
Lehrstuhl für Informatik 4 · Verteilte Systeme und Betriebssysteme

Automatic Tailoring of the Multi-Purpose Linux
Operating System on Embedded Devices

Bernhard Heinloth

Masterarbeit im Fach Informatik

September 10, 2014

Please cite as:
Bernhard Heinloth, “Automatic Tailoring of the Multi-Purpose Linux Operating
System on Embedded Devices”, Master’s Thesis, University of Erlangen,
Dept. of Computer Science, 2014.

www4.informatik.uni-erlangen.de

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Verteilte Systeme und Betriebssysteme

Martensstraße 1 · 91058 Erlangen · Germany

https://www4.informatik.uni-erlangen.de


Automatic Tailoring of the Multi-Purpose
Linux Operating System on Embedded

Devices

Masterarbeit im Fach Informatik

vorgelegt von

Bernhard Heinloth

angefertigt am

Lehrstuhl für Informatik 4

Verteilte Systeme und Betriebssysteme

Department Informatik

Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuender Hochschullehrer: Dr.-Ing. habil. Daniel Lohmann

Beginn der Arbeit: 1. April 2014

Abgabe der Arbeit: 10. September 2014



Abstract

Today’s system software can typically be configured at compile time using a com-

fortable feature-based interface to tailor its functionality towards a specific use

case. However, with the growing number of features, this manual tailoring process

becomes a more and more tedious and difficult task: As a prominent example,

the Linux kernel in v3.15 provides nearly 14,000 configuration options to choose

from. Even developers of embedded systems refrain from trying to manually build

a minimized distinctive kernel configuration for their device – and thereby waste

memory for unneeded functionality which increases per-unit costs and restrains the

adoption of Linux in cost-sensitive embedded systems.

In this thesis, I present an approach for the automatic use-case specific tailoring

of system software for special-purpose embedded systems. By the example of Linux

I compare the proposed approach with an existing technique employing virtual

machines and evaluate the effectiveness on real hardware by generating tailored

kernels for well-known applications of the Raspberry Pi and the Google Nexus 4

smartphone. Compared to the original configurations, my approach leads to memory

savings of up to 70 percent and requires only little manual intervention.
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Kurzfassung

Moderne Systemsoftware kann üblicherweise zur Übersetzungszeit unter Verwen-

dung einer komfortablen Oberfläche an die Bedürfnisse eines bestimmten Einsatz-

szenarios angepasst werden. Aufgrund der steigenden Anzahl an konfigurierbaren

Merkmalen wird diese manuelle Anpassung jedoch zu einer immer schwierigeren

Aufgabe: Ein prominenter Vertreter ist dabei der Linux Kernel, welcher in der Version

3.15 knapp 14 000 wählbare Konfigurationsoptionen bietet. Selbst Entwickler von

eingebetteten Systemen vermeiden das manuelle Erstellen einer an das System

angepassten, minimalen Konfiguration – und verschwenden dadurch Speicher für

nicht benötigte Funktionalität, was die Stückkosten erhöht und damit den Einsatz

von Linux in den kostenempfindlichen Bereich der eingebetteten Systeme behindert.

Diese Arbeit präsentiert einen Ansatz für eine automatische, an das Einsatzszena-

rio angepasste Maßschneiderung von Systemsoftware für spezialisierte, eingebettete

Anwendungen. Am Beispiel von Linux wird dieser Ansatz auf einer virtuellen Ma-

schine mit bestehender Technik verglichen. Eine Evaluation der Leistungsfähigkeit

auf tatsächlicher Hardware erfolgt durch die Benutzung angepasster Kernel in gän-

gigen Einsatzbereichen des Raspberry Pi und des Google Nexus 4 Smartphones.

Im Vergleich zur ursprünglichen Konfiguration kann die Dateigröße um mehr als

70 Prozent verringert werden, zugleich ist nur ein geringes manuelles Eingreifen

notwendig.
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Chapter 1

Introduction

Most system software can be configured to a broad range of supported hardware

architectures and application domains. A usual way is the tailoring to one’s need at

compile time, the selection is often supported by formal variability models assem-

bling optional features. The most prominent example is the Linux operating-system

family, which offers close to 14,000 configurable features across 26 architectures in

v3.15 — having an ongoing growth of configurable features by 10–20 percent every

year (Figure 1.1)!
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Figure 1.1 – Linux feature growth 2005 – 2014

This growth appears to be in-

evitable, as it is mostly caused by ad-

vances in hardware: About 88 per-

cent of all features directly deal with

low-level hardware support. Espe-

cially embedded platforms with many

derivatives and short innovation cy-

cles have become a driving force in

this process; above all the ARM ar-

chitecture used in smartphones and

tablets as well as developer boards.

The downside of these expansions:

When configuring a Linux kernel, developers are faced with a way to large number

of options. With thousands of features representing possible choices, finding the

right set of optional features specifically needed for your system is a hard and time-

consuming task — that furthermore requires detailed knowledge about both, Linux

and the platform in use. To suit as many customers and their hardware as possible,

distributors therefore ship a Linux kernel configuration with most optional features

enabled. Instead of per-use-case tailoring, we are practically back to one-size-fits-all

solutions.
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1 Introduction 2

Although this seems to be a pragmatic approach for workstations with disk sizes

of 1 TByte or more and several GByte of RAM, you want your system-software as

small as possible if you need it for a special-purpose embedded system. Currently,

Linux is already used in smartphones and is the prevailing operating system installed

on mini computers like the Raspberry Pi. But there are much more specific use cases

for small-scale systems which could be driven by Linux, such as home automation

systems or electronic control units used in the automotive industry, where low

per-unit costs are a crucial requirement [6].
In the case of Linux, this has led to the development of many special minimized

versions, like basicLinux [2], Linux Tiny [34], the commercial Lineo uLinux [32]
and Tiny Core Linux1 [59]. However, these make many assumptions about your

system and its usage, trading flexibility for size. And moreover, even on those

systems a lot of effort is required by the providing developer to find a valid minimal

configuration and keep it up to date for future kernel versions.

I believe it would be easier to take a well maintained standard distribution

and automatically derive a configuration specific to the actual needs, once

they are known.

Based on the previous work of the CADOS [8] / VAMOS [63] research group,

I present a tool-based approach for tailoring Linux on embedded devices by au-

tomatically deriving a minimal configuration for a given use case. The resulting

configuration can be used by a device manufacturer or embedded systems engineer

as a starting point for further refinements. Moreover, this approach is not only

limited to Linux but in principal easily applicable for any large-scale system software,

since it uses code injections before compile time — in contrast to previous work

requiring an extensive tracing environment.

I evaluate the approach on the example of Linux on hardware with two different

ARM-based devices (the Raspberry Pi and the Google Nexus 4 smartphone) in four

real world scenarios — leading to net memory savings of up to 70 percent compared

to the original configurations. Additionally, I establish an emulation framework

providing the ability for a detailed comparison between different implementations,

supporting future improvements by engaging it as a verification platform. Lastly,

this framework can help identifying the limitations of the general approach by

instrumenting a virtual machine.

1Tiny Core Linux is under active development and supports several platforms including Raspberry Pi.
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The remainder of this thesis is structured as follows: In Chapter 2, I present an

overview of how variability is implemented in Linux, the concept behind the previous

and the new approach as well as the related work on this topic. I depict a detailed

description about the implementation in Chapter 3, including the reasons for related

decisions made in this project. Subsequently, I demonstrate the application on hard-

ware in various real life use cases with respect to kernel size metrics in Chapter 4 and

an emulation framework with the ability for detailed comparison in Chapter 5. After-

wards I discuss these results as well as the limitations of the approaches in Chapter 6.

Parts of this work have also been published with Andreas Ruprecht and super-

vised by Daniel Lohmann as “Automatic Feature Selection in Large-Scale System-

Software Product Lines” [45] at the 13th International Conference on Generative

Programming: Concepts & Experiences (GPCE’14). While Andreas mainly focused

on the textual part, I was responsible for the development and the evaluation2.

Substantive decision concerning the approach were made together in the VAMOS

research group.

2Since both Andreas and I contributed almost equal fundamental parts, we simply decided the order
of authors by the roll of dice — our normal procedure.



Chapter 2

Background and Scoping

In the following section, I first give an idea how static variability is implemented

in Linux, that is, how configurable features and their constraints determine the

resulting binary code. To retrieve a tailored configuration, a reversed mapping

of used binary code to source code is necessary. An automated process (utilizing

FTRACE) demonstrates the basic approach in the consecutive section. Faced with the

limitations of previous work, I show the need of revising the approach to make it

applicable on embedded devices. Therefore I declare my objectives and outline the

suggested improvements based on code injection. This leads to various challenges,

which I present in the subsequent section before finally examining related work on

this topic.

2.1 Variability in Linux

Configurability in Linux is basically specified using the KCONFIG language [26]. In

KCONFIG, a kernel developer can describe a configuration option — denoted as

feature — which can be selected when specifying features desired in the kernel.

Additionally, constraints and interdependencies between configuration options can

be specified. For example, for a USB audio device it is necessary to build general

USB support into the kernel; the developer would hence describe the configuration

option for the device as dependent on USB support. Due to these obvious feature

dependencies, the KCONFIG features are organized in a tree-like structure. But

the activation of a feature in one part of this tree does not only enable all parent

feature nodes down to its root — in addition, it can (and often does [4]) trigger the

selection or deselection of features in other branches of the tree3, depending on the

preconditions described by the developer.

3Having these horizontal dependencies the structure cannot always be modelled as a tree but instead
as a directed acyclic graph — although theoretically the KCONFIG language allows circular dependencies.

4



2.1 Variability in Linux 5

Therefore the feature models become quite complex — too complex for a pure

manual configuration of the Linux kernel. In practice, the user first selects the

hardware platform via the ARCH environment variable and can then choose from all

KCONFIG features available on this platform with a graphical or text-based configura-

tion tool which ensures that the resulting configuration is valid. Several of these

features cannot only be enabled or disabled, but marked as “Module”4, enabling the

kernel to load these features on demand.

All the options selected and deselected are gathered by KCONFIG in a single kernel

configuration file called .config inside the kernel source directory.

The configuration is then interpreted by the build system to implement coarse-

grained variability. Depending on the selected features, KBUILD determines which of

the more than 38,600 files5 need to be compiled and linked to include the selected

features. In Linux this is the dominant mechanism to implement variability: In

version 3.15 almost three-quarter of all KCONFIG features are used to guide the build

system in this way6.

On the thereby selected source files, the C preprocessor (CPP) is used to imple-

ment fine-grained variability via conditional compilation (#ifdef blocks). In Linux

46 percent of all KCONFIG features are interpreted in this step to select from a total

of more than a hundred thousand conditional blocks.

Lastly, MAKE is used to set the correct compiler options, determine the binding

units and generate the Linux kernel image and any corresponding loadable kernel

modules as specified by the KCONFIG selection.

2.2 Basic Concept for Automatic Tailoring

In order to obtain a Linux configuration tailored to a specific scenario, I need a

strategy to reverse this process, that is, to find exactly those features that select

(only) the required parts of the code base.

The idea to obtain them is to run a use-case–specific workload and concurrently

observe which parts of the binary code are executed7. You then need to determine

the reverse mapping (via conditional blocks, build rules, and feature model) to those

features that have to be selected in order to have these specific code parts in the

resulting binary.

4As long the kernel supports loadable modules, triggered by the option CONFIG_MODULES.
5Kernel source files (assembly, C code or header) without helper tools/scripts or samples.
6Dietrich et al. [17] published similar results for the Linux kernel version 3.1.
7A very rough method is already shipped with Linux: make localmodconfig builds a configuration

based on the currently loaded kernel modules. This might be a handy solution for workstation users, but
it is far too imprecise for professional application in embedded systems, since only complete modules
and all statically enabled features are taken into account. Further information can be taken from the
official announcement at http://article.gmane.org/gmane.linux.kbuild.devel/3750.

http://article.gmane.org/gmane.linux.kbuild.devel/3750
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2.3 Previous Work

In an earlier approach described in a workshop paper [55], the VAMOS research

group already successfully leveraged the FTRACE infrastructure [20] to automatically

tailor Linux kernels for web server and workstation use.

FTRACE is a frame work built into the Linux kernel which can be used to gain

insight on the control flow within the kernel. The activation of FTRACE on a prepared

kernel provides a profiling interface to the user making it possible to track which

kernel functions are executed during run-time.

2.3.1 Procedure

The traditional tailoring approach consists of four basic steps, which are also depicted

in Figure 2.1:

baseline 
kernel

tailored 
kernel

solve

self-reflective
kernel

workload

feature 
conditions

B42
B23

B13
B78
B22

trace file

  4B1D
CAFFEE
991917
FACADE
55AA00

observeprepare map

1➊ ➋ ➍➌

Figure 2.1 – Overview of the kernel tailoring approach

Ê Preparation: The corresponding KCONFIG options8 instruct the compiler to use

the profiling functionality: It inserts a call to a specific mcount function at

the beginning of each translated function which is itself implemented by

the FTRACE infrastructure. Activated by additional KCONFIG options9, the

compiler includes debug information in the binary offering the ability to draw

conclusions from the original source code position.

Ë Observation: After booting the system with the prepared Linux kernel, a target

workload — adapted to the use case — will be executed on the system. This

will lead to additional functionality being triggered in the kernel.

The VAMOS tailor tool collects the data from the kernel by reading and parsing

the output pipe of FTRACE while running the workload, as FTRACE can only

buffer a limited amount of information. The addresses of executed functions

are then written into a separate output file.

8Mainly the tracing infrastructure enabled by the feature CONFIG_TRACER.
9Represented by the feature CONFIG_DEBUG.
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After the workload has been run, you save the output file for further processing

as described by the following steps.

Ì Source code mapping: In this step the information obtained from step Ë is

processed. The VAMOS tools use the kernel’s debug information to resolve

the addresses obtained from the output file to the corresponding locations in

the source code.

You now have a list of file names and line numbers of code that have been

executed in the measured scenario. For every item in this list, the precondi-

tions described by the conditional blocks around the code have to contain

dependencies described by KCONFIG. Tools described in previous work [49, 56,

16] are able to determine the preconditions described in KCONFIG and provide

an option to look up the preconditions for a given line.

A description of the complete conditions for the whole scenario observed is

obtained by conjugating all individual conditions into a propositional formula.

Í Solving: To derive a valid configuration from this list of features and precondi-

tions generated by step Ì, a (boolean) satisfiability problem (SAT) solver is

employed. The resulting assignment of variables represents the selection or

deselection of configuration options for the kernel.

As the configuration system itself might enforce additional constraints not

covered by the extracted dependencies, this partial configuration is lastly

expanded by the KCONFIG system, generating a fully valid Linux kernel config-

uration. This configuration can either be used to directly compile a tailored

Linux kernel or be used as the base for further refinement by a developer.

2.3.2 Limitations

Utilizing FTRACE to observe which parts of the code were actually executed worked

well on previously tailored x86 machines. However, I discovered it is not generally

applicable for the generation of small kernels on weaker ARM systems, as it induces

high overhead during the observation phase. For example, FTRACE records additional

information about latency and execution time (and presents the data in a comparably

verbose way), therefore taking up a lot of computation time itself. This circumstance

lead me to the next problem: The usage of FTRACE guided by UNDERTAKER tools

in user space causes not only a high resource consumption (both in memory and

computing power) but also many side effects10. Of course, the approach is only

10You are not only able to discover these side effects in the memory management and process scheduler
but, for example, in the debug- and root file system access, too. The execution of payload will suffer
from the limited memory and computing time and therefore potentially react in particular way.
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applicable on specific traceable kernels compiled with both debug information and

activated tracing/profiling environment.

Since FTRACE uses the profiling environment triggered only on function calls the

granularity of the traditional approach is basically limited to function level — the

fine-grained variability implemented by conditional compilation is not taken into

account.

Last but not least, the portability of this approach to further operating systems is

limited as it requires an extensive tracing infrastructure — even Linux itself does not

provide tracing support for every supported architecture: For example, the Motorola

68000 series is not supported. Therefore, I assume a generalization of this existing

approach to other operating systems and software product lines is quite difficult to

manage.

2.4 Goals of this Thesis

To make an automated tailoring applicable for resource constrained embedded

devices, it is necessary to reduce the overhead by avoiding the extensive FTRACE

environment. Therefore, I have to develop a less-invasive code-point recording

method regarding computing time and memory consumption. By keeping the

interaction in userspace as small as possible, I will be able to reduce undesirable

side effects.

Previous work only verified a small number of manually guided tailoring exam-

ples since this process can be quite time consuming11. This might be necessary to

demonstrate the practical relevance, but it is not suitable for a detailed comparison of

different approaches: Because of the manual intervention, the interactions involved

in processing slightly varies and produce imprecise results. Due to this limitation, I

prefer a methodical evaluation: Having an identical environment and automatically

triggered interactions I expect better comparable results. To achieve this, I suggest

building a framework engaging a virtual machine with the possibility to take all

approaches into account. It should be embedded in the CADOS infrastructure for

regression testing and supporting future developments.

Since its development is (in principal) straight forward, I will develop this

framework after successful investigation of the new code recording approach.

2.4.1 Suggested Approach

For any method based on tracking kernel activity the principle remains the same

— it is necessary to indicate executed code which depends on kernel configuration

11It usually takes more than five hours from the generation of the traceable kernel to a ready-to-use
tailored kernel — without calibration of whitelist files, of course!
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choices. To meet the disadvantages of the previous FTRACE based version, I suggest

a lean and simple approach: At the beginning of each function a specific statement

logs its execution. This level will suffice for most features in the Linux kernel

because the gross of them are a rough granularity: They only affect whole functions

or files [17]. At least in theory the new approach offers possibilities to increase the

detection: Because of the fact that configurability inside source code is mostly done

by CPP controlled blocks, it is possible to cover almost the complete configurability

by injecting into these blocks.

It seems that the easiest way to fulfil these requirements is a source code mod-

ification before compile time — due to the fact that compilers perform CPP and

code analysis in different steps. For this purpose I inject specific commands (as

CPP macro) to each of these major feature-dependent code block (demonstrated

in Listing 2.1). During the execution, an injected command switches a unique

boolean value marking the code point as ‘executed’. For the sake of simplicity, each

boolean value is a particular bit in an exportable global memory map. Since the job

is basically just flipping bits, for better understanding this new concept is referred to

as FLIPPER for the remainder of this work.

1 # include <linux/ do_sth .h>
+# include <linux/macro.h>

2

3 void baz (){
+ INSERT_MACRO1_HERE ()

4 do_sth (42);
5 }
6

7 #ifdef CONFIG_FOO
8 int foo(int i){

+ INSERT_MACRO2_HERE ()
9 return do_sth (23*i);

10 }
11 #endif
12

13 int bar(int x){
+ INSERT_MACRO3_HERE ()

14 int i=0;
15 #ifdef CONFIG_FOO

+ INSERT_MACRO4_HERE ();
16 i=foo(x);
17 #else

+ INSERT_MACRO5_HERE ();
18 i=x;
19 #endif
20 return i;
21 }

Listing 2.1 – Example of code injection concept



2.4 Goals of this Thesis 10

2.4.2 Procedure

The procedure will be similar to the one described in previous work, Figure 2.2

illustrates the differences:

baseline 
kernel

tailored 
kernel

solve

self-reflective
kernel

feature 
conditions

B42
B23

B13
B78
B22

trace file

observeprepare map

1➊ ➋ ➍➌

Figure 2.2 – Modified steps in the newly suggested kernel tailoring approach

Ê Preparation: FLIPPER analyses and patches the Linux source code before the

compilation starts. Similar to mcount in the FTRACE approach it places an

instruction at the beginning of each function. Its task simply consists of

switching a specified bit in a global bitmap. Moreover, this instruction can be

placed in every feature-dependent block (denoted by the #ifdef directive).

Ë Observation: Using the system in a predefined scenario ensures all required

functionality of the kernel will be called. In doing so the newly injected

commands from step Ê are executed, allowing us to draw conclusions from

the code actually used in the workload. Unlike the traditional approach, you

only have to read the bitmap from the system once the target workload has

finished running, as the bits have gradually been set during execution.

Ì Source code mapping: Afterwards you have to evaluate the output bitmap file

from step Ë. Whenever a bit is set, you collect the associated entry from the

mapping file generated during step Ê.

Since you have now a list of source code positions, from this point the process

is identical to the FTRACE based approach described in previous work.

2.4.3 Challenges

In order to come up with a thorough solution for deeply-embedded systems, the

approach described has to face some challenges:

Invasiveness Collecting the information about which parts of the code have been

executed must only minimally affect the observed system’s behavior. While

FTRACE was successfully used to tailoring Linux on a high-end x86-64 server

machine, it proves to be too complex for its application in a weaker system.

Trying to use FTRACE on resource-constraint devices results in altered timing

behaviour and important information about executed functions being dropped

from the output buffer, which are then not being accounted for in the resulting

configuration.
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Accuracy At the same time, it is important to gather as much information as possible

to correctly model the configuration requirements for a given scenario. As

described above, FTRACE fails to accurately collect all data due to unneeded

overhead. Especially during the early boot phase, which triggers a lot of

functionality, function calls representing critical features can easily be missed.

Completeness of the recordings By design, my approach can only take informa-

tion into account which has been triggered during the observation phase. This,

however, should not cause the tailored system to fail if additional functionality

related to the triggered functionality — for example, error handling in a driver,

when no error occurred while running the target workload — is needed during

later productive use.

Untraceable features Moreover, some configuration options like errata specific

to a certain processor or compiler flags which do not have an immediate

representation in the control flow, might not even be detectable at all. This

requires external knowledge to be taken care of while deriving a solution.

This particularly applies to KCONFIG features of string or numeric type (for

example the kernel command line or section offsets), where an automated

solving approach cannot provide any choice.

