8SS°S00TL 0T6T S86°T ¥IE'86C 9IH'80€°S 09E°CIET YE6TLIL surfeseg
Sl sauI[ssq ejep 1X9] Sa[l Sa[l sauIy ssq elep 1X9] [ouIaY
901nos paiduod (s214q ur) 9zIs oy’ 901nos paidurod (s914q ur) 9zIs POUISIA XNUuI]

(DI 3urpnpur) [e101

ATuo xnuruA

https://www4.cs.fau.de/Lehre/WS11/P_PASST/

List of Acronyms

API application programming interface
AST abstract syntax tree

Cl continuous integration

CPP C preprocessor

HID human interface device

ID identifier

KVM kernel virtual machine

LKM loadable kernel module

PC program counter

RegExp regular expression

SAT (boolean) satisfiability problem
SmPL semantic patch language

90

List of Figures

1.1

2.1
2.2

4.1

4.2

4.3
4.4
4.5

4.6

4.7

5.1
5.2
5.3

6.1

6.2

6.3
6.4

B.1

Linux feature growth 2005-2014. 1
Overview of the kernel tailoring approach 6
Modified steps in the newly suggested kernel tailoring approach ... 10

Schedule for collecting addresses at the Coder scenario on Raspberry
Pl 26

Comparison of power consumption between original and tailored

kernel in the Coder scenario 27
Schedule for tracing OnionPi on Raspberry Pi 28
Schedule for tracing raspBMC 29

Kconrig feature selections for the Raspberry Pi test cases when using
different data collection methods 30
Evolution of recorded points in the source code and Kconric features
enabled in the resulting configuration for the raspBMC use case using
both old and new approach 31
Schedule for tracing Ubuntu Touch on Google Nexus 4 33

Schematic representation of the new approach’ emulation workflow . 36
Necessary items in whitelist depending on method and kernel version 40

Number of enabled features depending on approach and kernel version 43

Quantitative comparison of contained Kconric features (including

value features) between the original kernel and tailored version in

theraspBMC USe caseo, 47
Usage of the IS_ENABLED macro in the Linux kernel versions for the

lastthreeyears. it 49
Usage of Kconric features in different Linux kernel versions 50
Feature growth in Linux by architecture since 2006 53
Traced events per time during evaluation of Coder using FLIPPER .. 68

91

List of Figures 92

B.2 Evolution of features during evaluation of Coder using FLIPPER 68

B.3 Traced events per directory and time during evaluation of Coder using

FLIPPER . . . ¢ oottt e e e e e e 68
B.4 Traced events per time during evaluation of Coder using FTRACE . . . 69
B.5 Evolution of features during evaluation of Coder using FTRACE 69

B.6 Traced events per directory and time during evaluation of Coder using

FTRACE & o vt vt ettt e e e e e e e e et e e e e e 69
B.7 Traced events per time during evaluation of OnionPi using FLipPER . 71
B.8 Evolution of features during evaluation of OnionPi using FLipPER . . 71

B.9 Traced events per directory and time during evaluation of OnionPi

using FLIPPER oo 71
B.10 Traced events per time during evaluation of OnionPi using FTRACE . 72
B.11 Evolution of features during evaluation of OnionPi using FTRACE . . . 72

B.12 Traced events per directory and time during evaluation of OnionPi
USINE FTRACE . « vt v v e e e e e e e et e e e e e e e e e e e e e e 72
B.13 Traced events per time during evaluation of raspBMC using FLIPPER 75
B.14 Evolution of features during evaluation of raspBMC using FLIPPER . . 75
B.15 Traced events per directory and time during evaluation of raspBMC
using FLIPPER oo e 75
B.16 Traced events per time during evaluation of raspBMC using FTRACE . 76
B.17 Evolution of features during evaluation of raspBMC using FTRACE .. 76
B.18 Traced events per directory and time during evaluation of raspBMC
USING FTRACE .« © v v vt ittt it e e e e et e e et e e et e e e 76
B.19 Traced events per time during evaluation of Ubuntu Touch (using
FLIPPER) . & v v v i e e e e e e e e e e e e e 80
B.20 Evolution of features during evaluation of Ubuntu Touch (using FLipPER) 80
B.21 Traced events per directory and time during evaluation of Ubuntu
Touch (USING FLIPPER) . . .« v v vt e e e e e e et e e e e e e 80
B.22 Schematic representation for the emulation workflow of both the
traditional FTRACE based approach and the Emulator-based Code-

