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Abstract

In Linux v3.19, the configuration system KCONFIG offers more than fourteen thou-

sand configurable options that allows users to build a kernel specific to their respective

needs. As these configurable options span across all layers involved in the kernel

build process (KCONFIG, the build system KBUILD, and the code), manual checking

for inconsistencies caused by these options is close to impossible.

Recently, Valentin Rothberg presented UNDERTAKER-CHECKPATCH, a tool based on

the UNDERTAKER toolchain which allows developers to quickly check their proposed

patches for errors introduced by the use of configurable options. Unfortunately, the

tool currently can not incorporate information from KBUILD, as the extractor needs

several hours to compute the variability data.

In this thesis, I therefore present a parsing-based approach to extract variability

information from Makefiles. Contrary to earlier assumptions, I show that my solution

is able to extract highly accurate conditions from KBUILD, and that it is able to work

robustly across a wide range of Linux versions while slashing the runtime to just

over one second on Linux version v3.19. This, for the first time, allows us to run an

accurate, daily analysis of the commits sent into the linux-next development tree,

and to have very fast response times to the authors of the buggy commits.

Through its modular design, my tool can easily be enhanced to support other

software projects, which I demonstrate by providing plug-in modules for BUSYBOX

and COREBOOT.
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Kurzfassung

KCONFIG, das Konfigurationssystem des Linux-Betriebssystemkerns, bietet in Linux

v3.19 mehr als vierzehntausend konfigurierbare Optionen an, die es Nutzern er-

lauben, den Kern genau auf ihre jeweiligen Bedürfnisse anzupassen. Da die konfi-

gurierbaren Optionen in allen Ebenen des Build-Prozesses (in KCONFIG selbst, im

Build-System KBUILD und im Quelltext) verwendet werden, ist eine manuelle Über-

prüfung auf Inkonsistenzen, die durch diese Optionen entstehen können, nahezu

unmöglich.

Valentin Rothberg stellte vor kurzem UNDERTAKER-CHECKPATCH vor, ein auf der

UNDERTAKER-Toolkette basierendes Software-Programm, das es Entwicklern ermög-

licht, ihre Änderungen schnell auf Fehler hin zu testen, die durch die Verwendung

konfigurierbarer Optionen hervorgerufen werden. Momentan kann das Programm

jedoch keine Informationen aus KBUILD in die Analyse integrieren, da der Extraktor

einige Stunden benötigt, um die Variabilitätsdaten zu berechnen.

In dieser Arbeit präsentiere ich daher einen textbasierten Ansatz zur Extraktion

von Variabilitätsinformationen aus Makefiles. Entgegen früherer Annahmen zeige

ich, dass durch einen solchen Ansatz sehr präzise Bedingungen aus KBUILD extrahiert

werden können, und dass der Ansatz auch über eine Vielzahl von Linux-Versionen

hinweg zuverlässig funktioniert. Die Laufzeit des neuen Extraktors beträgt für Linux

v3.19 jedoch nur knapp mehr als eine Sekunde. Dies erlaubt es uns zum ersten

Mal, täglich eine detaillierte Analyse der Änderungen, die in den Entwicklungszweig

des Linux-Kernes eingebracht werden, durchzuführen und den Entwicklern schnell

Rückmeldung geben zu können.

Durch den modularen Aufbau kann mein Extraktor leicht um die Unterstützung

anderer Software-Projekte erweitert werden, was ich beispielhaft an Erweiterungs-

Modulen für BUSYBOX und COREBOOT demonstriere.
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1 Introduction

Linux, as well as other system software, offers a great deal of static configurability to

tailor it with respect to a specific application or hardware platform. Linux 3.19, for

instance, contains more than fourteen thousand configurable features, defined by its

KCONFIG variability model and associated tools. Technically, the implementation of

all these features is spread over multiple levels of the software generation process,

including the configuration system itself, the build system KBUILD, C preprocessor,

the GCC compiler, the linker, and more. This enormous variability has become unman-

ageable in practice; in the case of Linux it already has led to thousands of variability

defects [21], that is, bugs and other quality issues related to the implementation

of variable features. These defects emerge as dead or undead #ifdef-blocks in

the code – seemingly configuration-conditional code that can, however, never be

selected or deselected.

As part of the VAMOS [23]/CADOS [5] project, Sincero [18] and Tartler [20]
have developed the UNDERTAKER toolchain, which can extract the variability infor-

mation from KCONFIG and search for dead and undead blocks in the code of Linux.

Extending their work to also incorporate the variability information expressed in

the build system, Dietrich et al. [9] presented an approach for the extraction of

the configurational constraints for individual source files. In the KBUILD Makefiles,

developers can specify that files should only be built if the corresponding config-

urable features have been selected in the configuration step. As the underlying

MAKE language allows arbitrarily complex logic to be used in order to express these

dependencies, their extractor, GOLEM, does not try to gather the data directly from

the Makefiles, but rather probes the build system in a systematic way. By using

KBUILD as a black box, GOLEM is particularly robust with respect to changes in the

Makefiles across different architectures and versions.

The probing strategy – switching relevant configuration options on and off, and

observing the changes in regards of files which will be built – however, has one
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2 1 – Introduction

big disadvantage: its high runtime. For the most recent Linux version v3.19, the

extraction process takes over three hours for the x86 architecture alone; as Linux

now supports 30 different architectures, it would take days to extract all required

constraints for an analysis of all defects in Linux. While this high runtime might

still be acceptable for research through an off-line analysis of single stable versions,

Rothberg [17] recently developed UNDERTAKER-CHECKPATCH to foster the use of

the UNDERTAKER toolchain in production; with his tool, Linux developers can easily

check if their patch introduces any variability defects before sending it out to the

maintainers. In this scenario, waiting a few days for the result of the analysis of a

patch, howsoever small, is not acceptable. On the other hand, using the data from

KBUILD greatly increases the number of defects correctly detected by UNDERTAKER.

In this thesis, I therefore present MINIGOLEM, a parsing-based extractor for

variability information from Linux Makefiles which allows the collection of data from

KBUILD in just over one second. Contrary to the concerns expressed by Dietrich et al.

[9] over the feasibility of a text-based evaluation of Makefiles, the tool is able to

robustly extract highly accurate data for all Linux versions released during the last

five years. Through its modular design, it can further be easily adapted to support

other system software projects, which I demonstrate by providing implementations

for the build system of BUSYBOX and COREBOOT.

The remainder of the thesis is structured as follows: In Chapter 2, I will outline the

concepts and tools which are used to implement configurability in the Linux kernel,

and how BUSYBOX and COREBOOT adapted them for their own purpose. Furthermore,

I will describe how the UNDERTAKER toolsuite uses the extracted variability data to

detect and classify defects, and how UNDERTAKER-CHECKPATCH can be used in the

workflow of a Linux developer, before presenting related work from other researchers.

Next, in Chapter 3, I will elaborate on the challenges which a thorough solution has

to face, and subsequently show how my approach is able to tackle them. Chapter 4

then provides an insight into the implementation of my tool, and describes a newly

developed experiment which we use to analyze the linux-next integration tree

on a daily basis. In Chapter 5, I will provide a detailed evaluation regarding the

runtime, the robustness, and the accuracy of my tool, covering Linux, BUSYBOX, and

COREBOOT.



2 Fundamentals

In this chapter, I will present the basic mechanisms and tools which are used to

configure and build Linux, and how other system software projects adapted these

tools for their own use. Furthermore, I will explain how the current version of the

UNDERTAKER tool extracts and uses this information to detect bugs and anomalies,

and how UNDERTAKER-CHECKPATCH employs UNDERTAKER to analyze patches. Lastly,

I will give an overview over related approaches by other researchers.

2.1 Configuring and Building Linux

The way variability is used in the Linux kernel spreads over different, but interlocked

layers: Features defined in the configuration system will have effects on other

configurable options, on the build system (Makefiles and the compiler) as well as on

the source code through the C preprocessor.

To get an insight on how this interaction takes place, I will now describe how

configuration options are defined in the configuration system and how they are used

throughout the build process.

2.1.1 Configuration of the Kernel: KCONFIG

The basic process of configuring a Linux kernel to one’s needs begins with a user-

defined selection of configuration options (features) from a command-line or graphi-

cal user interface.

Underlying this process is the KCONFIG language, in which a developer will define

the features and possible constraints they might have. An example for such a feature

definition can be seen in Listing 2.1. Here, a feature called “USB_HID” is defined. It is

given a type, tristate, which means the corresponding functionality can be statically

compiled into the kernel or built as a loadable kernel module (LKM). Other possible

3



4 2.1 – Configuring and Building Linux

types are boolean (the feature will either be statically compiled or not compiled at

all), integer, hex (to define numeric values like addresses or the number of supported

CPU cores) and string (for configurable features like the default kernel command

line). Additionally, a feature is given a short description which will be visible to the

user who is about to select this feature. Line 7 tells us that USB_HID depends on two

other features, namely USB and INPUT. Hence, the user will only be able to select

this feature if both USB and INPUT – and their recursive dependencies – are already

enabled; if the dependencies can not be fulfilled, the feature is not visible during the

configuration process and can thus not be enabled. Additionally, a feature can select

other features (c.f. line 8), meaning that when the user selects USB_HID, the option

HID will automatically be enabled. In general, the dependencies and selections can

be arbitrarily complex boolean expressions and can have conditional guards, thus

only triggering a selection if other constraints are met.

4 config USB_HID
5 tristate "USB HID transport layer"
6 default y
7 depends on USB && INPUT
8 select HID
9 ---help ---

10 Say Y here if you want to connect USB keyboards , mice ,
11 joysticks , graphic tablets , or any other HID based devices
12 to your computer via USB , as well as Uninterruptible
13 Power Supply (UPS) and monitor control devices .
14 [...]
15 If unsure , say Y.
16

17 To compile this driver as a module , choose M here: the
18 module will be called usbhid .

Listing 2.1 – An example for a KCONFIG feature definition, taken from

drivers/hid/usbhid/Kconfig (Linux v3.19).

Once the user has made her selection of desired features, the collected information

is stored as a list of key-value pairs in a file called .config in the root directory of

the kernel source code (see Listing 2.2 for an example).

2.1.2 Which Files Will Be Compiled: KBUILD

To determine which source code artifacts have to be compiled, KCONFIG uses the

information from .config, transforms it into MAKE syntax and saves the result

into an auto-generated Makefile at include/config/auto.conf which can then be

used by KBUILD, the kernel’s build system. Additionally, it prefixes the configuration

options with the string “CONFIG_”, so our feature from Listing 2.1 will be called
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1608 CONFIG_INPUT =y
1609 CONFIG_USB =y
1610 CONFIG_USB_HID =m
1611 CONFIG_HID =y

Listing 2.2 – An excerpt from the .config file which is a result of the

kernel configuration step and contains all selected options.

CONFIG_USB_HID from now on. The generated Makefile contains all selected features

as a list of variable definitions which are assigned their respective value from the

.config file.

Through a pattern called “Dancing Makefiles” proposed in 19971, the following

build process is split up into different Makefiles: While the central build rules are

defined in a range of Makefiles in the scripts/ subdirectory, the selection which

files will be compiled is left to simpler Makefiles in the subdirectories which are

traversed recursively. A simple example for such a selecting Makefile can be seen in

Listing 2.3. Note that the generated auto.conf is automatically included into every

processed Makefile, allowing a developer to use configurable options to guide the

inclusion of source files and whole subdirectories.