Alternatives Some KCONFIG features present a set of alternatives to the user (e.g.,

the choice of a scheduling strategy). From these, the SAT solver will simply

choose one, as there are no further constraints to observe. Additionally, the

default choice provided by the distributor might not fit the systems actual

needs. Thus, the developer needs to be able to specify previously known

selections to integrate his domain knowledge into the tailored kernel.

2.5 Related Work

In earlier work [55, 28], the VAMOS research group has been able to show the

general feasibility of tailoring a Linux kernel to a specific use case, observing im-

provements in binary size and security. As already discussed, however, the approach

presented there needs comparably strong hardware to cope with the amount of

data generated during the observation phase, rendering it useless for application in

embedded systems.

There are a number of other researchers working in the field of specializing

configurable systems, whose findings I will briefly outline:

As an example, Lee et al. [29] use a graph-based approach to identify the specific

needs of an application and the underlying Linux operating system. They subse-
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quently remove all code not required by the target application (e.g. unnecessary

exception handlers and system calls) from the source code.

Chanet et al. [9] also propose the analysis of a control-flow graph of both the

applications and the Linux kernel. Instead of patching the source code however,

they use link-time binary rewriting to eliminate unused code from the resulting

compiled kernel.

For embedded devices based on Linux and L4 Bertran et al. [5] suggest a “global

control flow graph”: Their approach eliminates dead code in binaries emanating

from entry points defined by the application binary interface.

A shared drawback of these approaches, however, is that they do not make use

of any configurability options already provided by the kernel, which could eliminate

code as well. Moreover, by patching information out of the binary they are prone

to leaving “loose ends” inside the kernel. My approach in contrast is assisted by

the configuration system itself. This ensures a valid Linux kernel configuration is

derived and used for compiling the tailored kernel.

An approach taking configurability into account when deriving a tailored soft-

ware system has been presented by Schirmeier and Spinczyk [46]. Again, static

analysis is used to determine relevant parts in the code, the authors however only

tested their work on a much smaller and less complex application with only 15

configurable features, already leading to a graph consisting of approximately 600

nodes.

In contrast, Siegmund et al. [47] use interacting configurable features to predict

non-functional properties like performance from a given configuration, and also

developed a method to automatically derive an optimized software variant [48]. Per-

haps it would be interesting to combine these results with my tailoring approach; for

example, the generation of a tailored configuration could not only consider selecting

as few features as possible, but rather select features optimal for non-functional

properties deemed important for the target use case, e.g. power consumption in an

automotive scenario.

On the other hand, my results could be used to extend their work onto the

Linux kernel. While this has not been feasible to date due to the massive amount

of KCONFIG features in Linux, the authors could reduce the problem to the features

(and their possible alternatives) identified by the tailoring approach.

To integrate preferences of the user while optimizing a configuration for non-

functional properties, Soltani et al. [50] model the selection of features as a

Hierarchy Task Network (HTN) planning process. Due to the run-time of their

approach already rising strongly when applied to a random model consisting of only

200 features, its adaption to a real-world large-scale system could prove to be very

difficult, if not impossible.
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Guo et al. [23] present a genetic algorithm to find an optimal feature selection

incorporating resource constraints in a software product line, which also performs

well for a randomly generated model consisting of 10,000 features. The generated

configuration, however, is not use-case specific: The optimization is performed using

cost vectors associated with every feature (i.e., CPU or memory consumption) rather

than considering specific functionality requirements deduced from actual system

use.

2.6 Summary

Tailoring an extensive Linux configuration of a standard distribution down to ones

need can be achieved by recording the actual executed code while running an

exemplary work load. The previous approach presented by the VAMOS research

group is based on the Linux tracing infrastructure FTRACE, which is either too

resource intensive or even not available on some architectures. As a solution, I

suggest injecting special instructions into the source code before compile-time to

record the executed code points. I will evaluate the new approach both on real

hardware to demonstrate its application and — for better comparison with the

previous approach — in an emulation framework.

In contrast to the approaches presented by other researchers, this work focuses

on a transferable solution which can support system engineers since it makes use of

KCONFIG (the Linux configuration system) and is applicable for daily use in real-world

scenarios.



Chapter 3

Design and Implementation

With respect to the difficulties on manipulating C source code with CPP macros

(briefly described in the following section), I decided to develop a rough proof-

of-concept prototype from scratch to gain experience about the new code-point

recording approach. For the final version I consider several third-party tools focusing

on source-code transformation and take the experience made with the previous

prototype into account.

3.1 Problems on Code Manipulation

While the transformation of source code to an abstract syntax tree (AST) is a

well explored challenge, the source-to-source transformation of C code including

CPP macros remains a hard problem [51]: Due to historical reasons, the macro

language is not part of the AST but a line based preprocessor task before the actual

C compilation.

The preprocessor was originally considered an optional adjunct to the

language itself. [...] This attitude persisted, and explains both the

incomplete integration of the syntax of the preprocessor with the rest of

the language and the imprecision of its description in early reference

manuals. (Dennis Ritchie, inventor of C [44])

Compilers process C code (to an AST) after successful interpretation of all CPP

macros12 — while output as pure C code is still possible13, the full procedure

regarding macros is non-reversible. The preprocessor has the ability to include

files (#include), expanding macros and controlling compilation of code segments

12According to the standard [24], the evaluation of the preprocessor directives and macros (and
deletion of all remaining ones) is the fourth step of the translation phase, while the AST is generated
after finishing all eight preprocessor steps described in the standard.

13This is often used to format/beautify code (also called “pretty printing”).

14
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(#ifdef, which is mainly responsible for the fine-grained variability in Linux). In

particular, the use of the compilation control is not limited to complete C statements

but can slice expressions in several parts — therefore it is not possible to consider

them in the C-AST. However, only the AST allows an automatic source modification

(without accidentally changing semantics).

Notwithstanding, several researchers tackled this problem and developed C

source manipulation tools like PUMA with the ability to preserve CPP macros. But

using them is not trivial at all, because of either extensive application programming

interface (API) or lacking documentation. Hence they are initially not taken into

account at the development of the prototype, while — after successful investigation

of said prototype — a full featured version regarding such C source transforming

projects is developed.

3.2 Prototype

Since wide parts of the Linux kernel source really comply the coding guidelines

[33], it seems to be sufficient to use regular expression (RegExp) to analyse the

structure of the C source. Therefore, I choose PERL as the implementation language

for the prototype because of its comprehensive RegExp support including recursive

patterns14 (which are necessary for parsing unlimited nested parentheses). Unlike

compilers, my tool processes lexical and syntax analysis together in one step. Using

fixed-point iteration algorithms, irrelevant lines are reduced according to the C

grammar [27, p. 193ff], leaving just a basic structure of the source. Of course, this

tentative implementation is not focused on incorporating the whole grammar —

for my prototype I concentrate on its main parts used in the Linux source, always

bearing possible flaws in accuracy in mind.

To prevent extensive processing of all Linux source files each time deploying the

approach to the kernel with its 38,600 source files, I prefer patch file output (in

“unified diff format” [15]) as an intermediate step instead of direct file modification:

Only a single analysis run is required for each kernel version and it takes only

seconds to apply these preprocessed changes to the Linux source.

For better comprehension in the later parts I named the prototype DURDEN — in

contrast to the final tool named FLIPPER (according to the concept).

14“Regular expressions” within the meaning of formal language theory are only able to match patterns
in regular languages (type-3 grammars in Chomsky hierarchy [10]). But since most programming
languages are context-free (type-2 grammars) — for example, they allow recursive structures — only the
expanded PERL-RegExp implementation has the ability to deal with these languages.
Note: Due specific constraints in its standard, C is in fact a context-sensitive language (type-1 gram-
mar) [21]— but this has no influence on the development of the prototype.
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3.2.1 Code Injection

Special FLIPPER commands need to be inserted in source code locations indicating a

feature-dependent code block.

Since the kernel will execute the injected code many times — thus, having a big

influence on overall performance —, it needs to be as slim as possible. Instead of

the concrete implementation, my approach introduces a CPP macro to each code

point enabling me to choose the concrete implementation afterwards.

Each inserted macro has just a single argument: A unique number as identifier

(ID) indexed by the injection routine. This ID allows the identification of the

corresponding memory allocation and enables linking executed macros to a concrete

source line.

After compilation, every injection enlarges the kernel — depending on the

architecture and optimization flag — by a net amount of one (x86 with optimization

enabled) up to eight (ARM without optimization) instructions (cf. Table 3.1 for a

more detailed comparison).

target compiler instructions15 for performing
architecture optimization bit flip byte set

arm (RISC)
disabled 8: ldr ldr ldrb orr uxtb ldr ldr strb 3: ldr mvn strb
enabled 4: ldr ldr ldrb orr strb 3: ldr mvn strb

x86 (CISC)
disabled 3: movzbl or movb 1: movb
enabled 1: orb 1: movb

Table 3.1 – Comparison of required assembly code instructions for approaches
compiled on ARMv6 and AMD64/x86-64 architecture using GCC with optimizer
flag -O2 (or -O0 in case of disabled optimization)

In practice, the concept of flipping just a single bit suffers from concurrency

flaws: On many architectures it is not possible to do an atomic bit flip. But since it

is possible to have multiple injected macros executed at the same time on multicore

(or during scheduling even on single core) systems race conditions can occur. While

a mutual exclusion lock (mutex) for each macro seems to incur too much overhead,

I prefer solving concurrency by using the smallest, direct addressable data type16

for each macro instead of a single bit. On the one hand this increases the size of

the map by the number of bits used in this data type17, but on the other hand no

additional expensive locking operations are necessary. This option can be activated

by module configuration.

15This collection lists only the machine code instructions directly involved in the macro. Additional
instructions to recover registers may be inserted depending on the code as well as two additional words
required for bitmap memory address computation on arm.

16Usually a one byte character.
17Obviously eight times for byte-wise access.
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3.2.2 Kernel Module

To handle and retrieve the data collected by FLIPPER, I decided to create a kernel

module with a userspace interface. Each bit in a global bitmap represents a well

defined code point — relocatable by the identifier. On execution, the injected macro

propagates the usage of the code point by activating the corresponding bit in a

global map. The kernel module deals with exporting this bitmap as a symbol in

order to make it accessible from anywhere in the kernel — including loadable kernel

module (LKM) — and implements a char device providing the ability to access its

data. The bitmap size is hard-coded at compile time; to configure the size of the

bitmap, KCONFIG is employed18.

3.2.3 Function Injection

Injecting a function with the basic source structure is quite easy: The tool performs

a macro injection at the first position immediately after any initial variable decla-

rations19. Only a single restriction is necessary: You must not apply the macro to

source files employed outside the kernel context since you cannot access the global

map from the kernel module in these cases (and, moreover, these parts are mostly

not relevant for tracing). Basically the Linux kernel has three types of such source

files:

• Tools only involved in the kernel compilation process

• User space libraries

• Routines utilized on early boot (such as unpacking the kernel)

The automatic detection of such files is a give-away of the build system: The

compilation process will report a missing symbol (referring to the global bitmap).

In order to address this issue, I incorporated a blacklist which avoids the parsing

of defined files. It turned out that these problematic files are pretty static — once I

set up the blacklist (presented in A.3), there was no need to change them later (not

even when switching the Linux kernel version).

However, LKMs can be triggered even if there was no actual module inter-

action since Linux provides initialisation calls: The function referred to by the

module_init() macro is automatically executed after the module was successfully

loaded into memory. To avoid this, I prevent functions denoted by such special

macros from being injected20.

18It is absolutely necessary to choose a size at least of the quantity of all injection points — otherwise
overflows can occur, which may cause a kernel panic or an undefined behaviour.

19Since the kernel compiles with the flag -Wdeclaration-after-statement, this is necessary to
avoid a flood of warnings at compile time.

20However, my detection method is limited: For example, it does not support special handling for
helper functions called from the initialisation routine — once helper functions are triggered by the tool,
these may mislead the SAT solver to include unused modules. For further information see Section 6.1.
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3.2.4 Block Injection

As mentioned earlier, features can sometimes be very fine-grained (although it does

not happen often): It is possible that a configuration choice enables just a single

source-code line within a function — or even just a part of it — by using CPP macros.

To cover all code variability, I implemented a heuristic routine to handle these

feature-depended CPP blocks in the Linux source code. The fundamental procedure

is similar to functions: My tool has to introduce code at the beginning of each

CPP block. While the macro injection of blocks containing only complete simple

statements21 is easy, I was faced with a wide range of more complex applications22:

• Compound statements23 may require extra treatment: A block inside a switch

case statement including multiple cases needs to be injected multiple times

— the macro must be placed after each case (or the default) keyword to

guarantee its execution on every condition value (an example is provided in

Listing A.2). Cascaded else if conditions are handled in a similar way.

• Single statement blocks without curly braces (appearing after compound

statements) require special treating, too. I figured out that instead of applying

the block indicating braces, the comma operator is the least invasive injection

(like shown in Listing A.1). The broad range of possible applications is

especially shown in case of using the shorthand if syntax, but this comma

operator injection seems to be the best practice in complete expressions

anyway (similar to Listing A.3): First the corresponding code of the macro is

evaluated (while its return value is discarded) and the result of the second

(original) statement is used after its evaluation for the further proceeding.

• Conditional blocks can — and will — occur inside expressions. To place my

macro, I make use of the comma operator again and construct an identity

transformation24: The first operand utilizes the activation of the corresponding

bit, while the second one is just the constant “0”: ( MACRO() , 0 ).

The algebraic addition operator (denoted by the plus sign “+”) concatenates

the new expression to the existing one inside the block — its position naturally

depends on the placement of the previous operator (cf. Listings A.4 and

A.5). Although this solution works in practice with current Linux kernel

versions without restrictions, hypothetically this procedure can change the

semantics of the code: Multiple expressions connected by operators with

21For example, assignments and function calls.
22Liebig, Kästner, and Apel [31] denoted them as “undisciplined annotations”, accounting about

4 percent of the CPP usage in the Linux kernel v2.6.28, besides 3 percent blocks which could not be
classified.

23Like conditions and loops — characteristic trait: It includes additional statements.
24An operation which does not change the value.



3.2 Prototype 19

different precedence are evaluated according to the order of operations —

the example Listing 3.1 will accidentally multiply the identifier b with the

constant “0” and actually erase its value. At first sight, the multiplication

operator (denoted by the token “∗”) in conjunction with the constant “1”

seems to be the better identity relation referring to its operator precedence.

Since it is not possible to use the multiplication operator on pointer type

expressions (this will cause a compile time error), I refused this concept as

the tool will not perform type checking.

1 a = b *
2 #ifdef CONFIG_FEATURE
3 +( ( SET_DURDEN_BIT (23) ) , 0 ) +
4 c +
5 #endif
6 d;

Listing 3.1 – Pathological example presenting limitations of the approach

Nevertheless, there still remain a few special constructs, which I cannot correctly

cover by my common heuristics mentioned above. Their detection is not trivial: A

flawed injection can either cause a compile time error (in case of invalid syntax),

lead into run-time errors or — even harder to recognize — incorrect behaviour

without visible errors by changing the semantics. An exemplary code snipped from

Linux kernel v3.6 is presented in Listing 3.2. However this particular code was

revised in later versions25, I could find similar examples in each kernel version,

especially located in the drivers section.

686 entry.saddr =
687 #if IS_ENABLED ( CONFIG_IPV6 )
688 (entry. family == AF_INET6 ) ?
689 inet6_rsk (req)->loc_addr . s6_addr32 :
690 #endif
691 &ireq -> loc_addr ;

Listing 3.2 – Example of Conditional block inside expression with prefix

operator (Linux v3.6 source file net/ipv4/inet_diag.c)

For testing purposes, I overcome this problem by blacklisting such files as a short

term solution; I was able to figure out about twenty files with incorrect injections

(files listed in A.3).
25But this code was part of the kernel for eight years: It was introduced in kernel version 2.6.10

(December 2004) in net/ipv4/tcp_diag.c!
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3.3 Final version

After extensive testing of the prototype DURDEN, the experiences are taken into

account to develop the final version. Due to the problems in modifying CPP macros

(see 3.2.4), I decided to abandon the concept of CPP block injections: Comparison

of various tests revealed no notable difference to a configuration file obtained with

only function entries patched26 — actually I was not even able to create a single

Linux test case which perceptibly benefits from the additional block injections.

The final version, called FLIPPER (corresponding to the approach), only adopts

the principle of injecting whole functions once from the prototype (described in

3.2.3), which allows me to record just the execution of every function. This decision

ensures a long-term application of the approach without the need to care for a new

file blacklist in each new version.

In contrast to the prototype, third party tools are involved to guarantee a seman-

tically correct macro injection. I choose PUMA, LLVM/CLANG and COCCINELLE for

further investigations.

3.3.1 PUMA

The PURE MANIPULATOR (PUMA) used in ASPECTC++ [1] (and UNDERTAKER) has

the ability to handle CPP code while manipulating C sources. It is integrated in the

UNDERTAKER tool, and the VAMOS team is familiar with its interface. However, its

development has almost stopped and the ASPECTC++ team announced the integra-

tion of LLVM/CLANG instead of PUMA for the upcoming version 2.027, which could

indicate the definite end of its development. Under these circumstances I considered

an implementation based on this library disadvantageous and discontinued work.

3.3.2 LLVM/Clang

Due to historical reasons, Linux is closely connected to the GNU COMPILER COL-

LECTION [22] (GCC), although the young project LOW LEVEL VIRTUAL MACHINE [60]
(LLVM) with its C language frontend CLANG [12] is becoming more and more popular

in the last few years. Recent projects28 try to port the kernel to the LLVM/CLANG

compiler, though these projects have unsolved issues and are not in a stable state

yet. One advantage of CLANG is the well-documented and simply modifiable code

base29 compared to GCC.

26A more detailed description can be found in Section 6.3.
27As announced by a ASPECTC++ project member in a personal conversation.
28Like the popular LLVMLINUX project [35].
29This advantages are claimed by the developers on their official comparison site: http://clang.

llvm.org/comparison.html.

http://clang.llvm.org/comparison.html
http://clang.llvm.org/comparison.html
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Providing tools for modifying the AST and rewriting source makes CLANG a

perfect starting point for a clean implementation. However, first attempts of the

source-to-source transformation pointed out that the AST is generated after handling

the CPP macros with the available context information: CPP blocks enabled by

KCONFIG options are ignored in the AST. At the code rewrite step, these ignored

parts are pasted untouched to their origin code points.

1 int foo (){
// Flipper code would be inserted here

7 return 23;
8 }
9

10 #ifdef CONFIG_BAR
11 int bar (){
12 return 42;
13 }
14 #endif

Listing 3.3 – Code injection by CLANGs source rewrite engine ignores

KCONFIG enabled conditional blocks

Since the KCONFIG macros are evaluated at kernel compilation time, they are

not available during preparation. Combining the steps code analysis, patching and

compiling could be a solution, but I rejected this approach owing to its need for

extensive modifications and the open issues in the LLVM kernel projects mentioned

earlier.

3.3.3 Coccinelle

In contrast to the traditional patch format, the semantic patch language (SmPL)

suggested by Laboratoire d’Informatique de Paris 6 is independent from line numbers:

Source-code lines are referenced by their semantic structure. Moreover, a single

patch is not limited to a single file but can modify thousands of files without

knowing them at creation. Since the beginning of development, Padioleau, Lawall,

and Muller [39] focused on Linux as primary target with the purpose to get a grip

on the collateral evolution problem (and it already made its way into the Linux

kernel source).

Even though their open-source application COCCINELLE is the only available tool

able to interpret this language, SmPL seems to fulfil my requirements: I decided to

base the final version upon COCCINELLE/SmPL.

Although the language was not originally created for targeting use cases like

described in this thesis, the integrated PYTHON support enables a wide range of

functionality beyond source code modification: The generation of the mapping file
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(consisting of bit field number, file name and line number for each entry) as well as

the blacklisting engine make use of PYTHON. Hence it is sufficient to run a single

COCCINELLE instance with the full Linux directory as argument instead of employing

an additional script guiding through the files.

Albeit COCCINELLE can modify the Linux source directly, I suggest generating a

traditional patch file for the whole source as common usage. My experiences with

the prototype exposed this progression as best practice: A portable patch can be

applied to an appropriate kernel version in seconds — and be revoked easily.

Drawbacks

Although the code parsing of the new approach is based on — theoretically — the

full C language grammar (instead of the partial implementation in the prototype

parser), and I was able to significantly improve the code readability of my tool at

the same time, there are still some noticeable drawbacks left:

• Since the source code injection of a file with the COCCINELLE approach requires

the generation of a complete AST, it is a more time consuming procedure than

the prototype. For instance, the final FLIPPER version processes a Linux kernel

in about 90 minutes while the prototype DURDEN needs less than five minutes

on the same software/hardware configuration.

• Unlike the prototype, it is not able to patch null functions: Due to limitations

of SmPL in the latest version, it is not possible to address empty function

bodies for inserting the macro. Although this affects about 1,500 functions, I

figured out that the missing lines have no measurable impact.

• Similarly to above, it turned out that an insertion of #include directives using

this tool is not as simple as you could expect: Since SmPL needs semantic

context to attach new code, you cannot address the top of files without other

CPP directives in it. I handle this special case by inserting a directive in

front of each patched function — with include guards30 solving the possible

occurrence of multiple insertion.

• Lastly, COCCINELLE mismatches functions defined in multiline CPP macros

as normal functions (like A.6). Performing an injection to files with such

definitions will invalidate the syntax and lead to a Linux compile error. Since

the interpretation of such code in the AST is an incorrect behaviour and

just about a dozen files in the current kernel are affected, my preliminary

solution is quite simple: I add the files to the blacklist until the developers of

COCCINELLE fix the problem.

30A common way to prevent multiple processing, described in https://gcc.gnu.org/onlinedocs/
cpp/Once-Only-Headers.html.

https://gcc.gnu.org/onlinedocs/cpp/Once-Only-Headers.html
https://gcc.gnu.org/onlinedocs/cpp/Once-Only-Headers.html
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3.4 Summary

Automatically injecting code in all Linux C source files without changing (or break-

ing) semantics is a difficult task. I developed a prototype from scratch with not

only the ability to extend all functions in Linux by a recording macro, but also

(correctly) inserting such macros into most of the conditional blocks present in the

source. Only a few occurrences could not be assigned to the right working set, thus

leading to incorrect behaviour as long as you do not manually exclude the respective

source files. However, it turned out that I get the same result, whether I just tracked

function calls or in addition enabled the extensive block recording — but having a

higher overhead and error rate in the last case.