PointRecordingt 82

List of Listings

2.1

3.1

3.2

3.3

Al

A2

A3

A4

A5

A6

A7
B.1

Example of code injection concept 9
Pathological example presenting limitations of the approach 19
Example of Conditional block inside expression with prefix operator

(Linux v3.6 source file net/ipv4/inet_diag.c) 19
Code injection by CLANGS source rewrite engine ignores KCONFIG
enabled conditional blocks, 21
Injection in single statement blocks without curly braces

(Linux v3.15 source file arch/x86/kernel/cpu/common.c) 57
Conditional block in branch table (switch statement) with multiple
branches

(Linux v3.15 source file arch/x86/power/cpu.c with comments
removed) e 57

Injection in complete expressions

(Linux v3.15 source file arch/x86/kernel/check.c) 58
Conditional block inside expression with postfix operator
(Linux v3.15 source file arch/x86/kvm/vmx.c) 58

Conditional block inside expression with prefix operator

(Linux v3.15 source file net/netfilter/nfnetlink_queue_core.c) 59
Functions definied in macros

(Linux v3.15 source file block/deadline-iosched.c). 59
Complete SmPL source of the final FLIPPER implementation 62
SmPL patch for Qemu enabling output of all block starting addresses 81

93

List of Tables

3.1

4.1

4.2

4.3

4.4

5.1

5.2

5.3

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Comparison of required assembly code instructions for approaches
compiled on ARMv6 and AMD64/x86-64 architecture using Gcc with
optimizer flag -02 (or -00 in case of disabled optimization) 16

Results for the Coder scenarios using three metrics. Percentages
shown are quotients between the FLiPPER tailored version and the
corresponding original configuration file 26
Results for the OnionPi scenarios using three metrics. Percentages
shown are quotients between the FrLippER tailored version and the
corresponding original configurationfile 28
Results for the raspBMC scenarios using three metrics. Percentages
shown are quotients between the FLIPPER tailored version and the
corresponding original configuration file 29
Results for the automated tailoring of Ubuntu Touch on a Google
Nexus 4 smartphone. it ittt 32

Accumulated occurrence of whitelist items after minimization in the
emulation framework for every version and approach (in total 36
WhiteliSts) o e 41
Collected data and the resulting features by automated tailoring with

different approaches (Linux kernel v3.15), compared to the Baseline. 42

Comparison of tailored kernel binaries (Linux kernel v3.15) 42
Detailed schedule for the Coder scenario on Raspberry Pi 67
Detailed kernel comparison for tailoring of Coder 67
Detailed schedule for the OnionPi scenario on Raspberry Pi 70
Detailed kernel comparison for tailoring of OnionPi 70
Detailed schedule for the raspBMC scenario 73
Detailed kernel comparison for tailoring of raspBMC 73
Detailed schedule for tracing Ubuntu Touch on Google Nexus 4 ... 79

94

List of Tables 95

B.8 Detailed kernel comparison for Ubuntu Touch 79
B.9 Necessary whitelist items for the emulation based evaluation 83
B.10 Detailed schedule for the automatic simulation actions in the emula-

tionapproach 84
B.11 Collected data and feature overview by automated tailoring with

different approaches for Linux kernel v3.13 -v3.15 85
B.12 Collected data and feature overview by automated tailoring with

different approaches for Linux kernel v3.10 -v3.12 86
B.13 Tailored kernel binary statistics for Linux kernel v3.13 -v3.15 87

B.14 Tailored kernel binary statistics for Linux kernel v3.10 -v3.12 88

References

[4]

AspectC++. Project Homepage. URL: http://www.aspectc.org/ (visited
on 08/02/2014).

BasicLinux Homepage. Website. URL: http://distro.ibiblio. org/
baslinux/ (visited on 07/13/2014).

Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator.” In: Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference.
ATEC ’05. Anaheim, CA: USENIX Association, 2005, pp. 41-41. URL: http:
//dl.acm.org/citation.cfm?id=1247360.1247401.

T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. “A Study of
Variability Models and Languages in the Systems Software Domain.” In: IEEE
Transactions on Software Engineering 39.12 (2013), pp. 1611-1640. 1ssN:
0098-5589. po1: 10.1109/TSE.2013.34.