125 obj- $( CONFIG_HID_WALTOP ) += hid-waltop .o
126 obj- $( CONFIG_HID_WIIMOTE ) += hid-wiimote .o
127 obj- $( CONFIG_HID_SENSOR_HUB ) += hid-sensor-hub .o
128

129 obj- $( CONFIG_USB_HID ) += usbhid /
130 obj- $( CONFIG_USB_MOUSE ) += usbhid /

Listing 2.3 – An example for a KBUILD Makefile, taken from

drivers/hid/Makefile (Linux v3.19).

The selection of files or subdirectories is accomplished by adding them to internal

lists (obj-{y,n,m}); all object files in obj-y will be statically compiled into the

kernel image, everything in obj-m will be compiled as a LKM, and all object files

in obj-n will simply not be compiled. If the right hand side of the assignment is a

directory, MAKE will descend into that subdirectory if the corresponding configuration

option is either y or m. In our example, MAKE will compile hid-sensor-hub.c

into hid-sensor-hub.o, if the configuration option CONFIG_HID_SENSOR_HUB was

selected. The information about the variables is accessed by including the information

from include/config/auto.conf, and the variable $(CONFIG_HID_SENSOR_HUB)

1See https://lkml.org/lkml/1997/1/29/1.

https://lkml.org/lkml/1997/1/29/1
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will be substituted with its selected value, y or m. Similarly, MAKE will descend into

the subdirectory usbhid/, if CONFIG_USB_HID was enabled. In this subdirectory,

MAKE will again look for a Makefile and process it accordingly. As the variability

information can only trigger the selection on the level of entire compilation units,

we denote KBUILD as the implementation of so-called coarse-grained variability.

2.1.3 Which Code Will Be Compiled: C Preprocessor

Within the files, a developer can even be more precise and specify single lines of

code to be configurable on a very fine-grained level.

The fine-grained variability is achieved by using conditional preprocessor blocks

– #ifdef macros – with configuration options. Besides auto.conf, the KBUILD

system also generates a C header file (autoconf.h) which is then included into the

compilation process for every source file. Note that special care is taken for tristate

symbols: as some code might only be desired if the surrounding file is compiled as a

LKM (or only if it is not), the header contains an additional symbol with the suffix

“_MODULE” for every tristate symbol (e.g., CONFIG_USB_HID_MODULE). This symbol

is set when the user selected ’m’ in the configuration step.

39 /* for apple IDs */
40 #ifdef CONFIG_USB_HID_MODULE
41 # include "../ hid -ids.h"
42 #endif

Listing 2.4 – An example for an #ifdef block inside a source file, taken

from drivers/hid/usbhid/usbmouse.c (Linux v3.19).

An example of such preprocessor use can be seen in Listing 2.4. Here, the

#include statement in line 41 will only be reached if CONFIG_USB_HID was selected

as ’m’, thus only if it is compiled as an LKM.

Summary

As described above, the configuration and build process for Linux can be divided

into three separate, but inter-dependent steps [17]:

1. In KCONFIG, features and their constraints are defined. Through a user inter-

face, kernel configuration options can be selected and deselected, creating a

configuration variant in the .config file.
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2. Based on the selection from step 1, KBUILD (the build system) implements

coarse-grained variability by selecting translation units for further processing

and compilation.

3. Inside the selected source files, the C preprocessor implements fine-grained

variability. This step uses #ifdef macros to include or exclude conditional

blocks of code inside the file, leading to only selected parts being passed to

the compiler.

2.2 Use of KCONFIG and KBUILD in Other Projects

While KCONFIG and KBUILD were “invented” and are mostly developed in the context

of the Linux kernel, it is not the only system software project employing them to

manage and use configurability. An overview of their usage has been presented by

Berger et al. [1] – in this thesis, I focus on two specific instances which have also

been analyzed in previous work from our group.

2.2.1 The BUSYBOX Tool Suite

BUSYBOX [4] is a collection of the most common UNIX utilities combined inside one

executable which is optimized for size, thus aiming at small and embedded systems.

Like Linux, it also uses KCONFIG with the previously described user interfaces

as the mechanism behind its configurability. A user can choose compiler flags and

other build options as well as select which tools should be included in the resulting

image. As the result should be one binary, BUSYBOX does not support tristate

features and LKMs. Additionally, some information about configurable options is

generated from the source code before the configuration step. Here, files called

Config.in form the template. These files contain a line INSERT which marks the

spot where the generated information should be placed. Inside the source code, a

developer can specify additional configuration options by placing textual comments

starting with //config: in the file. All these lines will be collected by a script called

gen_build_files.sh which is run before the configuration starts, and are included

into a generated Config file which will then be evaluated by KCONFIG.

The build process is then instrumented with KBUILD, albeit with some further

small modifications compared to Linux:

• All KBUILD files do not use the obj-{y,n} lists described earlier, but rely on

the prefixes libs- to select subdirectories for further processing and lib- for

files which should be built.
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• Like in the configuration step, some information in the KBUILD files is gener-

ated from the source code files before the build step. For the build system,

the template for the final Kbuild file is called Kbuild.src while further con-

straints for the build process can be specified using a comment starting with

//kbuild: in the source code. When gen_build_files.sh is run during the

configuration step, it will also search for these lines and replace them with

the actual build information from the code. An example for this is shown in

Listing 2.5.

7 libs-y += libcoreutils /
8

9 lib- y:=
10

11 INSERT
12 lib- $( CONFIG_CAL ) += cal.o

(a) The template Kbuild.src file, taken from the coreutils/ subdirectory.

13 [...]
14 // kbuild :lib -$( CONFIG_CAT ) += cat.o
15 // kbuild :lib -$( CONFIG_MORE ) += cat.o # more uses it if ↘

stdout isn ’t a tty
16 [...]

(b) Excerpt from coreutils/cat.c.

7 libs-y += libcoreutils /
8

9 lib- y:=
10

11 lib- $( CONFIG_BASENAME ) += basename .o
12 lib- $( CONFIG_CAT ) += cat.o
13 lib- $( CONFIG_MORE ) += cat.o # more uses it if stdout isn ’t ↘

a tty

(c) Generated Kbuild file in the coreutils/ subdirectory

Listing 2.5 – Example for the generation of KBUILD code in the BUSYBOX tool
suite, v.1.24.0.
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2.2.2 The COREBOOT Project

COREBOOT [6] is an open source project trying to eliminate the need for a proprietary

BIOS firmware by providing the same (or similar) hardware initialization logic in

open source software. In contrast to the vendor-provided firmware, users can freely

configure the firmware and only choose features they need in their specific scenario.

Like Linux and BUSYBOX, COREBOOT uses KCONFIG to manage the configuration

options and provide an interface to the user. As the product of the configuration and

building step can only be one single firmware image, tristate options and LKM

support are not used.

As opposed to Linux and BUSYBOX, the build system does not make use of the

“Dancing Makefiles” pattern. Instead, subdirectories given in the subdirs-y list are

simply traversed recursively, while the files which need to be compiled are collected

in lists named after the class they belong to, namely ramstage-y, romstage-y,

bootblock-y, smm-y, smmstub-y, cpu_microcode-y and verstage-y in the

most recent version. Again, configurable options from KCONFIG can be used to

conditionally include files (see Listing 2.6 for an example). Only after all directories

have been traversed – as opposed to Linux and BUSYBOX, where compilation is done

on a per-subdirectory basis – the compiler and linker are run.

5 ramstage- y += die.c
6

7 smm-y += printk .c
8 smm-y += vtxprintf .c
9 smm- $( CONFIG_SMM_TSEG ) += die.c

10

11 romstage- y += vtxprintf .c
12 romstage- $( CONFIG_CACHE_AS_RAM ) += console .c

Listing 2.6 – Excerpt of a Makefile used by the COREBOOT build system,

taken from src/console/Makefile.inc.

Both projects also use the C preprocessor combined with a generated header file

from the selected configuration to implement fine-grained variability on the #ifdef

block level.

2.3 Defect Analysis With the UNDERTAKER Tool

As the KCONFIG options are used throughout every level of configurability, it becomes

hard to manually keep track of all constraints that might hold for a given #ifdef

block when editing a single source code file. In order to provide tool support to

manage configurability and to detect errors caused by configurability in system
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software, the VAMOS [23]/CADOS [5] project developed the UNDERTAKER tool (first

presented in [19], with a more detailed explanation in [21]). In the following, I

will describe how UNDERTAKER uses the variability information from the different

granularity levels, and which errors can be detected with this approach.

First, the variability information from KCONFIG is transformed into a model. This

model describes all variability defined by KCONFIG – including dependencies and

other constraints – in terms of boolean formulas. The conditions from KBUILD can be

extracted with the GOLEM tool, and are subsequently added to the model. Lastly, the

(possibly nested) structure of #ifdef blocks in the source file which we analyze is

also transformed into a boolean formula, describing the presence condition for every

block, i.e. which configuration options have to be enabled or disabled to include it.

Using these formulas, we can now analyze the structure of variability and detect

symbolic violations (i.e., references to KCONFIG features which do not exist) or

logic defects (i.e., contradictions or tautologies in the presence conditions for the

code). To identify the cause of a defect, a boolean satisfiability problem (SAT) solver

is employed to test if the corresponding boolean formulas can be solved.

Logic defects can further be grouped into different subclasses which are catego-

rized by their origin.

2.3.1 Code Defects

To get an understanding for the first defect variant, consider the following example:

Let us assume a file has the structure of #ifdef blocks as shown in Listing 2.7.

1 #ifdef CONFIG_USB_HID
2 // lots of code (B0)
3 #ifdef CONFIG_USB_HID
4 // some code (B1)
5 #else
6 // some more code (B2)
7 #endif
8 #endif

Listing 2.7 – Example structure of #ifdef blocks inside a source file.

We can see that the file contains nested #ifdef blocks, which both reference the

same symbol. When we generate the formulas for the blocks in the file, we find that

for the code at (B0) to be compiled, we need to fulfill the formula CONFIG_USB_HID,

for the code at (B1) we need CONFIG_USB_HID && CONFIG_USB_HID and lastly, for

(B2) the formula would be CONFIG_USB_HID && !CONFIG_USB_HID.

Feeding all these formulas to the SAT solver, we get the result that (B1) is always

enabled under the precondition that its surrounding (parent) block is enabled – it
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is thus considered to be undead. Correspondingly, (B2) is considered dead; the

formula for the block contains a contradiction, meaning it can never be enabled.

As the tautology and contradiction can already be derived from the code alone –

without considering dependencies from KCONFIG – we classify these as code defects.

These errors might seem obvious from the minimal example above, but in Linux,

we often have to deal with files several thousand lines long which contain dozens

of nested #ifdef blocks where it is hard to keep track of the full conditions for the

line of code a developer is currently changing.2

2.3.2 KCONFIG and KBUILD Defects

While the errors above were already detectable from looking at the source code

alone, there are more difficult, KCONFIG- and KBUILD-related bugs which I would

also like to present using an example shown in Listing 2.8.

1 #ifdef CONFIG_USB_HID
2 // some code (B0)
3 #ifdef CONFIG_INPUT
4 // some more code (B1)
5 #endif
6 #else
7 // some more code (B2)
8 #endif

(a) Contents of hid-example.c.

1 obj- $( CONFIG_USB_HID ) += hid-example .o

(b) Makefile with conditional compilation of hid-example.c.