Therefore, I rejected the idea of a special treatment for CPP blocks and developed

a maintainable tool incorporating in functions only. The revised version31 is based

on COCCINELLE — a tool which is predestined in modifying Linux source files.

31The complete source of this implementation is annexed in Listing A.7.



Chapter 4

Evaluation on ARM Platforms

To show the broad applicability of the new approach in various real-world use cases,

I evaluate FLIPPER on two distinguishing devices based on the ARM architecture in

four different scenarios and compare the results with the baseline kernel.

The Raspberry Pi is my first platform for evaluation: With over 3 million delivered

units32 it is probably the most popular low cost mini computer on the market. While

it is used in very different purposes this evaluation tries to cover a part of the variety

by selecting three distinct situations:

• Using the Raspberry Pi as media center running “raspBMC”

• Learning to write web browser applications on “Coder”

• Setting up a wireless access point which makes the user’s web traffic anony-

mous by routing it through the TOR [61] network (called “OnionPi”)

In contrast to the resource-constrained mini computer, the second part is fo-

cussing on a high-end smartphone: The LG E960, also known as Google Nexus 4.

This choice allows the demonstration of the approach on high-performance devices

with more specific hardware and higher throughput due to its multicore processor.

The smartphone with the development version of Ubuntu Touch as the operating

system is used in a typical manner including making calls, taking pictures and data

exchange with external devices.

The overall structure of the trace test runs remains the same, which I denote

as twenty minute approach: After booting the device with a prepared kernel, it is

allowed to settle for ten minutes to avoid potential inferences of any initialization

code run after startup. During the next ten minutes the use-case-specific actions are

performed manually in a pre-defined schedule. Afterwards, the backup of the trace

file and the shutdown is initiated automatically.

32Source: http://www.raspberrypi.org/raspberry-pi-at-buckingham-palace-3-million-sold/

24
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Note: For a fair comparison, the term “features” denotes only binary and ternary

KCONFIG features in this chapter since the rare value features are not handled by

the VAMOS tools. A detailed documentation of the results for each test cases with

respect to these items can be found in in the Appendix B.

4.1 Raspberry Pi

To evaluate the effectiveness of the proposed approach, I generate a configuration

from the data collected by FLIPPER and measure the reduction achieved in terms of

KCONFIG features, text segment size and the number of source code lines compiled

compared to the baseline kernel.

I performed all trace (and verification) runs on identical Raspberry Pi in hardware

revision 2 (2011.12) with 512 MByte memory33, the operating system and userland

was transferred on 16 GByte Class 10 SD cards. The following steps were performed

on a 16 core34 (Intel Xeon E5620) server machine with 24 GByte memory – but in

principal any current desktop machine model with a similar amount of memory

could do as well, of course. Mapping the bitmap to source code locations, correlating

these to configuration items and generating the solution with the given setting takes

around 10 minutes, with the latter part taking most of the time.

I was able to successfully boot the tailored kernels, after I put 14 test case-

independent features onto a whitelist (listed in B.2), which I identified manually by

comparison with the original configuration. This was less tedious than it sounds, as

the items provided were mainly specific to the hardware (for instance, to bypass

ARM errata) or other low-level features that I could identify by their name.

4.1.1 Coder

Google developer Jason Striegel published his open source project Coder [13] in

September 201335, which turns the Raspberry Pi into an educational web developer

platform assisting in learning HTML, CSS and JavaScript: The mini computer acts

as a server providing an easy to use web-based application manager and editor

with a few sample apps. For the evaluation, I used version 0.4, which comprises a

Linux kernel 3.6.11. As the system is running as a server and only used via network,

no keyboard or screen were connected; the only external cable besides the power

supply was an Ethernet cable (RJ45).

33Full hardware specification can be found at B.1.
34In fact, multiple cores are not necessary at all for this step: The tool is only running single threaded!
35Official announcement in GoogleDev blog: http://googledevelopers.blogspot.de/2013/09/

coder-simple-way-to-make-web-stuff-on.html.

http://googledevelopers.blogspot.de/2013/09/coder-simple-way-to-make-web-stuff-on.html
http://googledevelopers.blogspot.de/2013/09/coder-simple-way-to-make-web-stuff-on.html
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The schedule (Figure 4.1) was quite simple: I connected to the service after ten

minutes of idling, changed some of the code provided in the default installation

package and executed a web application.

Time in min
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

system boot
idle

login and navigation

modifying code

space rocks

shutdown

Figure 4.1 – Schedule for collecting addresses at the Coder scenario on Rasp-
berry Pi

The results provided in Table 4.1 show that the number of enabled KCONFIG

features is reduced by about 74 percent, leading to a text segment by almost a fifth

of its original size. Using DWARF debug information, I also determined the number

of source code lines actually compiled into the kernel. The reduction is similar to

the other metrics, with savings reaching more than 70 percent.

Metric Baseline Tailored

KCONFIG features 1,678 429 (25.6%)
Text segment (byte) 22,621,072 4,835,648 (21.4%)
Source code lines 845,627 239,680 (28.3%)

Table 4.1 – Results for the Coder scenarios using three metrics. Percentages
shown are quotients between the FLIPPER tailored version and the correspond-
ing original configuration file

Using the tailored kernel, I was able to use all functionality provided by Coder:

Modifying code on the web interface as well as running the sample applications

worked perfectly. Connecting additional devices (not used in the tracing scenario)

like monitor or keyboard has (as expected) no effect since these drivers are removed

during the tailor process.

This lead me to the question: How do uninitialized hardware components

influence the power consumption?

To answer this question, I employed a digital multimeter36 which allows me

to measure (and record) the electric current of the USB power supply by using a

constant voltage of 5 V DC.

36HAMEG HM8012 with a DC current measurement resolution of 1 mA, connected to a PC using the
RS-232 interface.
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Figure 4.2 – Comparison of power consumption between original and tailored
kernel in the Coder scenario

Comparing the power consumption (Figure 4.2), I was able to observe reductions

of around 1–2 percent with my tailored kernel: While the baseline kernel has

an average consumption of around 391 mA after finishing boot (with frequently

occurring amplitudes of 426 mA), my tailored kernel needs about 376 mA in this

stage (with less amplitudes). Although there is a very slight improvement, I do not

think this is really a notable difference. Therefore I decided to refuse a detailed

investigation in the later scenarios as long as a quick examination does not indicate

a significant change.

4.1.2 OnionPi

The second scenario employs the Raspberry Pi as a proxy for the TOR anonymity

network. This is done by installing the TOR client software on top of a standard

Raspbian Linux distribution using the Linux kernel version 3.6.11. The OnionPi was

set up according to instructions37 provided by ADAFRUIT [36], a company operating

an online platform (and selling enhancements) for educational electronics like the

Raspberry Pi.

Connectivity to the internet is provided via the Ethernet port, while a miniature

USB wireless adapter38 is used to establish a WiFi network. Traffic sent through this

network will subsequently be routed via TOR.

To reconstruct normal usage, a computer connected to the WiFi network after

the settling phase, visited web sites using a browser and fetched emails from a server.

After five more minutes, a smartphone logged into the network and was then used to

visit web sites. A graphical representation of the schedule is provided in Figure 4.3.

37The version and available software packages of September 27th, 2013 were used.
38Model EW-7811UN by EDIMAX, supporting IEEE 802.11b/g/n.
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Time in min
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

system boot
idle

connecting with laptop

web browsing

retrieving mails

connecting mobile phone

mobile browsing

shutdown

Figure 4.3 – Schedule for tracing OnionPi on Raspberry Pi

The results for the tailored Linux kernel are provided in Table 4.2. As with

the previously presented test case, the number of features present in the tailored

configuration file is reduced to a fourth, the text segment shrinks to 22 percent its

original size and the number of source code lines mentioned in the DWARF debug

information is decreased to less than a third.

Metric Baseline Tailored

KCONFIG features 1,678 426 (25.4%)
Text segment (byte) 22,688,201 5,041,604 (22.2%)
Source code lines 846,554 252,362 (29.8%)

Table 4.2 – Results for the OnionPi scenarios using three metrics. Percentages
shown are quotients between the FLIPPER tailored version and the correspond-
ing original configuration file

The tailored kernel was tested with the schedule again and provided the same

functionality as before without any problems or noticeable performance degradation.

Additionally, I let the Raspberry Pi provide a WiFi hotspot in the departments

laboratories for a period of over two weeks. Daily use with various devices proved

the tailored system to be stable and to perform without any problems in a realistic

environment.

4.1.3 RaspBMC

In this scenario, which resembles the very common usage of the Raspberry Pi as

a media center, the Raspberry Pi is connected to a screen via HDMI, speakers are

plugged into the audio port, internet connectivity is provided using Ethernet and a

USB keyboard39 (with media key extension) is used to handle the machine. I used

39CYA Model 210XX by Cherry
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the December version40 raspBMC, running on a Linux kernel 3.10.25. The available

extra video decoding hardware (both MPEG2 and VC-1) is enabled by adding the

corresponding license keys to the Raspberry Pi boot configuration.

After the settling period mentioned earlier, I first started an integrated app

to show the current weather. Subsequently, a video clip was streamed from a

remote SFTP server, followed by multiple accesses to the web front end for remote

controlability. Lastly, two more video clips were played. A detailed description can

be obtained from Figure 4.4.

Time in min
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

system boot
idle

weather app

MPEG video via network

keyboard interaction

ssh access

web interface

local MPEG2 video

local MPEG4 video

shutdown

Figure 4.4 – Schedule for tracing raspBMC

In contrast to the two use cases presented before, the tailored kernel was not

fully functional out of the box: Parts of the frame buffer device41 are configured as

modules — but for successful compilation these options must be statically included.

Since this seems to be a bug in the Linux KCONFIG model, I manually corrected these

options and successfully continued with the process.

Metric Baseline Tailored

KCONFIG features 1,819 452 (24.8%)
Text segment (byte) 22,960,278 5,656,040 (24.6%)
Source code lines 842,460 275,403 (32.7%)

Table 4.3 – Results for the raspBMC scenarios using three metrics. Percentages
shown are quotients between the FLIPPER tailored version and the correspond-
ing original configuration file

40Announcement and further information at http://www.raspbmc.com/2013/12/
raspbmc-december-update/.

41Configuration options CONFIG_FB and CONFIG_FB_BCM2708.

http://www.raspbmc.com/2013/12/raspbmc-december-update/
http://www.raspbmc.com/2013/12/raspbmc-december-update/
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The results provided in Table 4.3 show that the number of enabled KCONFIG

features is reduced by over 75 percent and the number of lines compiled into the

kernel is reduced by more than two thirds, leading to the total size of the text

segment less than a quarter of its original size.

Using this generated kernel, I initially tested its functionality by running the tasks

from the workload description again. I was not able to detect any degradation in

performance or usability and could also use features provided by raspBMC I did not

trigger during the observation phase. When I subsequently handed out one of the

systems running on a tailored kernel to fellow researchers, they did not experience

any problems during daily private use as a media center over the course of four

months.

4.1.4 Comparison with FTRACE

When I tested the different approaches, I found FTRACE being capable of collecting

enough addresses to compile a usable Linux kernel. Thus, I also generated config-

urations for all scenarios using the FTRACE collection method. While the kernels

produced were able to boot into the scenarios42, and the resulting configurations

were even smaller (see Figure 4.5 for a quick comparison, details for each use case

are attached in B.1), a manual comparison showed that especially during boot a lot

of information was lost due to the high load induced by the FTRACE data collection

mechanism. However, the kernel configuration system was luckily able to recover

most43 of the required configuration options.
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Figure 4.5 – KCONFIG feature selections for the Raspberry Pi test cases when
using different data collection methods

42Only at the raspBMC use case I encountered a problem while tracing: Since the Linux kernel version
3.10 produces many identically function calls at boot time, the UNDERTAKER tools in default configuration
are not able to process them as fast as necessary, the system will get stuck. Only setting very short flush
cycles for the FTRACE ignore module (about 100 times more flushes than the default one) will allow the
system to start up.

43One restriction I discovered so far is, a tailored raspBMC kernel is not able to shut down the system
using the graphical user interface — in contrast to the new FLIPPER approach.
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The problem is examplarily shown in Figure 4.6 for the raspBMC use case de-

scribed above. During start up and for over five more minutes in the settling phase,

the number of observed code points increases continuously. After this, execution

of the scheduled actions clearly shows the detection of additional functions and

distinctly visible increases in enabled KCONFIG features. Analysing the same scenario

using the new FLIPPER approach, I find a very different situation: While the function-

ality triggered by the defined actions from the schedule can still be seen as a very

slight increase in the number of code points recorded, the configuration generated is

already almost completely stable from the beginning of my recordings (in both cases,

snapshots of the current tracing progress were collected as early during the upstart

phase as possible). The evolution of features is similar for all use cases I presented

in this work; it is, however, not compulsive for every possible case. Nevertheless,

while the measurement time frame is just long enough for the FTRACE approach to

generate a working tailored kernel, FLIPPER delivers a more comprehensive solution

much earlier during the observation phase.
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Figure 4.6 – Evolution of recorded points in the source code and KCONFIG

features enabled in the resulting configuration for the raspBMC use case using
both old and new approach

4.2 Google Nexus 4

When running on a smartphone, the need for configurability to support a lot of

hardware vanishes: As almost no peripheral hardware can be connected, the kernel

configuration will not need to provide drivers for them. On the other hand, a

smartphone often uses very special hardware, making it hard for an engineer to

derive a valid initial Linux kernel configuration. Additionally, some phones do not

support SD cards to be inserted for more storage space, thus it would be good to

have an operating system as small as possible.



4.2 Google Nexus 4 32

4.2.1 Ubuntu Touch

Canonical, the company behind the distribution Ubuntu, announced a mobile op-

erating system based on Linux in early 201344: The Ubuntu Phone45. Started as a

fork of the Android based CyanogenMod [14] it became a stand-alone mobile Linux

distribution with distinctive features. Although currently no preinstalled Ubuntu

Touch phones are delivered46, the open access to the sources and the early stage of

development supported my decision to choose it for further investigation with my

approach. Due to the limited number of supported devices, I had to use a Google

Nexus 447 for the evaluation.

The test load defined by the schedule (Figure 4.7) imitates everyday use of

smartphones: After the initial waiting interval, the phone was first used to play

some music stored on the device. Then the internal front and back camera were

used to take pictures, WiFi was enabled and used by the web browser to load a web

site containing a video. After that, one incoming and one outgoing phone call were

initiated. Lastly, the phone was connected to a PC via USB and the images taken

were transferred from the phone to the computer.

As the Google Nexus 4 was the main development platform for Ubuntu Touch, I

presume the developers already have invested a lot of time to reduce the number of

activated KCONFIG features. Consequently, the number of enabled features in the

baseline configuration is already more than 35 percent lower than in the kernels

provided for the Raspberry Pi. Therefore I assumed, my approach would not be able

to achieve a similar level of reduction in terms of enabled KCONFIG features as in the

Raspberry Pi case.

The results are shown in Table 4.4. As expected, the number of enabled KCONFIG

features is reduced by only 33 percent, thus lessening the text segment size by

17 percent and the number of source code lines compiled by 12 percent.

Metric Baseline Tailored

KCONFIG features 1,119 752 (67.20%)
Text segment (byte) 14,464,220 12,037,224 (83.22%)
Source code lines 564,324 494,082 (87.55%)

Table 4.4 – Results for the automated tailoring of Ubuntu Touch on a Google
Nexus 4 smartphone.

44See http://blog.canonical.com/2013/01/02/its-official-ubuntu-now-fits-phones/.
45During the development the project was promoted with different names like “Ubuntu Phone” and

“Ubuntu Touch” (which both had multiple meanings), while the — currently discontinued — project
“Ubuntu for Android” was promoted as “Ubuntu for Phones” in the beginning. For clearance I denote the
mobile operating system simply as “Ubuntu Touch”.

46According to Canonical Ubuntu Touch based phones are shipped in 2014: http://insights.
ubuntu.com/2014/02/01/mwc-2014-online-press-pack/

47The full hardware specification can be found at B.2.

http://blog.canonical.com/2013/01/02/its-official-ubuntu-now-fits-phones/
http://insights.ubuntu.com/2014/02/01/mwc-2014-online-press-pack/
http://insights.ubuntu.com/2014/02/01/mwc-2014-online-press-pack/
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Time in min
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Figure 4.7 – Schedule for tracing Ubuntu Touch on Google Nexus 4

The tailored kernel was then used for the same purposes as described in the

schedule, and performed flawlessly. Furthermore, it was possible to use previously

untouched functionality: I was able to send and receive text messages, which was

explicitly not part of the test load — this might be an evidence for the coarse-grained

configurability of drivers48.

While the reduction is not as high as for the Raspberry Pi use case, my approach

is able to slice a third off the number of enabled configuration items. This result

could provide valuable hints to the developers what additional features could be

removed.

4.2.2 Comparison with FTRACE

As for the Raspberry Pi, I tried to generate a tailored kernel using FTRACE. On the

Google Nexus 4, however, FTRACE simply produced way too much output: The heavy

load generated by the continuous evaluation of the FTRACE output pipe most of

the times lead to a watchdog being triggered, effectively breaking boot and my

measurements.

In the rare cases the system was able to boot, the collected data was insufficient,

as too much information was lost due to the limited buffer size of FTRACE: To make

a generated partial solution bootable, over 180 KCONFIG features – more than a fifth

of the total number of activated features — had to be added through the whitelist

48This topic is discussed in 6.4.1.
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mechanism, rendering FTRACE practically unusable for data collection for even only

an approximation of an automated solution.

4.3 Summary

Both on the Raspberry Pi and on the Google Nexus 4 smartphone the new FLIPPER

approach is able to clearly reduce the kernel size — without any limitations on the

usability of the particular scenario. About three-quarters of the baseline kernel size

can be cut off in the Raspberry Pi use cases. Although the former FTRACE-based

approach can even enhance this reduction with almost all required functionality,

this is only possible due to the favorable circumstances like the extensive idle time.

In the case of the Ubuntu Touch on a Google Nexus 4 smartphone only the new

FLIPPER approach is applicable; I was able to reduce the number of features to about

two-thirds compared to the baseline configuration without influencing the necessary

functionality of the workload.



Chapter 5

Emulation Framework for Approaches

I demonstrated the applicability of the new approach in different, manually oper-

ated real-world scenarios. However, the VAMOS/CADOS UNDERTAKER development

toolchain lacks an automatically evaluation environment for the tailoring tools —

therefore I decided to address this subject. For regression testing and a better com-

parability between the different approaches the initial state as well as interactions

with the target system have to be as similar as possible. This can be achieved with a

customizable virtual machine with pre-defined automatic simulation of input. In

addition, such a standardized test suite will offer the ability to verify future develop-

ment in the UNDERTAKER tailor project. In this chapter I first draw the development

of the framework, afterwards I present an evaluation concerning all approaches.

The workflow of the emulation framework shown in Figure 5.1 is completely

automated: At Ê, required kernel modifications are performed and the baseline

configuration is enhanced (if necessary for the specific approach). The compilation

step Ë ships the kernel as a compressed package, which is then installed in the Ì

virtual machine. After an idle phase, the scheduler executes predefined interactions

on the server. According to the particular approach, the code points are resolved

from the trace file and solved by UNDERTAKER in step Í. Then the building steps

are repeated again with the tailored configuration — Î building the kernel and Ï

running it in a virtual machine — but without tracing this time. If the interaction

with the tailored kernel returns the same output as the original one, the tailored

configuration is considered fully functional (step Ð).

Although this framework should be able to cover different use case scenarios,

I revived the web server set up described in previous work for this thesis: A client

performs multiple page requests to the web server and verifies the response. To

simulate administrator access, the client additionally executes a few commands via

a remote shell. A detailed description of the complete schedule is attached in B.10.

35
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Figure 5.1 – Schematic representation of the new approach’ emulation work-
flow

As an additional comparison, the framework performs an extra run without any

UNDERTAKER tailor modifications in the virtual machine while the emulator records

the code points in order to provide the best possible trace results which can be

achieved: Every address is recorded while this approach allows side effect free

analysis49 at the same time. This — labelled EMUTRACE — allows me to draw further

conclusions concerning untraceable features and their whitelist items.

49Unlike the UNDERTAKER tool, which is employed as a userspace application during the FTRACE approach
and therefore produces side effects.
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5.1 Environment for Virtual Machine

Several systems provide extensive emulation support. Besides QEMU system-mode

emulation with its support for the kernel virtual machine (KVM) the tools BOCHS,

VMWARE and VIRTUALBOX are perhaps the most popular ones. For the implemen-

tation of the program counter logger, the source code must be accessible. Except

for VMWARE, all tools are available in an open source version. With respect to

performance, the support of hardware virtualization should be favoured. Aside from

BOCHS, this is supported by most implementations. The final decisive feature which

convinced me of using QEMU/KVM was its extensive integration in Linux, enabling

an easy utilisation.

Although my framework should be able to be extended to any Linux kernel

and userland, I chose the Debian distribution as the primary target because of its

popularity50. To be future-proof, I decided to deploy the testing release “Jessie”. As

the UNDERTAKER tailor tools were just supporting Ubuntu, I had to expand them on

the functionality of preparing Debian systems51.

Copy-on-write images allow an identical starting point. I have manually installed

the initial system, containing — besides the minimal Debian Jessie base system —

the Apache 2 web server [58], which operates with the PHP5 [40] script language.

A PHP implementation of the prime number algorithm “Sieve of Eratosthenes” is

responsible for producing workload. No graphic is configured, remote access to the

server is granted by HTTP, HTTPS and SSH (with password authentication only).