Ramon Bertran, Marisa Gil, Javier Cabezas, Victor Jimenez, Lluis Vilanova,
Enric Morancho, and Nacho Navarro. Building a Global System View for
Optimization Purposes. workshop. Boston, USA, June 2006. URL: http:

//personals.ac.upc.edu/rbertran/pdfs/wso-wiosca.pdf.

Manfred Broy. “Challenges in Automotive Software Engineering.” In: Pro-
ceedings of the 28th International Conference on Software Engineering (ICSE
’06). (Shanghai, China). New York, NY, USA: ACM Press, 2006, pp. 33-42.
1SBN: 1-59593-375-1. por: 10.1145/1134285.1134292.

BusyBox Project Homepage. URL: http://www.busybox.net/ (visited on
05/11/2012).

CADOS: Configurability Aware Development of Operating Systems. Research
Group Homepage. URL: https://www4.cs.fau.de/Research/CADOS/
(visited on 07/22/2014).

96

http://www.aspectc.org/
http://distro.ibiblio.org/baslinux/
http://distro.ibiblio.org/baslinux/
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dx.doi.org/10.1109/TSE.2013.34
http://personals.ac.upc.edu/rbertran/pdfs/wso-wiosca.pdf
http://personals.ac.upc.edu/rbertran/pdfs/wso-wiosca.pdf
http://dx.doi.org/10.1145/1134285.1134292
http://www.busybox.net/
https://www4.cs.fau.de/Research/CADOS/

References 97

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Dominique Chanet, Bjorn De Sutter, Bruno De Bus, Ludo Van Put, and Koen
De Bosschere. “System-wide Compaction and Specialization of the Linux
Kernel.” In: Proceedings of the 2005 ACM SIGPLAN /SIGBED Conference on
Languages, Compilers and Tools for Embedded Systems (LCTES ’05). New
York, NY, USA: ACM Press, 2005, pp. 95-104. 1sBN: 1-59593-018-3. por:
10.1145/1065910.1065925.

Noam Chomsky. “On certain formal properties of grammars.” In: Information
and Control 2.2 (1959), pp. 137 -167. 1ssN: 0019-9958. por: http://
dx.doi.org/10.1016/S0019-9958(59)90362-6. URL: http://www.
sciencedirect.com/science/article/pii/S0019995859903626.

Gabriele Cirulli. 2048. GitHub Project. URL: http://gabrielecirulli.
github.io/2048/ (visited on 04/23/2014).

clang - C Language Family Frontend for LLVM. Project Homepage. URL:
http://clang.1llvm.org/ (visited on 07/16/2014).

Coder for Raspberry Pi. GitHub Project. URL: http://googlecreativelab.
github.io/coder/ (visited on 12/13/2013).

CyanogenMod - Android Community Operating System. Project Homepage.
URL: http://www.cyanogenmod.org/ (visited on 07/15/2014).

Description of the unified diff format. the GNU diff manual. uRrL: http:
//www.gnu.org/software/diffutils/manual /html_node/Unified-
Format.html (visited on 07/13/2014).

Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikschat, and
Daniel Lohmann. “A Robust Approach for Variability Extraction from the
Linux Build System.” In: Proceedings of the 16th Software Product Line Con-
ference (SPLC ’12). (Salvador, Brazil, Sept. 2-7, 2012). Ed. by Eduardo
Santana de Almeida, Christa Schwanninger, and David Benavides. New York,
NY, USA: ACM Press, 2012, pp. 21-30. 1sBN: 978-1-4503-1094-9. por:
10.1145/2362536.2362544.

Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikschat, and
Daniel Lohmann. “Understanding Linux Feature Distribution.” In: Proceedings
of the 2nd AOSD Workshop on Modularity in Systems Software (AOSD-MISS
’12). (Potsdam, Germany, Mar. 27, 2012). Ed. by Christoph Borchert, Michael
Haupt, and Daniel Lohmann. New York, NY, USA: ACM Press, 2012. 1SBN:
978-1-4503-1217-2. po1: 10.1145/2162024.2162030.

Expect. Project Homepage. URL: http://expect.sourceforge.net/
(visited on 07/13/2014).

