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A B S T R A C T

LINUX, as well as other system software, offers a great deal of configurability that allows users

to tailor the kernel to their specific needs. Linux/v4.0 provides more than fourteen thousand

configurable options which are declared in the configuration system KCONFIG and implements those

options distributed over multiple build phases (KCONFIG, the build system KBUILD and source files).

Managing this variability has become increasingly hard and is barely solvable by hand nowadays. To

help developers, it is necessary to provide comprehensive tool support to identify problems. Previous

approaches already identified many of those defects but did not analyse if there are defects in the

declared configurability and therefore did not do a holistic analysis.

In my thesis I close that gap and provide a detailed analysis solely of the in KCONFIG modelled

configurability. I provide several approaches that identify new defects, help to identify more pitfalls

in the variability of the kernel and use the newly found defects to enrich previous analyses. To

tackle these analyses, I re-use existing snapshots of the modelled variability, extract and analyse the

relevant information and interactions of options.

With this investigation, I have identified more defects and potentially harmful or gratuitous

attributes of options. Furthermore I studied the impact of my findings to other analyses and integrated

my approaches partially into the tools that perform these analyses. However, the number of defective

KCONFIG options is small in relation to the total number of declared options.
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KU R Z FA S S U N G

Ebenso wie andere Betriebssystemkerne, bietet LINUX seinen Nutzern eine große Anzahl an konfigu-

rierbaren Optionen um den Kern nach ihren eigenen Vorstellungen maßzuschneidern. Linux/v4.0

bietet hierbei mehr als vierzehn tausend solcher in KCONFIG deklarierten Optionen an. Die Imple-

mentierung dieser Variabilität ist jedoch über mehrere Phasen des Erstellungsprozesses des Kerns

verteilt (KCONFIG selbst, das Build-System KBUILD und in Quelldateien). Diese Variabilität hand-

zuhaben wurde im Laufe der Jahre immer komplexer und eine Prüfung der Konsistenz über diese

Implementierungsebenen ist heutzutage kaum noch von Hand möglich. Deswegen ist eine umfas-

sende Unterstützung für Entwickler durch Werkzeuge nötig. Vorherige Ansätze waren in der Lage

viele Variabilitätsdefekte aufzudecken, haben jedoch nicht in der modellierten Konfigurierbarkeit

nach Fehlern gesucht, sondern Quelldateien in Kombination mit extrahierten KCONFIG und KBUILD

Bedingungen. Dieses Vorgehen hat jedoch zu keiner ganzheitlichen Analyse geführt.

In dieser Arbeit präsentiere ich daher, wie ich diese Lücke schließe und zeige eine detailierte

Analyse der modellierten Konfigurierbarkeit auf. Ich verwende verschiedene Ansätze, um Probleme

zu identifizieren, die spätere Analysen bereichern und auf weitere problematische Punkte in der

Variabilität aufmerksam machen. Um diese Analysen anzugehen, verwende ich bestehende Abbilder

der in KCONFIG modellierten Variabilität wieder und extrahiere und analysiere die relevanten

Informationen und Interaktionen dieser Optionen.

Mit dieser Untersuchung habe ich weitere Defekte und potentiell schädliche oder unnötige

Attribute von Optionen identifiziert und habe zusätzlich den Einfluss dieser Entdeckungen auf

weitere Analysen späterer Phasen des Erstellungsprozesses des Kernel-Abbilds untersucht und habe

meine Ansätze partiell in die Werkzeuge integriert, die diese Analysen durchführen. Verglichen

mit der Gesamtanzahl der Optionen in KCONFIG, ist jedoch ist die Anzahl an fehlerhaften KCONFIG

Optionen gering.
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1I N T R O D U C T I O N

Software is nowadays often configurable. Different customers might demand similar but not identical

products. Companies then are faced with the decision to redevelop a product from scratch or to

carve out the differences in the requirements and employ means of configurability to re-use as much

code as possible in order to minimize development costs. Other firms start directly with domain

analysis and engineering to create a configurable product to improve the development process and

product quality, reduce the time-to-market and achieve mass customization [Sin+07] to reach a

broad range of customers. This configurability enables developers to tailor software to the needs of

their customers.

System software is no exception to these procedures as Parnas [Par72] stated in 1972: “operating

systems and system software in general demand a highly modularized design”. This kind of software

often provides support for heterogeneous hardware and different use cases ranging from small

embedded devices to desktop machines or nodes in clusters. LINUX is a prime example for this

design. In over ten years of development the number of configurable options has more than tripled

as displayed in Figure 1.1 and the figures keep rising. Linux/v4.1, for instance, offers more than

fourteen thousand five hundred configurable options provided by the supplied KCONFIG tools and

models. The implementation of these options is distributed over multiple levels of the software

generation process, which are namely the configuration system KCONFIG, the build system KBUILD

and the C preprocessor (CPP). Independent of the KCONFIG controlled variability, branches in LINUX’s

linker scripts render the kernel variable at link-time and modules can be loaded or unloaded at

runtime. In practise, this enormous variability is difficult and error-prone to manage and has already

lead to thousands of variability defects in LINUX [Tar+11b]. These defects manifest in seemingly

configuration-conditional #ifdef-blocks that can never be selected (dead) or de-selected (undead),

files that can never be compiled or even defects that are only exposed at compile time [Tar+14] or

lead to bugs at runtime (e.g. null pointer dereference, use after free, buffer overflows, reads outside

of array boundaries, etc.) [ABW14].

In their dissertations in the context of the VAMOS-project [Web], Sincero [Sin13] and Tartler

[Tar13] investigated scalable methods and tools to identify variability related bugs. They imple-

mented the UNDERTAKER-toolchain as a key element for their analyses. This toolchain analyses

source files and employs an image of the in KCONFIG modelled configurability and build system

1
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Figure 1.1 – The increase of KCONFIG features from v2.6.12 (Jun ’05) to v4.1 (Jun ’15).

constraints – a variability model – to identify dead or undead CPP blocks or whole files. Later, they

extended their toolchain to support and enhance the test coverage of static checkers [Tar+14].
They utilise a holistic view of the static variability in LINUX, but did not reach a holistic analysis of

this static variability. Therefore it was not investigated if some of the defects they have identified

originate purely in defective declarations of options in KCONFIG or if the modelled variability lead

to other, not yet discovered, defects.

In my thesis I therefore analyse the modelled variability, the configuration space, which is

implemented in KCONFIG in the LINUX kernel, to complete previous approaches and achieve a

holistic analysis of the static variability in LINUX. This kernel provides a wide variety of options

and the number of those features continuously increases and reached 14679 for version v4.1. A

scalable approach is therefore of utmost importance and techniques like the ones used by Rincón

et al. [Rin+14], which scale up to 150 features, are not feasible for LINUX.

In this thesis, I present the extension of the UNDERTAKER to analyse the snapshot of the mod-

elled configurability and also present a tool to analyse feature interactions to identify defective or

potentially superfluous options or attributes of those options.

First I describe the concepts and tools used to implement the configurability in the LINUX kernel

and how each step of the build process leads to a operational kernel image in Chapter 2, followed

by a more detailed elaboration about how the UNDERTAKER toolsuite investigates and classifies

variability defects and approaches of other researchers. In Chapter 3 I explain how I tackle those
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two approaches and how my approach completes the analyses done by Sincero [Sin13] and Tartler

[Tar13] to achieve a truely holistic analysis of the modelled and implemented variability in LINUX.

Furthermore, I present insights about the implementation of those approaches in Chapter 4, continue

with a detailed evaluation of the expanded and created tools in Chapter 5 and finish with a discussion

about the implications of the results of my approaches in Chapter 6.





2F U N DA M E N TA L S

System software is often highly configurable. LINUX is one of the most prominent examples where

this can be observed. With its support of 30 different architectures (x86, arm, arm64, mips, ...) in

Linux/v4.0, LINUX can be run on small embedded devices but also on more complex desktop PCs

or on nodes in huge clusters. Each architecture might require individual code for the startup of

the kernel, for memory management or how interrupts are handled by processors. One source of

variability is therefore the architecture. These architectures are placed in the arch/ subdirectory and

some of these architectures also contain several sub-architectures. These sub-architectures might add

support for different instruction sets (e.g. i386 and AMD64) or for different versions of hardware

specifications (e.g. ARMv7-A, ARMv7-R).

On top of the abstraction layer for architectures, LINUX supports many different subsystems

that implement (mostly) architecture independent code. These subsystems include networking,

filesystems, memory management, sound, kernel, libraries and drivers, while the code in the

drivers/ subsystem is up to 60 percent of the overall source code. However, some functionality is

mutually exclusive, not every piece of code is always needed and some parts of the code require

the presence of other parts of code. To tackle these different requirements, LINUX provides the

necessary means to configure the kernel and allow users to tailor the kernel to their individual needs.

Embedded systems might require a kernel providing only the needed functionality and a small size

of the kernel, while a kernel for desktop machines should support a broad range of drivers and the

size of the kernel is not an issue. To provide support for a more generic range of hardware, LINUX

allows users to choose how parts of the kernel are compiled. These parts can be either compiled

directly in the kernel or as a loadable kernel module (LKM), which the kernel can load on demand

at runtime.

The configurability in LINUX is modelled in KCONFIG. This configurability is then exposed as

options in configuration tools to users who can decide how they want to compile the kernel and

which functionality it should contain. The build process – which follows the choice of configuration

– is organised in several phases, which I describe in the following Section 2.1. The implementation

of every phase decides which source code artefacts are compiled, depending on the configuration.

However, the implementation process of this variability is not perfect, understanding every aspect

of this configurability is hard and developers easily make mistakes that lead to functional bugs or

5



6 2 Fundamentals

simply dead code. These issues are aided by the dispersion of the variability implementation across

different build phases, the large code base of LINUX and constantly rising number of configuration

options (v2.6.12 has 4.696 total KCONFIG options in June ’05, v4.0 has 14.679 in June ’15).

Sincero [Sin13] and Tartler [Tar13] researched defects that originate in the implementation of

variability in source code and in interactions of this variability with the modelled configurability in

KCONFIG or other build phases. I describe their work and the work of other researchers briefly in

Section 2.6. However, Sincero and Tartler limited their research to variability defects originating in

source code or in the interaction with other build phases and did not investigate if there are defects

in the modelled configurability in LINUX. This left some questions unanswered:

• Are there options in KCONFIG that can never be chosen but cause defects in later build phases?

(dead options)

• Are there options that are always enabled but appear configurable? (undead or false op-

tional [Rin+14])
• Are there other defects that originate in KCONFIG that influence the variability in later stages?

I focus on answering those questions in this thesis.

To present a holistic view of the variability in LINUX, I describe how it is implemented in

Section 2.1. It is necessary to acquire a deep understanding of KCONFIG to be able to identify defects

in the modelled configurability in LINUX. I provide a detailed explanation of KCONFIG in Section 2.5.

2.1 Static Configurability and Build Process

The configuration and build process in LINUX is organised in several interconnected phases [Tar+14]
as seen in Figure 2.1. static configurability means, that configuration has to be done before the

compilation process is started. As a first step Ê, users have to choose the architecture by setting the

environment variable ARCH to the intended architecture. For step Ë, the desired configuration has to

be created. Users can create this configuration by using the command-line tool CONF or slightly more

advanced tools with a graphical interface (MCONF, GCONF or QCONF), provided by KCONFIG. These

tools parse and evaluate the architecture specific KCONFIG files, in which the variability is modelled.

After the configuration is done, the KCONFIG tools create a .config file in the root directory of the

LINUX source, to represent the chosen configuration in the format shown in Listing 2.1. Every active

option is represented in this file.

1 # CONFIG_GLOB_SELFTEST is not set
2 CONFIG_RD_LZ4=y
3 CONFIG_MMU=y
4 CONFIG_DVB_CX24123=m

Listing 2.1 – Example of a .config file. CONFIG_GLOB_SELFTEST is disabled, CONFIG_RD_LZ4
and CONFIG_MMU are enabled and CONFIG_DVB_CX24123 will be a LKM.
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Source files

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

CPP

autoconf.h

Root Feature

Kconfig
selection

1

.config

4Build scripts

Makefile
arch/x86/init.c

arch/x86/...
arch/x86/entry32.S

lib/Makefile
kernel/sched.c
...

auto.conf

2

kbuildKbuild

kbuildKconfig

derives from

coarse-grained
variability

fine-grained
variability

drives and controls

derives from

$ ld numa.o <...> -o vmlinux

drivers.kovmlinuz
5

$ gcc -O2 -Wall -c numa.c -o numa.o

$ export ARCH=arm

Choose target architecture

3

Figure 2.1 – Fine-Grained and Coarse-Grained Variability Implementation in Linux. Figure
taken from [Tar+14].

When the build process has started, KBUILD– LINUX’s own build system – derives two files of the

previously created .config file. The first file, auto.conf, located in include/config, is used by

KBUILD in step Ì to determine which files will be compiled. Listing 2.2 shows an excerpt of this file.

In contrast to the .config file, auto.conf does not contain any disabled symbols and comments.

Since KBUILD decides if a folder is included in the traversion of the directory structure and a file is

compiled or not, this type of variability is called coarse-grained-variability.

1 CONFIG_RD_LZ4=y
2 CONFIG_MMU=y
3 CONFIG_DVB_CX24123=m

Listing 2.2 – Example of a auto.conf file. No disabled options are mentioned here and no
comments are included.

The build system includes the second generated file, include/generated/autoconf.h, into

every compilation unit. Within this file, the relevant bits of the .config are translated into CPP
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#define statements, as shown in Listing 2.3. Developers then are able to use CPP #ifdef or

#if defined statements in source files to decide on a fine-grained level, which part of the file

should be compiled, depending on the user selection. This kind of variability is also called fine-grained

variability [Tar+14].

1 #define CONFIG_RD_LZ4 1
2 #define CONFIG_MMU 1
3 #define CONFIG_DVB_CX24123_MODULE 1

Listing 2.3 – Example of a autoconf.h file, where the options mentioned in .config are
translated into #define Statements. Options set to “m” get the KCONFIG-conventional _MODULE-
suffix for the definition.

After the preprocessor decided in step Í which parts of the code are kept, the compiler translates

the compilation units into object files and the linker creates in step Î a bootable vmlinuz kernel

image, using the built-in compilation units, and kernel objects (.ko) for the linux kernel modules

(LKM).

To show how these phases of configurability are interconnected, Tartler [Tar13] used Figure 2.2

in his dissertation. He states the earlier phases dominate later phases and therefore impose a

hierarchy of variability on later phases. He sees each phase as a separate layer of variability. Each

decisions on an upper layer has a direct impact on the inclusion of variability points on lower layers.

Variability points are code points in KBUILD or in source files where the decision is made if code

artefacts or files are compiled or not.

The first layer l0 shows the declaration of the formal model, which is implemented within the

definitions of KCONFIG options in KCONFIG files with their dependencies. The plain text model is

realised in the derived auto.conf and autoconf.h files, which I specified before. The layers l1 and

l2 realise the previously mentioned Ì and Í build phases. However, Tartler [Tar13] describes l3 as

run-time variability, which does not fit the Figure 2.2, where l3 is declared as Compiler/Language

with if(CONFIG_F1) as code example. When the source file with this if(CONFIG_F1)-statement is

compiled, the CPP will replace CONFIG_F1 with 1 if it was enabled by the user and therefore defined

in autoconf.h. If F1 was not chosen by the user, CONFIG_F1 will not be defined in autoconf.h and

the compilation will break with an “undeclared identifier” error. There is currently no mechanism to

change the configuration at runtime in LINUX.

Since all configuration happens on l0 in KCONFIG, this layer is also called configuration space.

The later layers where the variability is actually implemented in every variability point can also be

summarised as implementation space.

After this description of the build system, I continue with brief descriptions of each phase of this

system.
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Figure 2.2 – The layers of configurability.

2.2 KCONFIG: Decide Which Options are Enabled

KCONFIG is a domain specific language (DSL) to specify in which way a piece of software is config-

urable: declare which properties the software has and how these properties interact with or depend

on each other. These declarations are usually done in files named Kconfig. Every entry can have its

own dependencies or attributes, which are used to determine its visibility, enable other entries and

to determine where the entry is placed in the tree structure in which these options are organised.

KCONFIG and its tools were originally developed for the Linux kernel and they have been adopted

for a wide range of other projects [Ber+12] since then. The KCONFIG-tools employ the declarations

in KCONFIG-files to provide a command-line or graphical interface for users to choose their desired

configuration.

An example for such a declaration is displayed in Listing 2.4 which shows the entry for option

VM86.
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1 config VM86
2 bool "Enable VM86 support" if EXPERT
3 default y
4 depends on X86_32
5 ---help---
6 This option is required by programs like DOSEMU to run
7 16-bit real mode legacy code on x86 processors. It also may
8 be needed by software like XFree86 to initialize some video
9 cards via BIOS. Disabling this option saves about 6K.

10

11 If unsure, say Y.

Listing 2.4 – Example of an entry in Kconfig.

The first line represents the definition of the option’s name VM86. The config keyword indicates

the start of a new config entry, while the following lines define the attributes of that config entry. The

attributes in this case are the type of the config option, followed by an input prompt, a condition for

this prompt, a default value, dependencies and the help text that is displayed to the user if necessary.

Every line starts with a keyword except after a help keyword started a help text. The parser

uses the indentation to recognise which text belongs to a block of help text. The first line after the

keyword establishes the start indentation of the help text and the block ends when a line is found

that has a smaller indentation.

2.3 KBUILD: Decide Which Files are Compiled

KBUILD is the systematic extension of the GNU MAKE system in LINUX to separate the what to compile

from how to compile it. This separation was first proposed by Michael Elizabeth Chastain in the year

19971 who named the pattern “dancing makefiles”.

With this pattern, the central build rules are mostly defined in various Makefiles in the scripts/

directory, while small Makefiles that determine which files will be compiled, are scattered across the

source tree. An example for these small files can be seen in Listing 2.5. These Makefiles are traversed

recursively. This traversion sometimes happens unconditionally and sometimes depending on the

configurability information. Users determine how they want to configure their kernel and KBUILD

derives a auto.conf file - in MAKE syntax - of the .config, which is created by the configuration

process. A more detailed description of KBUILD and how the variability is implemented there, can be

found at the Master’s thesis of Ruprecht [Rup15], who implemented a parser of Makefiles to extract

presence conditions for files.