Listing 2.8 – Example for defects caused by including KCONFIG and KBUILD

constraints.

When we look at the code alone, it looks fairly simple. B0 and B2 depend on

CONFIG_USB_HID to be enabled or disabled, respectively, while B1 depends on the

condition of B0 and CONFIG_INPUT.

However, looking back at the KCONFIG feature definition in Listing 2.1, we can

see that CONFIG_USB_HID depends on CONFIG_INPUT and CONFIG_HID. Thus, it

2In fact, inconsistencies like this are not uncommon and keep being introduced. For exam-
ple, in https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
f6a55884d76c5f493538866793fddd47b4ecf646, I fixed such a defect in the most recent version of
Linux which was introduced in late November 2014.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f6a55884d76c5f493538866793fddd47b4ecf646
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f6a55884d76c5f493538866793fddd47b4ecf646
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can only be enabled when its dependencies have already been met. Vice versa, this

means that when CONFIG_USB_HID is enabled, the KCONFIG definition ensures that

CONFIG_INPUT and CONFIG_HID will definitely be set.

In our example code at Listing 2.8a, block B1 can thus be marked as undead; we

can only reach block B1 if we compile its surrounding (parent) block B0. Hence, the

presence condition of block B0 (CONFIG_USB_HID) must always be true for block

B1, and KCONFIG will have ensured – already during the configuration step – that

CONFIG_INPUT is also enabled.

As we need to incorporate information from the KCONFIG model to find this class

of errors, they are aptly labelled kconfig defects.

Lastly, the information from KBUILD can be used to check for so-called kbuild de-

fects. The Makefile in Listing 2.8b states that hid-example.c will only be compiled

if CONFIG_USB_HID is enabled. The conditions introduced from the build system are

modelled by creating a “virtual” block which surrounds the whole file and depends

on the conditions formulated in the KBUILD file.

For the code in Listing 2.8a, this means that everything inside the file depends

on CONFIG_USB_HID to be set; consequently, code inside block B2 is dead, as the

combined preconditions for the block and the file form a contradiction.

Note that the current implementation of the UNDERTAKER tool does not distinguish

between the latter two and labels them both as kconfig defects. For this thesis, I

have modified the code to represent both classes independently – further details on

this modification are shown in Section 4.2.

As symbolic violations are relatively easy to detect (by textually searching for

the KCONFIG definition of a variable using grep or similar tools), there already is

a tool called checkkconfigsymbols.py inside the Linux source tree. As this tool

presently can not process individual patches but only check the whole Linux tree3, it

seems that developers are currently reluctant to integrate it into their routine before

submitting patches. As a result, every week several patches are submitted which

leave dangling references in the tree, and developers have to be manually notified

of their oversights.

Logic defects, on the contrary, are even harder to understand and detect, and

thus, often go into the kernel unnoticed. The lack of tool support for automated

checks inspired Valentin Rothberg to develop UNDERTAKER-CHECKPATCH [17] as part

of his Master’s thesis.

3Valentin Rothberg sent a patch to allow this checking (see https://lkml.org/lkml/2015/3/16/
190), but this change has not yet been merged into the Linux mainline tree.

https://lkml.org/lkml/2015/3/16/190
https://lkml.org/lkml/2015/3/16/190
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2.4 UNDERTAKER-CHECKPATCH

As the development of Linux takes place by submitting patches to subsystem main-

tainers in order to get code into the kernel, UNDERTAKER-CHECKPATCH analyzes

PATCH files in order to allow a developer to quickly check her work before sending it

out to the persons maintaining the affected part of Linux.

The tool tries to find changes in terms of defects, both symbolic and logic, by

essentially comparing the state of the Linux tree before and the state after a patch

is applied. After finding out which files are changed by the given PATCH file, and

generating variability models for the before state, UNDERTAKER-CHECKPATCH runs

the defect analysis of UNDERTAKER on those files. Next, it parses the PATCH file and

updates the range information, i.e., which line numbers the #ifdef block covers,

for all blocks in the affected files. After applying the patch – and possibly generating

new variability models, if a KCONFIG file was changed by the PATCH file – a second

defect analysis with UNDERTAKER is run, now on the after state.

By comparing the results of the two dead analyses, UNDERTAKER-CHECKPATCH can

then determine if new defects were introduced or if the patch fixed or removed them.

To make a developer’s life easier, the tool subsequently also tries to further analyze

the cause of the defect. For example, if a PATCH removes a configurable option from

KCONFIG, UNDERTAKER-CHECKPATCH will search for any remaining references to this

option which the developer might have forgotten.

2.5 Related Work

The importance of taking build system variability information into account when

analyzing a large software system like Linux was first presented in a poster session

by Berger et al. [3] and explored in more detail in a technical report [2]. The authors

implemented KBUILDMINER [11], a fuzzy parser to recognize documented as well as

undocumented variability specification patterns in the KBUILD Makefiles. However,

their approach needs manual modifications in 28 of the analyzed Makefiles. As

these modifications are not publically documented, I assume they are non-trivial and

are very likely to vary from one version to another; additionally, the authors only

provide their extracted conditions for one architecture in one single Linux version

(x86 in Linux v2.6.33.3). Thus, I consider this approach not robust enough for an

ongoing, highly automated analysis on the most recent versions of Linux, which is

one of the main targets of my research.

A more detailed evaluation of the inconsistencies that might be caused by the

KBUILD variability in Linux was presented by Nadi and Holt [15]. They found that

in the Linux releases v2.6.26 through v2.6.39 around 60–100 anomalies could be
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detected when looking at KBUILD files and the associated files alone. Most of them

are due to the presence of .c files in the file system which are never mentioned in

(and thus not known to) KBUILD. Based on these results, they implemented a new,

regular expression-based parser for the KBUILD Makefiles [16]. In this work, they also

extended the UNDERTAKER tool to evaluate the impact of the additional constraints

in the formulas. Their findings clearly indicate the importance of taking KBUILD into

account: Between v2.6.30 and v3.0, they found 400 to 1900 more defects per

version than without using the build system data. For an extended version of the

paper, they improved their parser, called it MAKEX [14] and published the source

code online [13]. Extending their analysis up to Linux version v3.6, they were again

able to find around 20 percent more defects than without the KBUILD data.

Tackling the robustness issues that arise with textual processing of Makefiles,

Dietrich et al. [9] presented a different, probing based approach. Their GOLEM tool

first collects information about the KCONFIG features which are mentioned in (and

thus influence) KBUILD files. Starting from an empty set of enabled configuration

options, they add single features one by one and test which files would be additionally

compiled – or which subdirectories will be visited under which conditions – compared

to the initial state. For every file found in the probing step, the corresponding KCONFIG

feature selection is saved. As this approach treats the build system as a black box

and uses it to generate the relevant information, it is more robust to changes or

complex semantics in MAKE. However, due to the increasing number of probing

steps required, the runtime is very high: Extracting the information for the x86

architecture alone takes more than three hours on the most recent Linux release

v3.19.4 While this might still be acceptable for an off-line study of variability related

defects, it renders it practically unusable for a developer who might want to check if

their patch introduces any defect.

As the results of two theses in the VAMOS project, GOLEM as well as the UNDER-

TAKER toolchain have also been ported to support the analysis of BUSYBOX [24] and

COREBOOT [10].

4In Chapter 5, I present a detailed analysis of the runtime over the last 5 years.



3 Design

In this chapter, I first describe which challenges arise for a thorough approach

to extract variability information from the build system. After this, I present the

conceptual design of my extractor, and how its design is able to cope with the

identified challenges.

3.1 Challenges

As the goal for this thesis is the development of a text-based variability extractor

which should be (a lot) faster than the currently used GOLEM tool while generating

as similar data as possible, I first identify the four main requirements which need to

be met by my extractor in order to make its practical employment valuable.

(1) Robustness First of all, the extraction process must be robust. One of

the major reasons for the development of a probing-based approach by Dietrich

et al. [9] was the complexity of the (turing-complete) MAKE language. The Linux

coding guidelines do not specify any restrictions on the expression of variability, so

the kernel developers naturally come up with “non-standard” ways of composing

their portion of a KBUILD file. As an example, variables can be modified through

string operations like $(addprefix prefix, string,...) (which adds the prefix

’prefix’ to all following arguments), they can be evaluated dynamically using

$(eval) or even result from the execution of shell commands with the $(shell)

function.

A proper solution must face this complexity in a structured manner: If the

expression used in KBUILD can not be evaluated by the approach, this should not

break the extraction - instead, we must be able to gracefully ignore the incomplete

information depending on the expression.

15
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Furthermore, MAKE also allows the use of if{n}def or if{n}eq statements,

creating (possibly variability-related) blocks inside KBUILD.5 If the conditions for

these blocks can not be properly determined, we need to ignore everything inside the

blocks as well, as we can not have enough knowledge about the conditions implied

by the missing information.

Even more importantly, a good solution must be able to continue working even

when the build system is changing. For Linux, this is particularly true: In the

development cycle between releases v3.18 and v3.19 alone, about 630 commits

(out of 13,652 in total) modified KBUILD files. This is not surprising, as newly

written files need to be introduced into the build system to integrate them into

Linux. Our approach should hence be able to handle these modifications easily and

preferably without the requirement for manual adjustments in either KBUILD (c.f.

KBUILDMINER [11]) or our tool.

If, however, we detect a major change in the build system that requires an adap-

tion of the extraction process, the approach should make it easy to plug in possible

extensions to the current state.

(2) Accuracy Equally important and going hand-in-hand with robustness is

the requirement for the highest possible accuracy. For the later analysis steps, it is

extremely important to find as many files as possible, as well as to properly describe

the variability constraints for the individual files - wrong information might lead to

false positives, while missing information will not improve the analysis.

In addition to the fairly simple obj-{y,m} lists described in Section 2.1.2, KBUILD

allows the more complex specification of composite objects. These are used when

the code is split up into different source files which should then be linked together

as a LKM or into the kernel. An example for the use of this technique is shown in

Listing 3.1.

123 wacom-objs := wacom_wac .o wacom_s ys.o
124 obj- $( CONFIG_HID_WACOM ) += wacom.o

Listing 3.1 – An example for a composite object in KBUILD, taken from

drivers/hid/Makefile (Linux v3.19).

5For example, to check if a configuration option CONFIG_INPUT has been set, a developer might use
ifdef CONFIG_INPUT
# Do something depending on CONFIG_INPUT
endif
or alternatively:
ifeq ($(CONFIG_INPUT),y)
# Do something depending on CONFIG_INPUT
endif.



3.1 – Challenges 17

Here, no file called wacom.c exists (as line 124 would suggest). Instead, the

KBUILD makefile contains a specification for wacom-objs, which forms the list of

object files that will be linked together to form wacom.o. In addition to the format

<driver>-objs, the lists <driver>-{y,m} (with the “usual” <driver>-$(CONFIG_-

XY) idiom) can be used if a developer needs to specify additional constraints for parts

of the final <driver>.o file. Similarly, a KBUILD file can contain developer-defined

variables which can make up parts of the build information.

As already mentioned above, MAKE furthermore contains if{n}eq or if{n}def

statements. These can also use variability information which then influences building

of the files in their corresponding block (for example, everything from the statement

ifeq ($(CONFIG_XY),y) to the corresponding endif will only be evaluated if

$(CONFIG_XY) was set to y).