The TOOL COMMAND LANGUAGE [57] (better known as TCL) extension EXPECT

[18] allows quick scripting of automated interactions using common tools52, which

are the key requirements for a comparable simulation.

Since the other VAMOS tools’ daily verification is managed using the continuous

integration (CI) tool JENKINS [25], an integration of this framework into the research

groups JENKINS instance suggests itself. Unlike the other projects strict hardware

requirements need to be taken into account: Due to limitations of the SAT solver

the target machine needs to have enough free memory (more than 20 GByte) for

solving extensive trace files.

50Since it is hard to measure distributions popularity, there are no reliable sources. However, according
to websites like http://distrowatch.com/dwres.php?resource=popularity a very high popularity
of Debian (or Debian-based) distribution can safely be assumed.

51Consequently, the tools are now finally able to cover all three main initialisation systems: Beside
UPSTART [62] now SYSVINIT [53] (for the Raspbian mentioned above in 4.1) and SYSTEMD [52] (new
in the upcoming Debian Jessie release like announced (as voting result) on the official mailing list, see
https://lists.debian.org/debian-ctte/2014/02/msg00405.html).

52In detail: WGET, CURL, SSH and SCP are utilized.

http://distrowatch.com/dwres.php?resource=popularity
https://lists.debian.org/debian-ctte/2014/02/msg00405.html
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5.2 Emulator-based Code-Point Recording

Although the QEMU project is becoming quite complex (with over 1 million physical

lines of code53), the very basic procedure of the dynamic binary code translation

remains clear: For each piece of guest code to be executed, the cache is queried for a

decoded host code representation. Without a representation, it is read and analysed

block wise (that means until the next instruction performing a jump or modifying

the host CPU state) [3]. The following steps have changed in detail by switching

from DYNGEN to TCG (tiny code generation) due to performance issues54, but both

implement a way of translating the block to host compatible code and executing

it. A good working point seems to be the first part of this procedure: Each time a

new translated block is generated, the program counter (PC) has encountered an

untranslated block and can be taken into the trace file. Certainly this will include

the PC from userland applications (outside of the kernel address space), but this

is not a problem at all: I simply configured the UNDERTAKER tailor tools to ignore

invalid addresses.

Because of the dynamic memory allocation, I cannot support loadable kernel

modules in this approach. Though it is conceptually possible to figure out the

memory position and recompute the code positions, I decided to not carry out this

extension due to its limited application: Just disabling module support appears to

me as a practicable solution for this scenario.

Instead of enhanced modifications using an internal set which manages all logged

addresses, I prefer a simple solution for the new EMUTRACE to ensure backward

and (hopefully) future compatibility55: My QEMU semantic patch (shown in B.1)

enhances the corresponding function to print relevant data to the standard output

stream. Due to the fact that QEMU entirely flushes the 16 MByte or 32 MByte56

cache (depending on the version), multiple occurrences of the same address will

certainly happen. However, this is neither a problem for the UNDERTAKER tool nor

a remarkable performance impact: Tests in the simulation process demonstrated

that the output including duplicates is just twice the size of a distinct address list.

Finally, I simply recycle the address lookup tools created for the FTRACE approach

to retrieve the position in the code: I obtain the required information employing

ADDR2LINE in association with a debug kernel, the latter tools in the chain are used

in their usual manner.
53Code evolution visualized at http://www.ohloh.net/p/qemu/analyses/latest/languages_

summary.
54According to the latest QEMU INTERNALS MANUAL [42] ‘2.2 Portable dynamic translation’.
55In fact, my patch is applicable for all versions in the last 10 years since Bellard added the ‘precise

self modifying code support’ (Git commit: http://git.qemu.org/?p=qemu.git;a=commitdiff;h=
d720b93d0bcfe1beb729245b9ed1e5f071a24bd5) — even though there was a code refactoring in
2012: https://lists.gnu.org/archive/html/qemu-devel/2012-12/msg00407.html!

56According to the QEMU INTERNALS MANUAL [42]: ‘2.5 Translation cache’.

http://www.ohloh.net/p/qemu/analyses/latest/languages_summary
http://www.ohloh.net/p/qemu/analyses/latest/languages_summary
http://git.qemu.org/?p=qemu.git;a=commitdiff;h=d720b93d0bcfe1beb729245b9ed1e5f071a24bd5
http://git.qemu.org/?p=qemu.git;a=commitdiff;h=d720b93d0bcfe1beb729245b9ed1e5f071a24bd5
https://lists.gnu.org/archive/html/qemu-devel/2012-12/msg00407.html
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First tests pointed out that this approach is not as applicable for appropriate

comparisons as expected: The other approaches (the code injection based as well as

the FTRACE based ones) ignore triggering functions involved in module initialisation,

but the EMUTRACE logs — without any exception — every block. To cure this

problem, I have extended EMUTRACE by a new routine to detect and remove code

points which are involved in the module initialisation process57 from the trace file

afterwards58. For a better understanding the extended version is called EMUTRACE

(NO INIT).

5.3 Scope of Evaluation

Although flexibility was one of the design concepts of this framework and many

architectures can be used59, this evaluation intentionally focuses on the x86-64

platform: Since the FTRACE approach was originally designed for this architecture, I

achieve the best preconditions for a comparison.

This work focuses on the Linux kernel versions released within the last year

(from version 3.1060 to 3.1561) and employs the latest third party tools involved

in the workflow available: UNDERTAKER in version 1.5, QEMU in version 2.1.0 (both

updated daily from their development repositories) and the release candidate 21

of COCCINELLE 1.0. The virtual machine was configured with 4 GByte RAM and a 4

core symmetric multiprocessor system without graphic or sound support.

Although the schedule is very similar, some specific settings and interactions

depending on the approach must be performed:

DURDEN is the prototype version of the new concept. For the evaluation, the block

injection described in 3.2.4 is disabled due its drawbacks. At the end of the

simulation, the map is gathered using remote file transfer (SCP).

FLIPPER denotes the revised (final) version of the new approach. Its results differ

slightly from the prototype because of the limitations of COCCINELLE (described

in 3.3.3). Besides this code patching, the framework handles tailoring with

the final version in the same way like the prototype.

57Functions referred by the module_init() macro.
58However, since the detection only covers the static initialisation functions itself — but neither helper

functions nor CPP macro generated initialisation routines —, this is not a complete removal and therefore
it may lead to over-approximate results.

59Depending on QEMU — which currently supports over two dozens hardware targets according to its
documentation [41] (1.1 Features).

60Published June 30th, 2013; release message http://article.gmane.org/gmane.linux.kernel/
1518301.

61Published June 8th, 2014; release message: http://article.gmane.org/gmane.linux.kernel/
1720707.

http://article.gmane.org/gmane.linux.kernel/1518301
http://article.gmane.org/gmane.linux.kernel/1518301
http://article.gmane.org/gmane.linux.kernel/1720707
http://article.gmane.org/gmane.linux.kernel/1720707
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FTRACE based approach (described in previous work). The framework installs the

UNDERTAKER tracing tools remotely according to the TailorHowTo [54].

FTRACE (EARLY BOOT) is the enhanced version utilizing special kernel boot parame-

ters to start tracing in an early stage of system start up. Although the amount

of additionally logged addresses is strictly limited62, it provides better results

compared to the FTRACE approach. Additional to the FTRACE set up, the kernel

parameters are modified in the boot loader.

EMUTRACE, like described above, requires no interaction within the virtual machine,

but for the emulation a modified version of QEMU (without KVM support) is

engaged. Due to the slow software emulation a significantly higher idle time

after boot is granted.

EMUTRACE (NO INIT) is identical to EMUTRACE concerning the trace file creation

— only an additional step removing module_init() entries is appended

afterwards.

5.4 Automatic Generation of Whitelists

Instead of generating whitelists with domain knowledge, I am now able to auto-

mate its generation employing this environment (according to the trail and error

principle): At first, a complete run is performed without any whitelist involved. If

the resulting kernel runs well, no whitelist is necessary. Otherwise, every feature

item only present in the original configuration63 (but not in the resulting) requires

v3.10

v3.11

v3.12

v3.13

v3.14

v3.15

0 1 2 3 4 5 6

DURDEN

FLIPPER

FTRACE

FTRACE (EARLY BOOT)

EMUTRACE

EMUTRACE (NO INIT)

Whitelist items

Li
nu

x 
ke

rn
el

Figure 5.2 – Necessary items in whitelist depending on method and kernel
version

62Due to its design as a ring buffer and memory constraints, its usability depends on the scenario.
63In most cases this will result to several hundreds of items. However, it seems to be sufficient to use

a previous successfully tailored configuration for comparison. This trick will lead — depending on the
quality of the previous tailoring — to only a dozen of items left and can be processed in a few hours
(instead of weeks)!
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a detailed evaluation: For each case a temporary whitelist is constructed, containing

all items missing in the new configuration but without the selected one. If the later

steps (tailoring, compilation, simulation) are successfully performed, the selected

item is not necessary for the whitelist and is dropped.

Of course minimizing of an existing, perhaps over-approximated whitelist to

only necessary items can be done in a very similar way, just by testing each item on

the whitelist in the way described before.

configuration feature count

CONFIG_UNIX 36
CONFIG_BINFMT_SCRIPT 36
CONFIG_RD_GZIP 16
CONFIG_DEVTMPFS_MOUNT 12
CONFIG_INOTIFY_USER 10
CONFIG_OPTPROBES 3

Table 5.1 – Accumulated occurrence of whitelist items after minimization
in the emulation framework for every version and approach (in total 36
whitelists)

Applied to the relevant Linux kernel versions above, I am able to minimize the

whitelist — depending on the case — down to only one or two entries. The fairly

evenly sizes in Figure 5.2 (listed in detail at B.3) seem to be no coincidence at all:

Only 6 distinct whitelist items are present in all cases (listed in Table 5.1). While

CONFIG_UNIX and CONFIG_BINFMT_SCRIPT are needed independently of approach

or version, items like CONFIG_DEVTMPFS_MOUNT and CONFIG_INOTIFY_USER are

only (or, in case of CONFIG_RD_GZIP at least mainly) used in the FTRACE variants.

5.5 Evaluation of Test Series

I performed every approach on each kernel version with the corresponding whitelist.

Every run was able to generate a fully functional tailored kernel on the first try,

however the amount of reduction varied markedly between the different collection

approaches.
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Method
collected code static summarized
addresses points features modules features

Baseline 1,402 2,741 4,143

DURDEN 13,860 13,860 674 97 771 (18.61%)
FLIPPER 13,064 13,064 673 96 769 (18.56%)
FTRACE 7,731 7,009 421 17 438 (10.57%)
FTRACE (EARLY BOOT) 7,388 6,767 435 17 452 (10.91%)
EMUTRACE 14,128,732 84,577 988 2,502 3,490 (84.24%)
EMUTRACE (NO INIT) 20,284,134 76,962 931 1,706 2,637 (63.65%)

Table 5.2 – Collected data and the resulting features by automated tailoring
with different approaches (Linux kernel v3.15), compared to the Baseline.

EMUTRACE logs more than 14 million memory addresses64 in the latest Linux

kernel v3.15, which can be resolved using debug information to almost 85,000

unique code points (Table 5.2). Although the number of collected addresses is a

thousand times higher than the other approach, these values should not be overrated:

Only the code points are really important for the further processing, which is only

about six times higher than FLIPPER. The feature reduction is only about 16 percent,

while the removal of module_init() in EMUTRACE (NO INIT) clearly improves the

result to about 36 percent. However, the modules still clearly remain the main

course for this insufficient tailor result65. The new approaches achieve a decrease of

about 81 percent compared to the baseline configuration, while the FTRACE based

approaches both produce a set containing only a ninth of its original items — a

reduction of 89 percent.

Method code size (in bytes) compiled C lines

Baseline 73,499,239 2,494,433

DURDEN 9,865,887 (13.42%) 394,160 (15.80%)
FLIPPER 9,866,461 (13.42%) 394,333 (15.81%)
FTRACE 5,574,146 (7.58%) 233,056 (9.34%)
FTRACE (EARLY BOOT) 5,678,067 (7.73%) 237,098 (9.51%)
EMUTRACE 53,297,546 (72.51%) 2,226,537 (89.26%)
EMUTRACE (NO INIT) 41,454,897 (56.40%) 1,735,278 (69.57%)

Table 5.3 – Comparison of tailored kernel binaries (Linux kernel v3.15)

64In fact, this number can vary considerably in the emulation based approaches (the v3.15 EMUTRACE

(NO INIT) lists 20 million memory addresses) — but in this case these are not only unique addresses: Due
to the flush mechanism in QEMU (described in 5.2) the quantity differs much without having an effect on
the resulting code points.

65Obviously code outside module_init() is executed during module initialisation — but since the
EMUTRACE approach was created to identify the limitations of the general approach (and successfully
does), I rejected to carry out a further investigation to solve this problem.
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Comparing the binaries of the resulting kernel, I can observe a reduction to

only 8 percent of machine code instructions at the FTRACE based approaches, while

the new FLIPPER approach reaches about 13 percent of the original code size (cf.

Table 5.3). The number of (unique) compiled C lines are with about 9 percent and

16 percent respectively in an equal proportion. However, the kernel created using

the emulation approach is about 56 percent up to 73 percent the size of the baseline

kernel (depending on the handling of initialisation functions), with 70 percent to

almost 90 percent compiled C lines.
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Figure 5.3 – Number of enabled features depending on approach and kernel
version

Figure 5.3 depicts that the results for each approach are pretty static and fairly

independent from the underlying Linux kernel version. Detailed information on this

evaluation of additional versions is provided in B.3. In fact, I was not able to track

significant changes in over 350 runs, neither did I find a constellation where even a

single approach failed with a valid whitelist66.

5.6 Summary

With employing QEMU and standard Linux tools, I established a framework which

supports regression testing for further development and provides an easy to use

interface for detailed comparison of the existing approaches. I successfully verified

the test against all six Linux kernel versions published within the last year, effectively

without manual guidance67 since the framework has the ability to automatic gener-

ate (or minimize) whitelists, too. Due to the weak limitation of resources68 in this

66The only problems I encountered were defects in the Linux variability model, which are not fixed in
previous versions (like the missing dependency of CONFIG_IRQ_DOMAIN in CONFIG_GENERIC_IRQ_CHIP
in v3.12 and earlier) — I solved them by backporting the bugfix patch.

67In two cases a manual intervention in the Linux kernel source was necessary since the older kernel
versions had unresolved bugs.

68The resource settings of the emulation framework used for the evaluation of this chapter can be
compared with a current desktop workstation: 4 GByte RAM and 4 core symmetric multiprocessing.
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evaluation, the findings are comparable to the Raspberry Pi (described in Section

4.1): Kernels tailored with the FLIPPER approach are more extensive than those

generated using FTRACE, but require less guidance (by whitelists) and computing

time.

Since the software emulator interprets every instruction69, I can achieve the prob-

ably highest accuracy possible in the general approach with the new emulator-based

code-point recorder EMUTRACE. Together with an automatic whitelist generation/re-

duction script it discovered untraceable features — the only additional features

necessary for tailoring a fully functional kernel with my new FLIPPER approach,

whereas the former FTRACE approach requires additional guidance in the whitelist.

However, due to the lack of a comprehensive removal routine for initialisation

functions (discussed in 6.1), the high accuracy lead EMUTRACE to generate large

kernel configurations — far too much for a fair comparison with the remaining

approaches.

69Having the hardware acceleration KVM disabled, of course.



Chapter 6

Discussion

Although I successfully developed a code recording tool which deals with limited

resources on embedded systems, I did not implement all of my initial objectives —

like the manipulation of conditional blocks — into the final version. In the following

section I will discuss the limitations and challenges of my approach in respect to

existing techniques.

6.1 Accuracy

The completeness of data collected by FTRACE becomes significantly worse when

aiming for smaller systems: Even if you are lucky and a tracing infrastructure is

available on your target system, the low computing performance is a big issue: The

slower the FTRACE output can be produced and parsed, the higher is the probability

to lose potentially important functions which were executed. Setting a bit, on the

contrary, will not affect performance as badly. In my test cases, the overhead induced

was less than five percent. Nevertheless, I would like to point out that (as opposed

to the old FTRACE version) the FLIPPER approach cannot be disabled at run-time: The

small overhead will always be present during the observation phase.

The most obvious difference between the old and new approach is the tracing

speed: FLIPPER almost instantly collects the code points, while the old approach

needs several minutes (more than seven minutes in the raspBMC scenario for

instance) until a saturation is reached and no new code points are triggered.

Another important difference is the point of time at which the collected data

starts: Using FTRACE, you can in principal only collect data as soon as the file systems

have been mounted by the kernel and an initialization script can be executed70.

70An enhancement using the kernels ability of early boot FTRACE logging into memory slightly improves
the number of traced code points like presented in the emulation evaluation (Table B.3). Because of the
restricted amount of reserved memory, this finally causes just an increase of up to a fifth more data —
with a very limited impact on the resulting configuration (only up to 3 percent new features).

45
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This inevitably leads to missing data from the very beginning of the boot process,

which provides important information about features corresponding to the hardware

Linux is running on. This turned out to be the case: Using the FLIPPER method,

which can effectively begin to collect data in the very first function the (unpacked)

kernel executes, I was able to identify more relevant configuration options.

In comparison with the FTRACE approach, there is still another improvement in

accuracy: Inlined functions (no matter if instructed by the inline keyword or not)

are usually not accounted by FTRACE since the compiler performs the responsible

profiling enhancements only after performing all code optimizing steps71. This is

— besides the code points triggered at boot time — a reason for the increase of

traced code points: For example, in the raspBMC use case the FTRACE approach

identified about 6,700 called functions, while the FLIPPER method found more than

11,000 relevant places. Moreover, a relation between the whitelist and the number

of trace points can be clearly observed in the emulation approach: While the new

approach logs up to twice the number of real code points (and in the worst case at

least 150 percent), the number of necessary whitelist items has clearly decreased.

This higher accuracy on the other hand had an unforeseen impact: When using

a kernel without loadable kernel module support, Linux probes the devices. Thus, it

will invoke the initialization routines for every driver very early during boot — even

if the device itself is not present. For this case, an execution of the module_init()

function72 is not sufficient to determine if a driver is needed. But if more functions

in the driver are called, the device is most likely present in the system.

While FTRACE is not able to detect these initialisation calls, I currently handle this

situation in FLIPPER by excluding functions linked in the module_init() macro from

being patched. For the EMUTRACE approach, the triggered functions are removed

from the trace file before further processing continues, which results in the same

outcome as the FLIPPER procedure.

If the initialization function calls other functions itself, they will still be registered

in the FLIPPER bitmap and their configuration requirements will be accounted for

in the generated configuration. However, I found the over-approximation in terms

of enabled KCONFIG features to be reasonably small — the functions called by the

initialization functions are mostly related to memory and data structure allocation —

and, moreover, helpful to accurately detect more functionality being exerted during

the test run.

But in the case of EMUTRACE, the tailored kernel size remains disproportionately

high. Closer examination reveals that initialisation routines are still the reason: For

71Because of the GCC option -fearly-inlining (enabled per default), it is not possible to indicate
such inlined functions in the optimized intermediate code — they appear to be a regular part of the code
block.

72In fact, several initialisation hooks exist, but module_init() is the only one available for modules.
For a detailed list of these macros take a look at /include/linux/init.h of the Linux source.
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example, the CPP macro module_hid_driver73, a helper macro for registering

human interface device (HID), is used in every HID driver. During compilation, this

macro expands to a new initialisation function, which is executed automatically

at boot — with the result that every HID driver from the original configuration is

triggered by EMUTRACE and hence in the tailored configuration. Since I developed

the EMUTRACE for comparison only, I refrain from expanding the removal procedure.

It becomes clear that approaches with higher accuracy need smarter routines to

handle automatically called initialisation functions to prevent an over-approximated

configuration.

6.2 Selection of Features

As can be seen from Figure 6.1, the Linux kernel generated using FLIPPER in the

Raspberry Pi scenario has about a third more KCONFIG features enabled in its con-

figuration when compared to the FTRACE result. The features contained in this set

are either a result of the higher accuracy by detecting the inline functions or mainly

used for low-level purposes74.

Baseline
1874 features

FTRACE
364 features

13 extra features 
in both approaches

8 features by 
FLIPPER approach

1 unique feature by
FTRACE approach

features not 
present in the 
baseline

350 core features 
in every kernel

126 additional features 
with FLIPPER compared 

to FTRACE approach

FLIPPER
497 features

Figure 6.1 – Quantitative comparison of contained KCONFIG features (includ-
ing value features) between the original kernel and tailored version in the
raspBMC use case

73Defined in /include/linux/hid.h of the Linux source.
74For example, they specify parts of the block device hardware support and other hardware probing

routines.
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A remarkable fact is that almost all features of the configuration created by the

FTRACE approach are part of the FLIPPER solution — in contrast to the (expected)

behaviour by comparison with the baseline: Since both approaches can only remove

features, it is not surprising that their results are mostly a subset of the default

configuration. The few features75 enabled only in the generated configuration

and not present in the original Linux kernel arise from the SAT solver approach:

Some KCONFIG variables in the formula neither have been directly required during

workload execution nor do appear in other features’ dependencies. Thus, they will

be seen as free variables; enabling or disabling them is at the SAT solver’s discretion.

One target for future work is to identify such free variables and provide guidance

to the SAT solver; for example it could be instrumented to prefer the assignment

present in the initial configuration file or to preferably consider options which

optimize desired properties of the target system.

6.3 Granularity

One goal for the FLIPPER approach was to achieve a more accurate and fine-grained

result for the feature-dependent blocks contained in the code, thus defining stronger

dependency requirements and generating a configuration matching the use case

more exactly.

Indeed, the majority of feature based code blocks is handled by conditional CPP

directives, but since the possibilities of compiler optimization made their way into

developers head, you can observe a slight opening for alternative feature handling.