1https://lkml.org/lkml/1997/1/29/1

https://lkml.org/lkml/1997/1/29/1


2.4 The C Preprocessor: Decide Which Code is Compiled 11

# unconditional traversal of a directory
obj-y += irqchip/
# include the zorro/ directory in Kbuild traversal
obj-$(CONFIG_ZORRO) += zorro/
# compile the sourcefiles in this directory
obj-$(CONFIG_ZORRO) += zorro.o zorro-driver.o zorro-sysfs.o

Listing 2.5 – Example of the implementation of variability in LINUX’s Makefiles.

2.4 The C Preprocessor: Decide Which Code is Compiled

The C preprocessor is used to process the source code before the compiler sees the source. The

CPP can be used by developers to decide on a fine grained level which code will be compiled with

the usage of #if or #ifdef statements (see an example in Listing 2.6) or to expand macros which

create source code to simplify the development process for developers or reduce redundant code.

When the expression of #if or #ifdef statement evaluates to false, the compiler will not see the

contents of the block.

To determine which source code will be compiled, KBUILD uses the .config to derive a

autoconf.h header which will be included by the build system into every compilation unit to

define the respective configuration symbols.

1 #ifdef CONFIG_ZORRO
2 // code
3 #else
4 // more code
5 #endif

Listing 2.6 – Example for an ifdef-block which implements variability in source files in LINUX.

To avoid the compilation errors in C if-statements, as described in Section 2.1, the KCONFIG

maintainer Michal Marek introduced a series of CPP macros to determine the value of a CONFIG_-

variable with the types bool or tristate (which I explain in Section 2.5.4), even if the variable is

disabled – thus not defined – without causing a compilation error. These macros are:

• IS_BUILTIN() evaluates to 1 if the argument is set to “y”, 0 otherwise.

• IS_MODULE() evaluates to 1 if the argument is set to “m”, 0 otherwise.

• IS_ENABLED() evaluates to 1 if the argument is set to “y” or “m”, 0 otherwise.

• IS_REACHABLE() is similar to IS_ENABLED(), but evaluates to 0 when invoked from built-in

code when the symbol argument is set to “m”.

These macros can be used in C if-statements as well as in CPP #if-Statements.

After this short explanation of each build phase, I continue with the detailed explanation of

KCONFIG.
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2.5 KCONFIG in Detail

The main focus of this thesis is to identify potential errors and dead options in the configuration space,

which is implemented in KCONFIG in LINUX. To achieve this goal, it is necessary to acquire a deep

understanding about the semantics of KCONFIG. Therefore I continue with a detailed explanation of

the configuration space in LINUX.

I included some advanced information about the internal mechanics of KCONFIG in this Section

that are not relevant for the understanding of this thesis but might be interesting for a holistic un-

derstanding of KCONFIG. This advanced information is shown in boxes with the headline “Additional

Information”.

Note for the following syntax examples:

• Every term in angle bracket (<>) has to be replaced with the content described in these

brackets.

• The meaning of expressions (<expr>) is described in Section 2.5.4.1.

• Everything in square brackets ([]) is optional

A more complete example of a kconfig file is shown in Listing 2.7. For the sake of simplicity, I have

omitted the help texts of the listed options.
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1 mainmenu "Linux KERNEL Configuration"
2

3 menuconfig MODULES
4 bool "Enable loadable module support"
5 option modules
6

7 config ARCH
8 string
9 option env="ARCH"

10

11 # Select 32 or 64 bit
12 config 64BIT
13 bool "64-bit kernel" if ARCH = "x86"
14 default ARCH != "i386"
15

16 menuconfig EXPERT
17 bool "Configure expert kernel features"
18

19 config X86_32
20 def_bool y
21 depends on !64BIT
22 select HAVE_UID16
23

24 config HAVE_UID16
25 bool
26

27 config OUTPUT_FORMAT
28 string
29 default "elf32-i386" if X86_32
30 default "elf64-x86-64" if X86_64
31

32 config PGTABLE_LEVELS
33 int
34 default 4 if X86_64
35 default 3 if X86_PAE
36 default 2
37

38 source "init/Kconfig"
39

40 menu "Processor type and features"
41

42 config ZONE_DMA
43 bool "DMA mem alloc." if EXPERT
44 default y
45

46 config SMP
47 bool "Symmetric multi-processing support"
48

49 config X86_FEATURE_NAMES
50 bool "readable names" if EMBEDDED
51 default y
52

53 endmenu
54

55 if X86_32
56 config X86_EXTENDED_PLATFORM
57 bool "extended (non-PC) x86 platforms"
58 default y
59 endif
60

61 config PCI
62 bool "PCI support"
63

64 config X86_INTEL_CE
65 bool "CE4100 TV platform"
66 depends on PCI
67

68 choice
69 prompt "High Memory Support"
70 default HIGHMEM4G
71 depends on X86_32
72

73 config NOHIGHMEM
74 bool "off"
75

76 config HIGHMEM4G
77 bool "4GB"
78

79 config HIGHMEM64G
80 bool "64GB"
81 depends on !M486
82 select X86_PAE
83

84 endchoice
85

86 choice
87 tristate "USB Gadget Drivers"
88 [...]
89

90 config USB_CONFIGFS
91 tristate "USB functions through configfs"
92

93 config USB_CONFIGFS_SERIAL
94 bool "Generic serial bulk in/out"
95 depends on USB_CONFIGFS
96

97 config USB_CONFIGFS_ACM
98 bool "Abstract Control Model (CDC ACM)"
99 depends on USB_CONFIGFS

100

101 config USB_AUDIO
102 tristate "Audio Gadget"
103

104 [...]
105 endchoice
106

107 showif EXPERT
108 config RANDOMIZE_BASE_MAX_OFFSET
109 hex "Maximum kASLR offset allowed"
110 range 0x0 0x20000000 if X86_32
111

112 config FILE_LOCKING
113 bool "Enable POSIX file locking API"
114

115 endif
116 [...]

Listing 2.7 – Example of a KCONFIG

file.
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KCONFIG programs would create the following tree structure out of this file to show it to users:

1 Linux KERNEL Configuration
2

3 +- Enable loadable module support
4 +- 64- bit kernel
5 +- Configure expert kernel features
6 | +- Maximum kASLR offset allowed
7 | +- Enable POSIX file locking API
8 +- Processor type and features
9 | +- DMA memory allocation support

10 | +- Symmetric multi - processing support
11 | +- Processor feature human - readable names
12 +- extended (non -PC) x86 platforms
13 +- PCI support
14 | +- CE4100 TV platform
15 +- High Memory Support
16 | - off
17 | - 4GB
18 | - 64GB
19 +- USB Gadget Drivers
20 | - USB_CONFIGFS
21 | +- Generic serial bulk in/out
22 | +- Abstract Control Model (CDC ACM)
23 | - Audio Gadget
24 +- ...

Listing 2.1 – The corresponding KCONFIG structure to the previous example KCONFIG file.

Each line represents an KCONFIG entry with its own dependencies. These dependencies are used

to determine the visibility of an entry. Entries are only visible if the its parent is also visible [Doc],
each node with a parent becomes a sub-menu of its parent (lines 5–7). Notice that several options

are missing because they do not have an prompt (which I describe in Section 2.5.4).

The example starts in the first line with a mainmenu entry, which determines which text should

be displayed in the configuration program’s title bar, if the program chooses to use it.

Additional Information:

This entry is not relevant for this thesis but for completeness I explain its functionality briefly.

A mainmenu is usually the first entry in a structure of Kconfig-files. Older versions of

LINUX used this entry more often and sometimes did not define it as first entry (e.g. v2.6.32,

architecture m68k). Current versions of the KCONFIG parser (v4.0) crash with a “Segmentation

Fault” if there is a mainmenu entry and it is not the very first entry and is therefore backwards

incompatible.

In the following sections I describe the specific language elements of KCONFIG and their meaning.
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2.5.1 Menu Entries

Configuration entries, often referred to as menu entries, come in several forms. The most common

entry is the definition of an config option which starts with the config keyword and is followed by

a symbol which explicitly identifies this option. Another entry is menuconfig which is similar to

config except that the declaration of a menuconfig also gives a hint to frontends that all suboptions

should be displayed as a separate list of options [Doc]. Other entries like menu or choice help to

organise them. These entries will be described in Section 2.5.2 and Section 2.5.3.

Symbols

The identifier which follows a config or menuconfig declaration is called a symbol. In KCONFIG,

symbols can be used to reference the option in dependencies or other interactions like default or

select attributes (explained in Section 2.5.4). In later build stages, KBUILD or CPP, symbols are

not used in the form they are declared in KCONFIG, but are referenced with the reserved CONFIG_2

prefix added. This prefix is added by the transformations described in Section 2.1. Programming

conventions in LINUX reserve this prefix to denote a KCONFIG controlled namespace [Tar13] with

which developers should not tamper. However, this convention is violated 184 times in Linux/v4.0

source files. Options with the tristate type get the _MODULE suffix in later build stages, if they are

set to be built as module.

Internally, KCONFIG sees everything that is part of an expression and that is not an operator,

as a symbol. There are two types of symbols: constant and non-constant symbols. The previously

mentioned identifier which follows a config or menuconfig declaration is a non-constant symbol.

Non-constant symbols are the most common ones. They solely consist of alphanumeric characters

and underscores (e.g. X86_CPUID) and are called non-constant because they identify a configuration

entry that gets a value during the configuration process.

Constant symbols can only be part of expressions and are always surrounded by single or double

quotes and therefore look like strings in other languages (e.g. "0xdeadbeef").

Multiple Definitions of KCONFIG Options

Additional Information:

KCONFIG allows developers to to define configuration options – often also called features –

multiple times. An option is defined multiple times if multiple options have the same symbol.

The type of those definitions must not conflict and only one input prompt per definition is

allowed. KCONFIG does not combine conditions of multiple definitions. These definitions

are independent of each other, except they influence the value of same symbol and only the

last settled value is utilised for the generation of the resulting .config. They can be defined

2Which prefix is added can be controlled by users by changing the environment variable CONFIG_. If this variable has a
value, this value will be used as a prefix.
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in different files and may appear in different places in the tree structure of menus if their

dependencies are satisfied and they are visible. Users of configuration tools might be confused

when they search for options that are defined multiple times. KCONFIG does not show a clear

distinction between multiple definitions in the search function and users may not be aware that

multiple definitions are more alternative definitions than a definition of additional conditions,

thus the search result for such options looks broken to them.

2.5.2 Menus

A menu explicitly specifies the structure of a number of configuration entries. The syntax for such a

structure group is shown in this example:

menu "<categorial description>"

<menu options>

<menu entries>

endmenu

All entries within the menu block become subentries of this menu and inherit all its dependencies.

Listing 2.7 shows a menu structure in the lines 40–53, while the resulting menu structure is displayed

in Listing 2.1 in line 8 to 11.

2.5.3 Choices

Choices allow developers to declare groups of options where the number of concurrently active

choice values can be limited depending on the type of the choice and an additional option optional.

Choices can only have two types, either boolean or tristate. If no type is chosen and only a prompt

attribute is present, KCONFIG will infer the type of the choice on the base of the type of the choice

values. If there are tristate choice values, the choice will be tristate, otherwise the choice is boolean.

The correct syntax of choice declarations is displayed in the following example:

choice [symbol]

tristate, bool or prompt <text>

<optional or other attributes>

<multiple choice values>

endchoice

A boolean choice describes a exclusive or (XOR) relationship between the choice values. Exactly

one entry can be activated at the same time. An example for a boolean choice can be seen in

Listing 2.7 in the lines 68–84 with the corresponding illustration of the structure in the lines 15–18

in Listing 2.1.
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If the type of the choice is tristate though, users will get a prompt to choose the value of the

choice when they configure the kernel. When they choose “y”, the choice will behave exactly like a

normal boolean choice and only exactly one value can be selected. If they choose “m” the choice

will allow users to set 1..n tristate choice values to “m”, boolean choice values will not be shown to

users in that case. This semantic is reasonable for LINUX, since it will ensure only one driver will be

compiled into the kernel or multiple drivers are available but will only be loaded at runtime if they

are needed. Listing 2.7 displays an example of a tristate choice from line 86 to 105.

There is a special option for choices which is marked by the optional keyword. With this

keyword it is possible to leave a choice disabled. This changes the behaviour of a boolean choice

to a mutually exclusive 0..1 choice and the range of possible activated module choice values to

0..n [Ber+12]. However, there are very few optional choices in the LINUX kernel.

1 choice
2 tristate "USB Gadget Drivers"
3 [...]
4

5 config USB_CONFIGFS
6 tristate "USB functions configurable through configfs"
7

8 config USB_CONFIGFS_SERIAL
9 bool "Generic serial bulk in/out"

10 depends on USB_CONFIGFS
11

12 config USB_CONFIGFS_ACM
13 bool "Abstract Control Model (CDC ACM)"
14 depends on USB_CONFIGFS
15

16 [...]
17 endchoice

Listing 2.8 – An abbreviated example for a choice where not all config declarations in a choice
block are choice values. USB_CONFIGFS is the only choice value, while USB_CONFIGFS_SERIAL
and USB_CONFIGFS_ACM are only submenus of USB_CONFIGFS.

Additional Information:

Developers might be surprised by the fact, that not all config declarations in a choice block are

eventually choice values and thus presented to users. There is one choice with a lot of choice

values in LINUX where this happens, as shown in the abbreviated Listing 2.8. USB_CONFIGFS

is the only displayed valid choice value. The other config entries USB_CONFIGFS_SERIAL and

USB_CONFIGFS_ACM have a dependency on USB_CONFIGFS. As I explain in Section 2.5.4.1,

KCONFIG analyses the dependencies and tries to create a submenu structure on the basis of these

dependencies. This leads KCONFIG to see USB_CONFIGFS_SERIAL and USB_CONFIGFS_ACM

as submenus of USB_CONFIGFS and not as choice values as developers might expect. The
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definition of both submenus would be semantically equivalent to Listing 2.8 if they were

defined after the endchoice statement.

2.5.4 Menu Attributes

Menu entries can have a number of attributes. These attributes can be used to establish the type of

a config option, declare dependencies, input prompts, help texts, default values or limit the interval

of possible values [Doc]. Many of those attributes accept an optional if <expr> enquiry. Attributes

with these enquiries are only active when the expression is satisfied, according to the definition I

provide in Subsection 2.5.4.1.

There are five possible types for config options: bool, tristate, string, int, hex. The

boolean type has two possible values; “y” (yes) and “n” (no). A tristate symbol is similar to a

boolean symbol, except it has a third state; “m” (module). The value “y” indicates that code will be

compiled into the kernel image and the value “m” indicates code will be built as LKM.

When the build system derives the configuration to the MAKE and CPP representations (as

described in Section 2.1), it uses two symbols to represent the three states of a tristate symbol as

displayed in Table 2.1. For example, when users assign the value “y” to the tristate configuration

symbol X, the transformation process will define the macro CONFIG_X. When the assigned value is

“m”, the macro CONFIG_X_MODULE will be defined and none of both macros will be defined for the

value “n”.

X CONFIG_X CONFIG_X_MODULE
y 1 0
m 0 1
n 0 0

Table 2.1 – An example how the build system represents tristate values. The option X has
three possible values: “y”, “m” and “n”, which are represented by defining either CONFIG_X or
CONFIG_X_MODULE or none of them.

Additional Information:

Internally, KCONFIG only has two basic types for options; tristate and string. All other

types are based on them. The boolean type is based on the tristate type and the numeric

types are based on string.

The type attribute also accepts an input prompt definition with the following syntax:

<type> "<prompt text>"

This definition is semantically equivalent to the following definition with the prompt keyword:



2.5 KCONFIG in Detail 19

<type>

prompt "<prompt text>"

An input prompt defines the displayed text in configuration tools. Every option can have at most

one input prompt. It is possible to add a condition that has to be satisfied before the prompt of this

option is exposed to the user:

prompt "<prompt text>" [ if <expr> ]

An option can still be active through default values, if it is invisible; otherwise, the default value will

be presented to users and they can accept or override it.

A default attribute (Syntax: default <expr1> [if <expr2>]) can be used to set a default

value to <expr1> for an option. Only the first visible default attribute is active if there are multiple

defaults defined, even if the config option is defined multiple times and default attributes are spread

over these definitions. This means, defaults can be overridden by earlier definitions. The visibility

can be limited with conditions in <expr2>. There is a shorthand notation for the declaration of

bool or tristate options without a prompt and a default value with the syntax:

def_{bool, tristate} <expr1> [ if <expr2> ]

The condition in <expr2> is applied to the declared default value <expr1>.

2.5.4.1 Dependencies

The dependency attribute can be added with a depends on <expr> statement. If this attribute is

given multiple times for an option, KCONFIG joins the expressions with the “&&” operator.

The expression is applied to all other attributes of a configuration entry, which accept an if-

statement in their definition. This means the declaration:

bool "foo" if <expr>

default y if <expr>

is semantically equivalent to:

bool "foo"

default y

depends on <expr>
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KCONFIG tries to derive a menu structure on the basis of these dependencies. If option B depends

on option A, it will try to show B as a submenu of A. This process seems easy for this trivial example

but will get complicated if more configuration options are involved. These submenus can be seen as

a tree structure as seen in the following example:

+- A
| +- B
+- Kernel Hacking
| +- Kernel debugging
| +- Memory debugging
| +- Debug VM
+- ...

Dependencies enforce an upper limit on the symbol which defines them. This means the input

range for tristate symbols is reduced. An example for this case are the declarations in Listing 2.9.

When users choose A to be built as module, B can be at most module or be disabled.

1 config A
2 tristate "A"
3

4 config B
5 tristate "B"
6 depends on A

Listing 2.9 – Example for the implications of an upper limit enforced by dependencies.

However, if B would have the type bool instead of tristate and users would choose A to be

built as module, KCONFIG will round this limit up to “y” and the dependency for B would be satisfied.

Users then could choose between either “y” or “n” for B.

Tristate options can have three possible values: “n”, “m” or “y”. To represent these values in

calculations, KCONFIG uses the numbers 0, 1 and 2. Configuration options become visible when its

dependency evaluates to “m” or “y”.

Dependency Expressions

A dependency expression (previously described as <expr>) is true when all of its sub expressions

evaluate to either “y” or “m”. Expressions can be combined and linked according to the syntax rules

defined in the KCONFIG documentation [Doc]:
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<expr> ::=















































<symbol> (1)
<symbol> = <symbol> (2)
<symbol> != <symbol> (3)
( <expr> ) (4)
! <expr> (5)
<expr1> && <expr2> (6)
<expr1> || <expr2> (7)

(1) Convert the symbol to an expression. Returns the value for boolean and tristate symbols and

“n” for other symbol types.

(2) If the values of both symbols are equal, it returns “y”, otherwise “n”

(3) If the values of both symbols are equal, it returns “n”, otherwise “y”

(4) Returns the value of the expression. Used to override precedence.