Our extractor hence needs to be able to correctly understand the structure of

such if{n}{def,eq} statements if any variability information is handled by them.

Furthermore, we need to be able to (recursively) process information about variable

and macro definitions and properly evaluate the structure of composite object files

from their corresponding source files.

(3) Speed With the development of UNDERTAKER-CHECKPATCH, Rothberg [17]
enhanced the UNDERTAKER [22] tool suite with a tool that can check PATCH files and

GIT commits for newly introduced or repaired variability related defects.

However, up to now the variability information from KBUILD could not be taken

into account even when we only want to analyze one single commit. This is due

to the very high runtime of the current extractor, GOLEM. When executed on a

single machine with 8 CPU cores and 16 GB of RAM, GOLEM takes more than three

hours per architecture - with a total of 30 architectures in v3.19, this would mean

extraction times of nearly four days to generate the variability information for just

one single state of the tree. Even when the extraction is split across machines, as can

be done in our lab, a minimum waiting time of six hours (for commits which change

KCONFIG files, models have to be generated before and after applying the patch)

renders GOLEM entirely unusable for automated analysis as well as for a developer

who might want to check her 10-line commit for variability-related errors.

On the other hand, the information from KBUILD is very important for the analysis:

The total number of defects found in Linux increases by more than 40 percent when

the conditions which GOLEM generates for the files are employed, compared to an

analysis without this data.

In order to integrate the build system variability into the analysis (and possibly

into the workflow of a kernel developer), our approach therefore needs to be fast –

preferably, the extraction should not take more than a few seconds per architecture.
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(4) Adaptability While Linux might be the biggest openly available con-

figurable system-software project – and thus, the most interesting target for the

research of variability-related bugs – it certainly is not the only one. As I have already

explained in Section 2.2, the KBUILD system is also used by the infrastructure of the

COREBOOT and BUSYBOX projects, and the tools developed in the VAMOS [23]/CA-

DOS [5] research projects have been ported to support their analysis.

As my approach should provide a “drop-in” alternative to the already-present

GOLEM extractor, it should hence support not only Linux, but (at least) the three

named projects. Optimally, it should provide an easy interface for an extension

beyond these to any other text-processable build system.

3.2 The Approach

To conquer the challenges above, I developed a line-based parser for the build system

files. Even though text-based evaluation of a turing-complete language like MAKE

can not achieve a 100 percent accuracy by design, I accept the risk of potentially

generating imprecise data for a small subset of the evaluated files in favor of a much

lower processing time compared to the probing approach taken by GOLEM.

The parser itself is split up into two parts, separating the generic tasks common

to every project from the actual information extraction logic which will be different

for every project.

The core part of the tool implements – besides the evaluation of command line

parameters – the generic processing of files: It opens a given file and reads it line by

line, but does not try to interpret the contents in any way.

Instead, it hands the data over to project-specific “plug-in” modules at predefined

points during the processing, which will then extract the required information from

the current data.

I identified a total of five points in the parsing process where project-specific

actions might be necessary. These points are also shown schematically in Figure 3.1:

Ê Initialize – before any files have been processed: At this point, global vari-

ables that are needed across the evaluation of different files can be created and

initialized. Additionally, we need to find the “entry points” for the top-down

processing of the build files at this stage.

Ë Preprocess – after a file has been read into memory, but before any lines

from this file have been evaluated: We might also need some file-local vari-

ables to store information while we are processing individual files – these can

be created here.
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Finish

1

2

4

5

Initialize

Preprocess 3Preprocess 2Preprocess 1

Postprocess 3Postprocess 2Postprocess 1

...
#ifdef CONFIG_HID
obj-y +=  hid.o
obj-$(CONFIG_INPUT) += \
          input.o
#endif
...

drivers/usb/Makefile
sound/soc/Makefile

drivers/hid/Makefile

Line process 3Line process 2Line process 13

Figure 3.1 – Schematic depiction of the five points where project-specific
“plug-in” modules can be attached into the parsing process.

Ì Line process – after a line has been read from the file: This is where most

of the actual data collection happens. We can look at the current line, try

to extract any variability-related information from it, and store the gathered

information.

Í Postprocess – after a file has been processed: During the evaluation of the

file, we might have encountered some data which we can only process after

the whole file has been read. For example, a subdirectory might be visited

depending on different conditions at different locations in the current file.

Descending into this subdirectory for further extraction can hence only be

done after we have collected every possible condition.

Î Finish – after all files have been processed: In some cases, information

might also be spread across different files, thus, we need an opportunity to do

some work just before the program finishes.

This design greatly boosts both portability and the robustness of my approach:

In order to support a new project, only the plug-in modules have to be designed or

adapted – it is not necessary to have duplicates of the core part of the parser. This
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makes it easy to port the infrastructure. Furthermore, if new features emerge in

KBUILD that need special attention, all we need is another small module which can

handle this particular case.

In the following, I will elaborate on the plug-in modules which I developed for

Linux in greater detail, and subsequently describe the differences to the modules for

BUSYBOX and COREBOOT.

3.2.1 The Plug-In Modules for Linux

Having identified the five intervention points during the parsing process, I am now

able to assign specific tasks to the modules which are executed at the respective

places.

Ê Initialize In Linux, KBUILD enters a total of 14 directories6 from the top-

level Makefile without any further configurational constraints. These form

the starting point for our recursive top-down evaluation of the source tree. In

addition, we need to evaluate the architecture-specific Makefile, which resides

in arch/$(ARCH)/ for the chosen target architecture. As some architectures

like ARM or MIPS use special logic to allow the selection of sub-architectures

or boards, we need to take special care for them in order to correctly identify

the directories that would be visited by the build system.

Ë Preprocess As Linux Makefiles specify the conditional constraints only for

files inside the current directory, we can collect all the dependencies on a per-

directory/per-Makefile basis. Hence, we only need file-local variables to store

the information about variability. In detail, we need to create data structures to

store (a) the values of any variable definitions in the current Makefile, (b) the

structure of possibly variability-dependent if{n}{def,eq} blocks, (c) the

conditions for subdirectories encountered during the pass, (d) the conditions

and names of identified composite objects and – most importantly – (e) the

conditions for files in the current directory.

Ì Line process Here, two cases are possible, where each one is handled by a

separate module.

Firstly, the line could describe the structure of additional constraints through

if{n}{def,eq}, else or endif statements. The individual cases are cov-

ered by trying to match a regular expression on the line and extracting any

6Namely: init/, drivers/, sound/, firmware/, net/, lib/, usr/, kernel/, mm/,
fs/, ipc/, security/, crypto/ and block/.
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configurable elements from a match.7 If we encounter an if{n}{def,eq} but

can not evaluate its condition, a global nesting level counter is incremented. If

this counter is bigger than 0, we can not reliably determine the configurational

preconditions and skip every line up to the corresponding endif.

The second case is the core part of the extraction: Here, we try to find any

additions to the obj-{y,m} lists. After textually replacing the values for

any variables defined in the Makefile, a complex regular expression is used

to check for any conditional constraints and to extract the right-hand side

of the assignment.8 For every item on the right hand side, we check for a

corresponding file or directory in the source tree. If there is a file, we store

the current configurational constraints as one possible selection required to

compile the file. If it is a directory, we also store its conditions in a separate

data structure. If neither exists, we assume we are dealing with a composite

object, again storing the current conditions for later use.

Í Postprocess After collecting all the required data from the lines in the

previous step, we can now process them, according to their type.

• For all composite objects, we scan the contents of the file again for the

corresponding definitions (see Section 3.1, Robustness). This is done

recursively to support nested composite object and macro definitions.

Whenever we find source files, their full condition is stored.

• For all directories, we build the logical disjunction over the configurational

constraints we discovered, and recursively parse the Makefile in the

directory using the disjunction as a precondition which is passed to the

parsing step.

• For all files we found, we again build the logical disjunction over their

respective constraints and join them with the conditions of the current

directory passed down. Finally, the (normalized) name of the file and

the logical formula of its precondition are written to the output.

Î Finish For Linux, no action is required after the whole parsing process has

run – every information has already been processed in step 4.

7For example, I use the expression \s*(ifdef,ifndef)\s+(.*) to check for ifdef/ifndef. If it
matches, the actual expression is captured in a group, as well as the rest of the line. I then try to match
the latter against CONFIG_([A-Za-z0-9_-]+) to extract the relevant configuration option if there is
one.

8The full regular expression used is \s*(obj|lib)-(y|m|\$[\(\]CONFIG_([A-Za-z0-9_-
-]+[\)\])\s*(:=|\+=|=)\s*(([A-Za-z0-9.,_\$\(\)/-]+\s*)+). Note the lib- prefix, which is
mainly used in the architecture-specific Makefiles as well as the lib/ subdirectory.
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3.2.2 The Plug-In Modules for BUSYBOX and COREBOOT

As KBUILD also forms the basis for the BUSYBOX and COREBOOT build systems, the

processing modules for these projects are quite similar to those for Linux. I will

only describe the differences to the modules used for the “Linux version” of KBUILD,

thereby again emphasizing the good portability properties of my approach.

BUSYBOX

As the directory structure of BUSYBOX differs from the one in Linux, the list of

directories visited is initialized with the respective values for BUSYBOX.9 Additionally,

we exploit the functionality of the gen_build_files.sh script: We can simply run

it to transform the template KBUILD files into their final form (c.f. Section 2.2.1).

The remainder of the logic is almost identical to Linux. We only need to slightly

modify the “central” regular expression to check for the lib- prefix (as opposed

to obj- in Linux). As an optimization, checking for and treating if{n}{def,eq}

expressions can be neglected – BUSYBOX does not use them in any KBUILD file.

COREBOOT

For COREBOOT, more modifications are required. Firstly, the base directories are

also specified in the main Makefile as part of the subdirs-y list. Similarly, the

names of the classes which build the internal lists are specified as an assignment to

classes-y. Both lists are evaluated in the initialization module of the parser.

In COREBOOT, compilation of the files is only done after the whole build system

information has been processed (see Section 2.2.2), and some files are included

from many different directories throughout the tree. This means that we also need

a global variable to collect the build system preconditions for individual files.

While parsing of if{n}{def,eq} conditions is equivalent to Linux, the extraction

of the files again has to be adapted to support the different names of the lists – instead

of one regular expression, we build all possible variants defined by the names in

classes-y. If one of them matches, we continue as described for Linux above,

saving the conditions for the found files into the global variable.

As a consequence of collecting the information for the files in a global variable,

the conditions can only be written to the output after all files have been processed.

9Namely, these are applets/, archival/, archival/libarchive, console-tools/,
coreutils/, coreutils/libcoreutils/, debianutils/, e2fsprogs/, editors/,
findutils/, init/, libbb/, libpwdgrp/, loginutils/, mailutils, miscutils/,
modutils/, networking/, networking/libiproute/, networking/udhcp, printutils/,
procps/, runit/, selinux/, shell/, sysklogd/, util-linux/ and util-linux/volume_-
id/.
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In this chapter, I present how I implemented the parser based on the concept pre-

sented in Chapter 3. Furthermore, I explain its integration into the UNDERTAKER

toolchain of the VAMOS/CADOS project and the modifications to the current state

of the tools.

4.1 The Parser: MINIGOLEM

First, I would like to take a closer look at the implementation details of the parser,

and how they contribute to meeting the challenges described earlier.