The usage of the IS_ENABLED macro76 demonstrates this development: Introduced

in Linux kernel version 3.1 it is used both in CPP and C code to evaluate feature

dependent blocks77. It can be safely assumed that this development of using C

conditions (instead of CPP ones) will keep increasing in the upcoming versions like

shown in Figure 6.2. While this clearly enhances the sources readability, it does

not only prevent an easy injection (without control flow analysis), but also requires

a extensive enhancement of tools developed in the VAMOS project (especially

UNDERTAKER).

Even if just #ifdef blocks are taken into account, it does not run like clockwork:

As described in 3.2.4, I was confronted with uses of CPP in the Linux source code,

where the insertion of additional instructions is a very hard task — these occurrences

must be solved manually.

75A detailed list of the particular items and a short explanation is provided in B.1.
76Defined in include/linux/kconfig.h.
77It was figured out building a macro for both CPP and C code to check if an argument is defined or not

is quite tricky — a solution posted to Linus Torvalds Google Plus code challenge https://plus.google.
com/+LinusTorvalds/posts/9gntjh57dXt made its way directly into kernel since v3.4 (rc4).

https://plus.google.com/+LinusTorvalds/posts/9gntjh57dXt
https://plus.google.com/+LinusTorvalds/posts/9gntjh57dXt
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Figure 6.2 – Usage of the IS_ENABLED macro in the Linux kernel versions for
the last three years

I filtered-out such problematic points in the code, ran the same test schedule

and generated a configuration from this more exact approach. A first preliminary

comparison revealed no notable difference to a configuration file obtained with only

function entries patched.

From this, I conclude that conditional blocks inside a function’s body do not

contribute as much to the total variability as expected, therefore it is sufficient to

collect data at a function level granularity; thus, my patching tool only inserts the

bit-set operation into the beginning of every function definition encountered.

6.4 Completeness

During the observation phase, an application will most likely not trigger every single

functionality it could. For example, certain errors and thus, execution of error

handling code, might not occur during the test run, while they could arise during

later, more extensive use of the tailored system.

This is a principle problem of the approach: If you can only track events that

are actually triggered, and no errors occur during observation, you can not prove

that every functionality possibly required later will be included in the resulting

configuration.

In practice, this problem seems to be less severe than it appears to be: In all of

my test cases (including those from previous work of the VAMOS research group,

where we tailored a server system and a workstation [55]), I did not encounter

a single situation where any required functionality was missing — even though

me and my colleagues have been using the tailored devices for a period of several

months and exerted previously unused functionality such as sending text messages

from the Google Nexus 4 phone.
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Yet, there are also structural reasons that mitigate the potential risk of missing

some important functionality during the observation phase, as shown below.

6.4.1 Use of Configurability in Linux

Linux mostly uses configurability in a way which leads to related, but possibly

untraced functionality to be included during compilation: As mentioned in Chapter 2,

more than 70 percent of the features in KCONFIG are used by KBUILD to determine

whether a source file has to be compiled or not (see Figure 6.3); this particularily

applies to drivers, where the corresponding configuration option will either include

the whole driver for a device or leave it out entirely.

3,233 
27 %

5,325 features (45%) in code (#ifdef)

2,092
18 %

6,574
55 %

8,666 features (73%) used by KBUILD

(a) v3.6.11 (used in OnionPi)

3,183 
26 %

5,607 features (46%) in code (#ifdef)

2,424
20 %

6,536
54 %

8,960 features (74%) used by KBUILD

(b) v3.15 (latest)

Figure 6.3 – Usage of KCONFIG features in different Linux kernel versions

This observation implies that in most cases triggering one single function inside

a source file will be sufficient to have the whole compilation unit present in the

resulting kernel, thus leading to the inclusion of additional unobserved functions,

such as error handling code, from the same file.

In contrast, the 26 percent of KCONFIG features only present as CPP instructions

implement fine-grained variability. As this technique is mostly used in the central

parts of the kernel, missing functionality or inconsistency would already be detected

as errors during link time or startup.

Note: The remaining features neither used by KBUILD nor in code (about 17 per-

cent according to Dietrich et al. [17]) are KCONFIG internal meta features.

6.4.2 Test requirements

For special-purpose embedded systems, system developers typically have to provide

test suites achieving very high or complete coverage of the system anyway (e.g., for

certification purposes). Running these test suites as the workload during observation

will greatly diminish the risk of missing, but possibly required code in the tailored

kernel.

Finally, I would like to point out that the completeness concern would also arise

if an expert manually tailors the system: How can the system developer be sure to

have selected every configuration option required for his needs? Hence, I consider

my automated approach as practically usable.
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6.5 Untraceable and Alternative Features

I employ white-/blacklists to provide user guidance in situations my approach cannot

cover. Since even EMUTRACE (which collects every code point) is not able to generate

a working kernel without a whitelist, I can precisely name untraceable features. The

detailed comparison of the runs performed in Emulation Framework for Approaches

clearly shows that FLIPPER only needs a whitelist with these untraceable features —

in contrast to the traditional approach, which requires additional items to succeed.

The usage of such lists, however, is not an issue: Selecting features necessary

for a certain device can be done once (for example by the subsystem maintainer

for this particular device or a distributor); like shown with a single whitelist for all

Raspberry Pi scenarios it is not dependent on the use case.

It will also be much less work than manually getting a Linux vanilla kernel to

work on a specific device. My tools can directly be used to simplify this process:

When trying to determine features required for a new device, a developer could

generate a configuration without using any lists and specifically search the difference

between this preliminary configuration and the initial file for features relevant for

the architecture or the specific use case. I used this approach to quickly determine

the 14 architecture-dependent KCONFIG features provided in the Raspberry Pi use

case (listed in B.2).

In theory, it is possible to automate the whitelist creation — although I present a

proof-of-concept in Section 5.4, manual control might be necessary to achieve best

results: Whitelists can be used for further guidance of the feature selection process,

thus allowing domain experts to specify optional KCONFIG features they identified as

being important for a certain system.

Particularly, for features presenting alternatives it might not be desired to simply

use the (possibly randomly selected) option from the SAT solver, but rather to

provide a choice known to be correct in advance — for example, for the memory

allocator real free alternatives exist: Besides the default SLAB there are SLUB and

SLOB. While every one has its own gain, the SLOB allocator might be predestinated

for use in tailored kernel since it is designed to be memory efficient while having

the smallest code base78. Once better alternatives are detected, experts can use

whitelists to handle such preferences.

Features of string or numeric type (for instance, the kernel command line) are

automatically taken from the original configuration and used after the SAT solver

has generated an assignment for the binary features: Hence, the corresponding

values in the tailored configuration are simply the same as in the distribution kernel.

78As announced at http://thread.gmane.org/gmane.linux.kernel/344062.

http://thread.gmane.org/gmane.linux.kernel/344062
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6.6 Impact on Non-Functional Properties

When optimizing an operating system for use on a deeply-embedded system, binary

size is only one factor to consider. For example, reducing the power consumption of

a long-running embedded device can be seen as highly important to lower not only

the production cost but also the operating cost of a system.

I therefore also conducted preliminary measurements of the power consumption

of the Raspberry Pi in the Coder scenario, but without significant changes. On the

contrary, choosing from observation alone and employing a SAT solver to cover

dependencies might lead to kernels with energy-saving features disabled.

One possible solution for a combined approach to optimize nonfunctional prop-

erties (i.e., power consumption) of the system as well as minimizing binary size

could be the integration of heuristics as proposed by Siegmund et al. [47] for the

impacts of KCONFIG features on desired properties into the selection process, thus

guiding the approach to be more aware of these properties of the target system.

Again, this expert knowledge can currently be brought into the tailoring process

by putting KCONFIG features previously identified onto the whitelist.

6.7 Dependency Modelling Defects

The fact that configurability is used for different purposes in the Linux kernel has

lead to problems in the past [56]. This becomes an even bigger issue on the ARM

architecture, with not only the architecture itself, but nearly every single device

having different requirements. Additionally, in the ARM subtree many hardware

peculiarities are modelled using KCONFIG. This has made ARM the by far biggest

and fastest-growing subtree in terms of possible KCONFIG configuration options in

the Linux kernel (Figure 6.4). Unfortunately, this also implies there is a higher

probability certain things might be wrong or wrongly modelled.

Thus, it is extremely important for my new approach to gather as much infor-

mation as possible: While some things (like the aforementioned module_init()

functions) might lead to an over-approximation, I can overcome possible defects

of the dependency model by supplying much more detailed data to the SAT solver,

thus building stronger constraints and leading to a more solid solution.
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Figure 6.4 – Feature growth in Linux by architecture since 2006

6.8 Generalization beyond Linux

The approach presented in this thesis cannot only be applied to Linux, but can be

transferred to other operating systems and software product lines.

The FLIPPER method to prepare the Linux kernel for data collection is directly

applicable to any software project which uses the CPP to implement fine-grained

variability, as it is only necessary to parse the source code and insert an instruction

whenever a conditional block is found.

The harder part is the accurate extraction of models describing the features and

their dependencies, which are required to find the correct mapping from the obser-

vations to their corresponding configuration items. Previous work [16], however,

has shown the portability of the extractors I used for Linux to other software product

lines such as the BusyBox UNIX utility suite [7] and the FIASCO microkernel [19],
requiring only little effort.

Thus, the proposed method makes it feasible to generate small configurations

matching an observed scenario for any configurable software product.



Chapter 7

Conclusion and Perspectives

Configuring system software for a given use case is a very challenging task. With

hundreds of optional features to choose from, finding a small set of configuration

options which includes just the right features is hard, even for a domain expert. This

particularly applies to the Linux operating-system family, which offers nearly 14,000

configurable features.

For use on general-purpose computers, the solution provided by Linux distribu-

tors is to include as many features as possible into their kernel configurations, thus

also increasing the size of the kernel. For the use of Linux in deeply-embedded

systems, however, this is not an option: To keep costs at a minimum, as little memory

as possible is to be occupied by the operating system.

While there are developers manually building small kernel configurations, these

configurations often make assumptions of the usage of the embedded system which

may not be valid for a specific use case.

Tackling these challenges, this thesis presents an automated kernel tailoring

approach which can be used to generate a use-case–specific Linux kernel configura-

tion, which is also suitable for use in resource-constrained embedded systems. As

the resulting configuration might not take domain-specific knowledge into account,

additional information can be brought into the generation process with minimal

effort.

To enable regression testing and support future development, I stated an emula-

tion framework with the ability to compare the new approach with existing ones

by having an identical initial position and a well-defined workflow. Furthermore a

modified emulator discloses the limitations in the basic concept of recording and

evaluating code positions (like untraceable features).

My results show that for Linux, the kernel size can be reduced by up to 70 percent

in real world scenarios. In contrast to the existing approach, the new process is

clearly more resource-efficient and therefore applicable for resource constrained

54
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devices. Results gained with FLIPPER can be used by system developers as a basis to

easily create small, fitted software configurations for their systems, thus opening up

a whole new field of use for Linux inside deeply-embedded systems such as control

units in the automotive industry. Since the new concept basically has no additional

requirements besides configurability, it can be transferred to any large-scale system

software.

Future Work

Although I think the research in the CADOS/VAMOS group has explored a wide area

of applications for the general approach to automatically derive a tailored kernel,

there are starting points for future engagement left.

Using adjusted heuristics, it could be possible to identify more needless modules

and to drive the reduction of code size even further: The approaches described

in this thesis are able to ignore initialisation methods (denoted by the macro

module_init()) — but neither their called functions nor similar macros. Instead of

just indicating the use of a code point the FLIPPER approach can easily be expanded

to count the quantity of each execution. This will create opportunities to distinguish

between frequently used functions and functions only involved once. By the adoption

important methods are called multiple times and the granularity is coarse-grained

enough, the latter ones can be removed from the traced code point set. Of course, a

categorisation is necessary to prevent the elimination of, for example, important boot

functions which might also be called only once. A solution might be an automated

evaluation of traces on several systems with different configuration to recognize

ordinary frequency.

As an alternative, the system run time can be divided in different epochs79, to au-

tomatically identify modules only utilized at boot time (because of the module_init()

function). However, the removal suffers from the same problems as mentioned

above and these concepts favouring a more “slimmer” kernel at the expense of

accuracy and possible missing functionality.

In addition, a prioritization list guiding the SAT solver at alternative features

might be offer possibilities to optimize nonfunctional properties like the power-

consumption or binary size. First of all, the VAMOS UNDERTAKER needs the ability

to incorporate with such feature quantifier. Afterwards, experts can evaluate each

module, either by computing or just by testing. Yet, as fundamental requirements,

both enough real free alternatives and sufficiently fine-grained feature granularity

are necessary to make a measurable difference according to the properties.

79For example, the Linux runlevel can be taken into account to classify (coarse-grained) epochs.
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Appendix A

Development

A.1 Injection Examples

For the code modification I had to consider several different cases. A brief overview

of the most common cases are presented below using real world examples including

the injected code.

Single Statement Block

652 #ifdef CONFIG_X86_32
653 else if ( cpu_has (c, X86_FEATURE_PAE ) || cpu_has (c, ↘

X86_FEATURE_PSE36 ))
+ SET_DURDEN_BIT (1801) ,

654 c-> x86_phys_bits = 36;
655 #endif

Listing A.1 – Injection in single statement blocks without curly braces

(Linux v3.15 source file arch/x86/kernel/cpu/common.c)

Branch Table

274 break;
275 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
276 case PM_RESTORE_PREPARE :

+ SET_DURDEN_BIT (2062) ;
/* stripped comment */

282 if (! cpu_online (0))
283 _debug_hotplug_cpu (0, 1);
284 break;
285 case PM_POST_RESTORE :
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+ SET_DURDEN_BIT (2063) ;
/* stripped comment */

309 _debug_hotplug_cpu (0, 0);
310 break;
311 #endif
312 default :

Listing A.2 – Conditional block in branch table (switch statement) with

multiple branches

(Linux v3.15 source file arch/x86/power/cpu.c with comments

removed)

Complete Expressions

76 if ( memory_corruption_check == -1) {
77 memory_corruption_check =
78 #ifdef CONFIG_X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK

+( ( SET_DURDEN_BIT (1478) ) ,
79 1

+)
80 #else

+( ( SET_DURDEN_BIT (1479) ) ,
81 0

+)
82 #endif
83 ;
84 }

Listing A.3 – Injection in complete expressions

(Linux v3.15 source file arch/x86/kernel/check.c)

Inside Expressions

2303 nested_vmx_entry_ctls_high &=
2304 #ifdef CONFIG_X86_64

+( ( SET_DURDEN_BIT (2322) ) , 0 ) +
2305 VM_ENTRY_IA32E_MODE |
2306 #endif
2307 VM_ENTRY_LOAD_IA32_PAT ;

Listing A.4 – Conditional block inside expression with postfix operator

(Linux v3.15 source file arch/x86/kvm/vmx.c)
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301 size = nlmsg_total_size ( sizeof ( struct nfgenmsg ))
302 + nla_total_size ( sizeof ( struct nfqnl_msg_packet_hdr ))
303 + nla_total_size ( sizeof ( u_int32_t )) /* ifindex */
304 + nla_total_size ( sizeof ( u_int32_t )) /* ifindex */
305 #ifdef CONFIG_BRIDGE_NETFILTER

++ ( ( SET_DURDEN_BIT (28603) ) , 0 )
306 + nla_total_size ( sizeof ( u_int32_t )) /* ifindex */
307 + nla_total_size ( sizeof ( u_int32_t )) /* ifindex */
308 #endif
309 + nla_total_size ( sizeof ( u_int32_t )) /* mark */
310 + nla_total_size ( sizeof ( struct nfqnl_msg_packet_hw ))
311 + nla_total_size ( sizeof ( u_int32_t )) /* skbinfo */
312 + nla_total_size ( sizeof ( u_int32_t )); /* cap_len */

Listing A.5 – Conditional block inside expression with prefix operator

(Linux v3.15 source file net/netfilter/nfnetlink_queue_core.c)

A.2 Macro Defined Function

391 # define SHOW_FUNCTION (__FUNC , __VAR , __CONV ) \
392 static ssize_t __FUNC ( struct elevator_queue *e, char *page) \
393 { \
394 struct deadline_data *dd = e-> elevator_data ; \
395 int __data = __VAR; \
396 if ( __CONV ) \
397 __data = jiffies_to_msecs ( __data ); \
398 return deadline_var_show (__data , (page)); \
399 }

Listing A.6 – Functions definied in macros

(Linux v3.15 source file block/deadline-iosched.c)
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A.3 Excluded Files

Files (and directories) excluded from the injection process

• all files in /Documentation/ since there are only examples

• all files in /tools/ (compile time tools)

• all files in /scripts/ (compile time tools too)

• all files in /user/ (user space libraries)

• all files in boot/ (sub)folders since it is code loading the kernel on early boot

• all files in asm/ and asm-generic/ (sub)folders (the presented approach is not

able to patch assembler code)

• all files in firmware/ (sub)folders since it contains only binary files

• the kernel module of the injection tool itself identicated by the file durden.c

and its header

• all files in /trace/ folder and the files ftrace.c and ptrace.c (and their header

files) as patching the trace infrastructure will result in a performance impact

• /include/linux/license.h since it has no real variablilty section and is included

in user space

• all files in /arch/x86/vdso/ folder since virtual dynamically linked shared

objects cannot access kernel space

• /arch/arm/boot/compressed/misc.c

• /arch/arm/kernel/process.c

• /drivers/gpu/drm/radeon/mkregtable.c

• /include/generated/autoconf.h

• /include/linux/decompress/mm.h

• /include/linux/zutil.h

• /lib/crc32defs.h

• /lib/decompress_bunzip2.c

• /lib/decompress.c

• /lib/decompress_inflate.c

• /lib/decompress_inflate.c

• /lib/decompress_unlzma.c

• /lib/decompress_unlzo.c

• /lib/decompress_unxz.c

• /lib/gen_crc32table.c

• /lib/raid6/mktables.c

• /lib/zlib_inflate/inffast.c

• /lib/zlib_inflate/inflate.c

• /lib/zlib_inflate/inftrees.c

• /lib/zlib_inflate/infutil.c

• mach/uncompress.h
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Files only excluded from preprocessor injection:

• /arch/arm/kernel/process.c

• /drivers/base/node.c

• /drivers/net/wan/sbni.c

• /drivers/net/wireless/rtl8192cu/hal/rtl8192c/rtl8192c_dm.c

• /drivers/net/wireless/rtl8192cu/os_dep/linux/ioctl_linux.c

• /drivers/staging/comedi/drivers.c

• /drivers/staging/prima/CORE/MAC/src/pe/lim/limProcessSmeReqMessages.c

• /drivers/staging/prima/CORE/TL/src/wlan_qct_tl.c

• /drivers/staging/wlags49_h2/hcf.c

• /drivers/usb/host/dwc_otg/dwc_otg_driver.c

• /drivers/video/msm/msm_fb.c

• /include/linux/elfcore.h

• /include/linux/vmstat.h

• /lib/zlib_inflate/inffast.c

• /net/core/net-sysfs.c

• /net/ipv4/inet_diag.c

• /net/ipv4/ip_gre.c
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A.4 FLIPPER in Coccinelle

In contrast to the PERL-based prototype, the final version of FLIPPER implemented in

SmPL is rather compact. It makes use from the embedded PYTHON functionality and

was successfully tested with the latest COCCINELLE version (1.0.0 release candidate

21 from April 13, 2014).