(5) Returns the result of (2 - <expr>)

(6) Returns the result of min(<expr1>, <expr2>)

(7) Returns the result of max(<expr1>, <expr2>)

When a value-like symbol (string, hex, int) is used directly in an expression, this expression

always evaluates to “n” (e.g. depends on Z when Z has the type string) as a direct result of (1).

This means, value-like symbols can only be used with comparison operators.

Less obvious is the behaviour of the comparison operators (2) and (3) if one of the symbols is

not defined. As a consequence of definition (1), users could expect an undefined symbol to always

evaluate to “n” and a comparison of an undefined symbol and “n” to be always true. However, this

is not the case. KCONFIG sees the type of undefined symbols as unknown and the value of these

symbols as indeterminate. Consequently is a comparison with an undefined symbol in case (2)

always evaluated to false. For the non-equality check (3) the opposite happens: a comparison with

an undefined symbol is always true.

Additional Information:

Tristate logic is in two cases unapparent to developers:

• The first unobvious case occurs for the negation operator (5) in combination with a

tristates symbol B which is set to “m” (internally interpreted as 1). This operator

returns the result of (2 - <expr>) where <expr> is the value of the tristate symbol.

This means, a tristate option A with a dependency on !B, has its input range limited

to [0,1] or “n” and “m” when B is set to “m”. When A has the type bool, the input range

is limited in the same way but KCONFIG will round the 1 up to 2 and the allowed inputs

are “n” and “y” or {0,2}.
• When an option A has the dependency depends on RFKILL || !RFKILL, the depen-

dency is always true and does not impose an upper limit on A if A has the type bool.

When RFKILL and A have the type tristate, this dependency does not impose an upper

limit on A when RFKILL has the values “n” or “y”, but limits the highest possible value
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of A to “m” when RFKILL has the value “m”. In contrast to these two previous cases is

a dependency on A && !A always false when A is a bool symbol and equivalent to a

comparison with “m” (A="m") when A has the type tristate.

Implementation of Value-like Symbol Comparisons

As I have explained in Section 2.5.1, there are two types of symbols: constant and non-constant

ones. However, KCONFIG and its users in LINUX do not use these symbols in a disciplined way in

comparisons (2) and (3) in dependencies. Constant symbols are easy to recognise due to their

string-like notation (e.g. "0xdeadbeef"), but developers often use them without quotes (e.g.

0xdeadbeef) in comparisons. KCONFIG recognises the second usage as a non-constant symbol and

will set the internal type to unknown since it is not defined anywhere. When such a symbol is used in

a comparison with a symbol with int or hex type, KCONFIG tries to parse the name of the unknown

symbol accordingly to the type of the symbol on the other side of the comparison. If the name of

that symbol does not match a certain pattern for the type, it will be rejected and the comparison is

always false or true, as I have explained before.

Additional Information:

Names for hex types must start with “0x” or “0X” and all following characters must match

the regular expression (RegExp) [0-9a-fA-F]. Names for int symbols must not start with a

zero - a zero would indicate an octal number - and might start with a minus character and the

following characters must be in the range [0-9].
A Comparison between a non-constant string symbol and something else is only valid if

the other side of the comparison has either the string type itself or is a constant symbol. The

comparison is then done char-wise.

2.5.4.2 Select Statements

The select-statement (Syntax: select <symbol> [if <expr>]) realises reverse dependencies

for boolean and tristate options. In contrast to the previously mentioned dependency attribute,

reverse dependencies enforce a lower limit of another symbol (notice the order I mentioned in

Section 2.5.4.1: “n”, “m” and “y” are internally represented as 0, 1 and 2 in KCONFIG). The value of

the current symbol is used as a minimal value for the selected <symbol>. If <symbol> is selected

multiple times, the largest selection is used as a limit [Doc]. This means if A is a tristate option

which selects B, B at least has to have the value “m” if A is set to “m”.

The KCONFIG documentation defines several rules for the usage of these statements. However,

KCONFIG does not enforce these rules and they are often ignored or abused. According to these

rules, select statements should only be used on non-visible symbols, which means symbols without

a prompt in any definition, and on symbols with no dependencies.

Nevertheless, select statements in KCONFIG will force a symbol to a value, even if their depen-

dencies are not satisfied. The only case where this is not true is a select on a choice value. Select
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statements on symbols that are choice values are silently ignored. KCONFIG will print a warning to

the console if a selected symbol has unmet dependencies.

2.5.4.3 Ranges for int or hex Options

Configuration options with the type int or hex can have a special attribute to limit the valid range

of an option to a closed interval between two symbols:

range <symbol1> <symbol2> [ if <expr> ]

2.5.4.4 Other Option Attributes

There is a number of attributes which are only used a few times due to their special purpose. All of

these attributes begin with option followed by one of four valid options.

• The modules option declares the symbol to be used as MODULES symbol, which enables the

support for the third state of tristate symbols. KCONFIG allows at most one menu entry to

have this modules option. If there is no modules option, or the one available is set to “n”,

KCONFIG will treat all tristate symbols as boolean symbols.

• With env=<value> developers can import environment variables into a menu entry with the

type string. This attribute behaves like a default if the symbol has a prompt, except the value

is read from the environment. The behaviour of this option is undefined if it is mixed with

default values.

• defconfig_list marks the option to have a list of string default values with a path to default

configs, which can be used as a default when there is no .config.

• Another less common option is allnoconfig_y which can be used to indicate to KCONFIG

that it has to set the value this entry to “y” when allnoconfig is run.

Another seldomly used attribute is used for the restriction of the visibility of menu entries (see

Subsection 2.5.2). Since menus do not have an explicit prompt, apart from the description string, it

is not possible to restrict the visibility of that menu through a condition for that prompt. However,

there is a special attribute for menus to limit the visibility: visible if <expr>. If the expression

is false, the menu and its submenu entries will not be visible to users.

2.5.5 Structure in KCONFIG

To declare the relevant menu entries in the same (sub)directories where source files or Makefiles

are placed, KCONFIG has the source "<path>" statement to include other KCONFIG files. This

statement leads the KCONFIG parser to read the KCONFIG file refrenced by <path> and will always

be evaluated. Each architecture has a root KCONFIG file in its subdirectory in arch/3, which includes

other KCONFIG files through source statements. This means each architecture has its own KCONFIG

3Except for the User Mode Linux (UML) architecture, whose root kconfig file is located in arch/x86/um/ in current
versions.
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tree of options. Developers can re-use KCONFIG declarations in different architectures and do not

have to re-declare them for every architecture.

2.5.5.1 If Statements

If a developer wants to add the same expression to the dependencies of a number of consecutive

config options, this can be done with an if-block, as shown in the following example:

if <expr>

<config entries>

endif

In contrast to if-statements in imperative languages, an if-statement in KCONFIG does not mean the

contents of the if-block will not be evaluated if the expression evaluates to false.

Another construct showif <expr>, similiar to if <expr>, is currently discussed on the mail-

inglist4. Contrary to if-statements, the expression will be added to the condition of the prompt and

not to the dependencies.

With the proposed patch, developers try to solve a problem of the automatic creation of submenus.

When a consecutive group of options has the same condition for prompts, e.g. if EXPERT, KCONFIG

will try to add all options of this group as a submenu of EXPERT. If one of these options inside the

group, not at the borders, loses this condition or another symbol without the same prompt condition

is inserted into this group, KCONFIG breaks the submenu at this position and the options after the

offending one, will be displayed in the parent menu of EXPERT (“General Setup”) and thus might be

overlooked by users.

2.5.6 Common Idioms in KCONFIG

The KCONFIG documentation[Doc] provides two hints how to implement common idioms.

The first idiom is for options that are defined for some architectures but not all of them. This

idiom is based on the idea to introduce an intermediate option, or bridge option, that is selected by

the architecture that supports the option in question. These intermediate options usually are named

after the basic option, but usually add a prefix HAVE_, MIGHT_HAVE_ or HAS_.

Listing 2.10 shows an example of this idiom, where HAVE_GENERIC_IOMAP is an option that

provides a bridge between the architectures main-option, X86, and the actual option GENERIC_-

IOMAP. These bridge options help developers to easily learn which architectures support which

features without a need to search where X86 is mentioned in the dependencies.

Another way to implement this functionality would be to add the architectures main-options to

the dependencies, but if an option is implemented by many architectures, the dependencies would

be cluttered an it would be increasingly difficult to parse the relevant bits.

4https://lkml.org/lkml/2015/5/14/450

https://lkml.org/lkml/2015/5/14/450


2.5 KCONFIG in Detail 25

1 config X86
2 def_bool y
3 select HAVE_GENERIC_IOMAP
4

5

6 config HAVE_GENERIC_IOMAP
7 bool
8

9 config GENERIC_IOMAP
10 bool "foo"
11 depends on HAVE_GENERIC_IOMAP && FOO

Listing 2.10 – An example of the usage of a KCONFIG-hint

Another idiom is the restriction of a component to be built as module only. This can be done by

qualifying the symbol declaration with a depends on m statement, which limits the value of this

symbol to module “m” or disabled “n”. Due to the transitivity of dependencies, all options that have

a symbol with a depends on m attribute in their dependencies, will also be at most be defined as

module “m”.

2.6 Related Work

In this section I describe related approaches of other researchers. The research of previous VA-

MOS/CADOS research is the most relevant for this thesis, therefore I start with a overview of the

research of Sincero [Sin13] and Tartler [Tar13]. The ontological approach to identify dead and false

optional features by Rincón et al. [Rin+14] is discussed at the end of this section.

2.6.1 Previous Work in the VAMOS/CADOS Projects

In 2007 Sincero et al. [Sin+07] investigated if the LINUX kernel is a Software Product Line (SPL),

where he describes a product line as a set of software components that can be assembled together in

order to deliver different products (kernel images in the case of LINUX) in a specific domain. They

state that the scientific SPL guidelines aim at several goals like automatic product generation (see

Section 2.1), high configurability (14.541 features in Linux/v4.0), code re-use (subsystems are

re-used for different architectures), flexible architecture, no overhead for unrequested features (CPP

and whole files may be excluded), etc. While LINUX accomplishes most of these goals, they dismiss

the kernel as a SPL, because the guidelines also aim at optimisations of the development process

through domain engineering, which are not met by LINUX. These optimisations should improve

the time-to-market, the product quality and mass customisation. Sincero et al. [Sin+07] state that

development of new features in LINUX is not a controlled planing process and the evolution of the

code base is based on the work of several thousands of volunteers and a few paid engineers who

peer review and test code changes, implement new features or alter kernel-wide interfaces. They
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later conclude that the LINUX kernel fits the requirements for a SPL only partially and it can only be

partially considered a SPL by the definition of Northrop and Clements [NC01], which Sincero used.

Sincero et al. [Sin+10] later analysed the l2 layer (see Figure 2.2) of the implementation space

variability in LINUX to identify variability related bugs. He extracted presence conditions5 for CPP

blocks in source files and transformed them to propositional formulas and asked a checker function,

if the extracted conditions are satisfiable. Listing 2.11 shows an example for the defects he identified.

The first block B0 requires CONFIG_A to be enabled and the second block B1 requires CONFIG_A to

be disabled. This is a contradiction and block B1 is therefore dead. As a side effect of block B1 being

dead, the else block B2 becomes undead and cannot be deselected. To check if arbitrary formulas are

1 #ifdef CONFIG_A
2 // B0
3 #ifndef CONFIG_A
4 // B1 dead
5 #else
6 // B2 undead
7 #endif
8 #endif

Listing 2.11 – An example of a code defect. Block B0 requires CONFIG_A to be set and B1
requires CONFIG_A to be disabled, which is a contradiction and B1 is dead and cannot be
enabled. Since B1 is dead, B2 is undead and cannot be disabled.

satisfiable is a (boolean) satisfiability problem (SAT) problem, which is NP-complete. The practical

implementation of the checker function is realised with a SAT-checker. He named these defects code

defects, since the only relevant conditions are extracted from the code layer of variability.

As an extension of the work done by Sincero, Tartler et al. [Tar+11b] analysed the configuration

space (layer l0) of LINUX. He extracted the variability information from KCONFIG and transformed

them to a feature model. The combination of code conditions extracted by Sincero et al. [Sin+10]
(l2) and the relevant conditions from KCONFIG (l0) lead to the identification of two additional defect

types: logical and referential. The tool to identify the defects previously described as code defects

by Sincero, the logical and referential defects by Tartler et al. [Tar+11b] is called UNDERTAKER6.

An example for a logical defect is displayed in Listing 2.12. To compile block B1 it is necessary to

enable both options A and B. If the conditions of KCONFIG are considered and B has a dependency

on !A, both options cannot be enabled at the same time and block B1 is dead.

The third identified defect type is referential. This type of defect happens because options are

used that are never defined in KCONFIG and thus can never be enabled (example in Listing 2.13).

After the analyses of Sincero et al. [Sin+10] and Tartler et al. [Tar+11b] where they focused on

the layers l2 and l0 (see Figure 2.2) of variability, Dietrich et al. [Die+12] evaluated the KBUILD

layer (l1). Figure 2.3 shows how many KCONFIG symbols are used in which build phase. Dietrich

5The CPP block is active if these conditions are satisfied. If blocks are nested, this condition includes the merged conditions
of the block itself and of parent blocks.

6https://undertaker.cs.fau.de

https://undertaker.cs.fau.de
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1 #ifdef CONFIG_A
2 // B0
3 #ifdef CONFIG_B
4 // B1 dead
5 #endif
6 #endif

Listing 2.12 – An example of a logical defect. Block B1 requires CONFIG_A and CONFIG_B to be
enabled. When B depends on !A in KCONFIG, the UNDERTAKER tool finds a contradiction and
describes the defect as KCONFIG or logical defect.

1 #ifdef CONFIG_CPU_HOTPLUG
2 // B0 dead
3 #endif

Listing 2.13 – An example of a referential defect. Block B1 requires CONFIG_CPU_HOTPLUG to
be enabled. However, CPU_HOTPLUG is never defined in KCONFIG and thus can never be enabled
and the block is dead. Developers accidentally interchanged the option, the correct one would
have been HOTPLUG_CPU.

et al. [Die+12] noticed a huge fraction of KCONFIG symbols is used in KBUILD and a large portion

of these symbols is only used in KBUILD. Berger et al. [Ber+10] proposed a (fuzzy) parser for the

extraction of KBUILD constraints but Dietrich et al. [Die+12] did not consider this parser robust

enough over different versions of LINUX, since some Makefiles had to be altered, and implemented

a probing based extraction of these constraints to increase the accuracy of the previous explained

defect analyses by combining the constraints of the layers l0 to l2.

The previous examples always combined the layer l2 with other layers to search for defect CPP

blocks in source files. However, with the extracted presence conditions for whole source files, the

question whether there are dead or even undead source files suggests itself. To tackle that problem,

Tartler introduced a virtual block around the whole file to represent the source file. This virtual

block gets the file precondition as block condition and the dead analysis is able to check if a file is

dead but not if a file is undead. The dead analysis combines the layers l1 and l0.

However, the probing based extraction proved to be expensive [Rup15]. While an extraction

of the Linux/v2.6.36 constraints took around 30 minutes on a Core i5-4590 processor with 3.3

GHz, 16 GiB RAM, the extraction of the Linux/v3.16 constraints took over 3 hours on the same

machine for a single architecture. To tackle these costs, Ruprecht [Rup15] implemented an highly

accurate parser for KBUILD constraints which extracts the same conditions in just over a second. He

also introduced a new defect type (KBUILD logical) to distinguish between an ordinary KCONFIG

logical defect and a defect that is caused by the addition of KBUILD constraints. This faster approach

allowed the inclusion of file preconditions in the analysis in UNDERTAKER–CHECKPATCH.
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Kconfig features

14,917 [100%]

Kbuild interpreted

10,482 [70.3%]

Kbuild only

7,675 [51.5%]

51.5%

Kbuild/CPP

2,807 [18.8%]

18.8%

70.3%

Kconfig internal

1,872 [12.5%]

12.5%

CPP interpreted

5,370 [36%]

CPP only

2,563 [17.2%]

17.2%

36%

18.8%

Figure 2.3 – The distribution of the uses of KCONFIG features in Linux/v4.1-rc7 in the different
build phases. The percentages on the edges are calculated relative to the total amount of KCONFIG

features.

UNDERTAKER–CHECKPATCH

The analyses I previously presented investigated a number of files or the whole source tree of LINUX

for variability defects. This procedure does not fit to the workflow of LINUX developers where code

improvements are done incrementally by sending patches to subsystem maintainers. To simplify the

usability of the UNDERTAKER tool, Rothberg [Rot14] implemented a small wrapper tool, that parses

patches sent to maintainers and employs the UNDERTAKER toolchain to check if a patch introduces

a new variability defect, fixes an old one or leaves an old defect unchanged. This is achieved by

comparing the state before the patch is applied to the state after the patch is applied and checking for

variability defects in each step. In addition to this functionality, UNDERTAKER–CHECKPATCH resolves

referential problems in order to provide hints for developers about the origins of newly introduced

defects.

Additionally, this tools enabled Ruprecht [Rup15] to perform the analyses done by the UNDER-

TAKER toolchain on a daily basis, where all new patches in a linux-next version are analysed.

Since this tool integrates well with the workflow of LINUX developers, it is reasonable to expand this

tool with new checks to be able to promptly warn developers about defects they have introduced.

Configuration Coverage

Configuration coverage is one of the major problems for static analysis tools or a reliable testing

environment of variable software. Research for configuration coverage is driven by the question

how to achieve thorough code coverage, while expenses and resource costs are reduced [WP01;

Tar+11a].
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With the rising number of commits introduced into the LINUX kernel, it is considered increasingly

difficult to at least compile test each part of the code. Consider Listing 2.14. To compile both

1 #ifdef CONFIG_A
2 // code
3 #else
4 // more code
5 #endif

Listing 2.14 – An example why one configuration does not suffice to achieve a high code
coverage.

blocks, developers need two configurations, one with CONFIG_A enabled and one where that option

is disabled. However, maintainers often test their code only with one allyesconfig7 or one

allmodconfig8, which both could not cover the simple example above.

To attain viable metrics for configuration coverage for linux source files, Tartler [Tar13] introduced

the following theorem:

Theorem 2.6.1. The configuration coverage of a given configuration is the fraction of the number of

selected blocks divided by the total number of available blocks.