Choice of Language

As more than 75 percent of the UNDERTAKER toolchain are written in C++, and due to

the high speed of programs written in compiled languages in general, I implemented

the first prototype in C++. The compilation, however, is a big drawback when we

look at the modularity criterion and the hence proposed plug-in–based, modular

design: While it is possible to load additional, user-provided code into a C++
program through dynamic library loading, it would still require the user to build

shared libraries for all modules they want to use.

Considering the fact that the UNDERTAKER toolchain is not only available as

source code but can also be installed from binary packages in a number of Linux

distributions (Debian, Ubuntu, ...), we definitely do not want the user to be forced

to (re-)build the tools whenever she wants to analyze a different project. Similarly,

while it would be possible to pre-build and ship the different variants we have already

implemented on our side, we would not be able to let the user easily experiment

with modifications to the parsing logic, for example to add support for a completely

different build system to the tool.

23
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After some experimentation with the language features, I decided to drop the C++
implementation and ported the then-current state to PYTHON. While the runtime

increased by 160 percent (from around 0.5s to 1.3s), I still deem it fast enough –

especially when compared to GOLEM – while offering more possibilities for runtime

extensions to the parser.

Modular Design

As I have described earlier, the parser consists of two parts. The core of the parser

only implements a generic abstraction for opening and reading files, but does not

extract any variability information. Extraction is implemented in separate, project-

specific modules that can be attached to five specific points during the process.

In the implementation, the five different types of actions (Initialize, Preprocess,

Line process, Postprocess and Finish, see Section 3.2) are expressed by using five

different abstract base classes from which the concrete extraction modules have

to be derived. These classes are called InitClass, BeforePass, DuringPass,
AfterPass and BeforeExit, respectively, and define the function interfaces which

then need to be implemented.

268 for pyfile in os. listdir ( additional_path ):
269 if not pyfile . endswith (".py") or pyfile . startswith ("__"):
270 continue
271

272 module = importlib . import_module ( pyfile [: -3])
273 for (name , cls) in sorted ( module . __dict__ .items ()):
274 if issubclass (cls , BaseClasses . InitClass ):
275 parser . init_class = cls(read_model , args.arch)
276 elif issubclass (cls , BaseClasses . BeforePass ):
277 parser . before_pass . append (cls(read_model , args.arch))
278 elif issubclass (cls , BaseClasses . DuringPass ):
279 parser . during_pass . append (cls(read_model , args.arch))
280 elif issubclass (cls , BaseClasses . AfterPass ):
281 parser . after_pass . append (cls(read_model , args.arch))
282 elif issubclass (cls , BaseClasses . BeforeExit ):
283 parser . before_exit . append (cls(read_model , args.arch))

Listing 4.1 – Excerpt from the core module of the parser which facilitates

the dynamic loading of the project-specific modules. The additional_-

path parameter describes the directory which should be searched for

the modules. Every file inside this directory is then imported using

importlib.import_module, and any classes derived from the predefined

BaseClasses are loaded and added to their respective lists.
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When the parser starts, it first tries to determine the project it is currently running

on. If it is one of Linux, BUSYBOX or COREBOOT, it can automatically load the classes

which I have implemented for this thesis. To override or extend the set of loaded

classes, the user can provide a directory on the command line. Inside this directory,

the user should have placed one or more PYTHON files in which she implemented

the functionality in classes derived from one of the five base classes described above.

These classes will then be instantiated and loaded into respective lists provided by

the core module. A user can provide more than one derived class per baseclass: This

allows a separation of tasks into specialized modules (for example, processing of

if{n}{def,eq} expressions and of the obj- definitions in Linux are implemented

in separate classes, both derived from DuringPass). When multiple classes are

loaded, their execution order is established by sorting the modules alphabetically by

their name. The code for the loading functionality is shown in Listing 4.1.

Once all processing modules have been loaded, the process method of the

InitClass module is called. Here, the list of directories to be visited in the first step

has to be initialized. After this information has been established, the core module

calls the main processing function, which is listed in Listing 4.2, for every directory.

123 def process_kbuild_or_makefile (self , path , conditions ):
124 self. enter_new_symbolic_level ()
125

126 for processor in self. before_pass :
127 processor . process (self , os.path. dirname (path))
128

129 self. read_whole_file (path)
130

131 for line in self. file_content [path ]:
132 for processor in self. during_pass :
133 if processor . process (self , line , ↘

os.path. dirname (path)):
134 break
135

136 for processor in self. after_pass :
137 processor . process (self , path , conditions )
138

139 self. leave_symbolic_level ()

Listing 4.2 – (Simplified) main processing function of the core module.

The parser maintains a file-local dictionary for variables, which is initialized

and reset by the {enter,leave}_symbolic_level() methods. Note the

call into the BeforePass, DuringPass and AfterPass subclasses at the

respective points during the processing of a file.
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When this function is called on a directory, it will first create a new dictionary

(PYTHON’s own key-value store data type) which will later contain file-local variables,

and stash the current dictionary (enter_new_symbolic_level, Line 124). Then,

all modules derived from BeforePass will be called. After reading in the whole file

(and resolving any include statements on the way), the parser iterates over the

lines and hands them to the DuringPass modules. Once the whole file has been

processed, the code in the AfterPass modules is run, before the file-local variables

are reset to their old state.

The individual modules then implement the functionality which I already de-

scribed in Section 3.2.1 and Section 3.2.2 – for example, the Linux part contains two

subclasses of DuringPass which implement (a) the detection of if{n}{def,eq}

statements and (b) the detection of additions to the obj-{y,m} lists.

For Linux, the specific modules are implemented in a total of 508 lines of code (see

also Table 4.1). To avoid unnecessary code duplication, I further exploit the concept

of class inheritance: When identical functionality is required in another project

– for example, treating if{n}{def,eq} is the same in Linux and in COREBOOT –

the corresponding modules can inherit from one another; speaking in code, the

Coreboot.CorebootIf module does not inherit from BaseClasses.DuringPass,

but rather from Linux.LinuxIf, thereby fully acquiring its functionality without

having to write more code. Thus, only differences to the process for Linux have to be

modelled. This also reduces the lines of code required for other, similar projects: The

logic for COREBOOT is handled in 297, the logic for BUSYBOX in only 187 additional

lines of code.

Part # LoC

Core parser 192

Linux modules 508

COREBOOT modules 297

BUSYBOX modules 187

Σ 1,184

Table 4.1 – Lines of code for the core parser and the respective modules for
the individual projects, not counting comments or blank lines.

4.2 Modifications to the UNDERTAKER Toolchain

In order to seamlessly integrate the parser into the current UNDERTAKER toolchain, I

modified some of its components.

Currently, the models describing the features and their dependencies in KCONFIG

are generated with undertaker-kconfigdump which wraps around the extraction
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and the transformation into boolean formulas. To extract the KBUILD data (called

inferences) using GOLEM, undertaker-kconfigdump can be called with the -i flag

which then sets up the call to GOLEM and the integration of the extracted data into

the generated model.

Similar to the GOLEM case, I added a command line flag -p to undertaker-

kconfigdump which will call the parser with the required parameters and integrate

the preconditions into the generated models.

In UNDERTAKER itself, I modified the classification of defects. So far, the analysis

first checked if any code defects could be found without taking the KCONFIG model

into account (see Section 2.3.1). If this was not the case, the whole model (including

KBUILD data) was loaded and the required data was added into the formula. A defect

that stems from the KBUILD preconditions thus would result in a report of a kconfig

{un}dead block due to the lack of a designated kbuild defect class. While this is

sufficient to detect if there was a problem, it does not give a very clear indication to

the user where she might want to investigate to find the cause for the defect.

To improve the distinction between kconfig and kbuild defects, I changed the

analysis step to work as follows. Let CC PP be the conditions for the block which are

expressed by the C preprocessor inside the file, and CKBUILD the extracted KBUILD

condition for the source file.

• First, we analyze if CC PP is solvable. If it is not – or if it is a tautology – then

the block is classified as a code defect. No changes are required for this step.

• Next, CC PP is extended with information from the transitive KCONFIG defini-

tions of all its components by using the slicing algorithm presented by Sincero

[18]. Thus, we get CKCONFIG = sl ice(CC PP , modelKCONFIG).

So far, the (transitive) KBUILD conditions for the file were also added in this step,

resulting in CKCONFIG−De f ect = CC PP ∧ CKCONFIG ∧ sl ice(CKBUILD, modelKCONFIG).
In the implementation, this was facilitated by introducing a bi-implication

with the top-level block B00 and the variable which contains the additional

constraints from KBUILD.10

With my modification, we do not add the KBUILD information yet, and only

feed CKCONFIG−De f ect = CC PP ∧ CKCONFIG to the SAT solver. If the solver finds

contradictions or a tautology, respectively, we classify the block as a kconfig

defect.

• Instead, to allow the distinction of defects resulting from variability in the

build system, the constraints from KBUILD are added in the next, separate

step. As before, we need to apply the slicing algorithm to CKBUILD to resolve

10For example, for the source file kernel/smp.c the additions to the formula would be (B00 <->
FILE_kernel_smp.c) && (FILE_kernel_smp.c -> CONFIG_SMP).
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any additional transitive dependencies. Then, we extend the formula from

above and get CKBUILD−De f ect = CKCONFIG−De f ect ∧ sl ice(CKBUILD, modelKCONFIG).
This formula is retested in an independent pass of the SAT solver. If the formula

for the block can not be solved (or is a tautology), we classify it as a kbuild

defect.

• Lastly, the formula is extended to detect if any symbols which are not de-

fined by KCONFIG cause the problem. Therefore, all undefined symbols from

CKBUILD−De f ect are explicitely forced to evaluate to False.11 LetM be the set

of missing KCONFIG symbols which are not defined in the model. We then build

CMissing−De f ect =CKBUILD−De f ect ∧
�∧

m∈M ¬m
�

and test the resulting formula

with the SAT solver. If this is a contradiction or a tautology, the defect is

classified as a missing defect. This step also did not need any modifications.

4.3 Using the Data in UNDERTAKER-CHECKPATCH

One motivation for the development of the parser was the possibility to include the

variability information from KBUILD into the automated defect analysis of PATCH

files submitted into the Linux kernel which was not feasible with GOLEM due to its

high runtime.

To facilitate this analysis, I extended UNDERTAKER-CHECKPATCH to make it rec-

ognize the newly introduced kbuild defect class described above. In addition to

the block’s precondition, UNDERTAKER-CHECKPATCH also prints the file precondi-

tions from KBUILD for the analyzed architectures, guiding the developer towards the

conditions from the build system for further, manual analysis.

Furthermore, together with Valentin Rothberg I have developed an experiment

in the versuchung framework [8] which analyzes linux-next (the current devel-

opment tree of Linux 12) for variability-related errors.

In this experiment, we get the most current version of linux-next and extract

all commits newly added since the last update the day before. We then walk through

the GIT commits, calling UNDERTAKER-CHECKPATCH on every commit.

Note that walking through the GIT history requires some special precautions to

properly analyze the individual commits. The current linux-next tree is built by

merging 215 different trees on top of the most recent mainline source tree13, and

11Without explicitly setting them to False, a SAT solver considers them as free variables and is allowed
to set them to True when generating a valid assignment.

12Most patches for Linux are written for this tree and are first merged there before they make it into
Linus’ mainline tree. The tree is usually updated Mondays to Fridays, and the updated tree is tagged with
its date. The web interface for linux-next can be found at http://git.kernel.org/cgit/linux/
kernel/git/next/linux-next.git.