Fiasco Project Homepage. URL: http://os.inf.tu-dresden.de/fiasco/
(visited on 05/11/2012).

http://dx.doi.org/10.1145/1065910.1065925
http://dx.doi.org/http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://www.sciencedirect.com/science/article/pii/S0019995859903626
http://www.sciencedirect.com/science/article/pii/S0019995859903626
http://gabrielecirulli.github.io/2048/
http://gabrielecirulli.github.io/2048/
http://clang.llvm.org/
http://googlecreativelab.github.io/coder/
http://googlecreativelab.github.io/coder/
http://www.cyanogenmod.org/
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://dx.doi.org/10.1145/2362536.2362544
http://dx.doi.org/10.1145/2162024.2162030
http://expect.sourceforge.net/
http://os.inf.tu-dresden.de/fiasco/

References 98

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

function tracer guts. the Linux kernel documentation. URL: https://www.
kernel.org/doc/Documentation/trace/ftrace-design.txt (visited
on 07/13/2014).

Paul Gazzillo and Robert Grimm. “SuperC: Parsing All of C by Taming the
Preprocessor.” In: SIGPLAN Not. 47.6 (June 2012), pp. 323-334. 1ssN: 0362-
1340. por: 10.1145/2345156.2254103. URL: http://doi.acm.org/10.
1145/2345156.2254103.

GCC, the GNU Compiler Collection. Project Homepage. URL: https://gcc.
gnu.org/ (visited on 07/16/2014).

Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. “A
genetic algorithm for optimized feature selection with resource constraints
in software product lines.” In: Journal of Systems and Software 84.12 (2011),
pp. 2208 -2221. 1ssN: 0164-1212. por: http://dx.doi.org/10.1016/
j.jss.2011.06.026. URL: http://www.sciencedirect.com/science/
article/pii/S0164121211001518.

ISO. ISO/IEC 9899:2011 Information technology — Programming languages
— C. Geneva, Switzerland: International Organization for Standardiza-
tion, 2011, 683 (est.) URL: http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail .htm?csnumber=57853.

Jenkins CI. Project Homepage. URL: http://jenkins-ci.org/ (visited on
07/13/2014).

Kconfig. the Linux kernel documentation. URL: https://www.kernel.
org/doc/Documentation/kbuild/kconfig-language . txt (visited on
07/21/2014).

Brian W. Kernighan. The C Programming Language. Ed. by Dennis M.
Ritchie. 2nd. Prentice Hall Professional Technical Reference, 1988. 1SBN:
0131103709.

Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schroder-Preikschat, Daniel Lohmann,
and Riidiger Kapitza. “Attack Surface Metrics and Automated Compile-Time
OS Kernel Tailoring.” In: Proceedings of the 20th Network and Distributed
Systems Security Symposium. (San Diego, CA, USA, Feb. 24-27, 2013). The
Internet Society, 2013. URL: http://www.internetsociety.org/sites/
default/files/03_2_0.pdf.

C.T. Lee, J.M. Lin, Z.W. Hong, and W.T. Lee. “An Application-Oriented Linux
Kernel Customization for Embedded Systems.” In: Journal of information
science and engineering 20.6 (2004), pp. 1093-1108. 1ssn: 1016-2364.

https://www.kernel.org/doc/Documentation/trace/ftrace-design.txt
https://www.kernel.org/doc/Documentation/trace/ftrace-design.txt
http://dx.doi.org/10.1145/2345156.2254103
http://doi.acm.org/10.1145/2345156.2254103
http://doi.acm.org/10.1145/2345156.2254103
https://gcc.gnu.org/
https://gcc.gnu.org/
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2011.06.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2011.06.026
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://jenkins-ci.org/
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
http://www.internetsociety.org/sites/default/files/03_2_0.pdf
http://www.internetsociety.org/sites/default/files/03_2_0.pdf

References 99

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

LG E960 / Google Nexus 4 Technical Specification. URL: http://www.lg.com/
us/support/products/documents/Nexus4_0One_sheeter.pdf (visited
on 07/15/2014).

Jorg Liebig, Christian Késtner, and Sven Apel. “Analyzing the Discipline of
Preprocessor Annotations in 30 Million Lines of C Code.” In: Proceedings of
the Tenth International Conference on Aspect-oriented Software Development.
AOSD ’11. Porto de Galinhas, Brazil: ACM, 2011, pp. 191-202. 1sBN: 978-
1-4503-0605-8. por: 10.1145/1960275.1960299. URL: http://doi.acn.
org/10.1145/1960275.1960299.

Lineo uLinux - Embedded Linux. Publisher Homepage. URL: http://www.
lineo.co.jp/modules/products/ulinux.html (visited on 07/13/2014).

Linux kernel coding style. Linux kernel documentation. URL: https://www.
kernel.org/doc/Documentation/CodingStyle (visited on 07/13/2014).