CC :=
selected blocks
available blocks

(I)

Earlier I have described that there are a number of blocks that can never be selected and others

that can never be de-selected. These blocks have to be singled out of the configuration coverage

because undead blocks are covered by every configuration and dead blocks cannot be covered by any

configuration. As a consequence, Tartler [Tar13] introduced an additional metric for a normalised

configuration coverage:

CCN :=
selected blocks− undead blocks

available blocks− undead blocks− dead blocks
(II)

This means, that the possible code coverage changes when more defects are recognised. There-

fore, I do a comparative analysis of the configuration coverage metrics CC and CCN in LINUX in

Subsection 5.1.1.1.

Tartler [Tar13] states, a holistic variability model [...] is useful to improve the effectiveness of

static analysis tools. With the extracted variability information taken from the layers l0 and l1, the

UNDERTAKER toolchain is able to create a minimal set of maximising configurations for single files to

increase the overall configuration coverage of tests or static analysis tools. These configurations are

called partial configurations.

In their Configuration Coverage (CC) paper, Tartler et al. [Tar+12b] discuss two different

algorithms to maximise the coverage of a set of configurations. Their greedy approach is more

7KCONFIG tries to set all options defined to “y”. If it notices conflicting dependencies when trying to enable an option, this
option is simply not enabled. The result of make allyesconfig therefore depends on the traversion order of those options.

8KCONFIG tries to set all options defined to “m”. The same limitation apply as for allyesconfig



30 2.6 Related Work

expensive to calculate but delivers better results for a lower number of configurations then the

naïve approach. The algorithms described in this paper implement statement coverage9; higher

coverage criteria such as decision coverage or path coverage are deemed as too expensive, although

the UNDERTAKER toolchain has been expanded with a decision coverage algorithm later.

Later Tartler et al. [Tar+14] used their previous work on CC to implement a driver for configurability-

aware static analysis tools called VAMPYR and used this tool to find additional compilation errors

and warnings.

2.6.2 Analysing Defects in Feature Models

Rincón et al. [Rin+14] introduces the concept of an “ontological rule-based approach for analysing

dead and false optional features in feature models”. Their main contribution is, apart from the

identification of dead and false optional features, the explanation of the cause of the defect in natural

language. For the defect identification, they first transform the Feature Model (FM) to a Feature

Model Ontology, which is a enriched version of the FM with the relevant information for the dead or

false optional analysis. They define an ontology as a “[...] formal explicit specification for a shared

conceptualisation” [Rin+14].
After the transformation step they use a set of rules to identify the defects and print a description

of the defect according to those rules in the last step. Their analysis scales for up to 150 features.

For 100 features this analysis takes around 5sec to finish and for 150 features their analysis already

takes 2 minutes of analysis time. This exponential growth proves this approach impracticable for

highly configurable systems like LINUX where the six year old version Linux/v2.6.31 already has

8988 features.

Another limitation is that they use a rather formal feature model which is difficult to get with

the complex semantics of the three valued logic through tristates and the select semantics (see

Section 2.5 for details).

2.7 Summary

In this chapter I have shown how the build system implements the variability in LINUX, followed by a

short description of all steps (KCONFIG, KBUILD, CPP) of the build sequence and then described every

language aspect and behaviour of KCONFIG in detail. After that, I continued with the explanation of

the approaches of other researchers. I started with a discussion if LINUX can be considered a SPL

and continued with a description about the work of Tartler [Tar13] and Sincero [Sin13], followed

by an explanation about how they have identified many defects (directly in the code, with the help

of a model of LINUX’s variability, with KBUILD constraints and how they find blocks that are defect

because of missing symbols in the presence condition) in the variability in LINUX and introduced the

tools they provide to support static analysis tools to maximise the configuration coverage but also the

metrics they define to understand this configuration coverage. I also presented a short introduction

9Visit https://en.wikipedia.org/wiki/Code_coverage for details.

https://en.wikipedia.org/wiki/Code_coverage
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into the new UNDERTAKER–CHECKPATCH tool that employs the tools created by Tartler and Sincero

to analyse patches for variability defects.

Furthermore, I produced a illustration of the analyses of feature models done by Rincón et al.

[Rin+14], which defects they identified and how they tackled the identification.

2.8 Problem Statement

Previous approaches by Sincero [Sin13] and Tartler [Tar13] have analysed the variability in LINUX.

They focused on the variability in source files and expanded later the presence conditions of CPP

blocks (ϕCPP, conditions from layer l2) with information extracted from KBUILD (ϕKBUILD from l1
conditions) and KCONFIG (ϕKCONFIG from l0 conditions). With this combined variability information

they achieved a holistic view of the variability in LINUX:

ϕLINUX = ϕCPP +ϕKBUILD +ϕKCONFIG

This view enabled them to identify a number of defects as shown in Section 2.6.1. However, their

research was limited to variability defects that originate in code conditions (ϕCPP), in a combination

of the code conditions and preconditions extracted from KCONFIG (ϕCPP +ϕKCONFIG), in a combination

of the former in addition with constraints from the build system KBUILD (ϕCPP +ϕKCONFIG +ϕKBUILD)
and, on a per file base, if there are defects in file preconditions from KBUILD in combination with

conditions from KCONFIG (ϕKBUILD +ϕKCONFIG). Still, they did not investigate if there are defects in

the modelled configurability ϕKCONFIG in LINUX.

The configurability in LINUX is organised in a hierarchy of layers (see Figure 2.2) where each

layer dominates the layers beneath itself. This means changes on an upper layer have an impact on

lower layers. With that in mind, the configuration space (l0) is the most important layer in the build

process of LINUX, because it dominates all other layers and defects on this level have an impact on

all later build phases. It is therefore surprising that defects in the configuration space are not well

researched. With this thesis, I fill this gap and provide tools to analyse the configuration space in

LINUX. I use and expand the tools created by Sincero [Sin13] and Tartler [Tar13] as a basis for my

work and analyse and improve their reverse-engineered model of the FM of LINUX. Finally, I will

answer the following, up to now unanswered, questions:

• Are there options in KCONFIG that can never be chosen but cause defects in later build phases?

(dead options)

• Are there options that are always enabled but appear configurable? (undead or false op-

tional [Rin+14])
• Are there other defects that originate in KCONFIG that influence the variability in later stages?

In the next chapter I will focus on a detailed description of the potential problems in LINUX and

how I identify the problems mentioned in the introduction of this chapter.
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The variability in LINUX is implemented in several interconnected phases. The configurability is

implemented in a hierarchy of KCONFIG files and the behaviour of the KBUILD phase is implemented

in a hierarchy of Makefiles and KBUILD files, where coarse grained decisions are made if whole files

are compiled or not. The fine grained implementation of the variability in source files is implemented

in CPP blocks that can be nested. All these steps have one thing in common: when the files are too

large or the implementation is spread across different files, it is hard to keep an overview and avoid

mistakes. Various combinations of these phases were already analysed by other researchers, but the

phase that influences all other phases in the build system was up to now not properly researched. In

this chapter, I describe several defect types that I have identified and how I tackle their identification.

The reason Sincero et al. [Sin+07] only partially considered LINUX as a SPL is the fact, that it is

not developed according to the SPL guidelines with a controlled planning and domain engineering

process (as discussed in Section 2.6.1). This lack of planning is compensated by very large man-

power [Sin+07] and even small changes and new features are peer-reviewed. Therefore, KCONFIG

also does not need and provide a formal specification for their configurability implementation;

KCONFIG is a pragmatic approach to solve the configurability problem, it is fast and battle tested

through large code base of LINUX. Because of this lack of formal specification of the KCONFIG

language, it was necessary for Tartler [Tar13] to reverse-engineer a model of the FM by studying

the implementation. His model is created in two steps:

Ê dump all relevant information (symbolname, type, dependencies, prompt, selects, defaults)

for each option to an intermediate file

Ë use the parsed information from the intermediate file to generate a model with propositional

logic as intermediate language [Tar13]

The first step Ê dumps a serialised version of the KCONFIG parse tree to an intermediate file. Step Ë

parses and aggregates the information from the intermediate file to create a formula – in propositional

logic – for each symbol. The generated model of the FM is therefore a set of propositional implications,

one or two implications In per symbol n in the configuration space Φconfiguration [Tar13]. As described

in Section 2.5.4 on Page 18, the assigned values of tristate symbols are represented by two

macros in configuration files, which can be later referenced in the build system or in CPP statements.

Due to the definition of this mapping it is not possible to enable both macros at the same time and

33
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due to the peculiarities of the tristate logic, both macros have different presence conditions. As a

consequence of these facts, tristate symbols have two implications for their presence, which have

to be connected together with a logical disjunction for the full variability model. The full variability

model can be described as the conjunction:

ϕKCONFIG :=
∧

n
In1
∨ In2

∀n ∈ Φconfiguration

However, this variability model does not contain information like the type of a symbol, if a symbol

has a prompt, which symbols are selected under which conditions, information about default values

or where symbols are defined, but only the aggregated presence conditions for a symbol. This means

that the intermediate model can still provide a valuable contribution to analyses of the configuration

space as I explain in Section 3.2 and is also used by the UNDERTAKER toolchain to retrieve type

information.

Nevertheless, the extraction process created by Tartler [Tar13] is not exact. He considered some

language aspects like “symbol visibility” and “default values” technically harder to implement and

left them unimplemented. The impact of this approximated rather than exact model is discussed in

Section 5.2.4.

In order to get a exact representation of the variability in LINUX, I could have extracted a snapshot

of KCONFIG by myself, but that would have gone beyond the scope of this thesis. Though, the

UNDERTAKER toolchain offers another image of LINUX’s FM s. Hackner [Hac13] implemented an

extractor that directly transfers the declared variability to a model in DIMACS cnf format10, the format

that SAT checkers use. This model does not offer the possibility to employ the slicing algorithm

(which I describe in Section 3.3) and, due to the nature of the implementation of the extractor,

the number of clauses ascends exponentially with every added feature. Both arguments lead me

to believe that a consistency analysis with this model would be too slow and would not scale.

Furthermore, this model does not contain information about type, presence of a prompt, which

symbols are selected under which conditions or any information about default values. Therefore, I

would need to either implement a parser of KCONFIG to get these information or use the intermediate

model of the extraction done by Tartler.

While architectures in LINUX share common code in the subsystems, they have specific code in

their subfolder in arch/ that no other architecture uses. It is no surprise that different architectures

do or do not provide support for different features (e.g. MMU, KVM support, ...). To model this

behaviour correctly, each architecture has its own structure of KCONFIG files that later include the

configuration files in the subsystems and has the possibility to provide alternative definitions for

options that are defined in the subsystems to enforce a certain behaviour. Therefore the modelled

variability is different for each architecture and it is necessary to extract a model of the FM for

each one of them; even features defined in subsystems might have different conditions on different

architectures. These architectures can be seen as sub product lines of LINUX because the architecture

related code evolves independently from other architectures. When users choose an architecture for

which they want to build LINUX, the view of variability is limited to this architecture.

10http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf

http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf
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In the following sections I describe how I analyse the configuration space of LINUX with the

usage of both the intermediate models and the feature models for each architecture. Through this

analyses I was able to identify defects in KCONFIG and inaccuracies of the extractor written by Tartler

[Tar13] which creates a reverse-engineered image of LINUX’s FM s.

3.1 Feature Models

In this Section I want to provide a short introduction of feature models in general.

Kang et al. [Kan+90] first defined a feature in feature-oriented domain analysis (FODA) as a

prominent or distinctive user-visible aspect, quality, or characteristic of a software system. Others

described a feature more briefly as an increment in program functionality [Bat05]. On the other

hand, feature models define features and their usage constraints in product lines [Bat05]. These

constraints are often visualised in tree structures showing the relationships between a parent feature

and its child features (or subfeatures). According to Batory [Bat05], these relationships incorporate

the following denotations:

• Mandatory:

when the parent feature is enabled, the child feature is required to be enabled

• Optional:

when the parent feature is enabled, selecting the child feature is optional

• And:

all subfeatures connected with this relationship must be selected

• Or:

one or more subfeatures connected with this relationship have to be enabled (n:m cardinalities

are possible, at least n but at most m features have to be enabled)

• alternative:

only one of the connected subfeatures can be selected

In the context of KCONFIG, an or or an alternative relationship are the different occurrences of a

choice group. An alternative is a boolean choice, while an or group is a tristate choice without

the possibility to enforce additional cardinality constraints. When a parent selects a child, the child

is mandatory when the parent is enabled. The other way around, when a child has a dependency on

the parent, the parent has to be enabled to be able to choose a value for the child and the child is

optional at this point.

Rincón et al. [Rin+14] describe two defects directly related to the semantics of feature models.

They claim that creating feature models correctly representing the domain is not trivial and defects

might be unintentionally introduced while constructing a FM. These defects are often only recognised

with extensive tool support.

The first defect which Rincón et al. [Rin+14] describe are dead features. These features cannot

appear in any product of the product line, because they require a mandatory feature to be disabled

or they have a contradiction in their dependencies. Secondly, Rincón et al. [Rin+14] describe false
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optional features. These features are declared optional but appear in all products of the product line.

This happens when a feature is required by a mandatory feature, when it takes part in a cardinality

group with several dead features or when it is required by another false optional feature (transitive

false optional).

Apart from the defects Rincón et al. [Rin+14] describe, there is another factor that has to be

considered when searching for defects in LINUX: each architecture in this kernel has its own view

of the variability (therefore, I also call them a sub product line) and a great deal of code in the

subsystems is used by multiple architectures. However, not every architecture supports all features

(e.g PCI or IOMMU) and some features are therefore intentionally dead for some architectures, but

not for all. Another story is the configurability only seen by the architecture itself (i.e. defined in

the corresponding arch/ subdirectory), were other architectures do not have to be considered. In

the following, I distinguish between global defects and architecture-internal defects. Global defects

occur in the subsystems and on all architectures, where features that are architecture-internal defect

are only seen by one architecture. A feature is only truely defect when it is either globally or

architecture-internal defect. This insight suggests the need to analyse all architectures and infer

which features are globally defect and look at the location of the definition to decide if a defect is

architecture-internal.

Nevertheless, there is a special case for architecture-internal defects: a symbol can be architecture-

internal defect on one architecture but not defect for another. While the underlying code can not be

seen as defect in that case, it is still possible to simplify the FM where the defect occurs by solving

the issue.

In the following two Sections I describe how I identified those defects in LINUX with two different

model-types as a base for my analyses.

3.2 A Rule-Based Approach for the Intermediate Model

There are different forms of potential defects in feature models and these defects might have different

origins. While features can be dead because of contradictions in their dependencies, features can

also be dead because users or the configuration system cannot enable them in any case. Other

defects are unnecessary instructions that prevent developers from grasping the declared variability

more quickly.

3.2.1 Unreachable Symbols

There are three possibilities to set the value of a symbol in KCONFIG.

First Ê, users can set a value of an option. However, KCONFIG has the possibility to declare

options that do not appear in the configuration menu but have an influence on other options or can

be influenced by others. These options do not have an input prompt, are therefore invisible to users

and are called KCONFIG-internal in Figure 2.3.
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The second Ë possibility is that a feature requires the presence of another feature. This function-

ality is modelled in KCONFIG through a select statement that force-enables another option, regardless

of the dependencies of this other option.

As a third Ì possibility, KCONFIG offers the possibility to declare default values setting the value

of an option when the conditions for the default value are satisfied.

When a symbol is not enabled by at least one of those possibilities, it is dead and cannot be part

of any product of a product line. I call this defect unreachable dead. The described conditions lead

to three rules that have to apply for the identification of unreachable dead symbols:

Ê The symbol is invisible (does not have a prompt)

Ë The symbol is not selected by another symbol

Ì The symbol does not have a default value (or just default values with the value “n”)

However, as I have described in Section 3.1, it is possible that an option is unreachable on one

architecture (e.g. a feature in the subsystems) but accessible on another architecture. Therefore

it is necessary to analyse all feature models and take the intersection of all identified unreachable

symbols to get the set of global unreachable symbols. Architecture-internal unreachable symbols

are identified by looking at the set of unreachable symbols and checking if they are defined in a

KCONFIG-file within the hardware abstraction beyond arch/.

When an unreachable symbol is part of a propositional formula, the SAT checker does not know

that this symbol cannot be enabled in practise and is free to set it to any value that satisfies the

formula. With the knowledge that these options can never be part of any products of a product

line, it is possible to force disable the unreachable symbols for any sub product line where they are

identified. This can be done by adding the unreachable symbols to the blacklist of each model when

the model is created from the intermediate representation. UNDERTAKER can later use these new

entries in the blacklist to identify files or blocks that depend on these options and recognise them as

defect.

3.2.2 Unnecessary Selects on Choice Values

A peculiarity in the semantics of KCONFIG is that selects ignore the dependencies of the selected

symbol and the selected symbols are enabled in any case. However, the “any case” statement is not

entirely true. When a symbol is selected that is part of a cardinality group (i.e. a choice value), the

select statement is silently ignored by the configuration tool. These statements are unnecessary and

can be deleted to improve the comprehensibility for developers.

This leads to two rules for the identification:

Ê The Symbol is a choice value

Ë The Symbol is selected by another symbol

The identification of these symbols is done in two steps. First, collect all symbols that are choice

values and then iterate over all select statements in the intermediate model and search for these

choice values as selected symbols.
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3.2.3 Selects on Symbols with Dependencies

The KCONFIG guidelines suggest that selects should only be used on invisible options, i.e. options

without a prompt, and on options without dependencies. However, this guideline is often violated

and with the information from the intermediate model, these options can easily be identified by

constructing a knowledge base about which features have dependencies and then analysing if there

are features that select options with dependencies.

This leads to two rules for the identification:

Ê The Symbol has dependencies

Ë The Symbol is selected by another symbol

With the knowledge which symbols select other symbols with dependencies, developers get a

chance to evaluate if the violation of the dependencies result in bugs.

3.3 Model Consistency Analysis

As a second step of my consistency analysis of the LINUX KCONFIG model I analyse the full variability

model to identify features that are defect because of their aggregated conditions. This analysis

is an extension of the UNDERTAKER tool. With the full variability model it is possible to identify

dead features or features that are false optional. Features are dead when they cannot be part of any

product of a product line or false optional when they are part in every product of a product line, but

how does this translate into KCONFIG semantics?

There are two kinds of mandatory features in KCONFIG. I have described the first possibility in

Section 3.1; a feature is mandatory because it is required (i.e. selected) by another feature. The

other possibility is that a feature is “always on” for a certain architecture, where the architecture is

the parent and the feature is always enabled because it has no prompt, no dependencies and an

unconditional default that will always enable this option.

A feature is optional when it is possible to set a value to that option through defaults, manual

user input or select statements. This means, every option that is not mandatory for a sub product

line, is optional because of the semantics of the select statement.