13See https://lkml.org/lkml/2015/4/13/287.

http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
https://lkml.org/lkml/2015/4/13/287
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all these trees might be based on different prior version of the kernel. By using

the output of git log to extract the commits, we only get a “flattened” view of all

these trees; through the –topo-order parameter, we force git log to first show

all commits coming from one individual development tree before it proceeds with

another tree.

4

1

6

5

3

2

linux-next git tree

git reset --hard commit_1
undertaker-checkpatch -p commit_2
undertaker-checkpatch -p commit_3

git reset --hard commit_4
undertaker-checkpatch -p commit_5

...

Defect analysis

commit_3

New defect:
kernel/smp.c:B0:12:15
...

Defect reports
Notifications
to developers

✉
Figure 4.1 – Overview of the linux-next experiment. In the Linux tree,
commits are numbered in the order in which they will be processed. The
actual commits we want to analyze are 2,3,5 and 6; to have the correct
basis for commit 2, however, we have to reset the GIT repository to its parent,
commit 1. After we have checked commits 2 and 3 on this tree, we then
switch to a different merged tree which originated from a different point in
the mainline GIT history. Thus, it is necessary to first reset to commit 4 before
analyzing its descendants, commits 5 and 6.

Analyzing the commits in this particular order (processing the merged trees en

bloc, and processing the individual commits from one tree in the original order they

also have in that tree, from oldest to newest) has the advantage that we can greatly

reduce the overhead of model generation: After generating the KCONFIG/KBUILD

models for the earliest commit in the branch currently being worked on, we can pass

them to UNDERTAKER-CHECKPATCH which then only needs to generate new models

for the state after the patch from the first commit has been applied; for every commit

from the same tree, these will then be used as the input models for the second patch

and so on.

Special care only needs to be taken when we have finished processing all commits

from one tree with UNDERTAKER-CHECKPATCH: When the next commit C(n+1) is from
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a different tree, we can not simply use the models generated for the analysis of the

last commit C(n) we processed, as these two commits are most likely not related (i.e.,

C(n) is not the parent commit of C(n+1)). Instead, we need to find the real parent of

C(n+1), reset the analysis Linux tree to this parent, and generate new KCONFIG/KBUILD

models. After doing this, we can process C(n+1) and all following commits from the

same tree as described above (see Figure 4.1 for a graphic example).

The experiment is run daily on our build servers and reports all newly introduced,

repaired and unchanged defects in an automatically generated email. Currently,

Valentin Rothberg and I manually check all defect reports for false positives. This

is necessary, because changes to Linux are often split up into a range of individual

patches which are submitted as one patch series – our tool, however, can not see the

connection between the corresponding commits in GIT. Furthermore, some defects

might be intentionally introduced and have an explanatory comment next to them;

again, these are situations our approach can not automatically detect. If we have

established the validity of an introduced defect, we send out notifications to the

respective authors, providing them with an explanation of the defect present in their

patch.



5 Evaluation

In this chapter, I present a detailed evaluation of the approach. Therefore, I assess

how the parser tackles the challenges which I formulated in Section 3.1; after

showing that the approach is fast and able to robustly extract data for all Linux

versions released in the past five years, I will demonstrate its accuracy by comparing

the extracted formulas for the most recent release, v3.19, and demonstrate the

improvements in the dead/undead analysis of the UNDERTAKER tool when the parser

data is used. Furthermore, I present concrete examples of additional variability

inconsistencies which I found – and fixed – using the automated checking experiment

for linux-next. Lastly, I show the results for the parser on COREBOOT and BUSYBOX.

5.1 Speed

The main reason prohibiting the employment of GOLEM in UNDERTAKER-CHECKPATCH

– and thus, the motivation for the work presented in this thesis – is its high runtime.

On the most recent release of Linux, v3.19, GOLEM takes more than three hours

to extract the variability data from KBUILD on a machine equipped with a quad-

core Core i5-4590 CPU with 3.3 GHz and 16 GiB RAM – and this is only for one

architecture, x8614!

However, the runtime was not always this high: GOLEM was developed around

the time when Linux v3.2 was current. On this version, the extraction process for

x86 only takes less than 50 minutes on an identical machine. As we can see from

Figure 5.1a, the runtime has since increased massively with almost every release,

sometimes by over 1,000 seconds from one release to the next.

14I use x86 as the reference architecture in this section because it is the architecture which has
received most attention from researchers (including ourselves), and because it is still considered the
“core” architecture of the Linux kernel.

31
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(a) Runtime of GOLEM on the x86 architecture in seconds for all Linux versions since v2.6.32.
Values displayed are averaged from three independent runs on identical machines (Core
i5-4590 processor with 3.3 GHz, 16 GiB RAM).
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(b) Runtime of MINIGOLEM on the x86 architecture in seconds for all Linux versions since
v2.6.32. Values displayed are averaged from five independent runs on the same machines as
for the GOLEM runs.

Figure 5.1 – Comparison of runtimes for GOLEM and the new, parsing-based
approach from Linux version v2.6.32 to the most recent version, v3.19 on
the x86 architecture. Due to GOLEM’s high runtime, I could only execute three
full runs across all versions. Note the different scale of the y axis.
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There are a few noteworthy peculiarities in the figure: From v2.6.35 to v2.6.36,

the runtime abruptly decreases by over 40 percent (from 3,005 to 1,787 seconds).

Up to v3.4, it continues to increase steadily, only to jump up from 3,149 to 5,417

seconds – over 70 percent! – for v3.5. Subsequently, I tracked these big jumps down

to individual commits: while they both modify the main Linux Makefile, it is not

obvious why the changes have such a high impact on the runtime.15 I assume the

modifications have some influence on a top-level point of variability, thereby nearly

halving (in the case of the decrease between v2.6.35 and v2.6.36) or doubling

(between v3.4 and v3.5) the number of required probing steps.

Additionally, since peaking in version v3.16 at more than 11,300 seconds, the

runtime of GOLEM stagnates around the 11,000 seconds mark, even though the

number of KCONFIG features as well as the number of conditions extracted from the

build system continue to grow.

The development of the runtime of MINIGOLEM on the other hand looks a lot

smoother: As shown in Figure 5.1b, parsing the Makefiles only takes 0.76 seconds

on v2.6.32. Through the releases, a near-perfect linear increase can be observed by

about 0.02 seconds per release, leading to an extraction time of only 1.29 seconds

on the most recent version v3.19 – this is more than eight thousand times faster

than GOLEM! But being fast is worth nothing if the extracted data is bad, so we need

to look at the formulas and measure their quality.

5.2 Robustness and Quality

As already mentioned, an important point for the integration of MINIGOLEM into an

automated analysis of Linux is the robustness: the process must be able to perform

reliably in the presence of changes to the build system throughout the development

process. When I started writing MINIGOLEM, the most recently released Linux

version was v3.16, and I used this version as the testing base throughout the whole

implementation process; only after I was satisfied with the extracted data did I run

the tool on older Linux releases as well.

To measure the quality of the extracted variability information, I first need to

determine all files for which GOLEM and MINIGOLEM have both extracted information

from KBUILD (more formally: Let Fg be the set of files for which GOLEM extracted

variability information, and Fm be the set of files reached by MINIGOLEM. Then

Fintersec t = Fg ∩ Fm contains all files which are covered by both approaches). Next, to

determine if the extracted information for a file is logically equivalent, I build the bi-

implication between the condition from GOLEM and the condition from MINIGOLEM,

15Going from v2.6.35 to v2.6.36, the offending commit is 6588169 – “kbuild: allow
assignment to {A,C,LD}FLAGS_MODULE on the command line”. Between v3.4 to v3.5, the in-
crease occurs at commit 1f2bfbd – “kbuild: link of vmlinux moved to a script”.
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and use a checking tool, LIMBOOLE [12], to determine if the resulting formula is

always valid (again, more formally: ∀ f ∈ Fintersec t : Let C( f ,g) be the condition for file

f extracted by GOLEM, and let C( f ,m) be the condition for the same file f extracted by

MINIGOLEM. If the equation (C( f ,g)⇔ C( f ,m)) holds, then both approaches extracted

the same conditions for f from KBUILD).
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Figure 5.2 – Percentage of logically equivalent extracted conditions for files
which are covered by both approaches. The x axis denotes the 21 architectures
available on every measured version, which are shown along the y axis.

As every architecture is handled independently by our toolchain, the individual

models are tested separately to additionally determine how well the extraction

process works for the respective target architecture. Over the course of five years,

some architectures were added to Linux, while others were removed; in order to
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show a consistent image, I picked the 21 architectures available on every version

from v2.6.32 to v3.19 for this analysis.

Figure 5.2 shows the results for all versions and all architectures as a heat map. To

my own surprise, the formulas extracted by MINIGOLEM for most version/architecture

combinations are almost equivalent to the data from GOLEM; the percentage of

logically equal formulas is mostly at around 99.3 percent.

There are, however, some clearly identifiable outliers: ARM and MIPS (from

v2.6.32 to v2.6.35) which reach around 96 to 98 percent accuracy, respectively, as

well as IA64 and SPARC, both reaching 99.1 percent accuracy. While this is still quite

high, I manually looked into the formulas to determine the cause for this discrepancy.

For ARM, I found that GOLEM sometimes adds features to the formula for a file

which do not appear anywhere in the build system. This is likely to be an undesired

effect of its probing strategy: During the evaluation of a concrete selection of

KCONFIG features, KCONFIG might trigger the selection of other features through

their dependencies. For GOLEM, it then looks like the file can only be built with the

selected feature enabled, and it writes this feature into the dependencies for the

file. As an example, in version v3.7, MINIGOLEM extracts the condition CONFIG_-

ARCH_INTEGRATOR for the file arch/arm/mach-integrator/leds.c, while GOLEM

generates CONFIG_ARCH_INTEGRATOR && CONFIG_COMMON_CLK_VERSATILE. The

latter symbol appears nowhere inside the path through KBUILD to build the file, but

CONFIG_ARCH_INTEGRATOR selects it in KCONFIG.

Similarly, in the problematic versions of MIPS, GOLEM adds CONFIG_PCI to the

condition for all files inside the arch/mips/ directory where the corresponding

architecture selects CONFIG_PCI in its KCONFIG definition.16

The explanation for the slightly lower values for IA64 and SPARC is analogous

– in IA64, around 50 files carry an additional dependency on CONFIG_SGI_XP in

the conditions extracted by GOLEM; in SPARC, around 30 files show a reference to

CONFIG_SPARC32.

All these additional conditions, however, are information coming from the KCON-

FIG dependencies rather than the KBUILD files and should hence not appear in the

KBUILD data. Consequently, I consider the data from MINIGOLEM to be a better

representation for the actual build system conditions and conclude that the “lower”

accuracy is in fact not a problem with MINIGOLEM, but rather the implication of an

improvement over the current state of GOLEM.

16Going from v2.6.35 to v2.6.36, the build process for sub-architectures of MIPS was reorganized –
this also made the wrong behaviour disappear from GOLEM.
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5.3 A Closer Look at Accuracy

I now want to dive deeper into the formulas that MINIGOLEM generates, and illustrate

in more detail where the differences to the GOLEM data are and where they stem

from. To do this, I use the newest version of Linux, v3.19, and extract the build

system conditions for the x86 architecture with both GOLEM and MINIGOLEM. A

brief statistical overview over the data is given in Table 5.1.