Linux Tiny. Embedded Linux Wiki. URL: http://elinux.org/Linux_Tiny
(visited on 07/09/2014).

LLVM Linux. Project Homepage. URL: http://1lvm.linuxfoundation.
org/index.php/Main_Page (visited on 07/13/2014).

Onion Pi. Adafruit Learning System. URL: http://learn.adafruit.com/
onion-pi/ (visited on 09/27/2013).

OOM Killer. Linux Memory Management. URL: http://linux-mm.org/
00M_Killer (visited on 07/13/2014).

OPcache. PHP Documentation. URL: http://php.net/manual/en/book.
opcache. php (visited on 07/13/2014).

Yoann Padioleau, Julia L. Lawall, and Gilles Muller. “Understanding Collat-
eral Evolution in Linux Device Drivers.” In: SIGOPS Oper. Syst. Rev. 40.4 (Apr.
2006), pp. 59-71. 1ssN: 0163-5980. po1: 10.1145/1218063.1217942. URL:
http://doi.acm.org/10.1145/1218063.1217942.

PHP Hypertext Preprocessor. Official Website. URL: http://www.php.net/
(visited on 07/13/2014).

QEMU Emulator User Documentation. URL: http://qemu.weilnetz.de/
gemu-doc.html (visited on 07/13/2014).

QEMU Internals. URL: http://qemu.weilnetz.de/qgemu-tech.html
(visited on 07/13/2014).

Raspberry Pi Model B Technical Specification. URL: http://elinux.org/
RPi_Hardware (visited on 07/15/2014).

http://www.lg.com/us/support/products/documents/Nexus4_One_sheeter.pdf
http://www.lg.com/us/support/products/documents/Nexus4_One_sheeter.pdf
http://dx.doi.org/10.1145/1960275.1960299
http://doi.acm.org/10.1145/1960275.1960299
http://doi.acm.org/10.1145/1960275.1960299
http://www.lineo.co.jp/modules/products/ulinux.html
http://www.lineo.co.jp/modules/products/ulinux.html
https://www.kernel.org/doc/Documentation/CodingStyle
https://www.kernel.org/doc/Documentation/CodingStyle
http://elinux.org/Linux_Tiny
http://llvm.linuxfoundation.org/index.php/Main_Page
http://llvm.linuxfoundation.org/index.php/Main_Page
http://learn.adafruit.com/onion-pi/
http://learn.adafruit.com/onion-pi/
http://linux-mm.org/OOM_Killer
http://linux-mm.org/OOM_Killer
http://php.net/manual/en/book.opcache.php
http://php.net/manual/en/book.opcache.php
http://dx.doi.org/10.1145/1218063.1217942
http://doi.acm.org/10.1145/1218063.1217942
http://www.php.net/
http://qemu.weilnetz.de/qemu-doc.html
http://qemu.weilnetz.de/qemu-doc.html
http://qemu.weilnetz.de/qemu-tech.html
http://elinux.org/RPi_Hardware
http://elinux.org/RPi_Hardware

References 100

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Dennis M. Ritchie. “The Development of the C Language.” In: SIGPLAN Not.
28.3 (Mar. 1993), pp. 201-208. 1ssn: 0362-1340. por: 10.1145/155360.
155580. URL: http://doi.acm.org/10.1145/155360.155580.

Andreas Ruprecht, Bernhard Heinloth, and Daniel Lohmann. “Automatic
Feature Selection in Large-Scale System-Software Product Line.” In: 13th
International Conference on Generative Programming and Component Engi-
neering (GPCE ’14). New York, NY, USA: ACM Press, 2014, pp. 39-48.
pol: 10.1145/2658761 .2658767. URL: https://wwwi.cs.fau.de/
Publications/2014/ruprecht_14_gpce.pdf.

Horst Schirmeier and Olaf Spinczyk. “Tailoring Infrastructure Software
Product Lines by Static Application Analysis.” In: Proceedings of the 11th
Software Product Line Conference (SPLC ’07). IEEE Computer Society Press,
2007, pp. 255-260. 1sBN: 0-7695-2888-0. po1: 10.1109/SPLINE.2007.33.

N. Siegmund, S.S. Kolesnikov, C. Kastner, S. Apel, D. Batory, M. Rosenmuller,
and G. Saake. “Predicting performance via automated feature-interaction
detection.” In: Proceedings of the 34nd International Conference on Software
Engineering (ICSE ’12). (Zurich, Switzerland). Washington, DC, USA: IEEE
Computer Society Press, June 2012, pp. 167-177. 1sBN: 978-1-4673-1067-3.
pol: 10.1109/ICSE.2012.6227196.