Following the definition of a false optional by Rincón et al. [Rin+14] (described in Section 3.1),

a false optional feature in KCONFIG is a feature that is selected by another feature that is always

on or selected by a feature that is false optional itself (I also call them transitive always on). Dead

features have contradictions in their dependencies or depend on features that are not defined in the

current view of the configurability.

Since each architecture has its own view of the variability, it is necessary to analyse all sub

product lines and infer if a found defects is global or evaluate if it is architecture-internal (see

Section 3.1 for details).
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Feature Defects

There are two potential reasons why features are dead. They can be dead because of contradic-

tions in their dependencies or because features in the dependencies are not defined in KCONFIG.

Dependencies on missing features always evaluate to “n”, comparisons with missing features always

evaluate to false for equality comparisons or always to true for non-equality comparisons.

1 menu "TI OMAP/AM/DM/DRA Family"
2 depends on ARCH_MULTI_V6
3

4 config OMAP4_ERRATA_I688
5 bool "OMAP4 errata: Async Bridge Corruption"
6 depends on !ARCH_MULTIPLATFORM
7

8 endmenu
9

10 menu "Multiple platform selection"
11 depends on ARCH_MULTIPLATFORM
12

13 config ARCH_MULTI_V6
14 bool "ARMv6 based platforms (ARM11)"
15

16 endmenu

Listing 3.15 – Example of a logical defect in a KCONFIG file.

Listing 3.15 show an example for a logical defect that results in the dead feature

OMAP4_ERRATA_I688, which is dead because of a logical contradiction. This feature has a de-

pendency on !ARCH_MULTIPLATFORM and the surrounding menu “TI OMAP/AM/DM/DRA Family”

adds another dependency on ARCH_MULTI_V6 to OMAP4_ERRATA_I688. However, the definition

of ARCH_MULTI_V6 gets a dependency on ARCH_MULTIPLATFORM through the surrounding menu

"Multiple platform selection". This is a contradiction and OMAP4_ERRATA_I688 can never be enabled.

1 config GPIO_MB86S7X
2 bool "GPIO support for MB86S7x Platforms"
3 depends on ARCH_MB86S7X

Listing 3.16 – Example of a missing defect in a KCONFIG file.

GPIO_MB86S7X in Listing 3.16 is dead because of the dependency on ARCH_MB86S7X which is

never defined in KCONFIG.

Two false optional features are displayed in Listing 3.17. X86 is always on for the X86 architecture

and is therefore mandatory. This option selects another feature, GENERIC_IOMAP, which is conse-

quently false optional. The lines 9–10 show the transitive false optional feature GENERIC_PCI_IOMAP

which is selected by GENERIC_IOMAP.



40 3.3 Model Consistency Analysis

1 config X86
2 def_bool y
3 select GENERIC_IOMAP
4

5 config GENERIC_IOMAP
6 bool
7 select GENERIC_PCI_IOMAP
8

9 config GENERIC_PCI_IOMAP
10 bool

Listing 3.17 – Example of false optional defects in a KCONFIG file.

For the analysing process, the conditions for each option are translated into a model, which is

displayed in Listing 3.1. Each line represents an implication In. The left side of the implication is

the feature name and the right side is the condition for that feature.

The implication for CONFIG_OMAP4_ERRATA_I688:

CONFIG_OMAP4_ERRATA_I688 → CONFIG_MULTI_V6 && ! CONFIG_ARCH_MULTIPLATFORM

is represented in the form of:

CONFIG_OMAP4_ERRATA_I688 " CONFIG_MULTI_V6 && ! CONFIG_ARCH_MULTIPLATFORM "

in the model.

1 Ê CONFIG_OMAP4_ERRATA_I688 " CONFIG_MULTI_V6 && ! CONFIG_ARCH_MULTIPLATFORM "
2 Ë CONFIG_ARCH_MULTI_V6 " CONFIG_ARCH_MULTIPLATFORM "
3 Ì CONFIG_GPIO_MB86S7X " CONFIG_ARCH_MB86S7X "
4 [...]
5 Í CONFIG_X86 " CONFIG_GENERIC_IOMAP && ! CONFIG_ALPHA && ! CONFIG_ARM && [...]"
6 Í CONFIG_GENERIC_IOMAP "( CONFIG_X86 )"
7

8 Í UNDERTAKER_SET ALWAYS_ON " CONFIG_X86 "
9 UNDERTAKER_SET ALWAYS_OFF " CONFIG_COMPARE_WITH_NONEXISTENT "

Listing 3.1 – The model representation to the defects in a KCONFIG file.

I analyse the representation of every feature for a sub product line in the model representation

in order to find defects. This analysis is done in several steps to be able to pinpoint the origin of a

defect more precisely. The first two steps investigate the conditions for logical defects. The third

step adds a negated condition for all undefined features. The last step checks if a feature is undead.

I will explain each step with the help of the model in Listing 3.1:

Ê For the analysis of OMAP4_ERRATA_I688, I start with the presence condition for this feature:

check if “CONFIG_MULTI_V6 && !CONFIG_ARCH_MULTIPLATFORM” is satisfiable.
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Ë Since the presence condition was satisfiable, I conjugate the dependencies of the features

referenced in the presence condition and their transitive dependencies to the formula and

check again for satisfiability. This step adds the implication for CONFIG_ARCH_MULTI_V6 to the

formula. ARCH_MULTIPLATFORM cannot be enabled and disabled at the same time, therefore

a logical defect is found.

Ì The expanded formula can then be analysed for undefined features. When a feature does

not have an entry in the model (and thus in KCONFIG) it is undefined. These undefined

features are then conjugated to the formula, with every feature negated. The example

CONFIG_GPIO_MB86S7X has the feature CONFIG_ARCH_MB86S7X in its dependency, which is

undefined. The first two steps of the analysis created the formula: “CONFIG_ARCH_MB86S7X”.

The third step recognises the option CONFIG_ARCH_MB86S7X is undefined and appends “&&

!CONFIG_ARCH_MB86S7X” to the formula. An analysis of this formula will realise there is a

contradiction and tag this option as missing dead.

Í To identify false optional features, I use the negated presence condition of a feature and expand

the formula with the relevant symbols of the KCONFIG model. Then I add all symbols that

are marked to be “always on” in the model. The entry that identifies the relevant symbols

as “always on” (or mandatory) is shown in line 9 in Listing 3.1. The blacklist, or features

that are always disabled are shown in line 10. The addition of the “always on” items forces

the SAT checker to enable these options during the analysis. The negation of the presence

condition sets !X86; the addition of the always on symbols forces X86 to be enabled, which is

a contradiction and a false optional feature is identified.

The expanded formulas of the steps Ë–Í can contain many implications. A high number of

clauses in a condition makes it hard to spot the exact cause of a contradiction. To simplify this

analysis process for developers who read the reports generated by the UNDERTAKER toolchain, I

implemented an additional step to minimise contradictory formulas on the basis of the PICOMUS

tool created by Lagniez and Biere [LB13], which is part of the PICOSAT toolchain11. I will show

more details in Subsection 4.2.3.

With a small adjustment of the algorithm, it is also possible to search for dead or undead12

files, when file preconditions are present in the model. File preconditions are displayed similarly to

configuration options in models. Each file gets an implication in the model with the normalised

filename on the left side and the presence condition for that file on the right side.

FILE_sound_soc_au1x_i2sc .c "... && CONFIG_SND_SOC_AU1XI2SC "

11http://fmv.t/picosat/
12A undead file is a file that is present in every product of a product line, similar to a false optional feature.

http://fmv.t/picosat/
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3.4 Integration into UNDERTAKER–CHECKPATCH

Rothberg [Rot14] extended the UNDERTAKER toolchain by the UNDERTAKER–CHECKPATCH tool. With

this tool it is possible to analyse the state before a patch is applied and after a patch is applied and

compare the results. This tool integrates well with the workflow of LINUX developers. Therefore, it

is desirable to add support of new insights to the sequence of checks within this tools.

UNDERTAKER–CHECKPATCH recognises if there are changes to KCONFIG and will generate new

models for the analysis when there are changes. With the information of both model states, it is in

principle possible to integrate the previously described checks into UNDERTAKER–CHECKPATCH.

3.4.1 The Rule-Based Approach

With the addition of the arch-specific unreachable symbols to the blacklist13 of each model, new

unreachable symbols are identified by the comparison of the symbols in this list before and after

this patch is applied. However, UNDERTAKER–CHECKPATCH did previously not read the models for the

before state, since the presence conditions were only needed later. To identify unreachable symbols

in UNDERTAKER–CHECKPATCH it is necessary to read these models, but this leads to an increase of

the analysis time per patch.

Symbols can become newly unreachable when, for instance, a select on a symbol is removed by

that patch and the symbol was only enabled by that select. With the knowledge of newly unreachable

items, developers then can decide if they want to keep the symbol and the code depending on it or

delete it.

The integration of the identification of selects on choice values or selects on features with

dependencies is also integrated into the sequence of checks by comparing both states.

3.4.2 Model Consistency Analysis

The model consistency analysis is able to find dead files and dead or undead features in KCONFIG.

With a specialised mode it is possible to analyse if a symbol touched by a patch became dead. This

analysis is nonetheless not able to identify interactions with other symbols that might lead to dead

symbols or files. However, due to the calculation time of the consistency analysis (explained in

Subsection 5.2.5 or to search for dead files, an analysis of all models per patch is not feasible.

3.5 Changes to the Model of LINUX’s Variability and the Model

Extraction Process

During my analysis of KCONFIG and the feature representation, I identified and solved several

problems in the model of LINUX’s FM. Some of the inaccuracies were simpler to solve, others were

more complicated to identify and to solve. Three of the simpler issues were:
13The UNDERTAKER toolchain will ensure items on the blacklist are always disabled during analyses.
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• The extractor for the intermediate model completely ignored information about value-like

features beyond the name of that feature.

• The intermediate model did not contain an accurate location for the definition of an option,

this accurate location is essential for the classification of defects as architecture-internal for

the unreachable or consistency analysis.

• The transformation from the intermediate model to the model ignored a quirk in the tristate

logic. The negation in KCONFIG returns the result of (2− v) where v is the value of the feature

and tristate features can have the possible values “y” (2), “m” (1) or “n” (0). This means

the negation of a tristate feature is true when a feature is either “n” (0) or “m” (1).

I explain the more complicated issues in the following paragraphs.

3.5.1 Comparisons with Undefined Symbols

As I have mentioned in Section 2.5.4.1, KCONFIG evaluates equality comparisons with undefined

features always to false and inequality comparisons always to true. This behaviour was not modelled

in the feature model. I replace the inequality comparison with a feature that has no representation

in KCONFIG with a free variable which the SAT checker can enable when it is necessary to satisfy a

condition. Since the equality comparison is always false, it is necessary to replace this comparison a

contradiction like FREE_1 && !FREE_1 but that would complicate the identification of the defect

(Why is there a contradiction?). Instead of the obvious contradiction, I replaced the comparison

with another term and introduced a flag symbol CONFIG_COMPARE_WITH_NONEXISTENT and added

this flag symbol to the blacklist (or “always off” list) of the model (see Listing 3.1). For the term to

replace the comparison I use the missing symbol and the flag symbol (e.g.

“CONFIG_MISSING && CONFIG_COMPARE_WITH_NONEXISTENT”). The UNDERTAKER toolchain will

ensure items on the blacklist will always be disabled. This will create a contradiction and when

developers see the flag symbol in a minimal unsatisfiable subset (MUS) formula, they can look at

the unminimised formula and search for the symbol that is responsible for the contradiction because

it is not defined.

3.5.2 Choice Handling

The choice “USB Gadget Drivers” shown in Listing 2.7 confused the extractor of the interme-

diate model. As I have explained in Section 2.5.3, not every option between the choice and

endchoice statements is a choice value. The extractor spuriously declared USB_CONFIGFS_ACM and

USB_CONFIGFS_SERIAL as choice values and everything after these options was not recognised as

choice value anymore, even though many other valid choice values were declared after that point.

Another problem was, that the extractor sometimes did not assign the right choice values to the

right choice group or the declaration of a choice group within another choice group.

The reason for these problems originated in the way the extraction tool traversed the underlying

datastructure of the options in KCONFIG. I replaced the iterative traversion of that datastructure

with a recursive traversion and solved the previously described problems.
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3.5.3 Non-Constant and Constant Symbols

Developers do not always use constant and non-constant symbols (described in Subsection 2.5.1

on Page 15) in comparisons within dependencies in a disciplined way. KCONFIG does support

comparisons with non-constant symbols (e.g. 0xdeadbeef) and tries to parse the name of this

non-constant symbol if this symbol is never defined. Nonetheless, the extractor for the intermediate

model did not mark those symbols as constant symbols and they were seen as ordinary non-constant

symbols in later analysis steps of the UNDERTAKER toolchain. This lead to the reporting of several

referential false positive defects, which I repaired by marking those symbols as constants and ignoring

them in the UNDERTAKER toolchain when a formula is scanned for undefined symbols.

3.5.4 Select and Default Statements, Input Prompt Conditions

Tartler [Tar13] described the language features “default values” and “symbol visibility” (conditions

for input prompts) as harder to implement and left them unconsidered in his implementation

of the model transformation. During my analysis I have identified another impreciseness in this

transformation: select statements. To get a precise mapping for the exact semantics of the select

statement is hard because of the ignoring of the dependencies of the selected symbol. These

selects on symbols with dependencies can cause more false positives. Furthermore, the current

implementation of the transformation from the intermediate model to the model ignores selects on

tristate symbols. Unfortunately, I was not able to completely solve these problems because of

time constraints.

3.6 Summary

In this chapter I have explained how I tackled the identification of dead and false optional features

in LINUX. I started with a description of the formal semantics of feature models and explained

how this translates into KCONFIG semantics. This section is followed by my rule-based approach

to identify defects in the intermediate model. With this rule-based approach I was able to identify

symbols that are unreachable, unnecessary selects on choice values and warn when there are selects

on features with dependencies. I described how I extended the UNDERTAKER with one new mode for

a model consistency analysis and another new mode to identify defect files through the file presence

conditions in the model. Furthermore I extended the undertaker with a flag to create a minimised

unsatisfiable subset of a contradictory formula and how I extended UNDERTAKER–CHECKPATCH with

the analyses of the rule-based approach. Lastly I have discussed improvements to the mapping of

the actual behaviour of KCONFIG to the extracted (intermediate) model. The rule-based approach is

implemented in a script in the Python language.

In the next Chapter I evaluate the results of the tools whose implementation I described in this

Chapter.
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In this chapter, I provide insights into how I engaged the issues described in the last chapter, how

many lines of code were written and which languages were employed.

4.1 A Rule-Based Approach for the Intermediate Model

The rule-based approach is based on the information of the intermediate model. To perform the

transformation from the intermediate model to the variability model, Tartler implemented a class

in python that parses and preprocesses the intermediate model. Since this class already does

sophisticated preprocessing and caches intermediate data in order to eliminate multiple calculations

of the same result, I decided to re-use this class and implemented the script to perform the analyses

of my rule-based approach in a python script with 323 lines of code. All rule-based analyses build

on the aggregation and inferring the relevant data to identify defects.

4.1.1 Unreachable Symbols

Listing 4.18 shows the algorithm to identify unreachable symbols. To identify these symbols, I

first collect the set of all symbols that are selected, the set of all symbols that have a prompt and

finally the set of all symbols that have at least one default attribute with a value other than “n”.

After these sets are extracted, I iterate over all defined symbols and add a symbol to the result set

unreachable_items, when it is not contained in one of the previously mentioned sets.

This step extracts all unreachable symbols of a single architecture. However, as I have described

in Section 3.1, the fact that a symbol is unreachable on one architecture does not mean it really is a

defect, since it could be reachable on another architecture. I identify the global unreachable symbols

by forming the intersection set of the unreachable symbols of all architectures Φarchitectures.

ϕglobally unreachable :=
⋂

n
Un ∀n ∈ Φarchitectures

Architecture-internal unreachable symbols are identified by iterating over the set of unreachable

symbols for each architecture and checking with a RegExp if the location of the definition of a

particular symbol starts with the corresponding architecture path (e.g. arch/x86/).

45
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1 def unreachableItems(rsf):
2 items = set(rsf.collect("Item", 0, True).keys())
3 # select infos
4 selectedSymbols = collectSelectedSymbols(rsf)
5 # prompts
6 promptSymbols = collectPromptSymbols(rsf)
7 # defaults
8 defaultSymbols = collectDefaultSymbols(rsf)
9

10 # use information
11 unreachable_items = set()
12 for item in items:
13 if item in selectedSymbols or item in promptSymbols:
14 continue
15 if not item in defaultSymbols:
16 unreachable_items.add(item)
17

18 return unreachable_items

Listing 4.18 – The algorithm to identify unreachable symbols.

4.1.2 Unnecessary Selects on Choice Values

The algorithm to identify unnecessary selects on choice values is displayed in Listing 4.19. First I

collect a dictionary with all choice items and another dictionary with all select statements on an

architecture and then iterate over all select statements and add the symbol to the result dictionary

foundSelects when it is contained in the choiceItems dictionary. The resulting dictionary is a

mapping of a selected symbol to a list of symbols that select that symbol. An example for the output

of this analysis will be displayed in Section 5.1.2.

1 def identifyChoiceItemSelects(rsf):
2 # key is the item, value is the choice it belongs to
3 choiceItems = rsf.collect("ChoiceItem")
4 selects = rsf.collect("ItemSelects", 0, True)
5

6 foundSelects = dict()
7 for (selecting, selected_list) in selects.items():
8 for selected in selected_list:
9 selected_item = selected[0]

10 if selected_item in choiceItems:
11 if not selected_item in foundSelects:
12 foundSelects[selected_item] = set([selecting])
13

14 foundSelects[selected_item].add(selecting)
15

16 return foundSelects

Listing 4.19 – The algorithm to identify selects on choice values.
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4.1.3 Selects on Symbols with Dependencies

Selects on symbols with dependencies can be identified with the algorithm shown in Listing 4.20. I

start with the extraction of a dictionary with symbols as key and their dependencies as values and

then iterate over all select statements and add a symbol to the result dictionary selectedBy when

the selected symbol is contained in the set of symbols with dependencies. An example for the output

of this analysis will be displayed in Section 5.1.3.

1 # returns a dict with selected items as key and the selecting items as a set as value
2 def identifySelectWDeps(rsf):
3 selectedBy = dict()
4 deps = rsf.depends()
5 for (item, select_set) in rsf.collect("ItemSelects", 0, True).items():
6 for select in select_set:
7 (selected, expr) = select
8 if selected in deps:
9 if not selected in selectedBy:

10 selectedBy[selected] = set()
11

12 selectedBy[selected].add(item)
13

14 return selectedBy

Listing 4.20 – The algorithm to identify selects on symbols with dependencies.