1 // Usage:

2 // spatch --sp -file this.cocci target .c --out -place -D ↘

macro= SET_FLIPPER_BIT

3

4 virtual ignoreInitFunctions
5

6 // Redirect output of map data to seperate file

7 @ initialize : python @
8 m << virtual . mapfile ;
9 @@

10 import sys
11 sys. stdout = open(m, "w")
12

13 // Initialize the blacklist , compile the blacklist regex

14 // (if enabled by the spatch flag "-D blacklist =[ Blacklist -RegEx ]")

15 @ script : python initBlacklist @
16 b << virtual . blacklist ;
17 @@
18 global blacklistLastFileCache ;
19 global blacklistRegex ;
20 blacklistLastFileCache =""
21 import re
22 blacklistRegex =re. compile (b)
23

24 // Get a(ny) position

25 // in order to retrieve the file name for blacklist processing

26 @ currentFile depends on initBlacklist @
27 metavariable a;
28 position p;
29 @@
30 a@p
31

32 // Compare current file to blacklist regex

33 // (and continue with next file on match)

34 @ script : python checkBlacklist depends on currentFile @
35 p << currentFile .p;
36 @@
37 global blacklistLastFileCache
38 global blacklistRegex ;
39 if blacklistLastFileCache != p[0]. file:
40 if blacklistRegex .match(p[0]. file):
41 cocci.exit ()
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42 else:
43 blacklistLastFileCache = p[0]. file
44

45 // Retrieve module_init (and module_exit ) functions

46 // to avoid automatic bit sets on boot

47 @ collectInitFunctions depends on ignoreInitFunctions @
48 identifier f;
49 declarer name module_init , module_exit ;
50 @@
51 (
52 module_init (f);
53 |
54 module_exit (f);
55 )
56

57 // If there are some global include directives , append the flipper one

58 @ globalHeader depends on checkBlacklist @
59 @@
60 # include <...>
61 +# include <linux/ flipper .h>
62

63 // If there are only some local include directives ( without global ones),

64 // append the flipper include in the line above

65 @ localHeader depends on checkBlacklist && ! globalHeader @
66 @@
67 +# include <linux/ flipper .h>
68 # include "..."
69

70 // Insert flipper macro in every non -empty function

71 // with an increasing counter index

72 @ replace @
73 identifier f, virtual .macro;
74 fresh identifier n = "";
75 declaration d;
76 statement s,t;
77 position p;
78 @@
79 f(...) {
80 (
81 (
82 ... when != t
83 when any
84 d@p
85 +; macro(n);
86 s
87 ...
88 )
89 |
90 (
91 ... when != t
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92 when any
93 d@p
94 +; macro(n);
95 )
96 |
97 (
98 +; macro(n);
99 s@p

100 ...
101 )
102 )
103 }
104

105 // Print the index , file and line number of each insertion

106 // (the index is necessary since there is an internal re -sort)

107 @ script : python print depends on replace @
108 p << replace .p;
109 n << replace .n;
110 @@
111 print "%013d\t%s:%s" % (float(n), p[0]. file , p[0]. line)
112

113 // Remove the (fresh inserted ) flipper macros from each init function

114 // (if enabled by the spatch flag "-D ignoreInitFunctions ")

115 @ cleanInitFunctions depends on collectInitFunctions && ↘
replace @

116 identifier collectInitFunctions .f, virtual .macro;
117 @@
118 f(...){
119 ...
120 -; macro (...);
121 ...
122 }
123

124 // If there are no other include directives insert flipper

125 @ funcHeader depends on replace && ! globalHeader && ↘
! localHeader @

126 identifier replace .f;
127 @@
128 +
129 +# include <linux/ flipper .h>
130 f(...){
131 ...
132 }

Listing A.7 – Complete SmPL source of the final FLIPPER implementation
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Evaluation

B.1 Raspberry Pi

Whitelist

This generic whitelist consisting of 14 items is used in every Raspberry Pi scenario:

• CONFIG_AEABI

• CONFIG_ARM_ERRATA_326103

• CONFIG_ARM_ERRATA_364296

• CONFIG_ARM_ERRATA_411920

• CONFIG_BCM2708_VCHIQ

• CONFIG_DEVTMPFS_MOUNT

• CONFIG_EXT4_FS

• CONFIG_LBDAF

• CONFIG_MMC_BLOCK

• CONFIG_MMC_SDHCI_BCM2708_DMA

• CONFIG_SCSI_LOWLEVEL

• CONFIG_USB_DWCOTG

• CONFIG_VT_HW_CONSOLE_BINDING

• CONFIG_INOTIFY_USER
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Hardware specification

The Raspberry Pi Model B / Rev 2 (2011.12) technical specification according to

the producer [43]:

System-on-a-chip (SoC) Broadcom BCM2835

CPU (part of SoC) 700 MHz ARM11 ARM1176JZF-S core

GPU (part of SoC) Broadcom VideoCore IV

OpenGL ES 2.0

OpenVG 1080p30 H.264 high-profile encode/decode

RAM 512 MByte

Storage none (SD card)

USB 2 (USB 2.0)

Video output Composite video / Composite RCA

HDMI

Audio output TRS connector | 3.5 mm jack

HDMI

Low-level peripherals General Purpose Input/Output (GPIO) pins

Serial Peripheral Interface Bus (SPI)

I²C

I²S

Universal asynchronous receiver/transmitter (UART)

Network 10/100 wired Ethernet RJ45

Power 700 mA (3.5 W)
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Coder

Summary: My test case used a Coder v0.4 image employing a Linux kernel v3.6.11

while the Raspberry Pi was only connected with wired ethernet.

Using FLIPPER, the tracing lasted 1182 s, but the configuration was stable instantly

after finishing boot with 348 enabled features and 81 modules.

With FTRACE the tracing lasted 1227 s, the configuration was stable 1200 s with 316

enabled features and 55 modules.

time action

0 s system boot
idling

600 s connecting via web browser
modifying and testing "Space Rocks!"

1200 s shut down (triggered automatically)

Table B.1 – Detailed schedule for the Coder scenario on Raspberry Pi

Metric Baseline
Tailored using

FLIPPER FTRACE

static features 640 348 (54.38%) 316 (49.38%)
modules 1,038 81 (7.80%) 55 (5.30%)
value features 54 44 (81.85%) 34 (62.96%)

configuration items 1,732 470 (27.14%) 405 (23.38%)

text size (bytes) 22,621,072 4,835,648 (21.38%) 3,484,020 (15.40%)
data size (bytes) 1,437,002 223,132 (15.53%) 182,632 (12.71%)
bss size (bytes) 2,237,125 683,504 (30.55%) 352,656 (15.76%)
compiled C lines 845,627 239,680 (28.34%) 170,114 (20.12%)
compiled C files 4,166 1,465 (35.17%) 1,115 (26.76%)

Table B.2 – Detailed kernel comparison for tailoring of Coder
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Statistics for tailoring Coder using FLIPPER
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Figure B.1 – Traced events per time during evaluation of Coder using FLIPPER
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Figure B.2 – Evolution of features during evaluation of Coder using FLIPPER
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Figure B.3 – Traced events per directory and time during evaluation of Coder
using FLIPPER
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Statistics for tailoring Coder using FTRACE
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Figure B.4 – Traced events per time during evaluation of Coder using FTRACE
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Figure B.5 – Evolution of features during evaluation of Coder using FTRACE
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Figure B.6 – Traced events per directory and time during evaluation of Coder
using FTRACE
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OnionPi

Summary: This test case used a raspbian based image employing a Linux kernel

v3.6.11 with OnionPi applications installed (set up at September 27th, 2013), while

the Raspberry Pi was connected to wired ethernet and a USB WiFi stick.

Using FLIPPER, the tracing lasted 1196 s, but the configuration was stable instantly

after finishing boot with 349 enabled features and 77 modules.

With FTRACE the tracing lasted 1226 s, the configuration was stable after 727 s with

287 enabled features and 33 modules.

time action

0 s system boot
idling

600 s connection to wlan access point using laptop
browsing websites (http and https)
retrieving mails

900 s connecting via mobile phone
browsing websites

1200 s shut down (trigged automatically)

Table B.3 – Detailed schedule for the OnionPi scenario on Raspberry Pi

Metric Baseline
Tailored using

FLIPPER FTRACE

static features 640 349 (54.53%) 287 (44.84%)
modules 1,038 77 (7.42%) 33 (3.18%)
value features 54 43 (79.63%) 34 (62.96%)

configuration items 1,732 469 (27.08%) 354 (20.44%)

text size (bytes) 22,688,201 5,041,604 (22.22%) 3,972,552 (17.51%)
data size (bytes) 1,437,062 310,240 (21.59%) 275,828 (19.19%)
bss size (bytes) 2,237,221 698,924 (31.24%) 368,768 (16.48%)
compiled C lines 846,554 252,362 (29.81%) 197,512 (23.33%)
compiled C files 4,167 1,490 (35.76%) 1,189 (28.53%)

Table B.4 – Detailed kernel comparison for tailoring of OnionPi
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Statistics for tailoring OnionPi using FLIPPER
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Figure B.7 – Traced events per time during evaluation of OnionPi using
FLIPPER

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

Enabled by SAT
Modules by SAT
Enabled (after expanding)
Modules (after expanding)

Time in s

F
ea

tu
re

s

Figure B.8 – Evolution of features during evaluation of OnionPi using FLIPPER
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Figure B.9 – Traced events per directory and time during evaluation of OnionPi
using FLIPPER
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Statistics for tailoring OnionPi using FTRACE
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Figure B.10 – Traced events per time during evaluation of OnionPi using
FTRACE
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Figure B.11 – Evolution of features during evaluation of OnionPi using FTRACE
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Figure B.12 – Traced events per directory and time during evaluation of
OnionPi using FTRACE
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raspBMC

Summary: This test case used a Raspberry Pi image (from January 1th, 2014

including the “december update”) employing a Linux kernel v3.10.25, while the

Raspberry Pi was connected to wired ethernet, a head phone and a monitor (using

HDMI), having the hardware video decoding enabled.

Using FLIPPER, the tracing lasted 1196 s, but the configuration was stable after only

20 s (after finishing boot up) with 352 enabled features and 100 modules.

With FTRACE the tracing lasted 1218 s, the configuration was stable after 1188 s with

285 enabled features and 45 modules.

time action

0 s system boot
idling

600 s starting weather app

630 s starting video (in MPEG format) located on external device using SFTP
controlling the playback via keyboard media keys

720 s non-privileged remote access via SSH, running TOP

780 s remotely accessing web-based front end
controlling the playback via web front end

870 s switching to video (in MPEG2 format)

1020 s switching to video (in MPEG4 format)

1200 s shut down (trigged automatically)

Table B.5 – Detailed schedule for the raspBMC scenario

Metric Baseline
Tailored using

FLIPPER FTRACE

static features 663 352 (53.09%) 285 (42.84%)
modules 1,156 100 (8.65%) 45 (3.89%)
value features 55 45 (81.82%) 34 (61.82%)

configuration items 1,874 497 (26.91%) 364 (19.71%)

text size (bytes) 22,960,278 5,656,040 (24.63%) 4,458,236 (19.42%)
data size (bytes) 1,437,062 290,716 (18.98%) 268,132 (17.51%)
bss size (bytes) 707,155 351,352 (49.69%) 335,152 (47.39%)
compiled C lines 842,460 275,403 (32.69%) 216,941 (25.75%)
compiled C files 4,223 1,588 (37.60%) 1,301 (30.81%)

Table B.6 – Detailed kernel comparison for tailoring of raspBMC
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Feature comparison

By comparing the features of the baseline with the tailored ones, you can observe

13 items not listed in the baseline. Many of them belong to debug purposes.

• CONFIG_ARM_PATCH_PHYS_VIRT

• CONFIG_COREDUMP

• CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE

• CONFIG_DEBUG_BUGVERBOSE

• CONFIG_DEBUG_MEMORY_INIT

• CONFIG_DEFAULT_NOOP

• CONFIG_DEFAULT_RENO

• CONFIG_ELF_CORE

• CONFIG_KALLSYMS

• CONFIG_NAMESPACES

• CONFIG_UID16

• CONFIG_UIDGID_CONVERTED

• CONFIG_VM_EVENT_COUNTERS

The eight items only present in the FLIPPER are solely used for different decompres-

sion of the initial ram disk:

• CONFIG_DECOMPRESS_BZIP2

• CONFIG_DECOMPRESS_LZMA

• CONFIG_DECOMPRESS_LZO

• CONFIG_DECOMPRESS_XZ

• CONFIG_RD_BZIP2

• CONFIG_RD_LZMA

• CONFIG_RD_LZO

• CONFIG_RD_XZ

The item only present in the FTRACE approach is a memory allocation debugging

routine

• CONFIG_DEBUG_SLAB
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Statistics for tailoring raspBMC using FLIPPER
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Figure B.13 – Traced events per time during evaluation of raspBMC using
FLIPPER
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Figure B.14 – Evolution of features during evaluation of raspBMC using
FLIPPER
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Figure B.15 – Traced events per directory and time during evaluation of
raspBMC using FLIPPER
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Statistics for tailoring raspBMC using FTRACE
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Figure B.16 – Traced events per time during evaluation of raspBMC using
FTRACE
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Figure B.17 – Evolution of features during evaluation of raspBMC using
FTRACE
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Figure B.18 – Traced events per directory and time during evaluation of
raspBMC using FTRACE
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B.2 Google Nexus 4

Whitelist

This whitelist consisting of 14 items is used in the Google Nexus 4 scenario:

• CONFIG_BUG

• CONFIG_DIAG_OVER_USB

• CONFIG_EMBEDDED

• CONFIG_FB_MSM_MIPI_LGIT_VIDEO_WXGA_PT_PANEL

• CONFIG_KERNEL_MSM_CONTIG_MEM_REGION

• CONFIG_MMC_MSM_SDC1_SUPPORT

• CONFIG_MSM_CSI20_HEADER

• CONFIG_MSM_N_WAY_SMSM

• CONFIG_NEON

• CONFIG_RD_GZIP

• CONFIG_TOUCH_REG_MAP_TM2000

• CONFIG_USB_EHCI_MSM

• CONFIG_VIDEO_V4L2_SUBDEV_API

• CONFIG_WCD9310_CODEC
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Hardware specification

The LG E960 / Google Nexus 4 technical specification according to the producer

[30]:

CPU Qualcomm Snapdragon S4 Pro 1.5 GHz

RAM 2 GByte

Storage 8 GByte

Screen 4.7” 1280×768 (320ppi)

Camera 8 MP (main)

1.3 MP (front)

Sensors Accelerometer

Compass

Ambient light

Proximity

Gyroscope

Pressure

GPS

Network GSM/EDGE/GPRS (850, 900, 1800, 1900 MHz)

3G (850, 900, 1700, 1900, 2100 MHz)

HSPA+

Wireless Wi-Fi (802.11 b/g/n)

SlimPort

NFC (Android Beam)

Bluetooth

Battery 2100 mA h
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Ubuntu Touch

Summary: I performed the trace on a Ubuntu Touch Saucy (release of November

27, 2013) with Linux kernel 3.4.0, the total tracing time was 1221 s while the

configuration was stable after 877 s with 750 enabled features.

time action

0 s system boot
idling

600 s activating smartphone (from standby)
navigating through menu

690 s activating wireless LAN
connecting to access point

720 s outgoing phone call

780 s starting camera app
taking pictures with front and main camera (involving flash light)

840 s using web browser

900 s incoming call (without answering it)

1020 s connecting with PC using USB
remote file access

1080 s shell access via USB

1110 s setting display brightness

1140 s switching to standby

1200 s shut down (trigged automatically)

Table B.7 – Detailed schedule for tracing Ubuntu Touch on Google Nexus 4

Metric Baseline Tailored (FLIPPER)

features
static 974 752 (77.21%)
modules 145 0 (0.00%)
values 67 59 (88.06%)

configuration items 1,186 811 (68.38%)

vmlinux

text size 13,489,768 bytes 12,037,224 bytes (89.23%)
data size 1,206,812 bytes 1,171,756 bytes (97.10%)
bss size 2,735,516 bytes 2,587,100 bytes (94.57%)
compiled C code 542,874 lines 494,082 lines (91.01%)
taken from 2,497 files 2,233 files (89.26%)

total

text size 14,464,220 bytes 12,037,224 bytes (83.22%)
data size 1,312,683 bytes 1,171,756 bytes (89.26%)
bss size 2,745,447 bytes 2,587,100 bytes (94.23%)
compiled C lines 564,324 lines 494,082 lines (87.55%)
taken from 2,776 files 2,233 files (80.44%)

Table B.8 – Detailed kernel comparison for Ubuntu Touch



B.2 Google Nexus 4 80

Statistics for tailoring Ubuntu Touch (using FLIPPER)
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Figure B.19 – Traced events per time during evaluation of Ubuntu Touch
(using FLIPPER)
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Figure B.20 – Evolution of features during evaluation of Ubuntu Touch (using
FLIPPER)
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Figure B.21 – Traced events per directory and time during evaluation of
Ubuntu Touch (using FLIPPER)
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B.3 Emulation

Qemu Coccinelle

The semantic patch used to enable the tracking of the virtual machines program

counter:

1 @@
2 declaration d;
3 statement s,t;
4 @@
5

6 tb_gen_code (...) {
7 ... when != t
8 when any
9 d

10 + printf ("%016 llX\n", ( unsigned long long int) pc);
11 s
12 ...
13 }

Listing B.1 – SmPL patch for QEMU enabling output of all block starting

addresses
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Workflow
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Figure B.22 – Schematic representation for the emulation workflow of both
the traditional FTRACE based approach and the Emulator-based Code-Point
Recording
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Whitelist

Method Kernel CO
NF

IG
_B

IN
FM

T_
SC

RI
PT

CO
NF

IG
_D

EV
TM

PF
S_

MO
UN

T

CO
NF

IG
_I

NO
TI

FY
_U

SE
R

CO
NF

IG
_O

PT
PR

OB
ES

CO
NF

IG
_R

D_
GZ

IP

CO
NF

IG
_U

NI
X

∑

DURDEN and FLIPPER

v3.10 Ø Ø 2
v3.11 Ø Ø 2
v3.12 Ø Ø 2
v3.13 Ø Ø 2
v3.14 Ø Ø 2
v3.15 Ø Ø Ø 3

FTRACE and
FTRACE (EARLY BOOT)

v3.10 Ø Ø Ø Ø Ø 5
v3.11 Ø Ø Ø Ø 4
v3.12 Ø Ø Ø Ø Ø 5
v3.13 Ø Ø Ø Ø Ø 5
v3.14 Ø Ø Ø Ø Ø 5
v3.15 Ø Ø Ø Ø Ø 5

EMUTRACE

v3.10 Ø Ø 2
v3.11 Ø Ø 2
v3.12 Ø Ø 2
v3.13 Ø Ø 2
v3.14 Ø Ø 2
v3.15 Ø Ø Ø 3

EMUTRACE (NO INIT)

v3.10 Ø Ø 2
v3.11 Ø Ø 2
v3.12 Ø Ø 2
v3.13 Ø Ø Ø 3
v3.14 Ø Ø Ø 3
v3.15 Ø Ø Ø Ø 4

Table B.9 – Necessary whitelist items for the emulation based evaluation
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Schedule

Although this schedule is the common one, I had to consider use case depended

enhancements: The full emulation is significant slower than the one supported by

the kernel virtual machine. Therefore, I had to increase the idle time (about 3000 s).

Anyway, besides this differences in timing, there is no change in the executed actions

nor their order.

time action

0 s system boot
idling

600 s initial test:
testing SSH connection
fetching static web page via HTTP

fetching static web page via HTTPS

fetching dynamic (PHP) web page via HTTP

660 s testing remote access:
connecting via SSH

executing file system commands
file transfer via SCP

690 s testing web server:
fetching bigger sized static web page80 via HTTPS

calculating (and verifying) prime numbers in dynamic web page via HTTP

1337th prime number
1111th prime number
flushing PHP OPCACHE81

1500th prime number (suitable on most systems with 1 GByte memory)
1800th prime number (suitable on systems with 1 GByte free memory)
2222th prime number (fails on systems with 1 GByte memory)
3000th prime number (suitable on most systems with 4 GByte memory)
3100th prime number (suitable on systems with 1 GByte free memory)
3333th prime number (fails on systems with 1 GByte memory)
27070th prime number (OUT-OF-MEMORY KILLER82 will abort calculation)
concurrent calculation of 1040th - 1050th prime number
concurrent calculation of 1549th - 1555th prime number

transferring trace files
shut down

Table B.10 – Detailed schedule for the automatic simulation actions in the
emulation approach

80I decided to use the JAVASCRIPT based open source browser game “2048” [11] as a real world
example.

81OPcache stores precompiled PHP scripts in memory — for more information take a view at the
official documentation [38].

82Since the environment is based on DEBIAN JESSIE, which implies strict memory management rules in
its default configuration, the simulation takes account of disruptions caused by the OOM KILLER [37].



B.3 Emulation 85

Li
nu

x
M

et
ho

d
co

lle
ct

ed
co

de
tr

ac
ea

bl
e

pa
rt

ia
l

ex
pa

n
de

d
fe

at
ur

es
ke

rn
el

ad
dr

es
se

s
po

in
ts

st
at

ic
m

od
ul

e
st

at
ic

m
od

ul
e

st
at

ic
m

od
ul

e
su

m
m

ar
iz

ed

v3
.1

5

B
as

el
in

e
1,

40
2

2,
74

1
4,

14
3

D
U

R
D

E
N

13
,8

60
13

,8
60

1,
40

9
2,

73
7

57
9

96
67

4
(4

8.
07

%
)

97
(3

.5
4%

)
77

1
(1

8.
61

%
)

FL
IP

P
E

R
13

,0
64

13
,0

64
1,

40
8

2,
73

7
57

9
97

67
3

(4
8.

00
%

)
96

(3
.5

0%
)

76
9

(1
8.

56
%

)
F

T
R

A
C

E
7,

73
1

7,
00

9
1,

41
3

2,
73

7
32

2
15

42
1

(3
0.

03
%

)
17

(0
.6

2%
)

43
8

(1
0.

57
%

)
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

7,
38

8
6,

76
7

1,
41

2
2,

73
7

33
1

15
43

5
(3

1.
03

%
)

17
(0

.6
2%

)
45

2
(1

0.
91

%
)

E
M

U
T

R
A

C
E

14
,1

28
,7

32
84

,5
77

4,
02

6
0

84
7

2,
43

1
98

8
(7

0.
47

%
)

2,
50

2
(9

1.
28

%
)

3,
49

0
(8

4.
24

%
)

E
M

U
T

R
A

C
E

(N
O

IN
IT

)
20

,2
84

,1
34

76
,9

62
4,

02
6

0
79

8
1,

61
8

93
1

(6
6.

41
%

)
1,

70
6

(6
2.

24
%

)
2,

63
7

(6
3.

65
%

)

v3
.1

4

B
as

el
in

e
1,

40
0

2,
75

0
4,

15
0

D
U

R
D

E
N

13
,7

86
13

,7
86

1,
40

7
2,

74
6

57
4

96
69

8
(4

9.
86

%
)

96
(3

.4
9%

)
79

4
(1

9.
13

%
)

FL
IP

P
E

R
12

,9
81

12
,9

81
1,

40
6

2,
74

6
57

4
97

69
6

(4
9.

71
%

)
95

(3
.4

5%
)

79
1

(1
9.

06
%

)
F

T
R

A
C

E
7,

05
3

6,
51

0
1,

41
1

2,
74

6
32

0
15

46
2

(3
3.

00
%

)
17

(0
.6

2%
)

47
9

(1
1.

54
%

)
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

7,
74

7
7,

02
2

1,
41

0
2,

74
6

32
9

15
47

7
(3

4.
07

%
)

17
(0

.6
2%

)
49

4
(1

1.
90

%
)

E
M

U
T

R
A

C
E

14
,2

69
,3

50
84

,2
67

4,
03

1
0

83
9

2,
44

0
1,

03
6

(7
4.

00
%

)
2,

51
4

(9
1.

42
%

)
3,

55
0

(8
5.

54
%

)
E

M
U
T

R
A

C
E

(N
O

IN
IT

)
15

,3
41

,0
88

76
,6

75
4,

03
1

0
79

1
1,

62
2

98
5

(7
0.

36
%

)
1,

70
9

(6
2.

15
%

)
2,

69
4

(6
4.