Number of files found by GOLEM (Fg) 15,072

Number of files found by MINIGOLEM (Fm) 15,303

Files covered by both approaches (Fg ∩ Fm) 14,944

⇒ Files only covered by GOLEM 128

⇒ Files only covered by MINIGOLEM 359

Number of equivalent formulas for files in Fg ∩ Fm 14,831 (99.24%)

⇒ Number of differing formulas 113

Table 5.1 – Statistics for the extracted KBUILD conditions by GOLEM and
MINIGOLEM in Linux version v3.19 on the x86 architecture.

We can see that GOLEM found build system conditions for 15,072 files, while

MINIGOLEM found 15,303 files. This corresponds to 96.1 and 97.6 percent, respec-

tively, of all source files in the Linux tree for the x86 architecture. The number of

files which have conditions in both data sets is 14,944, leading to 128 files only

present in the GOLEM data and 359 files only in MINIGOLEM.

For all files covered by both extractors, I again use LIMBOOLE [12] to determine if

the generated conditions are logically equivalent (c.f. Section 5.2). Out of the 14,944

conditions in (Fg∩Fm), 14,831 are indeed equivalent, which gives us a 99.24 percent

accuracy. Much more interesting than the equivalent formulas, however, are the dif-

fering ones and the reasons for the difference, which I will now present in more detail.

First, let us take a look at the 128 files which GOLEM lists, but for which MINIGOLEM

could not extract conditions from KBUILD. In the GOLEM data, 37 conditions are for

object files rather than source files. These stem from developer-defined Makefile

targets which do not fit into the obj- list pattern used for the regular build process –

these are used to specify dependencies or build rules which differ from the regular

pattern. MINIGOLEM does not show them because it relies on the information from

the obj-{y,m} lists, but as the UNDERTAKER only analyzes source files, this data is

not needed anyway.

Most of the remaining files have conditions which MINIGOLEM currently can not

evaluate sufficiently. In one case, the path to the source files is generated dynamically
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inside the Makefile, in another case a dynamic $filter() call is used to build the

condition for an ifneq block inside the Makefile. These are all situations in which a

(static) parser has too little insight into the data actually being evaluated by KBUILD;

luckily, less than 90 files are treated like this – I consider this a low-enough number

to ignore for now in favor of the runtime improvement.

Lastly, GOLEM shows some bogus entries for files like cat or make; these are

probably caused by incorrect parsing of error messages during the probing steps

which then end up in the output with some conditions attached.

Next, I examine the 359 files which MINIGOLEM found in addition to the common

set. Here, I am able to identify the common cause for their absence in the data

extracted by GOLEM.

By design, GOLEM picks up all KCONFIG items mentioned in the Makefiles and

systematically probes KBUILD by turning individual KCONFIG features off and on,

and looking at which other files are built if one extra feature is enabled additionally.

In some Makefiles, however, two (or more) KCONFIG features control the inclusion

of a particular file (see Listing 5.1 for an example).

17 ifeq ($( CONFIG_MEDIA_CONTROLLER ) ,y)
18 obj- $( CONFIG_MEDIA_SUPPORT ) += media.o
19 endif

Listing 5.1 – Example for a Linux Makefile where compilation of

media.c depends on more than one KCONFIG feature, taken from

drivers/media/Makefile (Linux v3.19).

In this case, media.o will only be built if both CONFIG_MEDIA_CONTROLLER and

CONFIG_MEDIA_SUPPORT are enabled. With a probing approach agnostic of this

dependency, the two KCONFIG items will be tested separately; due to the fact that

GOLEM always starts with the empty selection of options (i.e., all configuration

options are disabled), enabling only one of the respective KCONFIG items will never

trigger compilation of media.o, and golem will not report the configurational con-

straints for the underlying source files (see Dietrich et al. [9], Section 6.1 for a

further discussion of these cases).

Lastly, we need to understand the origins of the remaining 113 files for which

both MINIGOLEM and GOLEM have extracted conditions (C( f ,m) and C( f ,g), respec-

tively), but for which the conditions are not equivalent, i.e. do not represent a valid

bi-implication (C( f ,g)⇔ C( f ,m)) when tested with LIMBOOLE.
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When we have established that (C( f ,g)⇔ C( f ,m)) is not valid, we can further

distinguish three different sub-cases:

1. C( f ,g) ⇒ C( f ,m), i.e., the condition from GOLEM implies the condition from

MINIGOLEM: If this formula is valid (again, this can be tested using LIMBOOLE),

it means that the formula produced by GOLEM describes stronger constraints

than the formula from MINIGOLEM.

A total of 22 files correspond to this case; the stronger constraints are caused

by either an architecture variable like CONFIG_X86_32 which is not explicitly

used in the build system but has an influence on dependencies or by missing

_MODULE counterparts for tristate KCONFIG features in the GOLEM formula.

2. C( f ,m)⇒ C( f ,g), i.e., the condition from MINIGOLEM implies the condition from

GOLEM: This case is the opposite of the first, meaning that the formula from

MINIGOLEM is more restrictive than the formula from GOLEM.

With 91 conditions fulfilling the implication, this covers all remaining files.

The overwhelming majority of MINIGOLEM conditions in this group contains

a negated KCONFIG item (i.e., for drivers/char/nvram.c, the condition

is !CONFIG_GENERIC_NVRAM && CONFIG_NVRAM) while the GOLEM formula

does not contain the negated item (in our example, GOLEM only produces the

conditions CONFIG_NVRAM). This is again based on an assumption of Dietrich

et al. [9] that enabling a KCONFIG item will always select additional source

files for compilation but never remove any files. If the assumption is violated

(e.g., files are added to obj-y inside an ifndef CONFIG_GENERIC_NVRAM

block), GOLEM fails to detect the correct constraints. MINIGOLEM, however,

will detect the negation and pick up the corresponding condition for the source

file.

3. C( f ,g) 6= C( f ,m), i.e., the conditions are entirely different. In the analyzed data,

this case did never appear, further assuring me that the quality of the data

generated by parsing is sufficiently high for practical use.

Comparison to MAKEX [13]

In addition to GOLEM, I also tested the extracted conditions for x86 on Linux version

v3.19 against the data produced by the MAKEX parser. The extraction process takes

around two seconds per architecture – about 50 percent slower than MINIGOLEM,

but still orders of magnitude faster than GOLEM.

Table 5.2 shows a summary of the data. We can see that MAKEX only finds a total

of 13,296 conditions for source files, and that the number of files covered by both
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Number of files found by MAKEX (Fx) 13,296

Number of files found by MINIGOLEM (Fm) 15,303

Files covered by both approaches (Fx ∩ Fm) 12,036

⇒ Files only covered by MAKEX 1,260

⇒ Files only covered by MINIGOLEM 3,267

Number of equivalent formulas for files in Fx ∩ Fm 11,885 (98.75%)

⇒ Number of differing formulas 151

Table 5.2 – Statistics for the extracted KBUILD conditions by MAKEX and
MINIGOLEM in Linux version v3.19 on the x86 architecture.

approaches is at only 12,036, leaving more than 3,000 files which appear only in

MINIGOLEM, while 1,260 conditions are present only in the MAKEX data.

A manual inspection of the generated conditions revealed that the files missing

from MAKEX are almost entirely parts of composite objects, while the surplus files in

MAKEX are not present in the Linux source tree but have names closely related to

the composite objects in question.

When looking at the source code of MAKEX, I found that it does not check with the

underlying file system if a file really exists before printing its condition to the output.

In combination with parsing errors for some types of composite objects, this leads

to (a) the output of the name of the composite object (which has no corresponding

source file!) and (b) missing conditions for the individual parts which constitute the

composite object.

While the accuracy for the files covered by both approaches is at a very good

98.75 percent, missing over 20 percent of source files handling composite objects

is not acceptable for a thorough defect analysis of Linux.

Overall, MINIGOLEM extracts the configurational constraints from KBUILD faster

than MAKEX and achieves a much higher coverage of the source files. The high

accuracy in files described by both extractors once again underlines the quality of

the constraints extracted by MINIGOLEM.

Summary

The extraction of constraints from KBUILD through a parsing-based approach works

better than we first thought: The data generated by MINIGOLEM achieves a very high

accuracy – more files are found, more than 99 percent of the extracted constraints are

logically equivalent, and the remaining constraints are not equivalent only because

of a better, tighter description of the variability constraints by the parser.

Generally, we can see that both approaches have small, yet distinct limitations

regarding the extraction of data.



40 5.3 – A Closer Look at Accuracy

By design, GOLEM can not sufficiently generate conditions for files which depend

on more than one configurable option in the same Makefile, and for files which

are only built when the corresponding option is disabled. This essentially is a

consequence of the fact that GOLEM tries to achieve statement coverage in the Makefile

but can only test every statement independently, agnostic of the path leading to

this statement which might induce further constraints (e.g., from a surrounding

if{n}{def,eq} block). Additionally, in some cases GOLEM infers extra constraints

from KCONFIG that technically are not part of KBUILD.

On the other hand, it handles “non-standard” cases better than MINIGOLEM;

whenever the constraints require the dynamic evaluation of variables or functions

inside MAKE, the parsing-based, static approach is doomed to fail while the probing

mechanism of GOLEM makes MAKE itself evaluate everything it needs. Furthermore,

if files do not fit into the regular obj-{y,m} pattern but are rather generated through

the use of custom MAKE rules, MINIGOLEM will not be able to detect them.

Luckily, both limitations are only rarely hit inside Linux, and the high accuracy

over the course of five years and across all architectures indicates that the mentioned

cases will remain exceptions.

5.4 (Additional) Defects Found With MINIGOLEM

In order to measure how the generated conditions compare, I also evaluate how

the detection of dead and undead blocks is affected by the differences between the

GOLEM and MINIGOLEM data.

To do this, I instruct UNDERTAKER to analyze every file in the Linux source code

of the most recent release, v3.19, and to generate reports for them if any defects

were found. The reports are then grouped by their defect class (see Section 4.2).

This process is run with the models from GOLEM and then again with the models

from MINIGOLEM.

An overview of the results can be seen in Table 5.3. The analysis shows that the

number of dead (i.e., never compiled) blocks caused by conditions from KBUILD

increases by 7.6 percent, while the number of blocks identified as undead (i.e.,

always compiled) grows by more than 13 percent. Additionally, 2 defects are no

longer reported as dead when checking with missing symbols forced to False.

Nearly all of the defects which UNDERTAKER found additionally stem from the

architecture-dependent code inside the different arch/ directories, and target files

for which more than one condition is specified inside the same Makefile (see the

discussion in Section 5.3); for this case, the parsing approach provides better data

for the analysis steps than GOLEM.
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Defect class (type) with GOLEM with MINIGOLEM Change in percent

code (dead): 46 46 –

code (undead): 47 47 –

kconfig (dead): 149 149 –

kconfig (undead): 156 156 –

kbuild (dead): 209 225 +7.6

kbuild (undead): 213 241 +13.1

missing (dead): 494 492 −0.5

missing (undead): 99 99 –

Total: Σ 1,413 Σ 1,455 Σ +3.0

Table 5.3 – Comparison of the defects found with UNDERTAKER in Linux version
v3.19 when using the file conditions from GOLEM or MINIGOLEM, respectively,
grouped by defect class.