4.1.4 Impact Analysis

To measure the impact of unreachable symbols on the dead and coverage analysis in the UNDERTAKER

toolchain, I created a module that provides the functions I used in Section 4.1.1. The module to

identify unreachable symbols has 68 lines of code and is used in the transformation tool to add

these symbols to the blacklist of the model. The adaption of the transformation tool required the

addition two lines of code. However, all unreachable symbols are added to the blacklist and not just

the architecture-internal or global unreachables. Identifying the global defects in the transformation

tool would be a lot more effort, since this tool only has the information of one architecture and the

UNDERTAKER toolchain already picks the right model when a file beyond arch/ is analysed, which

means, the right unreachable symbols are also used for analyses. To identify a global defect, the

UNDERTAKER toolchain already cross checks all architectures. This implies that newly identified

defects through unreachable symbols also have to be defect on all architectures, otherwise they are

just tagged as locally defect.

4.1.5 Integration into UNDERTAKER–CHECKPATCH

The tool UNDERTAKER–CHECKPATCH is written in python. For the integration of the unreachable

analysis, I added a new option -C or –CHECK-UNREACHABLE. When users activate this option,
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UNDERTAKER–CHECKPATCH loads the model in the before state and creates a copy of the set of

options on the blacklist. Later, after the tool analysed the before state and continues with the after

state, UNDERTAKER–CHECKPATCH creates a copy of the set of blacklist options of the after state and

forms the difference quantity of both sets to learn if new unreachable symbols have been introduced

and warn the users accordingly. The adoption into UNDERTAKER–CHECKPATCH required 42 additional

lines of code in this tool. There is currently no other way to add symbols to the blacklist of a model

than with the unreachable analysis.

4.2 Model Consistency Analysis

The model consistency analysis extends the UNDERTAKER, which is written in c++, with an additional

ConsistencyAnalyzer module. This module contains 172 lines of code, while other source files

of the UNDERTAKER toolchain were expanded with 57 lines of code. The choice to expand the

UNDERTAKER was obvious since the core functionalities I needed were already implemented there.

These functionalities were the slicing algorithm defined by Tartler [Tar13] (which I describe in

Section 4.2.2), the necessary application programming interface (API) to use a SAT checker.

The results of this analysis are dumped to one defect report per architecture and these defect

reports are later evaluated with a separate python script with 114 lines of code. This script aggregates

the results of the analysis and identifies architecture-internal and global defects by parsing the defect

reports. Defects that are undead on one or more architectures and logically or missing dead on

others are excluded from the global defects.

4.2.1 Feature Defects

The defect analysis itself is constructed as described in Section 3.3. When a defect is found, I use

the MUS functionality of the UNDERTAKER toolchain to minimize the defect formula and print this

minimized formula to the defect report. However, I needed to adapt the algorithm in the UNDERTAKER

to be able to extract the minimal unsatisfiable formula for every SAT checker object. The algorithm

operates with the following steps for each symbol X in the model:

Ê Check the presence condition of the symbol for satisfiability (X1 ∨ X2)
Ë Check expanded the presence condition of the symbol with the transitive dependencies for

satisfiability. I perform the identification of the transitive dependencies of feature X with the

with the help of the slicing algorithm described by Tartler et al. [Tar+11b], which I explain

briefly in Subsection 4.2.2. To identify the set of relevant features ΦsliceX
, I use the slicing

algorithm with the features mentioned in the presence conditions X1 ∨ X2 of the analysed

feature X . This algorithm identifies a set of relevant features ΦsliceX
that can be used to create

a slice ϕKCONFIG sliceX
of the model.

ϕKCONFIG sliceX
:=
∧

n
In1
∨ In2

∀n ∈ ΦsliceX
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This slice ϕKCONFIG sliceX
is then combined with the presence condition of feature X and checked

for satisfiability:

SAT
�

(X1 ∨ X2)∧ϕKCONFIG sliceX

�

If the formula is not satisfiable, I have identified a defect.

The identification of the relevant features and the usage of a slice of the model instead of the

whole variability model optimises the calculation time of the SAT checker, which I use to check

a formula for satisfiability.

Ì To check for missing defects, it is necessary to identify all undefined options Φundefined in

ϕKCONFIG slice and conjugate them negated to the formula and check this new formula for satis-

fiability to identify a missing or referential defect.

ϕunidentified :=
∨

n
un ∀n ∈ Φundefined

SAT
�

(X1 ∨ X2)∧ϕKCONFIG sliceX
∧! (ϕunidentified)

�

Í False optional or undead features are identified with the usage of the negated presence con-

dition of the feature X , conjugated with the transitive conditions of this feature and then

checked for satisfiability.

SAT
�

!(X1 ∨ X2)∧ϕKCONFIG sliceX

�

4.2.2 Configuration Model Slicing

To get a formula with only the relevant configuration constraints, Tartler et al. [Tar+11b] employed

the slicing algorithm displayed in Algorithm 4.1.

Require: S initialised with an initial set of items
R = S
while S 6= ; do

item = S.pop()
PC = presenceCondition(item)
for all i such that i ∈ PC do

if i /∈ R then
S.push(i)
R.push(i)

end if
end for

end while
return R

Algorithm 4.1 – Algorithm for configuration model slicing. Algorithm taken from [Tar+11b].

This algorithm starts with worklist S initialised with the items mentioned in the presence condition

of the analysed symbol. The list R is initialised with the contents of the worklist S and stores the

result list. The algorithm iterates until the working stack S is empty. Each iteration removes an
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entry from the working stack, asks the model for the presence condition of this entry through the

function presenceCondition(item) and then analyses every configuration item in that presence

condition. When the configuration item is not already present in the result set R it is added to R and

the working stack S.

4.2.3 The Minimal Unsatisfiable Subset (MUS)

The problem of identifying the minimal subset of unsatisfiable clauses is called MUS in litera-

ture [BSW03; Bru03; BS05; LS08]. Biere [Bie08] created tools to solve SAT problems; his PICOSAT

tool is used by the UNDERTAKER toolchain to check propositional formula for satisfiability. Later, he

expanded this toolchain with the PICOMUS tool which takes an unsatisfiable formula, minimises this

formula by algorithmically eliminating all unnecessary clauses and returns the MUS formula. An

example for a minimised formula is shown in Listing 4.1. The first four lines show statistics about

the minimisation done by PICOMUS. The tool was able to minimise the formula from 6.581 clauses

to just 559 clauses. When all intermediate variables14 are ignored, a tight formula (lines 6–8) is

received that can easier parsed by developers to identify variability problems than the unminimized

formula, which often has several thousands of lines.

1 Minimized Formula from:
2 p cnf 2794 6581
3 to
4 p cnf 2794 559
5 (B00) ^ ( CONFIG_SND_SOC_AU1XI2SC ) ^
6 (! FILE_sound_soc_au1x_i2sc .c) ^ (! CONFIG_SND_SOC_AU1XI2SC )
7 ^ (! B00 v FILE_sound_soc_au1x_i2sc .c)

Listing 4.1 – An example for an additional report generated by the MUS analysis.

My analysis of every configuration entry in the model automatically calculates this MUS formula

and reports only the minimised formula.

4.3 Summary

In this chapter I provided a detailed insight into the algorithms I have implemented to identify the

defects I have described in the previous chapters. First I started with an explanation of the rule-based

approach and supplied code examples of the algorithms written in python, how I implemented

the impact analysis of the unreachable symbols and how I adjusted UNDERTAKER–CHECKPATCH to

perform an unreachable analysis. Then I continued with the model consistency approach, where I

explained every step of this analysis in detail, followed by an illustration of the slicing algorithm

that was coined by Tartler [Tar13] and showed an output of the MUS analysis.

In the next chapter I will continue with a detailed evaluation of the presented approaches.

14Variables without a representation in models.
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In this chapter I present a detailed evaluation of the approaches described in Chapter 3. I begin

with the assessment of my rule-based approach. First I show how many potential problems the

tool identifies, then I discuss how the calculation time changes over a wide range of versions and

finally what the impact of these findings is. Then I continue with a review of the model consistency

analysis, where I start with examples of the defects this analysis has identified, discuss the influence

of the models’ inaccuracies, continue with a discussion about the performance and explain what the

results of the adaption of the algorithm for file analyses are. Lastly I assess another problem I have

investigated.

5.1 The Rule-Based Approach

The rule-based approach offers several analyses for defects or potential problems on the intermediate

model. In this Section, I describe which problems or defects the tool identifies and what the

implications of these findings are.

5.1.1 Unreachable Symbols

I did an unreachable analysis on all architectures on all major versions between Linux/v2.6.31

and Linux/v4.1. A closer look at Linux/v4.0 reveals an average of 296.1 unreachable symbols per

architecture. However, only 15.88 percent (47.3) of these symbols are architecture-internal. This

means that 84.12 percent of the total unreachable symbols per architecture are declared in the

shared code within the subsystems and therefore are reachable in other architectures, except for the

symbols that are unreachable for all architectures.

An intersection over all sets of unreachable symbols per architecture identifies symbols that are

unreachable on all architectures. This step reveals 16 globally unreachable symbols in Linux/v4.015.

15Which are: ASYNC_TX_DISABLE_PQ_VAL_DMA, ASYNC_TX_DISABLE_XOR_VAL_DMA BROKEN, FSL_FTM_TIMER,
PINCTRL_MESON, REED_SOLOMON_ENC16, SAMSUNG_USBPHY, SH_LCD_MIPI_DSI, SND_DAVINCI_SOC_I2S,
SND_SOC_AU1XI2SC, SND_SOC_SH4_SSI, SND_SPEAR_SOC, SND_SPEAR_SPDIF_IN, SND_SPEAR_SPDIF_OUT,
TPS65911_COMPARATOR, WANT_COMPAT_NETLINK_MESSAGES
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Figure 5.1 – The number of unique unreachable options from Linux/v2.6.31 until Linux/v4.1
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The growth of the total number of unique unreachable symbols16, without the duplicates in

different architectures, over all analysed versions is shown in Figure 5.1. However, as I have

explained in Chapter 1 and shown in Figure 1.1, the number of features in the LINUX kernel is

constantly rising. The percentages on the lower end of the bars indicate which percentage of the total

amount of features are unreachable for each version. The graph shows, this number is constantly

rising; starting with 1.62 percent for Linux/v2.6.31 and 3.01 percent for Linux/v4.1.

Unreachable options cannot be enabled by users through graphical or commandline configuration

tools and are not enabled by other language constructs. However, another way of changing the

configuration is editing the files that store the configuration (as described in Section 2.1), even

though it is discouraged to do that. If users or developers decide to manually add symbols that

are unreachable on the destination architecture to the files that store the configuration, KBUILD

will remove the unreachable symbols when the kernel compilation process has started by calling

scripts/kconfig/conf --silentoldconfig Kconfig. Thus, these options are truely dead and

cannot be enabled without altering KBUILD.

Another fact worth mentioning is that there are no symbols in Linux/v4.0 that are only selected

by one or more unreachable symbols and have no default and no prompt otherwise, i.e. there

are not transitive unreachable symbols. However, there are options that depend on unreachable

features but are not necessarily dead (e.g. when a symbol has the following dependency expression

“CONFIG_S390 || BROKEN”, it is possible to enable that feature for the s390 architecture but it is

dead for all other architectures, because BROKEN is unreachable).

5.1.1.1 Studying the Impact of Unreachable Symbols

With the knowledge that unreachable options are dead it is possible to add the identified options to

the blacklist of the model of each architecture. These blacklist entries are always disabled in the

analyses done by the UNDERTAKER toolchain and the tools are able to identify new dead files and

CPP blocks. In the following subsections, I describe the impact of unreachable symbols on later build

stages.

Dead Analysis

The dead analysis in the UNDERTAKER toolchain is able to identify dead files and CPP blocks in a

LINUX source tree, as described in Section 2.6.1. A comparative analysis for all files in Linux/v4.0,

with and without the addition of unreachable symbols to the blacklist, yields an identification of 347

additional defects (see Table 5.1). 49 of of these defects are dead files. This is an increase of 23.75

percent in found defects.

One of those newly recognised defects is the dead file sound/soc/au1x/i2sc.c, which requires

the option CONFIG_SND_SOC_AU1XI2SC enabled to be compiled. A closer look to the definition of

this symbol (see Listing 5.21) reveals this option is unreachable and the file is therefore dead.

16An unique unreachable symbol is a symbol that is unreachable on one or more architectures
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Linux/v4.0 normal + Unreachable Information
# Defects 1461 1808 +347 (+23.75%)
code 99 99 –
KCONFIG logic 257 469 +212 (+82.49%)
KBUILD logic 537 651 +114 (+21.23%)
missing 568 589 +21 (+3.70%)

Table 5.1 – The impact of the addition of unreachable information to the dead analysis.

config SND_SOC_AU1XI2SC
tristate

Listing 5.21 – The definition an unreachable symbol in sound/soc/au1x/Kconfig.

Coverage Analysis

The additional identified defects described in Subsection 5.1.1.1 also influence the coverage analysis

of the UNDERTAKER toolchain. The toolchain generates a set of partial configurations to cover all

blocks within a single file, but blocks that are recognised as dead are excluded by the algorithm to

create partial configurations. After these configurations are created, the toolchain employs KCONFIG

to expand each partial configuration to a full configuration17 and then checks if the file is in the list

of compiled files and if the relevant KCONFIG symbols are still contained in the created .config

file. The expansion process removes unreachable symbols, when they are mentioned in a partial

configuration. The UNDERTAKER toolchain recognises this removal and flags the configuration as

invalid. This means if a configuration covers multiple blocks, where some of these blocks are valid

and one or more depend on an unreachable symbol, that these valid blocks were not recognised as

covered.

With the usage of the unreachable information in the model, more blocks are recognised as

dead and less configurations are flagged as invalid. This means the configuration coverage CC (see

Equation I on Page 29) is higher because less invalid configurations are created and the normalised

configuration coverage CCN (see Equation II on Page 29) is higher because more blocks are recognised

as dead.

To evaluate the impact of the unreachable information to the coverage analysis, I analysed four

of the most common architectures on Linux/v4.0 (arm, mips, s390, x86) with and without the

consideration of unreachable symbols. The most notable change happens for the mips architecture,

where the CC increases from 52.6 percent to 67.1 percent and the normalised CCN increases from

67.7 percent to 88.0 percent. For the three other architectures, the CC increases only marginally.

The changes in the configuration coverage leads to an increase of the mean configuration coverage

by 7.1 percent. The full tables with the results of the coverage analysis are displayed in Appendix A.

17This is done by calling KCONFIG_ALLCONFIG=path/to/config make allyesconfig. Instead of allyesconfig, other
expansion strategies can be used (e.g. allmodconfig). KCONFIG uses the configuration as a basis and then iterates over all
declared options and tries to set each of the options to “y” when the strategy is allyesconfig and each option to “m” when
the strategy is allmodconfig. During this process, KCONFIG checks if the option it tries to enable would cause a violation of
the dependencies and leaves the option disabled in case of a violation.
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One explanation of this huge increase in the configuration coverage for the embedded mips

architecture is, that this architecture does not need to provide support for all hardware features in

the kernel and thus does not enable all bridge features (starting with HAVE_ or HAS_, described in

Subsection 2.5.6), which then become unreachable on this architecture. However, the mainframe

architecture s390 also does not need all hardware features, similar to mips, but this architecture had

only an increase of 7.8 percent and started at 80.1 percent. One possible explanation for this is, that

many features have !S390 in their dependencies, dead blocks are recognised and the normalised

CCN is higher. mips on the other hand uses another approach which leaves the unused hardware

features unreachable which were not recognised as dead by the UNDERTAKER toolchain before.

Functional Defects

Up to that point I have shown the impact on the dead analysis and the coverage analysis of the

UNDERTAKER toolchain. However, the question arises if dead blocks caused by unreachable symbols

also cause functional defects at run-time (e.g. null pointer dereference, uninitialized variables, etc.).

Therefore I take a closer look at the unreachable symbols in Linux/v4.0 and check their declarations

and how they are employed in later build phases.

Out of 16 global unreachable symbols in Linux/v4.0, ten of these symbols are only used to

compile a certain file18 or enable a whole folder19, three are used to enable only CPP blocks20

that declare function dummies or add short if statements, two are only used in attributes of other

options21 and at least one of them is intentional BROKEN, which is used to tag features as defective.

All of those global unreachable symbols are defined and used within the subsystems drivers,

crypto, lib, sound, net. The option BROKEN, however, is used in 74 occasions in dependencies

or if-statements, effectively disabling other options intentionally.

Because of the number of architecture-internal unreachable symbols for each architecture (on

average 47.3 per architecture, see Section 5.1.1), I pick the arm architecture for a more detailed

analysis. The pattern of these architecture-internal defects is, however, similar to the previously

analysed global defects with two exceptions, SBUS and EISA, which are both mentioned in many

documentation and source files spread across multiple subsystems and architectures, but both

symbols are also defined on other architectures. Two symbols are only used in an #ifndef statement

which are always true22. Others only enable a single file or one to three #ifdef blocks (e.g.

S3C64XX_DEV_SPI1, S3C_DEV_I2C5 and many more in arch/arm/plat-samsung/Kconfig).

The commit e220ba60223a9d introduced the architecture-internal unreachable symbol

VERIFY_PERMISSION_FAULT in the year 2009. This commit was intended to fix incorrect permission

faults for qsd8650 and also adds 19 lines of conditionally compiled assembler code. It is not clear if

this option was ever enabled by other options in the time between the merge of this commit and

18 ASYNC_TX_DISABLE_PQ_VAL_DMA, FSL_FTM_TIMER, SAMSUNG_USBPHY, SND_DAVINCI_SOC_I2S, SND_SOC_AU1XI2SC,
SND_SOC_SH4_SSI, SND_SPEAR_SOC, SND_SPEAR_SPDIF_IN, SND_SPEAR_SPDIF_OUT, TPS65911_COMPARATOR

19PINCTRL_MESON
20ASYNC_TX_DISABLE_PQ_VAL_DMA and ASYNC_TX_DISABLE_XOR_VAL_DMA, REED_SOLOMON_ENC16.
21SH_LCD_MIPI_DSI, WANT_COMPAT_NETLINK_MESSAGES.
22ARCH_HAS_ILOG2_U32 and ARCH_HAS_ILOG2_U64
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Linux/v4.0. Nonetheless, due to the lack of detailed knowledge of this hardware platform, the

confirmation if this is or was a functional defect has to be made by maintainers.