92
%

)

v3
.1

3

B
as

el
in

e
1,

40
8

2,
73

4
4,

14
2

D
U

R
D

E
N

13
,5

87
13

,5
87

1,
41

5
2,

73
0

56
4

95
68

8
(4

8.
86

%
)

95
(3

.4
7%

)
78

3
(1

8.
90

%
)

FL
IP

P
E

R
12

,6
76

12
,6

76
1,

41
4

2,
73

0
56

3
96

68
6

(4
8.

72
%

)
94

(3
.4

4%
)

78
0

(1
8.

83
%

)
F

T
R

A
C

E
7,

14
6

6,
63

6
1,

41
9

2,
73

0
32

5
17

47
2

(3
3.

52
%

)
19

(0
.6

9%
)

49
1

(1
1.

85
%

)
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

7,
64

5
7,

05
4

1,
41

8
2,

73
0

31
8

17
45

8
(3

2.
53

%
)

19
(0

.6
9%

)
47

7
(1

1.
52

%
)

E
M

U
T

R
A

C
E

10
,5

94
,1

75
84

,0
58

4,
02

5
0

82
9

2,
43

2
1,

03
0

(7
3.

15
%

)
2,

50
2

(9
1.

51
%

)
3,

53
2

(8
5.

27
%

)
E

M
U
T

R
A

C
E

(N
O

IN
IT

)
10

,6
88

,1
73

76
,2

94
4,

02
5

0
78

7
1,

60
9

98
0

(6
9.

60
%

)
1,

69
7

(6
2.

07
%

)
2,

67
7

(6
4.

63
%

)

Ta
bl

e
B

.1
1

–
C

ol
le

ct
ed

da
ta

an
d

fe
at

ur
e

ov
er

vi
ew

by
au

to
m

at
ed

ta
ilo

ri
ng

w
it

h
di

ff
er

en
t

ap
pr

oa
ch

es
fo

r
Li

nu
x

ke
rn

el
v3

.1
3

–
v3

.1
5



B.3 Emulation 86

Li
nu

x
M

et
ho

d
co

lle
ct

ed
co

de
tr

ac
ea

bl
e

pa
rt

ia
l

ex
pa

n
de

d
fe

at
ur

es
ke

rn
el

ad
dr

es
se

s
po

in
ts

st
at

ic
m

od
ul

e
st

at
ic

m
od

ul
e

st
at

ic
m

od
ul

e
su

m
m

ar
iz

ed

v3
.1

2

B
as

el
in

e
1,

39
5

2,
70

6
4,

10
1

D
U

R
D

E
N

13
,5

07
13

,5
07

1,
40

2
2,

70
2

55
8

94
68

9
(4

9.
39

%
)

90
(3

.3
3%

)
77

9
(1

9.
00

%
)

FL
IP

P
E

R
12

,5
71

12
,5

71
1,

40
1

2,
70

2
55

8
95

68
8

(4
9.

32
%

)
90

(3
.3

3%
)

77
8

(1
8.

97
%

)
F

T
R

A
C

E
7,

22
0

6,
70

7
1,

40
6

2,
70

2
31

8
19

46
5

(3
3.

33
%

)
21

(0
.7

8%
)

48
6

(1
1.

85
%

)
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

8,
01

3
7,

23
7

1,
40

5
2,

70
2

32
5

19
47

9
(3

4.
34

%
)

21
(0

.7
8%

)
50

0
(1

2.
19

%
)

E
M

U
T

R
A

C
E

12
,7

62
,1

47
83

,9
82

3,
98

4
0

82
2

2,
40

2
1,

03
2

(7
3.

98
%

)
2,

46
4

(9
1.

06
%

)
3,

49
6

(8
5.

25
%

)
E

M
U
T

R
A

C
E

(N
O

IN
IT

)
12

,5
68

,8
03

76
,6

35
3,

98
4

0
78

1
1,

58
7

97
9

(7
0.

18
%

)
1,

66
0

(6
1.

35
%

)
2,

63
9

(6
4.

35
%

)

v3
.1

1

B
as

el
in

e
1,

38
5

2,
68

8
4,

07
3

D
U

R
D

E
N

13
,5

16
13

,5
16

1,
39

2
2,

68
4

55
9

93
69

2
(4

9.
96

%
)

92
(3

.4
2%

)
78

4
(1

9.
25

%
)

FL
IP

P
E

R
12

,5
93

12
,5

93
1,

39
1

2,
68

4
56

0
94

69
2

(4
9.

96
%

)
92

(3
.4

2%
)

78
4

(1
9.

25
%

)
F

T
R

A
C

E
7,

37
8

6,
84

3
1,

39
6

2,
68

4
32

7
19

48
0

(3
4.

66
%

)
21

(0
.7

8%
)

50
1

(1
2.

30
%

)
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

8,
43

2
7,

60
2

1,
39

5
2,

68
4

32
7

19
48

0
(3

4.
66

%
)

21
(0

.7
8%

)
50

1
(1

2.
30

%
)

E
M

U
T

R
A

C
E

11
,1

11
,7

49
83

,1
50

3,
95

9
0

81
8

2,
38

4
1,

01
6

(7
3.

36
%

)
2,

45
9

(9
1.

48
%

)
3,

47
5

(8
5.

32
%

)
E

M
U
T

R
A

C
E

(N
O

IN
IT

)
11

,0
35

,0
48

75
,4

22
3,

95
9

0
77

2
1,

56
8

96
9

(6
9.

96
%

)
1,

64
6

(6
1.

24
%

)
2,

61
5

(6
4.

20
%

)

v3
.1

0

B
as

el
in

e
1,

36
4

2,
67

2
4,

03
6

D
U

R
D

E
N

13
,2

55
13

,2
55

1,
37

1
2,

66
8

55
4

95
68

4
(5

0.
15

%
)

92
(3

.4
4%

)
77

6
(1

9.
23

%
)

FL
IP

P
E

R
12

,3
19

12
,3

19
1,

37
0

2,
66

8
55

5
96

68
5

(5
0.

22
%

)
92

(3
.4

4%
)

77
7

(1
9.

25
%

)
F

T
R

A
C

E
7,

32
0

6,
73

2
1,

37
5

2,
66

8
31

6
20

46
5

(3
4.

09
%

)
24

(0
.9

0%
)

48
9

(1
2.

12
%

)
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

8,
77

6
7,

83
7

1,
37

4
2,

66
8

32
1

20
46

8
(3

4.
31

%
)

24
(0

.9
0%

)
49

2
(1

2.
19

%
)

E
M

U
T

R
A

C
E

12
,6

98
,7

49
82

,7
34

3,
91

8
0

80
9

2,
36

8
1,

00
5

(7
3.

68
%

)
2,

43
9

(9
1.

28
%

)
3,

44
4

(8
5.

33
%

)
E

M
U
T

R
A

C
E

(N
O

IN
IT

)
12

,0
68

,9
74

75
,0

90
3,

91
8

0
75

9
1,

52
8

94
9

(6
9.

57
%

)
1,

60
7

(6
0.

14
%

)
2,

55
6

(6
3.

33
%

)

Ta
bl

e
B

.1
2

–
C

ol
le

ct
ed

da
ta

an
d

fe
at

ur
e

ov
er

vi
ew

by
au

to
m

at
ed

ta
ilo

ri
ng

w
it

h
di

ff
er

en
t

ap
pr

oa
ch

es
fo

r
Li

nu
x

ke
rn

el
v3

.1
0

–
v3

.1
2



B.3 Emulation 87

M
et

ho
d

vm
li

n
u

x
on

ly
to

ta
l(

in
cl

u
di

n
g

LK
M

)
Li

nu
x

si
ze

(i
n

by
te

s)
co

m
pi

le
d

so
ur

ce
.k

o
si

ze
(i

n
by

te
s)

co
m

pi
le

d
so

ur
ce

ke
rn

el
te

xt
da

ta
bs

s
lin

es
fil

es
fil

es
te

xt
da

ta
bs

s
lin

es
fil

es

v3
.1

5

B
as

el
in

e
7,

93
3,

25
4

1,
37

4,
88

0
5,

30
8,

41
6

30
7,

79
9

2,
04

9
2,

94
3

73
,4

99
,2

39
1,

37
4,

88
0

13
,7

31
,3

11
4,

79
7,

53
3

10
,4

62

FL
IP

P
E

R
6,

55
3,

69
3

1,
22

5,
88

8
5,

16
9,

15
2

27
5,

72
6

1,
88

6
98

9,
86

6,
46

1
1,

22
5,

88
8

5,
56

3,
90

7
39

4,
33

3
2,

36
1

D
U

R
D

E
N

6,
53

3,
98

7
1,

23
3,

37
6

5,
17

3,
24

8
27

5,
22

0
1,

88
6

99
9,

86
5,

88
7

1,
23

3,
37

6
5,

55
8,

49
1

39
4,

16
0

2,
35

7
F

T
R

A
C

E
4,

43
4,

75
3

1,
07

7,
37

6
76

5,
95

2
18

7,
00

9
1,

29
2

18
5,

57
4,

14
6

1,
07

7,
37

6
90

2,
98

7
23

3,
05

6
1,

49
2

F
T

R
A

C
E

(E
A

R
LY

B
O

O
T
)

4,
53

7,
15

4
1,

09
9,

54
4

76
5,

95
2

19
0,

98
7

1,
30

9
18

5,
67

8,
06

7
1,

09
9,

54
4

90
3,

01
9

23
7,

09
8

1,
50

9
E

M
U
T

R
A

C
E

7,
24

7,
24

8
1,

33
1,

83
2

5,
47

9,
60

8
31

2,
35

8
2,

10
8

2,
69

5
53

,2
97

,5
46

1,
33

1,
83

2
11

,5
96

,2
64

2,
22

6,
53

7
9,

55
2

E
M

U
T

R
A

C
E

(N
O

IN
IT

)
7,

40
9,

90
2

1,
32

3,
72

0
5,

19
3,

72
8

32
3,

33
1

2,
12

1
1,

88
5

41
,4

54
,8

97
1,

32
3,

72
0

10
,3

26
,7

14
1,

73
5,

27
8

7,
62

7

v3
.1

4

B
as

el
in

e
7,

91
7,

43
0

1,
34

3,
36

0
5,

32
0,

70
4

30
5,

61
5

2,
03

6
2,

95
3

73
,3

54
,3

78
1,

34
3,

36
0

13
,8

00
,6

98
2,

48
3,

43
9

10
,4

36

D
U

R
D

E
N

6,
64

8,
66

7
1,

22
4,

38
4

5,
30

8,
41

6
27

6,
30

6
1,

89
4

98
10

,0
58

,8
76

1,
22

4,
38

4
5,

68
8,

11
5

39
5,

39
4

2,
35

7
FL

IP
P

E
R

6,
66

7,
66

1
1,

21
8,

97
6

5,
30

8,
41

6
27

6,
79

5
1,

89
3

97
10

,0
61

,4
38

1,
21

8,
97

6
5,

69
8,

09
9

39
5,

54
0

2,
36

0
F

T
R

A
C

E
4,

74
3,

36
7

1,
09

3,
85

6
98

3,
04

0
19

3,
90

1
1,

32
2

18
5,

94
1,

26
1

1,
09

3,
85

6
1,

11
5,

80
7

24
0,

00
7

1,
52

2
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

4,
87

3,
60

3
1,

10
8,

76
0

98
3,

04
0

19
8,

10
2

1,
34

1
18

6,
07

3,
03

3
1,

10
8,

76
0

1,
11

5,
83

9
24

4,
27

2
1,

54
1

E
M

U
T

R
A

C
E

7,
35

7,
40

7
1,

31
5,

64
0

5,
32

0,
70

4
31

1,
95

1
2,

08
2

2,
70

6
54

,0
80

,3
47

1,
31

5,
64

0
11

,8
43

,7
47

2,
23

0,
10

1
9,

54
3

E
M

U
T

R
A

C
E

(N
O

IN
IT

)
7,

77
0,

70
6

1,
33

1,
48

8
5,

32
8,

89
6

32
8,

74
0

2,
13

5
1,

88
8

42
,1

84
,7

87
1,

33
1,

48
8

10
,4

71
,9

71
1,

74
0,

07
8

7,
61

4

v3
.1

3

B
as

el
in

e
7,

79
9,

50
2

1,
33

1,
55

2
5,

31
2,

51
2

30
1,

58
3

2,
01

1
2,

95
0

72
,9

16
,5

50
1,

33
1,

55
2

13
,7

81
,8

27
2,

47
0,

59
9

10
,3

89

D
U

R
D

E
N

6,
25

9,
46

5
1,

19
5,

92
0

5,
27

9,
74

4
26

0,
52

2
1,

82
6

99
9,

85
7,

15
5

1,
19

5,
92

0
5,

68
9,

16
0

38
9,

52
9

2,
32

0
FL

IP
P

E
R

6,
27

1,
94

2
1,

19
0,

76
8

5,
27

9,
74

4
26

0,
96

7
1,

82
4

98
9,

85
3,

05
4

1,
19

0,
76

8
5,

69
8,

40
0

38
9,

63
7

2,
32

3
F

T
R

A
C

E
4,

53
0,

85
6

1,
07

8,
98

4
95

8,
46

4
18

4,
26

7
1,

28
6

20
5,

92
5,

23
1

1,
07

8,
98

4
1,

12
4,

97
5

24
0,

92
6

1,
52

1
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

4,
42

6,
75

8
1,

06
8,

17
6

95
8,

46
4

18
0,

84
6

1,
27

0
20

5,
81

8,
43

1
1,

06
8,

17
6

1,
12

4,
94

3
23

7,
37

6
1,

50
5

E
M

U
T

R
A

C
E

6,
97

8,
92

6
1,

28
8,

69
6

5,
29

2,
03

2
29

6,
50

8
2,

01
0

2,
68

9
53

,4
18

,5
78

1,
28

8,
69

6
11

,8
30

,5
99

2,
20

9,
81

4
9,

48
1

E
M

U
T

R
A

C
E

(N
O

IN
IT

)
7,

44
2,

18
1

1,
30

5,
09

6
5,

32
0,

70
4

31
6,

72
4

2,
07

1
1,

87
8

42
,1

35
,6

49
1,

30
5,

09
6

10
,5

15
,4

58
1,

74
3,

58
3

7,
63

0

Ta
bl

e
B

.1
3

–
Ta

ilo
re

d
ke

rn
el

bi
na

ry
st

at
is

ti
cs

fo
r

Li
nu

x
ke

rn
el

v3
.1

3
–

v3
.1

5



B.3 Emulation 88

M
et

ho
d

vm
li

n
u

x
on

ly
to

ta
l(

in
cl

u
di

n
g

LK
M

)
Li

nu
x

si
ze

(i
n

by
te

s)
co

m
pi

le
d

so
ur

ce
.k

o
si

ze
(i

n
by

te
s)

co
m

pi
le

d
so

ur
ce

ke
rn

el
te

xt
da

ta
bs

s
lin

es
fil

es
fil

es
te

xt
da

ta
bs

s
lin

es
fil

es

v3
.1

2

B
as

el
in

e
7,

67
2,

93
4

1,
31

3,
36

0
5,

30
8,

41
6

29
8,

31
4

1,
98

5
2,

92
0

72
,0

05
,5

58
1,

31
3,

36
0

13
,7

39
,3

44
2,

44
5,

94
7

10
,2

59

D
U

R
D

E
N

6,
22

8,
96

8
1,

21
7,

24
0

5,
27

5,
64

8
26

0,
13

8
1,

81
0

94
9,

70
1,

20
5

1,
21

7,
24

0
5,

68
5,

57
8

38
6,

51
4

2,
29

7
FL

IP
P

E
R

6,
24

1,
84

5
1,

21
0,

64
8

5,
27

5,
64

8
26

0,
58

5
1,

80
8

94
9,

71
9,

09
4

1,
21

0,
64

8
5,

69
6,

03
9

38
7,

10
4

2,
30

1
F

T
R

A
C

E
4,

44
5,

62
8

1,
08

5,
95

2
95

4,
36

8
18

1,
48

7
1,

26
9

22
5,

85
4,

32
8

1,
08

5,
95

2
1,

12
0,

00
5

23
9,

09
8

1,
50

5
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

4,
57

3,
19

5
1,

10
2,

42
4

95
4,

36
8

18
5,

63
2

1,
28

8
22

5,
98

4,
46

9
1,

10
2,

42
4

1,
12

0,
03

7
24

3,
37

1
1,

52
4

E
M

U
T

R
A

C
E

7,
53

2,
59

3
1,

35
2,

12
0

5,
29

2,
03

2
31

4,
40

9
2,

05
3

2,
65

7
52

,8
07

,7
68

1,
35

2,
12

0
11

,7
25

,3
19

2,
18

7,
91

7
9,

35
9

E
M

U
T

R
A

C
E

(N
O

IN
IT

)
7,

71
1,

11
7

1,
33

7,
16

8
5,

30
0,

22
4

32
9,

36
8

2,
13

0
1,

84
2

41
,5

80
,9

88
1,

33
7,

16
8

10
,4

41
,4

48
1,

72
1,

91
5

7,
52

1

v3
.1

1

B
as

el
in

e
7,

56
0,

74
3

1,
30

0,
36

8
5,

30
4,

32
0

29
4,

61
4

1,
97

0
2,

88
8

67
,0

57
,1

47
1,

30
0,

36
8

12
,6

17
,8

11
2,

32
8,

12
1

9,
83

6

D
U

R
D

E
N

6,
17

5,
52

1
1,

20
8,

00
8

5,
27

1,
55

2
25

8,
63

4
1,

81
3

96
9,

41
2,

66
0

1,
20

8,
00

8
5,

64
7,

08
0

38
3,

35
4

2,
29

3
FL

IP
P

E
R

6,
18

8,
63

8
1,

20
1,

41
6

5,
27

1,
55

2
25

9,
08

6
1,

81
1

96
9,

43
0,

67
8

1,
20

1,
41

6
5,

65
7,

70
1

38
3,

93
5

2,
29

7
F

T
R

A
C

E
4,

52
2,

97
0

1,
08

9,
10

4
95

4,
36

8
18

3,
68

0
1,

28
3

22
5,

88
9,

30
1

1,
08

9,
10

4
1,

10
5,

42
0

24
0,

77
3

1,
51

6
F

T
R

A
C

E
(E

A
R

LY
B

O
O

T
)

4,
52

2,
97

0
1,

08
9,

10
4

95
4,

36
8

18
3,

68
0

1,
28

3
22

5,
88

9,
30

1
1,

08
9,

10
4

1,
10

5,
42

0
24

0,
77

3
1,

51
6

E
M

U
T

R
A

C
E

6,
83

1,
27

5
1,

29
3,

54
4

5,
27

5,
64

8
29

0,
74

3
1,

99
7

2,
65

4
50

,9
84

,6
91

1,
29

3,
54

4
11

,6
79

,4
20

2,
12

6,
43

6
9,

18
5

E
M

U
T

R
A

C
E

(N
O

IN
IT

)
8,

08
6,

47
2

1,
32

8,
16

0
5,

30
4,

32
0

34
4,

70
5

2,
11

1
1,

82
7

39
,8

98
,7

97
1,

32
8,

16
0

10
,3

21
,3

44
1,

66
3,

13
3

7,
35

4

v3
.1

0

B
as

el
in

e
7,

44
7,

59
8

1,
28

3,
08

8
5,

29
2,

03
2

29
1,

64
4

1,
93

8
2,

87
2

66
,2

93
,1

15
1,

28
3,

08
8

12
,4

99
,4

43
2,

29
6,

45
7

9,
68

6

D
U

R
D

E
N

6,
07

2,
61

7
1,

19
1,

00
8

5,
24

6,
97

6
25

5,
42

7
1,

78
2

97
9,

31
5,

87
0

1,
19

1,
00

8
5,

63
3,

64
5

38
0,

66
0

2,
26

8
FL

IP
P

E
R

6,
08

4,
85

1
1,

18
4,

96
8

5,
24

6,
97

6
25

5,
96

9
1,

78
1

97
9,

33
1,

23
0

1,
18

4,
96

8
5,

64
4,

21
8

38
1,

22
6

2,
27

3
F

T
R

A
C

E
4,

50
1,

79
4

1,
10

2,
15

2
5,

14
4,

57
6

18
2,

86
2

1,
28

5
25

5,
86

7,
78

4
1,

10
2,

15
2

5,
29

5,
88

0
24

0,
28

1
1,

52
2

F
T

R
A

C
E

(E
A

R
LY

B
O

O
T
)

4,
50

2,
64

4
1,

10
0,

61
6

5,
14

4,
57

6
18

2,
93

5
1,

28
5

25
5,

86
9,

57
8

1,
10

0,
61

6
5,

29
6,

00
8

24
0,

38
0

1,
52

2
E

M
U
T

R
A

C
E

6,
71

2,
22

1
1,

28
1,

27
2

5,
25

9,
26

4
28

6,
45

7
1,

95
6

2,
63

3
50

,2
50

,9
32

1,
28

1,
27

2
11

,5
46

,6
51

2,
09

3,
59

3
9,

05
1

E
M

U
T

R
A

C
E

(N
O

IN
IT

)
7,

20
0,

25
1

1,
29

4,
47

2
5,

27
9,

74
4

30
9,

29
0

2,
00

9
1,

78
3

38
,5

21
,8

58
1,

29
4,

47
2

10
,2

41
,5

91
1,

60
7,

48
1

7,
18

9

Ta
bl

e
B

.1
4

–
Ta

ilo
re

d
ke

rn
el

bi
na

ry
st

at
is

ti
cs

fo
r

Li
nu

x
ke

rn
el

v3
.1

0
–

v3
.1

2



https://www4.cs.fau.de/Lehre/WS11/P_PASST/


List of Acronyms

API application programming interface

AST abstract syntax tree

CI continuous integration

CPP C preprocessor

HID human interface device

ID identifier

KVM kernel virtual machine

LKM loadable kernel module

PC program counter

RegExp regular expression

SAT (boolean) satisfiability problem

SmPL semantic patch language

90



List of Figures

1.1 Linux feature growth 2005 – 2014 . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Overview of the kernel tailoring approach . . . . . . . . . . . . . . . . . 6