Norbert Siegmund, Marko Rosenmiiller, Martin Kuhlemann, Christian Kast-
ner, Sven Apel, and Gunter Saake. “SPL Conqueror: Toward optimization
of non-functional properties in software product lines.” English. In: Soft-
ware Quality Journal 20.3-4 (2012), pp. 487-517. 1ssN: 0963-9314. por:
10.1007/s11219-011-9152-9. URL: http://dx.doi.org/10.1007/
s11219-011-9152-9.

Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schroder-
Preikschat. “Efficient Extraction and Analysis of Preprocessor-Based Variabil-
ity.” In: Proceedings of the 9th International Conference on Generative Program-
ming and Component Engineering (GPCE ’10). (Eindhoven, The Netherlands).
Ed. by Eelco Visser and Jaakko Jarvi. New York, NY, USA: ACM Press, 2010,
pp. 33-42. 1sBN: 978-1-4503-0154-1. por: 10.1145/1868294.1868300.

Samaneh Soltani, Mohsen Asadi, Dragan Gasevi¢, Marek Hatala, and Ebrahim
Bagheri. “Automated Planning for Feature Model Configuration Based on
Functional and Non-functional Requirements.” In: Proceedings of the 16th
International Software Product Line Conference - Volume 1. SPLC’12. Salvador,
Brazil: ACM, 2012, pp. 56-65. 1sBN: 978-1-4503-1094-9. por: 10.1145/
2362536 . 2362548. URL: http://doi.acm.org/10.1145/2362536.
2362548.

http://dx.doi.org/10.1145/155360.155580
http://dx.doi.org/10.1145/155360.155580
http://doi.acm.org/10.1145/155360.155580
http://dx.doi.org/10.1145/2658761.2658767
https://www4.cs.fau.de/Publications/2014/ruprecht_14_gpce.pdf
https://www4.cs.fau.de/Publications/2014/ruprecht_14_gpce.pdf
http://dx.doi.org/10.1109/SPLINE.2007.33
http://dx.doi.org/10.1109/ICSE.2012.6227196
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1145/1868294.1868300
http://dx.doi.org/10.1145/2362536.2362548
http://dx.doi.org/10.1145/2362536.2362548
http://doi.acm.org/10.1145/2362536.2362548
http://doi.acm.org/10.1145/2362536.2362548

References 101

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Diomidis Spinellis. “Global Analysis and Transformations in Preprocessed
Languages.” In: IEEE Transactions on Software Engineering 29.11 (Nov. 2003),
pp. 1019-1030. 1ssn: 0098-5589. por1: 10.1109/TSE.2003.1245303. URL:
http://www.spinellis.gr/pubs/jrnl/2003-TSE-Refactor/html/
SpiO3r.html.

systemd. Project Homepage. URL: http://freedesktop . org/wiki/
Software/systemd/ (visited on 07/13/2014).

SysVinit. Project Homepage. URL: http://freshmeat.net/projects/
sysvinit/ (visited on 07/13/2014).

Tailor HowTo. VAMOS Undertaker Project. URL: http://vamos.informatik.
uni-erlangen.de/trac/undertaker/wiki/TailorHowto (visited on
07/13/2014).

Reinhard Tartler, Anil Kurmus, Bernard Heinloth, Valentin Rothberg, Andreas
Ruprecht, Daniela Doreanu, Riidiger Kapitza, Wolfgang Schroder-Preikschat,
and Daniel Lohmann. “Automatic OS Kernel TCB Reduction by Leveraging
Compile-Time Configurability.” In: Proceedings of the 8th International Work-
shop on Hot Topics in System Dependability (HotDep ’12). (Los Angeles, CA,
USA). Berkeley, CA, USA: USENIX Association, 2012, pp. 1-6.

Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schroder-
Preikschat. “Feature Consistency in Compile-Time-Configurable System Soft-
ware: Facing the Linux 10,000 Feature Problem.” In: Proceedings of the ACM
SIGOPS /EuroSys European Conference on Computer Systems 2011 (EuroSys
’11). (Salzburg, Austria). Ed. by Christoph M. Kirsch and Gernot Heiser. New
York, NY, USA: ACM Press, Apr. 2011, pp. 47-60. 1sBN: 978-1-4503-0634-8.
DpoI: 10.1145/1966445.1966451.