The conclusion of this analysis is, unreachable symbols always imply dead code but if this

dead code causes functional defects awaits confirmation. Without consideration of the exceptions

SBUS and EISA, the dead code is clustered and not scattered across multiple subsystems. Both

exceptions are defined in multiple architectures but are unreachable for arm. Usages in subsystems

are therefore not dead and no defects. These cases are excluded in the standard dead analysis within

the UNDERTAKER toolchain, since the tools cross-check different architectures and are only reported

as locally dead.

5.1.2 Unnecessary Selects on Choice Values

Unnecessary selects on choice values are select statements that are always silently ignored by

KCONFIG. However, the number of these futile statements is limited. Linux/v4.0 has exactly two of

these statements on all architectures. The Listing 5.22 shows an example output of the tool for arm.

Arch: ’arm’ has the following selects on ChoiceItems:
VMSPLIT_1G is selected by set(’ARCH_IOP13XX’)
VIRT_CPU_ACCOUNTING_GEN is selected by set(’NO_HZ_FULL’)
FB_LITTLE_ENDIAN is selected by set(’FB_MB862XX_LIME’)

Listing 5.22 – An example output of the tool to identify unnecessary selects on choice values.

The arm architecture is the only architecture with three of these statements. The first listed select

on VMSPLIT_1G is exclusive to arm while the others happen in all other architectures. The contents

of the set on the right side identify which symbols have such a undisciplined select statement.

5.1.3 Selects on Symbols with Dependencies

One quirk of the select statements (described in Section 2.5.4.2) in KCONFIG is that they ignore the

dependencies of selected features. While this does not necessarily mean that problems have to occur

when a feature with dependencies is selected, but problems can arise, depending how much the

code of the selected feature relies on code of its dependencies. KCONFIG seems to rely on users to

enable necessary dependencies and only warns when the dependencies of a selected feature would

directly contradict the chosen configuration and enables the selected feature anyway.

The architectures in Linux/v4.0 have 6741 select statements on average. Only three architec-

tures stand out: arm has 9053 select statements, mips has 7860 and powerpc has 7295; the number

of select statements of all other architectures fluctuate between 6514 and 6711.

Although the KCONFIG rules state, in order to avoid problems, selects should preferably be done

on invisible symbols – symbols without a prompt – and on symbols without dependencies, the

average number of selects on symbols with dependencies of all architectures is 5396. This means

an average of 79.99 percent of all selects are on symbols with dependencies. However, only the
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arm architecture stands out with 6550 selects. This sheer amount of potentially problematic selects

makes it hard to identify selects that lead to conflicts at compile time or at run-time.

An example output of the analysis is displayed in Listing 5.23. The symbol on the left side is

selected by the options on the right side.

Arch: ’arm’ has the following selected symbols w/ dependencies:
’MMC_DW_PLTFM’ is selected by set(’MMC_DW_K3’, ’MMC_DW_ROCKCHIP’)
’BLK_DEV_MD’ is selected by set(’DM_RAID’)
’DVB_OR51132’ is selected by set(’VIDEO_CX88_DVB’)
’DM_BUFIO’ is selected by set(’DM_VERITY’, ’DM_SNAPSHOT’)
[...]

Listing 5.23 – An example output of the tool to identify selects on symbols with dependencies.

5.1.4 Accuracy

The intermediate model is a direct mapping of the declarations in KCONFIG to the intermediate

representation and the extractor is based on KCONFIG tools. This fact leads the portrayal to be

exact and no accuracy issues arise, since the rule-based approach only aggregates the information

presented in the intermediate models and then infers defects.

5.1.5 Performance

I evaluated the performance of the rule-based approach on a machine with a Intel i7-2600 CPU @

3.40GHz with 8 logical cores and 8GiB RAM. Figure 5.2 shows the graph with the calculation times

for the unreachable analysis. The blue area shows the time it takes to parse the intermediate models.

Compared to the total run time of the tool, reading the models takes approximately 96 percent of

the total run time and the actual analysis the remaining 4 percent. This distribution is similar for the

other rule-based analyses. However, the current approach is only single threaded. I considered to

parallelise the parsing process with futures, but the classes I re-used are written in PYTHON 2.7 and

futures are only fully supported in PYTHON 3.4 or later. Approaches with the multiprocessing or

threading libraries are subject to further work.

The values shown in Figure 5.2 are the average of 5 executions on the previous described

machine. The complete analysis takes 137.17s for Linux/v4.0, while parsing the intermediate

models is finished after 131.03s. Because of that distribution, the analyses can be used in tools that

already utilise the parsed intermediate model (e.g. to perform the model transformation) without

a huge performance impact. To calculate and add the unreachable symbols to the model had no

measurable impact to the run time of the transformation tool.
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Figure 5.2 – The calculation times for the unreachable analysis between Linux/v2.6.31 and
Linux/v4.0. Reading the models is the most expensive part, while the analysis is just a small
percentage (∼ 4%) of the total run time.

5.1.6 Finding Defects with UNDERTAKER–CHECKPATCH

Previously, UNDERTAKER–CHECKPATCH did not parse the intermediate model of the before state. The

addition of the unreachable analysis made this step necessary to identify defects. This parsing step

increases the analysis time of a trivial example patch to arch/arm/Kconfig (see Listing 5.24) on

a Intel i7-2600 CPU @ 3.40GHz with 8 logical cores and 8GiB RAM from 27s to 43s but correctly

identifies the newly unreachable symbol.

Apart from the increase in the calculation time per patch, there is another downside when

unreachable symbols are added to the models. UNDERTAKER–CHECKPATCH tries to provide hints

for logical defects by listing options that are mentioned on the “always on” and “always off” lists

but are also present in the contradictory formula. With the addition of the unreachable symbols to

the blacklist, the list of hints is most of the time a lot longer while the mentioned options are not

necessarily responsible for the contradiction. More helpful for the identification of logical defects is

the MUS formula, which can be created with the --mus option of UNDERTAKER–CHECKPATCH.

The identification of unnecessary selects on choice values and selects on symbols with dependen-

cies in UNDERTAKER–CHECKPATCH remains subject to further research. While the identification of

futile selects is useful, it is possible that warnings about new selects on symbols with dependencies

would generate too much noise for developers, since nearly 80 percent of all selects fit that type.
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1 diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
2 index cf4c0c9..f44b3a5 100644
3 --- a/arch/arm/Kconfig
4 +++ b/arch/arm/Kconfig
5 @@ -719,6 +719,9 @@ config ARCH_S3C24XX
6 (and derivatives).
7

8 +config FOOOBARBAZ
9 + bool

10 +
11

12 config ARCH_S3C64XX
13 bool "Samsung S3C64XX"
14 select ARCH_REQUIRE_GPIOLIB

Listing 5.24 – A trivial patch to analyse with UNDERTAKER–CHECKPATCH to show the functionality
of the added unreachable analysis.

5.2 The Model Consistency Analysis

The model consistency analysis aims to identify symbols that are dead because of logical inconsis-

tencies in the form of contradictions, because of violations in the referential integrity in the form

of dependencies on undefined options and false optional features that appear configurable but

are always part of a specific product in a sub product line in LINUX. In this section I show which

defects this approach has identified for Linux/v4.0, continue with a discussion about accuracy

and performance, and explain the findings of the adaptation to identify dead files at the end of the

section.

5.2.1 Logical Dead Symbols

The analysis of Linux/v4.0 identified only one logical dead symbol. This defect occurred on the arm

architecture and is shown in Listing 5.25, where the option OMAP4_ERRATA_I688 is dead because

of a logical contradiction in its dependencies. The feature itself requires ARCH_MULTIPLATFORM to

be disabled and gets an additional dependency on ARCH_MULTI_V6 through the surrounding menu.

Looking at the definition of this option reveals, however, that this option gets a dependency on

ARCH_MULTIPLATFORM through another menu. This last dependency requires ARCH_MULTIPLATFORM

to be enabled and creates a contradiction since this option cannot be enabled and disabled at the

same time.

I reported this defect to the maintainers and submitted a patch23 to remove the feature and

the code depending on it after the developers suggested to remove the features since nobody has

complained for a few years that the feature is dead.

23https://lkml.org/lkml/2015/2/25/503

https://lkml.org/lkml/2015/2/25/503
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menu "TI OMAP/AM/DM/DRA Family"
depends on ARCH_MULTI_V6

config OMAP4_ERRATA_I688
bool "OMAP4 errata: Async Bridge Corruption"
depends on !ARCH_MULTIPLATFORM

endmenu

menu "Multiple platform selection"
depends on ARCH_MULTIPLATFORM

config ARCH_MULTI_V6
bool "ARMv6 based platforms (ARM11)"

endmenu

Listing 5.25 – The identified logical defect on the arm architecture.

5.2.2 Referential Dead Symbols

Referential dead symbols are dead because an option in their dependencies is not defined in the

current sub product line. An analysis on Linux/v4.0 reveals 27 referential dead options. One of

those referential dead options is REGULATOR_MAX77843 displayed in Listing 5.26, which has only a

dependency on MFD_MAX77843. This feature in the dependency is, however, never defined and the

dependency is therefore always false and the option and the file (drivers/regulator/max77843.c)

which depends on that feature, is dead.

config REGULATOR_MAX77843
tristate "Maxim 77843 regulator"
depends on MFD_MAX77843

Listing 5.26 – An example for a missing defect in Linux/v4.0.

Nonetheless, a closer look at this option exposes that it was introduced in February in 2015. It

is therefore very likely that this was one of the first patches to add a new driver and the others to

actually enable the code remain to be merged.

5.2.3 False Optional Features

False optional features are features that appear configurable but are required through other options.

Linux/v4.0 contains 28 of these defects which come in several forms as explained in the following

paragraphs.
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1 config ARCH_SPARSEMEM_ENABLE
2 def_bool y
3

4 config ARCH_SPARSEMEM_DEFAULT
5 def_bool ARCH_SPARSEMEM_ENABLE

Listing 5.27 – An trivial example of a false optional defect in Linux/v4.0.

The first form is displayed in Listing 5.27 and shows that option ARCH_SPARSEMEM_DEFAULT

is transitive always on. This happens because the default value of this feature is the value of

ARCH_SPARSEMEM_ENABLE which is always on through its definition. This means the definition of

ARCH_SPARSEMEM_DEFAULT could be simplified with a def_bool y declaration.

1 config ARM64
2 def_bool y
3 select ARCH_WANT_FRAME_POINTERS
4

5 config ARCH_WANT_FRAME_POINTERS
6 bool
7

8 config FRAME_POINTER
9 bool "Compile the kernel with frame pointers"

10 depends on DEBUG_KERNEL && (CRIS || ..) || ARCH_WANT_FRAME_POINTERS
11 default y if (DEBUG_INFO && UML) || ARCH_WANT_FRAME_POINTERS

Listing 5.28 – An more complex example of a false optional defect in Linux/v4.0.

A more complicated case is shown Listing 5.28, where the architecture feature ARM64, which

is always enabled, selects ARCH_WANT_FRAME_POINTERS. The FRAME_POINTER option is therefore

always enabled and appears configurable but is always part of every product in the arm64 sub

product line. This means the definition of FRAME_POINTER could be simplified for arm64.

1 config ARM64
2 def_bool y
3 select ARM_GIC
4

5 config ARCH_MEDIATEK
6 bool "Mediatek MB..."
7 select ARM_GIC

Listing 5.29 – An example of an unnecessary select in Linux/v4.0.

The last example in Listing 5.29 does not show a false optional feature, but an unnecessary

select for the feature ARCH_MEDIATEK. ARM_GIC is always enabled because it is selected by the

architecture’s feature ARM64 and the select in ARCH_MEDIATEK is redundant and can be dropped.
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5.2.4 Accuracy

The quality of the results of the model consistency analysis highly depends on the accuracy of the

used representation of the KCONFIG feature model. I have explained in Section 3.5 how I improved

the models’ accuracy, but symbol visibility, default values and selects persist to be hard to map to

propositional formulas and the mapping of these attributes remains approximative. The inaccuracies

were therefore only reduced but not eliminated. Even though these challenges endure, I was able

to identify several consistency issues after eliminating a few false positives caused by selects on

symbols with dependencies by hand.

5.2.5 Performance

For the model consistency analysis I used an AMD server machine with a Processor 6180 SE CPU @

2.5GHz with 48 physical cores and 64 GiB RAM to analyse all 30 architectures simultaneously with

one process per architecture. Although the slicing algorithm described in Subsection 4.2.2 identifies

the set of relevant features for each presence condition of a symbol, the analysis proves to be costly

in computing time. Figure 5.3 shows the computing times in seconds, starting with Linux/v2.6.31

to Linux/v4.1. Over the course of the eleven versions, three architectures stand out in terms of
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Figure 5.3 – The calculation times in seconds of the consistency analysis between Linux/v2.6.31
and Linux/v4.1.
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computing time: arm, mips and powerpc, which I display separately. All computation times of other

architectures vary between the others_min and others_max lines shown in the graph. While the

analysis of earlier versions is finished in under an hour, the calculation time is constantly rising

similar to the number of features. However, the evaluation time of the three mentioned architectures

seems to grow exponentially, in contrast to all other architectures for which the analysis time seems

to grow linearly. The arm architecture reaches a peak in Linux/v3.18 with nearly 17 hours of

computing time, followed by the mips architecture taking 13.39 hours. After this peak, both versions

drop to 12.38 hours for arm and 10.72 hours for mips. I was not able to identify the reasons for this

peak.

Possible Optimisations

Having these calculation times in mind, the question arises if the process could be optimised:

• Unfortunately, it is not possible to re-use intermediate results during this analysis. The

satisfiability of one symbol does not mean it could not cause a defect in its usage in combinations

with other symbols and their conditions.

• Further parallelisations might be possible, but the analysis of each architecture is started in

a distinct process and the limitation of started threads would require the communication of

those processes. The strategy of starting one process per analysed file, or model in that case,

instead of lightweight threads proved to be a improvement in the robustness of the tool since

potential errors do not cease all other processes. However, this optimisation remains a topic

of further research.

5.2.6 Finding Dead or Undead Files by Analysing File Presence Conditions

The algorithm described in Subsection 3.3 is able to analyse the presence conditions of files with

just a few adaptations. This analysis is about as fast as the normal model consistency analysis and

identifies 44 dead files which are dead because there is a contradictions in their presence condition

or because there are features in the presence condition and their dependencies missing. This step

also identifies two previously mentioned defective files: drivers/gpio/gpio-mb86s7x.c, which

is classified as missing defect, and sound/soc/au1x/i2sc.c, which is tagged as logical defect.

Defective files, which are architecture-internal, are found in 14 architectures. The arm architecture

has, for example, 4 dead files because of a logical contradiction and 1 dead file because of undefined

features. The full list of all identified defective files is displayed in Appendix B.

5.3 Another Investigated Problem

I also have investigated the occurrence of unused symbols in Linux/v3.18 and Linux/v4.0. These

symbols are declared in KCONFIG but never used in KBUILD or source files. My analysis did not

find any unused symbols in Linux/v3.18 and only one in Linux/v4.0. The identified option
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ARCH_SPEAR_AUTO was introduced in the year 2012 with commit 5b65 f c56 and later became

unreachable with commit 3b0b8ec9 where artefacts of a feature were removed that never made it

into the kernel.

5.4 Summary

In this chapter, I evaluated several approaches to identify defects and potential problems in KCONFIG.

First, I have shown that there are many unreachable symbols in LINUX. A closer look at Linux/v4.0

yielded 16 global unreachable symbols and on average 47.3 architecture-internal unreachable symbols

per architecture. An evaluation of the impact of these unreachable symbols revealed that the

UNDERTAKER finds 347 additional defects, which is an increase of 23.75 percent. A coverage analysis

uncovered an increase of the CCN for the mips architecture from 67.7 percent to 88.0 percent, while

the impact on other architectures remained small but noticeable.

The Linux version v4.0 also has two unnecessary selects on choice values and on average 5396

selects on symbols with dependencies per architecture.

Furthermore, my analyses unveiled one logically dead option, 27 features that are dead because

of missing symbols in their dependencies and 28 features that are false optional. I used an adaption of

the algorithm to identify logically, referential and false optional features to examine file preconditions

and identified 44 globally dead files and several architecture-internal dead files. Finally, I have

identified one option that is unused in the source tree of Linux/v4.0.
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The evaluation yields that my approaches are able to answer the questions I raised in Section 2.8.

I was able to identify dead options in KCONFIG three different flavours: logically dead, missing

dead and unreachable dead. False optional features were identified through the undead analysis

and other analyses yield gratuitous statements in KCONFIG or find potentially dangerous selects on

symbols with dependencies that can influence later build stages. In this chapter, I want to discuss

the implications of those findings.

6.1 Use Cases

There are several possibilities to use the tools I have implemented. The rule-based approaches are

implemented in python and are therefore easily integrated into UNDERTAKER–CHECKPATCH. While

the unreachable analysis and the checks to identify unnecessary selects on choice values provide a

valuable contribution for developers, the checks for selects on symbols with dependencies, however,

might create too much noise to be useful since 80 percent of all selects are selects on symbols with

dependencies. Another possibility to use these checks is the script I have implemented or they could

be incorporated into the tool that aggregates the conditions stored in the intermediate model to

the variability model, which is also implemented in python. This tool already has the necessary

information during the aggregation process, but I think a integration into UNDERTAKER–CHECKPATCH

contributes more to a useful identification.

However, the calculation time of the model consistency analysis is too high to integrate it into

UNDERTAKER–CHECKPATCH, but an analysis through the UNDERTAKER could be integrated into the

daily analysis of linux-next done by Ruprecht [Rup15].

6.2 About Unreachable Symbols

The analyses in Section 5.1.1 lead ultimately to the question: Why are unreachable symbols in the

kernel? I believe there are three reasons for the presence of these symbols in the kernel 24:

24However, I do not rule out I might have missed some.
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Ê Unintentionally:

Removed selects or defaults might render a feature unreachable, without being noticed.

Ë Intentionally:

Unreachables might be features that are not fully implemented and are therefore unreachable

by intention.

Ì Process related:

Unreachable symbols might be used in downstream kernels25.

The first Ê reason for unreachable features in the large code base of LINUX is that code and features

become obsolete and developers remove them. When they remove features with selects that are

only enabled by this select, these features become unreachable and the corresponding code becomes

dead and might stay in the kernel unnoticed.

Secondly Ë, I assume that symbols are intentionally unreachable. A well known intentionally

unreachable symbol is BROKEN. This symbol is often used in dependencies to mark a specific feature

as defective, sometimes in general and sometimes only for specific architectures where conflicts occur.