2.2 Modified steps in the newly suggested kernel tailoring approach . . . 10

4.1 Schedule for collecting addresses at the Coder scenario on Raspberry

Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Comparison of power consumption between original and tailored

kernel in the Coder scenario . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Schedule for tracing OnionPi on Raspberry Pi . . . . . . . . . . . . . . 28

4.4 Schedule for tracing raspBMC . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 KCONFIG feature selections for the Raspberry Pi test cases when using

different data collection methods . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Evolution of recorded points in the source code and KCONFIG features

enabled in the resulting configuration for the raspBMC use case using

both old and new approach . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Schedule for tracing Ubuntu Touch on Google Nexus 4 . . . . . . . . . 33

5.1 Schematic representation of the new approach’ emulation workflow . 36

5.2 Necessary items in whitelist depending on method and kernel version 40

5.3 Number of enabled features depending on approach and kernel version 43

6.1 Quantitative comparison of contained KCONFIG features (including

value features) between the original kernel and tailored version in

the raspBMC use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Usage of the IS_ENABLED macro in the Linux kernel versions for the

last three years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Usage of KCONFIG features in different Linux kernel versions . . . . . . 50

6.4 Feature growth in Linux by architecture since 2006 . . . . . . . . . . . 53

B.1 Traced events per time during evaluation of Coder using FLIPPER . . 68

91



List of Figures 92

B.2 Evolution of features during evaluation of Coder using FLIPPER . . . . 68

B.3 Traced events per directory and time during evaluation of Coder using

FLIPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.4 Traced events per time during evaluation of Coder using FTRACE . . . 69

B.5 Evolution of features during evaluation of Coder using FTRACE . . . . 69

B.6 Traced events per directory and time during evaluation of Coder using

FTRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.7 Traced events per time during evaluation of OnionPi using FLIPPER . 71

B.8 Evolution of features during evaluation of OnionPi using FLIPPER . . 71

B.9 Traced events per directory and time during evaluation of OnionPi

using FLIPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.10 Traced events per time during evaluation of OnionPi using FTRACE . 72

B.11 Evolution of features during evaluation of OnionPi using FTRACE . . . 72

B.12 Traced events per directory and time during evaluation of OnionPi

using FTRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.13 Traced events per time during evaluation of raspBMC using FLIPPER 75

B.14 Evolution of features during evaluation of raspBMC using FLIPPER . . 75

B.15 Traced events per directory and time during evaluation of raspBMC

using FLIPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.16 Traced events per time during evaluation of raspBMC using FTRACE . 76

B.17 Evolution of features during evaluation of raspBMC using FTRACE . . 76

B.18 Traced events per directory and time during evaluation of raspBMC

using FTRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.19 Traced events per time during evaluation of Ubuntu Touch (using

FLIPPER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.20 Evolution of features during evaluation of Ubuntu Touch (using FLIPPER) 80

B.21 Traced events per directory and time during evaluation of Ubuntu

Touch (using FLIPPER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.22 Schematic representation for the emulation workflow of both the

traditional FTRACE based approach and the Emulator-based Code-

Point Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Listings

2.1 Example of code injection concept . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Pathological example presenting limitations of the approach . . . . . 19

3.2 Example of Conditional block inside expression with prefix operator

(Linux v3.6 source file net/ipv4/inet_diag.c) . . . . . . . . . . . . 19

3.3 Code injection by CLANGs source rewrite engine ignores KCONFIG

enabled conditional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.1 Injection in single statement blocks without curly braces

(Linux v3.15 source file arch/x86/kernel/cpu/common.c) . . . . . 57

A.2 Conditional block in branch table (switch statement) with multiple

branches

(Linux v3.15 source file arch/x86/power/cpu.c with comments

removed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3 Injection in complete expressions

(Linux v3.15 source file arch/x86/kernel/check.c) . . . . . . . . . 58

A.4 Conditional block inside expression with postfix operator

(Linux v3.15 source file arch/x86/kvm/vmx.c) . . . . . . . . . . . . . 58

A.5 Conditional block inside expression with prefix operator

(Linux v3.15 source file net/netfilter/nfnetlink_queue_core.c) 59

A.6 Functions definied in macros

(Linux v3.15 source file block/deadline-iosched.c) . . . . . . . . . 59

A.7 Complete SmPL source of the final FLIPPER implementation . . . . . . 62

B.1 SmPL patch for QEMU enabling output of all block starting addresses 81

93



List of Tables

3.1 Comparison of required assembly code instructions for approaches

compiled on ARMv6 and AMD64/x86-64 architecture using GCC with

optimizer flag -O2 (or -O0 in case of disabled optimization) . . . . . . 16

4.1 Results for the Coder scenarios using three metrics. Percentages

shown are quotients between the FLIPPER tailored version and the

corresponding original configuration file . . . . . . . . . . . . . . . . . . 26

4.2 Results for the OnionPi scenarios using three metrics. Percentages

shown are quotients between the FLIPPER tailored version and the

corresponding original configuration file . . . . . . . . . . . . . . . . . . 28

4.3 Results for the raspBMC scenarios using three metrics. Percentages

shown are quotients between the FLIPPER tailored version and the

corresponding original configuration file . . . . . . . . . . . . . . . . . . 29

4.4 Results for the automated tailoring of Ubuntu Touch on a Google

Nexus 4 smartphone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Accumulated occurrence of whitelist items after minimization in the

emulation framework for every version and approach (in total 36

whitelists) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Collected data and the resulting features by automated tailoring with

different approaches (Linux kernel v3.15), compared to the Baseline. 42

5.3 Comparison of tailored kernel binaries (Linux kernel v3.15) . . . . . . 42

B.1 Detailed schedule for the Coder scenario on Raspberry Pi . . . . . . . 67

B.2 Detailed kernel comparison for tailoring of Coder . . . . . . . . . . . . 67

B.3 Detailed schedule for the OnionPi scenario on Raspberry Pi . . . . . . 70

B.4 Detailed kernel comparison for tailoring of OnionPi . . . . . . . . . . 70

B.5 Detailed schedule for the raspBMC scenario . . . . . . . . . . . . . . . . 73

B.6 Detailed kernel comparison for tailoring of raspBMC . . . . . . . . . . 73

B.7 Detailed schedule for tracing Ubuntu Touch on Google Nexus 4 . . . 79

94



List of Tables 95

B.8 Detailed kernel comparison for Ubuntu Touch . . . . . . . . . . . . . . 79

B.9 Necessary whitelist items for the emulation based evaluation . . . . . 83

B.10 Detailed schedule for the automatic simulation actions in the emula-

tion approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.11 Collected data and feature overview by automated tailoring with

different approaches for Linux kernel v3.13 – v3.15 . . . . . . . . . . . 85

B.12 Collected data and feature overview by automated tailoring with

different approaches for Linux kernel v3.10 – v3.12 . . . . . . . . . . . 86

B.13 Tailored kernel binary statistics for Linux kernel v3.13 – v3.15 . . . . 87

B.14 Tailored kernel binary statistics for Linux kernel v3.10 – v3.12 . . . . 88



References

[1] AspectC++. Project Homepage. URL: http://www.aspectc.org/ (visited

on 08/02/2014).

[2] BasicLinux Homepage. Website. URL: http://distro.ibiblio.org/

baslinux/ (visited on 07/13/2014).

[3] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator.” In: Pro-

ceedings of the Annual Conference on USENIX Annual Technical Conference.

ATEC ’05. Anaheim, CA: USENIX Association, 2005, pp. 41–41. URL: http:

//dl.acm.org/citation.cfm?id=1247360.1247401.

[4] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. “A Study of

Variability Models and Languages in the Systems Software Domain.” In: IEEE

Transactions on Software Engineering 39.12 (2013), pp. 1611–1640. ISSN:

0098-5589. DOI: 10.1109/TSE.2013.34.

[5] Ramon Bertran, Marisa Gil, Javier Cabezas, Victor Jimenez, Lluis Vilanova,

Enric Morancho, and Nacho Navarro. Building a Global System View for

Optimization Purposes. workshop. Boston, USA, June 2006. URL: http:

//personals.ac.upc.edu/rbertran/pdfs/wso-wiosca.pdf.

[6] Manfred Broy. “Challenges in Automotive Software Engineering.” In: Pro-

ceedings of the 28th International Conference on Software Engineering (ICSE

’06). (Shanghai, China). New York, NY, USA: ACM Press, 2006, pp. 33–42.

ISBN: 1-59593-375-1. DOI: 10.1145/1134285.1134292.

[7] BusyBox Project Homepage. URL: http://www.busybox.net/ (visited on

05/11/2012).

[8] CADOS: Configurability Aware Development of Operating Systems. Research

Group Homepage. URL: https://www4.cs.fau.de/Research/CADOS/

(visited on 07/22/2014).

96

http://www.aspectc.org/
http://distro.ibiblio.org/baslinux/
http://distro.ibiblio.org/baslinux/
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dx.doi.org/10.1109/TSE.2013.34
http://personals.ac.upc.edu/rbertran/pdfs/wso-wiosca.pdf
http://personals.ac.upc.edu/rbertran/pdfs/wso-wiosca.pdf
http://dx.doi.org/10.1145/1134285.1134292
http://www.busybox.net/
https://www4.cs.fau.de/Research/CADOS/


References 97

[9] Dominique Chanet, Bjorn De Sutter, Bruno De Bus, Ludo Van Put, and Koen

De Bosschere. “System-wide Compaction and Specialization of the Linux

Kernel.” In: Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on

Languages, Compilers and Tools for Embedded Systems (LCTES ’05). New

York, NY, USA: ACM Press, 2005, pp. 95–104. ISBN: 1-59593-018-3. DOI:

10.1145/1065910.1065925.

[10] Noam Chomsky. “On certain formal properties of grammars.” In: Information

and Control 2.2 (1959), pp. 137 –167. ISSN: 0019-9958. DOI: http://

dx.doi.org/10.1016/S0019-9958(59)90362-6. URL: http://www.

sciencedirect.com/science/article/pii/S0019995859903626.

[11] Gabriele Cirulli. 2048. GitHub Project. URL: http://gabrielecirulli.

github.io/2048/ (visited on 04/23/2014).

[12] clang - C Language Family Frontend for LLVM. Project Homepage. URL:

http://clang.llvm.org/ (visited on 07/16/2014).

[13] Coder for Raspberry Pi. GitHub Project. URL: http://googlecreativelab.

github.io/coder/ (visited on 12/13/2013).

[14] CyanogenMod - Android Community Operating System. Project Homepage.

URL: http://www.cyanogenmod.org/ (visited on 07/15/2014).

[15] Description of the unified diff format. the GNU diff manual. URL: http:

//www.gnu.org/software/diffutils/manual/html_node/Unified-

Format.html (visited on 07/13/2014).

[16] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and

Daniel Lohmann. “A Robust Approach for Variability Extraction from the

Linux Build System.” In: Proceedings of the 16th Software Product Line Con-

ference (SPLC ’12). (Salvador, Brazil, Sept. 2–7, 2012). Ed. by Eduardo

Santana de Almeida, Christa Schwanninger, and David Benavides. New York,

NY, USA: ACM Press, 2012, pp. 21–30. ISBN: 978-1-4503-1094-9. DOI:

10.1145/2362536.2362544.

[17] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and

Daniel Lohmann. “Understanding Linux Feature Distribution.” In: Proceedings

of the 2nd AOSD Workshop on Modularity in Systems Software (AOSD-MISS

’12). (Potsdam, Germany, Mar. 27, 2012). Ed. by Christoph Borchert, Michael

Haupt, and Daniel Lohmann. New York, NY, USA: ACM Press, 2012. ISBN:

978-1-4503-1217-2. DOI: 10.1145/2162024.2162030.

[18] Expect. Project Homepage. URL: http://expect.sourceforge.net/

(visited on 07/13/2014).

[19] Fiasco Project Homepage. URL: http://os.inf.tu-dresden.de/fiasco/

(visited on 05/11/2012).

http://dx.doi.org/10.1145/1065910.1065925
http://dx.doi.org/http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://www.sciencedirect.com/science/article/pii/S0019995859903626
http://www.sciencedirect.com/science/article/pii/S0019995859903626
http://gabrielecirulli.github.io/2048/
http://gabrielecirulli.github.io/2048/
http://clang.llvm.org/
http://googlecreativelab.github.io/coder/
http://googlecreativelab.github.io/coder/
http://www.cyanogenmod.org/
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://dx.doi.org/10.1145/2362536.2362544
http://dx.doi.org/10.1145/2162024.2162030
http://expect.sourceforge.net/
http://os.inf.tu-dresden.de/fiasco/


References 98

[20] function tracer guts. the Linux kernel documentation. URL: https://www.

kernel.org/doc/Documentation/trace/ftrace-design.txt (visited

on 07/13/2014).

[21] Paul Gazzillo and Robert Grimm. “SuperC: Parsing All of C by Taming the

Preprocessor.” In: SIGPLAN Not. 47.6 (June 2012), pp. 323–334. ISSN: 0362-

1340. DOI: 10.1145/2345156.2254103. URL: http://doi.acm.org/10.

1145/2345156.2254103.

[22] GCC, the GNU Compiler Collection. Project Homepage. URL: https://gcc.

gnu.org/ (visited on 07/16/2014).

[23] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. “A

genetic algorithm for optimized feature selection with resource constraints

in software product lines.” In: Journal of Systems and Software 84.12 (2011),

pp. 2208 –2221. ISSN: 0164-1212. DOI: http://dx.doi.org/10.1016/

j.jss.2011.06.026. URL: http://www.sciencedirect.com/science/

article/pii/S0164121211001518.

[24] ISO. ISO/IEC 9899:2011 Information technology — Programming languages

— C. Geneva, Switzerland: International Organization for Standardiza-

tion, 2011, 683 (est.) URL: http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=57853.

[25] Jenkins CI. Project Homepage. URL: http://jenkins-ci.org/ (visited on

07/13/2014).

[26] Kconfig. the Linux kernel documentation. URL: https://www.kernel.

org/doc/Documentation/kbuild/kconfig-language.txt (visited on

07/21/2014).

[27] Brian W. Kernighan. The C Programming Language. Ed. by Dennis M.

Ritchie. 2nd. Prentice Hall Professional Technical Reference, 1988. ISBN:

0131103709.

[28] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin

Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann,

and Rüdiger Kapitza. “Attack Surface Metrics and Automated Compile-Time

OS Kernel Tailoring.” In: Proceedings of the 20th Network and Distributed

Systems Security Symposium. (San Diego, CA, USA, Feb. 24–27, 2013). The

Internet Society, 2013. URL: http://www.internetsociety.org/sites/

default/files/03_2_0.pdf.

[29] C.T. Lee, J.M. Lin, Z.W. Hong, and W.T. Lee. “An Application-Oriented Linux

Kernel Customization for Embedded Systems.” In: Journal of information

science and engineering 20.6 (2004), pp. 1093–1108. ISSN: 1016-2364.

https://www.kernel.org/doc/Documentation/trace/ftrace-design.txt
https://www.kernel.org/doc/Documentation/trace/ftrace-design.txt
http://dx.doi.org/10.1145/2345156.2254103
http://doi.acm.org/10.1145/2345156.2254103
http://doi.acm.org/10.1145/2345156.2254103
https://gcc.gnu.org/
https://gcc.gnu.org/
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2011.06.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2011.06.026
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://jenkins-ci.org/
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
http://www.internetsociety.org/sites/default/files/03_2_0.pdf
http://www.internetsociety.org/sites/default/files/03_2_0.pdf


References 99

[30] LG E960 / Google Nexus 4 Technical Specification. URL: http://www.lg.com/

us/support/products/documents/Nexus4_One_sheeter.pdf (visited

on 07/15/2014).

[31] Jörg Liebig, Christian Kästner, and Sven Apel. “Analyzing the Discipline of

Preprocessor Annotations in 30 Million Lines of C Code.” In: Proceedings of

the Tenth International Conference on Aspect-oriented Software Development.

AOSD ’11. Porto de Galinhas, Brazil: ACM, 2011, pp. 191–202. ISBN: 978-

1-4503-0605-8. DOI: 10.1145/1960275.1960299. URL: http://doi.acm.

org/10.1145/1960275.1960299.

[32] Lineo uLinux - Embedded Linux. Publisher Homepage. URL: http://www.

lineo.co.jp/modules/products/ulinux.html (visited on 07/13/2014).

[33] Linux kernel coding style. Linux kernel documentation. URL: https://www.

kernel.org/doc/Documentation/CodingStyle (visited on 07/13/2014).

[34] Linux Tiny. Embedded Linux Wiki. URL: http://elinux.org/Linux_Tiny

(visited on 07/09/2014).

[35] LLVM Linux. Project Homepage. URL: http://llvm.linuxfoundation.

org/index.php/Main_Page (visited on 07/13/2014).

[36] Onion Pi. Adafruit Learning System. URL: http://learn.adafruit.com/

onion-pi/ (visited on 09/27/2013).

[37] OOM Killer. Linux Memory Management. URL: http://linux-mm.org/

OOM_Killer (visited on 07/13/2014).

[38] OPcache. PHP Documentation. URL: http://php.net/manual/en/book.

opcache.php (visited on 07/13/2014).

[39] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. “Understanding Collat-

eral Evolution in Linux Device Drivers.” In: SIGOPS Oper. Syst. Rev. 40.4 (Apr.

2006), pp. 59–71. ISSN: 0163-5980. DOI: 10.1145/1218063.1217942. URL:

http://doi.acm.org/10.1145/1218063.1217942.

[40] PHP Hypertext Preprocessor. Official Website. URL: http://www.php.net/

(visited on 07/13/2014).

[41] QEMU Emulator User Documentation. URL: http://qemu.weilnetz.de/

qemu-doc.html (visited on 07/13/2014).

[42] QEMU Internals. URL: http://qemu.weilnetz.de/qemu- tech.html

(visited on 07/13/2014).

[43] Raspberry Pi Model B Technical Specification. URL: http://elinux.org/

RPi_Hardware (visited on 07/15/2014).

http://www.lg.com/us/support/products/documents/Nexus4_One_sheeter.pdf
http://www.lg.com/us/support/products/documents/Nexus4_One_sheeter.pdf
http://dx.doi.org/10.1145/1960275.1960299
http://doi.acm.org/10.1145/1960275.1960299
http://doi.acm.org/10.1145/1960275.1960299
http://www.lineo.co.jp/modules/products/ulinux.html
http://www.lineo.co.jp/modules/products/ulinux.html
https://www.kernel.org/doc/Documentation/CodingStyle
https://www.kernel.org/doc/Documentation/CodingStyle
http://elinux.org/Linux_Tiny
http://llvm.linuxfoundation.org/index.php/Main_Page
http://llvm.linuxfoundation.org/index.php/Main_Page
http://learn.adafruit.com/onion-pi/
http://learn.adafruit.com/onion-pi/
http://linux-mm.org/OOM_Killer
http://linux-mm.org/OOM_Killer
http://php.net/manual/en/book.opcache.php
http://php.net/manual/en/book.opcache.php
http://dx.doi.org/10.1145/1218063.1217942
http://doi.acm.org/10.1145/1218063.1217942
http://www.php.net/
http://qemu.weilnetz.de/qemu-doc.html
http://qemu.weilnetz.de/qemu-doc.html
http://qemu.weilnetz.de/qemu-tech.html
http://elinux.org/RPi_Hardware
http://elinux.org/RPi_Hardware


References 100

[44] Dennis M. Ritchie. “The Development of the C Language.” In: SIGPLAN Not.

28.3 (Mar. 1993), pp. 201–208. ISSN: 0362-1340. DOI: 10.1145/155360.

155580. URL: http://doi.acm.org/10.1145/155360.155580.

[45] Andreas Ruprecht, Bernhard Heinloth, and Daniel Lohmann. “Automatic

Feature Selection in Large-Scale System-Software Product Line.” In: 13th

International Conference on Generative Programming and Component Engi-

neering (GPCE ’14). New York, NY, USA: ACM Press, 2014, pp. 39–48.

DOI: 10.1145/2658761.2658767. URL: https://www4.cs.fau.de/

Publications/2014/ruprecht_14_gpce.pdf.

[46] Horst Schirmeier and Olaf Spinczyk. “Tailoring Infrastructure Software

Product Lines by Static Application Analysis.” In: Proceedings of the 11th

Software Product Line Conference (SPLC ’07). IEEE Computer Society Press,

2007, pp. 255–260. ISBN: 0-7695-2888-0. DOI: 10.1109/SPLINE.2007.33.

[47] N. Siegmund, S.S. Kolesnikov, C. Kastner, S. Apel, D. Batory, M. Rosenmuller,

and G. Saake. “Predicting performance via automated feature-interaction

detection.” In: Proceedings of the 34nd International Conference on Software

Engineering (ICSE ’12). (Zurich, Switzerland). Washington, DC, USA: IEEE

Computer Society Press, June 2012, pp. 167–177. ISBN: 978-1-4673-1067-3.

DOI: 10.1109/ICSE.2012.6227196.

[48] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Käst-

ner, Sven Apel, and Gunter Saake. “SPL Conqueror: Toward optimization

of non-functional properties in software product lines.” English. In: Soft-

ware Quality Journal 20.3-4 (2012), pp. 487–517. ISSN: 0963-9314. DOI:

10.1007/s11219-011-9152-9. URL: http://dx.doi.org/10.1007/

s11219-011-9152-9.

[49] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schröder-

Preikschat. “Efficient Extraction and Analysis of Preprocessor-Based Variabil-

ity.” In: Proceedings of the 9th International Conference on Generative Program-

ming and Component Engineering (GPCE ’10). (Eindhoven, The Netherlands).

Ed. by Eelco Visser and Jaakko Järvi. New York, NY, USA: ACM Press, 2010,

pp. 33–42. ISBN: 978-1-4503-0154-1. DOI: 10.1145/1868294.1868300.

[50] Samaneh Soltani, Mohsen Asadi, Dragan Gašević, Marek Hatala, and Ebrahim
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