One example for a defect only found with MINIGOLEM is presented in Listing 5.2:

Here, the source file arch/x86/kernel/apic/x2apic_uv_x.c contains a prepro-

cessor block which should only be compiled when CONFIG_SMP is enabled (c.f. List-

ing 5.2a). When we look at the corresponding KBUILD Makefile (Listing 5.2b), we see

that the file is only compiled when two other KCONFIG options have been enabled:

Line 14 tells us the file will only be added to obj-y, the list of compiled object

files, when CONFIG_X86_UV has been enabled (i.e., set to "y") in the configuration.

Additionally, surrounding this statement is an ifeq block with its condition only

becoming true if CONFIG_X86_64 has also been set.

The corresponding, correct condition generated by MINIGOLEM for the source

file is hence CONFIG_X86_64 && CONFIG_X86_UV.17

When UNDERTAKER now walks through the analysis steps described in Section 4.2,

it finds no problem with the code itself (there are no nested #ifdef blocks posing

any problem), and also adding the transitive KCONFIG information from CONFIG_SMP

does not lead to a tautology or contradiction in the presence condition for the block.

However, when the conditions from the build system (and their transitive de-

pendencies) are added, UNDERTAKER will report that the #ifdef can never become

false, and thus, the corresponding block is undead. This is easily explained: Look-

ing at the KCONFIG features in Listing 5.2c, we can see that CONFIG_X86_UV has

(among others) a dependency on CONFIG_NUMA which itself has a dependency on

CONFIG_SMP. This, through the transitive CONFIG_NUMA option, effectively means

that CONFIG_X86_UV can only be enabled if CONFIG_SMP has been enabled earlier,

and thus, the source file also can only be compiled when CONFIG_SMP is enabled.

17Note that GOLEM could not extract any preconditions for the file as it depends on more than one
condition in the Makefile – see also Section 5.3.
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205 static int uv_wakeup_secondary (int phys_apicid , unsigned long ↘
start_rip )

206 {
207 #ifdef CONFIG_SMP

[...]
226 #endif
227 return 0;
228 }

(a) Excerpt from arch/x86/kernel/apic/x2apic_uv_x.c with a preprocessor block de-
pending on CONFIG_SMP.

11 ifeq ($( CONFIG_X86_64 ) ,y)
12 # APIC probe will depend on the listing order here
13 obj- $( CONFIG_X86_NUMACHIP ) += apic_numachip .o
14 obj- $( CONFIG_X86_UV ) += x2apic_uv_x .o

[...]
18 endif

(b) Excerpt from the Makefile at arch/x86/kernel/apic/Makefile. The compilation of
x2apic_uv_x.c depends on two KCONFIG features, X86_64 and X86_UV.

409 config X86_UV
410 bool "SGI Ultraviolet "
411 depends on X86_64
412 depends on X86_EXTENDED_PLATFORM
413 depends on NUMA

[...]
1204 config NUMA
1205 bool "Numa Memory Allocation and Scheduler Support "
1206 depends on SMP

(c) Excerpt from the KCONFIG file at arch/x86/Kconfig, describing the NUMA and X86_UV
KCONFIG features.

Listing 5.2 – Example for a kbuild undead defect from Linux v3.16 which
could only be found with the constraints from MINIGOLEM.

I fixed this defect by removing the #ifdef and its corresponding #endif and

submitted a patch to the Linux maintainers who accepted it into the mainline Linux

kernel.18

18The corresponding commit can be found at http://git.kernel.org/cgit/linux/kernel/git/
torvalds/linux.git/commit/?id=8091c1f8ea2374695c105591179b1269fb5f2fbb.

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=8091c1f8ea2374695c105591179b1269fb5f2fbb
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=8091c1f8ea2374695c105591179b1269fb5f2fbb
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5.5 Adaptability – BUSYBOX and COREBOOT

In the last section of this chapter, I want to evaluate how well the plug-in modules

for BUSYBOX and COREBOOT work, both in terms of extraction speed as well as in

terms of quality of the extracted conditions. All measurements were run on the same

machines where I also tested Linux, comprising a Core i5-4590 CPU with 3.3 GHz

and 16 GiB of RAM.

BUSYBOX

For the evaluation of BUSYBOX, I use the latest stable release, version 1.23.2 which

is available from the GIT repository.19

The extraction of the KBUILD conditions takes 44.1 seconds with GOLEM while

MINIGOLEM finishes in 0.69 seconds – over 60 times as fast.

The comparison of the conditions generated by both tools is nothing short of

impressive (see also Table 5.4): GOLEM emits configurational constraints for a total

of 549 files, MINIGOLEM only has one entry less (548). When we look at this “file”,

however, we can see that GOLEM generated a bogus entry for a file called “rm” with

many conditions associated to it – this is probably another parsing error of the MAKE

output in the extraction logic of GOLEM.

Number of files found by GOLEM (Fg) 549

Number of files found by MINIGOLEM (Fm) 548

Files covered by both approaches (Fg ∩ Fm) 548

⇒ Files only covered by GOLEM 1

⇒ Files only covered by MINIGOLEM 0

Number of equivalent formulas for files in Fg ∩ Fm 547 (100 %)

⇒ Number of differing formulas 0

Table 5.4 – Statistics for the extracted KBUILD conditions by GOLEM and
MINIGOLEM in BUSYBOX version 1.23.2.

COREBOOT

In COREBOOT, GOLEM fails to extract data from newer versions, as the developers

changed the build system to require their own version of the compiler and other

tools. MINIGOLEM, on the other hand, continues to work on these versions without

any problems. For a comparison of the quality of the conditions, however, I need a

version of COREBOOT where GOLEM can generate data; therefore, I use the same

19The repository is located at git://git.busybox.net/busybox.

git://git.busybox.net/busybox
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version which Hengelein [10] used in his evaluation. This is at commit id bef3d347e

from late 2012.

For this version, it takes GOLEM 358 seconds to extract its conditions, MINIGOLEM

is done after around 0.76 seconds, which represents a speedup by a factor of 470.

A summary of the extracted data by GOLEM and MINIGOLEM is given in Table 5.5.

Number of files found by GOLEM (Fg) 3,974

Number of files found by MINIGOLEM (Fm) 3,150

Files covered by both approaches (Fg ∩ Fm) 3,012

⇒ Files only covered by GOLEM 962

⇒ Files only covered by MINIGOLEM 138

Number of equivalent formulas for files in Fg ∩ Fm 2,992 (99.34%)

⇒ Number of differing formulas 20

Table 5.5 – Statistics for the extracted KBUILD conditions by GOLEM and
MINIGOLEM in COREBOOT version 4.0 (commit bef3d347e).

Here, we can see that GOLEM extracts about 800 more conditions than MINIGOLEM

(3,974 vs. 3,150), and that slightly more than 3,000 files appear in both data sets.

As COREBOOT Makefiles quite often include common files (e.g., CPU specific code

for certain processor revisions), GOLEM also (wrongly) produces multiple entries

for the same file in its output as it fails to properly match them – MINIGOLEM only

emits one entry per file.

A closer inspection of the additional files with conditions in GOLEM reveals that

all (without any exception) of these files are object files which are located inside

the build/ subdirectory; they are intermediate products generated during the

build process and subsequently are not in scope of a parser. On the other hand,

UNDERTAKER does not need any data for object files; thus, these files can safely be

disregarded.

The conditions for the 20 files for which GOLEM and MINIGOLEM achieve different

results all correspond to cases where either the probing strategy fails due to multiple

constraints for the source file in the same Makefile or a file is built only when a

KCONFIG option is disabled – thus, MINIGOLEM correctly provides tighter constraints

on these files.

Lastly, the 138 files only found by MINIGOLEM all correspond to mainboard-

specific files inside the src/mainboard/ directory. I assume that GOLEM does not

properly detect all possible directories and thus fails to descend into some of them,

leading to missing data for the files inside these directories.
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Variability in system software projects is often spread across different layers – in

Linux, configurable options can be specified in the KCONFIG language, and are

subsequently used in KCONFIG to describe dependencies between options, in the

build system KBUILD to include or exclude files from the compilation process as well

as in the source files through the C preprocessor to include or exclude code on a

fine-grained level.

Due to the dispersion of information across the different layers and involved

files, and due to the complexity of the dependencies involved, developers are prone

to make errors. In previous work, Sincero [18], Tartler [20] and Dietrich [7] have

developed the UNDERTAKER toolchain which can extract information from all layers

and detect defects caused by erroneous use of configurable options. Using their

work as a basis, Rothberg [17] presented UNDERTAKER-CHECKPATCH, an easy-to-use

tool which allows a developer to check a PATCH file for configurability defects before

submitting it into the Linux kernel.

UNDERTAKER-CHECKPATCH, however, could previously not use information from

KBUILD, as the runtime of the GOLEM extractor exceeds three hours per architecture

on the most recent Linux release, rendering it useless for integration into a developers

workflow.

To overcome this obstacle, I have developed MINIGOLEM, a parsing-based extrac-

tor for variability information from KBUILD which can process one architecture in

just over one second. Contrary to our initial expectations, the extracted data is very

accurate: The tool produces constraints for more than 97 percent of all files in Linux

– even more files than GOLEM can reach. A quantitative comparison of the conditions

for files which are covered by both extractors revealed that more than 99 percent

of these conditions are logically equivalent. For the remaining files, the conditions

from MINIGOLEM are mostly more precise than the conditions from GOLEM, as the

Linux KBUILD files sometimes violate the assumptions upon which GOLEM’s probing

45
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strategy is based. Furthermore, my approach is highly robust: The quality of the

extracted data is equally high for all Linux versions released in the last five years,

ranging from v2.6.32 to v3.19.

The higher accuracy also results in an increase of KBUILD-related defects found

by UNDERTAKER: The number of dead blocks increases by 7.6 percent, while more

than 13 percent more undead blocks can be detected.

With the integration of MINIGOLEM into the UNDERTAKER toolchain and into

UNDERTAKER-CHECKPATCH, I also designed an experiment which evaluates the

changes to the linux-next development tree every day. This now allows us to

catch variability-related errors immediately after they first appear – we have al-

ready received highly positive responses regarding our work from developers and

maintainers, and continuously work on improving the reports.

Moreover, through its modular design, MINIGOLEM can easily be ported to other

software projects: I demonstrated this by providing plug-in modules not only for

Linux, but also for BUSYBOX and COREBOOT. Again, I was able to show that the

extracted constraints are equally accurate or even more precise than the constraints

from GOLEM.

Future Work

Currently, when the parsing process encounters an expression it can not evaluate, it

simply skips the current line; if the unparseable expression is inside the condition of

an if{n}{def,eq} statement, it skips all code which depends on this statement as

we can not reason about the impact of the unparseable statement on the variability.

Even though this currently only affects around 50 lines in Linux v3.19, it might be

interesting to see if it is possible to (a) reliably detect the reason why a particular

line is failing and (b) switch to an alternative evaluation method which is better

suited for these types of statements.

Another point which could be improved is the reporting of defects by the ex-

periment running on linux-next: In its current state, the output of UNDERTAKER-

CHECKPATCH might not be entirely comprehensible for a developer – this is mostly

caused by the inherent complexity of some defect’s causes as they can stem from

the interaction of many different KCONFIG features, leading to huge formulas with

hundreds of KCONFIG features involved. While UNDERTAKER-CHECKPATCH already

supports the generation of a minimally unsatisfiable subformula to identify the main

culprits for dead defects, the output is often cryptic and hard to properly under-

stand for developers who might not be familiar with the format of the propositional

formulas involved.
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