Tcl Developer Site. Official Website. URL: http://www.tcl.tk/ (visited on
07/13/2014).

The Apache HTTP Server Project. Official Website. URL: http://httpd.
apache.org/ (visited on 07/13/2014).

The Core Project: Tiny Core Linux. Project Homepage. URL: http://
tinycorelinux.net (visited on 07/13/2014).

The LLVM Compiler Infrastructure Project. Official Website. URL: http:
//11lvm.org/ (visited on 07/16/2014).

Tor (previously known as The Onion Router) Project. Official Website. URL:
https://www.torproject.org/ (visited on 01/22/2014).

Upstart event-based init daemon. Project Homepage. URL: http://upstart.
ubuntu.com/ (visited on 07/13/2014).

http://dx.doi.org/10.1109/TSE.2003.1245303
http://www.spinellis.gr/pubs/jrnl/2003-TSE-Refactor/html/Spi03r.html
http://www.spinellis.gr/pubs/jrnl/2003-TSE-Refactor/html/Spi03r.html
http://freedesktop.org/wiki/Software/systemd/
http://freedesktop.org/wiki/Software/systemd/
http://freshmeat.net/projects/sysvinit/
http://freshmeat.net/projects/sysvinit/
http://vamos.informatik.uni-erlangen.de/trac/undertaker/wiki/TailorHowto
http://vamos.informatik.uni-erlangen.de/trac/undertaker/wiki/TailorHowto
http://dx.doi.org/10.1145/1966445.1966451
http://www.tcl.tk/
http://httpd.apache.org/
http://httpd.apache.org/
http://tinycorelinux.net
http://tinycorelinux.net
http://llvm.org/
http://llvm.org/
https://www.torproject.org/
http://upstart.ubuntu.com/
http://upstart.ubuntu.com/

References 102

[63] VAMOS: Variability Management in Operating Systems. Research Group
Homepage. URL: https://www4.cs.fau.de/Research/VAMOS/ (visited
on 07/22/2014).

https://www4.cs.fau.de/Research/VAMOS/

	Abstract
	1 Introduction
	2 Background and Scoping
	2.1 Variability in Linux
	2.2 Basic Concept for Automatic Tailoring
	2.3 Previous Work
	2.3.1 Procedure
	2.3.2 Limitations

	2.4 Goals of this Thesis
	2.4.1 Suggested Approach
	2.4.2 Procedure
	2.4.3 Challenges

	2.5 Related Work
	2.6 Summary

	3 Design and Implementation
	3.1 Problems on Code Manipulation
	3.2 Prototype
	3.2.1 Code Injection
	3.2.2 Kernel Module
	3.2.3 Function Injection
	3.2.4 Block Injection

	3.3 Final version
	3.3.1 PUMA
	3.3.2 LLVM/Clang
	3.3.3 Coccinelle

	3.4 Summary

	4 Evaluation on ARM Platforms
	4.1 Raspberry Pi
	4.1.1 Coder
	4.1.2 OnionPi
	4.1.3 RaspBMC
	4.1.4 Comparison with ftrace

	4.2 Google Nexus 4
	4.2.1 Ubuntu Touch
	4.2.2 Comparison with ftrace

	4.3 Summary

	5 Emulation Framework for Approaches
	5.1 Environment for Virtual Machine
	5.2 Emulator-based Code-Point Recording
	5.3 Scope of Evaluation
	5.4 Automatic Generation of Whitelists
	5.5 Evaluation of Test Series
	5.6 Summary

	6 Discussion
	6.1 Accuracy
	6.2 Selection of Features
	6.3 Granularity
	6.4 Completeness
	6.4.1 Use of Configurability in Linux
	6.4.2 Test requirements

	6.5 Untraceable and Alternative Features
	6.6 Impact on Non-Functional Properties
	6.7 Dependency Modelling Defects
	6.8 Generalization beyond Linux

	7 Conclusion and Perspectives
	Appendices
	A Development
	A.1 Injection Examples
	A.2 Macro Defined Function
	A.3 Excluded Files
	A.4 Flipper in Coccinelle

	B Evaluation
	B.1 Raspberry Pi
	B.2 Google Nexus 4
	B.3 Emulation

	C About the Author
	List of Acronyms
	List of Figures
	List of Listings
	List of Tables
	References