However, it is difficult to prove that other unreachable symbols are intentionally unreachable. One

indicator is the date of the commit. When the commit is fairly recent, the argument that this feature

is not yet completely implemented is at hand and one or more features to select the unreachable one

might be in the queue of the maintainer. The development in LINUX often consists of many small

patches, sometimes patch-series, where some patches might take longer to be merged and others

might be integrated faster. It makes sense to leave code disabled to avoid conflicts or erroneous

behaviour until the extension is fully implemented. Those unreachable symbols might therefore be

remainders of the product line evolution within LINUX.

The third Ì reason for unreachable features could be, that LINUX distributions often adapt

software to their needs, add drivers or other patches that are not (yet) in the kernel because they

consider the review process to exhausting or just do not want their code merged in the kernel. Other

architectures (e.g. blackfin) often have their own repositories and often do not work upstream (i.e.

submit their patches to the LINUX kernel). This process regularly leaves the state of some drivers or

features incomplete when developers do not have the time or companies do not have the money to

pursue their patches, adapt them to the comments of reviewers or maintainers to get them merged.

Other developers implement or extend features to simplify downstream development.

6.3 Unnecessary Selects on Choice Values

It is hard to tell if these defects lead to a functional impairment. While constructing the FM,

developers inserted the select statement to enable another option. When they assume that this

choice value is defined, according to the select statement they introduced, and write their code

appropriately, they might introduce code that causes a functional defects or is simply dead. These

defects probably originate in the lack of insight into KCONFIG details of developers.

25Downstream kernels are derived products of the LINUX kernel with local modifications (e.g. modifications by distributions
which are not (yet) merged in the usual LINUX kernel). An example for this behaviour is the Ubuntu distribution.
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6.4 Logical and Referential Dead Symbols

The number of logical and referential defects in LINUX is low. I assume that this means for logical

defects that they are either caught during the review process most of the time or people recognise

that the feature they rely on is dead and they investigate and solve the problem. However, referential

defects might have similar origins as I have described for unreachable symbols (Ê Ë and Ì). They

might have been introduced unintentionally while removing old features, they might be used as

a way to implement product line evolution or the features depend on other features that are only

introduced in downstream kernels.

6.5 False Optional Features

False optional features in KCONFIG manifest in different ways (as described in Section 5.2.3). While

the resolution of those defects might improve the comprehensibility of the declared variability, it is

nearby that developers introduced these connections to imply a form of dependence, even if both

symbols are always enabled together.

6.6 Other Investigated and Identified Problems

KCONFIG was developed with the needs of the LINUX kernel in mind and often chose a fast pragmatic

approach over usability and sometimes consistency (e.g. selects on symbols with dependencies).

This lead to several unobvious usability and consistency issues, which I want to discuss in this section,

along with other problems I have investigated while researching consistency issues in KCONFIG.

One peculiarity of KCONFIG is that the graphical interface to configure the kernel only shows

options whose dependencies are currently satisfied. While this is perfectly reasonable to ensure

consistency through the visibility of symbols, this might confuse users: “Which set of options do I

have to enable option X?”. The answer to this question is often far from trivial: when users search

for their desired option, they might get a set of options which they have to enable to uncover their

option. But the features in the listed set might also have dependencies that have to be satisfied

to reveal exactly that feature. With 14541 features in Linux/v4.0 this can be a tedious task and

most users do not attempt to create a small configuration from scratch26. However, the mentioned

search functionality has its own peculiarities. When a symbol has multiple definitions, the contents

of these definition are often mixed up and there is no clean distinction between each definition.

Even if there was a clean distinction between these definitions, users also might not be aware of

26To tackle that problem, Tartler et al. [Tar+12a] implemented a toolchain to trace and tailor a kernel to the specific needs
of users. This is achieved by compiling an instrumented kernel, trace which functions are used and then try to create a
configuration that covers all used functions. Heinloth [Hei14] and Ruprecht, Heinloth, and Lohmann [RHL14] later refined
this toolchain to be more precise and to require less manual adaption by users. However, these are research tools that
have not yet reached maturity or scalability on stock hardware. Another attempt to yield a small working configuration as
configuration starting point is possible with Linux/v3.17-rc1 or later is the integration of the tinyconfig target in LINUX’s
Makefiles. These modifications were done by the kernel tinification project (https://tiny.wiki.kernel.org/).

https://tiny.wiki.kernel.org/
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the semantics of multiple definitions (described in Subsection 2.5.1). This search function also

displays the conditions in the dependency or selected by sections in propositional logic, which

might be unknown to users. These conditions are always displayed in one line in at least one of the

configuration tools (mconf). This property leads to the concealment of parts of the formula when an

option has too many conditions in the dependency or selected by fields, because the tool does

not wrap over long lines.

Most of the listed problems could be avoided, or at least alleviated, by providing better tool sup-

port, where the tools aggregate the conditions properly and then display the necessary information.

Less easy to solve are impairments in usability which are a direct consequence of unexpected

behaviour. Users might not be aware of the select semantics, fond of propositional logic or un-

derstand the peculiarities of the tristate logic (briefly explained as additional information in

Subsection 2.5.4.1). Multiple definitions of symbols with different dependencies and prompt texts

might also be confusing to users.
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Variability in LINUX is not only spread over different levels of the build process but also causes various

types of defects that can manifest in every phase of the build process or even at run time. Identifying

these defects per hand proved to be difficult, if not impossible. Therefore comprehensive tool support

is needed to help developers to manage variability, which is a ever-growing and inevitable part of

the kernel.

Previous works focused on the identification of defects in source files with the help of a holistic

view of the variability but did not analyse the configuration space alone and thus did not do a

holistic analysis of defects in the configurability in LINUX. In this thesis I presented approaches

to identify additional defects in this kernel and close this gap. These approaches are able to

diagnose contradictions in symbols’ dependencies, determine violations of referential integrity or spot

gratuitous attributes and interactions of symbols in KCONFIG. Furthermore, I have identified many

violations of KCONFIG’s own rules and investigated the impact of the newly identified unreachable

symbols on analyses coined by Tartler and Sincero. This identification lead to a optimisation of the

creation process of partial configurations for the coverage analysis which can be used to optimise

the test coverage of static analysis tools. The results of my thesis are partially integrated into the

new UNDERTAKER–CHECKPATCH tool and thus help to identify and eliminate more defects in early

stages of the development process. Additionally, I have discussed usability issues of KCONFIG and

explained several quirks in this configuration toolchain which might surprise developers or lead

to unexpected behaviour. Moreover, I used an adapted form of the algorithm to identify defective

options in KCONFIG to diagnose file presence conditions and thus search for dead and undead files

in LINUX.

Future Work

The quality of the results of the analyses to identify dead or false optional features in KCONFIG

depends on the accuracy of the model which represents the modelled variability. Even though the

model helps to identify many variability defects, it currently has several identified flaws which should

be addressed in future work to not only improve the accuracy of the newly introduced analyses but

69
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also the analyses introduced by Sincero [Sin13] and Tartler [Tar13]. Furthermore, the run time

of the mips, arm and powerpc architectures stood out negatively for the newly introduced model

consistency analysis. For future work, the origins of this difference in run time could be investigated,

as well as optimisations in the presented algorithms to reduce this calculation time beyond further

parallelisation.

Moreover, there could be other defects that could be identified through extensions of my ap-

proaches that KCONFIG and its tools do not recognise yet. Another point that could be researched is

the occurrence of unreachable or missing defects. They could be tracked over the years of LINUX

development and evaluated if they are mostly utilised for product line evolution, with the exceptions

of a few mistakes the developers made, and disappear in later version.

Another additional research topic would be the adaption of the approaches I presented to other

projects like BUSYBOX, COREBOOT or FIASCO that use KCONFIG as their language to model their

variability. The UNDERTAKER toolchain already supports these projects and the variability models are

similar to the models of LINUX.
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A

C
overage

D
ata

Architecture
# comp. files

(total)
Total

kLOC

Total

configs

in

#ifdef
blocks

# variation

points

(dead/undead

rate)

allyes

CC
allyes

CCN

VAMPYR

CC
VAMPYR

CCN

mean 12,873.5 (16,165) 10,055.8 4.4% 37,733.3 (24%) 53.7% 68.9% 62% 79.6%

hardware 9,689.5 (12,896) 7,697.1 3.6% 28,011.3 (29%) 47% 64.9% 55.1% 76.1%

software 3,184 (3,269) 2,358.9 7.1% 9,722 (8%) 72.9% 77.8% 81.7% 87.4%

arm 14,870 (16,895) 11,122.4 17399 4.4% 39,701 (18%) 59.9% 71.1% 72.5% 85.9%

hardware 11,646 (13,626) 8,725 13577 3.8% 29,979 (20%) 55.4% 67.6% 69.6% 84.9%

software 3,224 (3,269) 2,397.6 3822 6.8% 9,722 (10%) 73.9% 80.4% 81.4% 88.7%

mips 12,618 (16,147) 9,968.4 14852 4.4% 37,434 (24%) 40.7% 52.3% 52.6% 67.7%

hardware 9,387 (12,878) 7,554.9 11012 3.5% 27,712 (30%) 30.2% 42.4% 41.9% 58.7%

software 3,231 (3,269) 2,413.5 3840 7.2% 9,722 (6%) 70.3% 73.2% 83.1% 86.7%

s390 10,335 (15,551) 8,283.5 12095 4.2% 35,927 (37%) 49% 75.6% 51.9% 80.3%

hardware 7,306 (12,282) 6,083.9 8499 3.2% 26,205 (46%) 40.5% 72.7% 41.9% 75.4%

software 3,029 (3,269) 2,199.7 3596 7% 9,722 (13%) 71.9% 80.6% 78.8% 88.4%

x86 13,671 (16,067) 10,849.2 16039 4.5% 37,871 (18%) 64.5% 77% 69.7% 83.4%

hardware 10,419 (12,798) 8,424.6 12178 3.7% 28,149 (23%) 60.7% 76.9% 65% 82.4%

software 3,252 (3,269) 2,424.7 3861 7.2% 9,722 (5%) 75.3% 77.3% 83.4% 85.7%

Table A.1 – Comprehensive coverage data for Linux v4.0, commit id f68c461e: rate (defect corrected) of covered variation points for allyesconfig
and for the VAMPYR approach. This experiment was run with model version 1.0 and undertaker revision refs/changes/59/4659/40 and coverage
algorithm min. The values in this table represent the results without the consideration of unreachable symbols.
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Architecture
# comp. files

(total)
Total

kLOC

Total

configs

in

#ifdef
blocks

# variation

points

(dead/undead

rate)

allyes

CC
allyes

CCN

VAMPYR

CC
VAMPYR

CCN

mean 12,593 (16,165) 9,881.9 4.3% 37,733.3 (26%) 53.7% 70.8% 65.6% 86.7%

hardware 9,434 (12,896) 7,536.9 3.5% 28,011.3 (32%) 47% 67% 59.8% 85.4%

software 3,159 (3,269) 2,344.9 6.9% 9,722 (11%) 72.9% 79.2% 82.1% 89.5%

arm 14,792 (16,895) 11,075.1 17283 4.4% 39,701 (19%) 59.9% 71.8% 72.5% 86.8%

hardware 11,585 (13,626) 8,686.5 13498 3.8% 29,979 (21%) 55.4% 68.2% 69.6% 85.7%

software 3,207 (3,269) 2,388.7 3785 6.6% 9,722 (12%) 73.9% 81.5% 81.4% 90%

mips 12,475 (16,147) 9,874.5 14639 4.3% 37,434 (25%) 40.7% 53.2% 67.1% 88%

hardware 9,275 (12,878) 7,482.7 10867 3.4% 27,712 (31%) 30.2% 43.1% 60.9% 86.6%

software 3,200 (3,269) 2,391.9 3772 6.9% 9,722 (9%) 70.3% 75.2% 84.9% 91%

s390 9,557 (15,551) 7,811.5 11063 3.9% 35,927 (43%) 49% 82.9% 51.9% 88.1%

hardware 6,575 (12,282) 5,633.7 7554 2.8% 26,205 (53%) 40.5% 82.9% 41.9% 86%

software 2,982 (3,269) 2,177.8 3509 6.8% 9,722 (16%) 71.9% 83% 78.8% 91.2%

x86 13,548 (16,067) 10,766.1 15872 4.4% 37,871 (19%) 64.5% 77.8% 69.8% 84.4%

hardware 10,301 (12,798) 8,344.8 12028 3.6% 28,149 (24%) 60.7% 77.9% 65.1% 83.6%

software 3,247 (3,269) 2,421.4 3844 7.2% 9,722 (6%) 75.3% 77.6% 83.4% 86.2%

Table A.2 – Comprehensive coverage data for Linux v4.0, commit id f68c461e: rate (defect corrected) of covered variation points for allyesconfig
and for the VAMPYR approach. This experiment was run with model version 1.0 and undertaker revision refs/changes/87/5087/7 and coverage
algorithm min. The values in this table represent the results with the consideration of unreachable symbols.





BD E A D F I L E S

The representation of the file presence conditions in the models is similar to the representation

of options, except that the normalized filename is used as a key on the left side of the implication

instead of the symbol. The normalization process replaces all characters matching the following

RegExp [-+:,/] with a “_” character in order to avoid conflicts in the parser of propositional formulas

and adds a FILE_-prefix.

B.1 Global Dead Files (44)

FILE_drivers_clocksource_fsl_ftm_timer.c logical: all

FILE_drivers_edac_i82443bxgx_edac.c logical: all

FILE_drivers_gpio_gpio_mb86s7x.c missing: all

FILE_drivers_infiniband_hw_ipath_ipath_wc_ppc64.c logical: all

FILE_drivers_iommu_msm_iommu.c logical: all

FILE_drivers_iommu_msm_iommu_dev.c logical: all

FILE_drivers_macintosh_via_maciisi.c logical: all

FILE_drivers_media_platform_marvell_ccic_mmp_driver.c logical: all

FILE_drivers_media_rc_ir_rx51.c logical: (um, score, arm)...

FILE_drivers_mfd_tps65911_comparator.c logical: all

FILE_drivers_misc_spear13xx_pcie_gadget.c logical: all

FILE_drivers_net_wireless_b43_phy_ac.c logical: all

FILE_drivers_net_wireless_b43_phy_lcn.c logical: all

FILE_drivers_net_wireless_b43_tables_phy_lcn.c logical: all

FILE_drivers_pcmcia_rsrc_iodyn.c logical: (s390) | missing: rest

FILE_drivers_pinctrl_meson_pinctrl_meson.c logical: all

FILE_drivers_pinctrl_meson_pinctrl_meson8.c logical: all

FILE_drivers_pps_generators_pps_gen_parport.c logical: all

FILE_drivers_regulator_max77843.c missing: all

FILE_drivers_regulator_mt6397_regulator.c missing: all

FILE_drivers_regulator_sky81452_regulator.c missing: all

FILE_drivers_scsi_NCR_D700.c logical: (powerpc) | missing: rest
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FILE_drivers_scsi_NCR_Q720.c logical: (powerpc) | missing: rest

FILE_drivers_scsi_eata_pio.c logical: all

FILE_drivers_scsi_sni_53c710.c missing: all

FILE_drivers_staging_board_board.c logical: all

FILE_drivers_staging_board_kzm9d.c logical: all

FILE_drivers_tty_serial_etraxfs_uart.c logical: rest ...

FILE_drivers_tty_serial_sprd_serial.c logical: (um, score)...

FILE_drivers_usb_musb_cppi_dma.c logical: all

FILE_drivers_usb_musb_da8xx.c logical: all

FILE_drivers_usb_musb_davinci.c logical: all

FILE_drivers_video_fbdev_omap2_dss_rfbi.c logical: all

FILE_drivers_xen_xen_acpi_cpuhotplug.c logical: all

FILE_drivers_xen_xen_acpi_memhotplug.c logical: all

FILE_drivers_xen_xen_stub.c logical: all

FILE_kernel_locking_rtmutex_tester.c logical: all

FILE_sound_soc_au1x_i2sc.c logical: all

FILE_sound_soc_davinci_davinci_i2s.c logical: all

FILE_sound_soc_samsung_smdk_wm8580pcm.c logical: (um, score, m68k)...

FILE_sound_soc_sh_ssi.c logical: all

FILE_sound_soc_spear_spdif_in.c logical: all

FILE_sound_soc_spear_spdif_out.c logical: all

FILE_sound_soc_spear_spear_pcm.c logical: all

B.2 Architecture-Internal Defective Files

Arch: arm 5

FILE_arch_arm_mach_imx_devices_platform_imx21_hcd.c logical

FILE_arch_arm_mach_imx_devices_platform_pata_imx.c logical

FILE_arch_arm_mach_s3c24xx_setup_spi.c logical

FILE_arch_arm_mm_proc_arm1020e.S missing

FILE_arch_arm_plat_omap_debug_leds.c logical

Arch: unicore32 9

FILE_arch_unicore32_kernel_clock.c undead

FILE_arch_unicore32_kernel_irq.c undead

FILE_arch_unicore32_kernel_puv3_core.c undead

FILE_arch_unicore32_kernel_time.c undead

FILE_arch_unicore32_mm_alignment.c undead

FILE_arch_unicore32_mm_cache_ucv2.S undead

FILE_arch_unicore32_mm_dma_swiotlb.c undead

FILE_arch_unicore32_mm_proc_ucv2.S undead

FILE_arch_unicore32_mm_tlb_ucv2.S undead
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Arch: tile 7

FILE_arch_tile_kernel_smp.c undead

FILE_arch_tile_kernel_smpboot.c undead

FILE_arch_tile_kernel_tlb.c undead

FILE_arch_tile_lib_spinlock_32.c undead

FILE_arch_tile_lib_spinlock_64.c undead

FILE_arch_tile_lib_usercopy_32.S undead

FILE_arch_tile_lib_usercopy_64.S undead

Arch: blackfin 1

FILE_arch_blackfin_kernel_ipipe.c missing

Arch: x86 4

FILE_arch_x86_kernel_cpu_perf_event.c undead

FILE_arch_x86_kernel_irq_work.c undead

FILE_arch_x86_kernel_perf_regs.c undead

FILE_arch_x86_lib_rwsem.S undead

Arch: avr32 1

FILE_arch_avr32_boot_u_boot_empty.S undead

Arch: powerpc 4

FILE_arch_powerpc_kernel_of_platform.c undead

FILE_arch_powerpc_kernel_prom_parse.c undead

FILE_arch_powerpc_sysdev_fsl_85xx_cache_sram.c logical

FILE_arch_powerpc_sysdev_fsl_85xx_l2ctlr.c logical

Arch: ia64 4

FILE_arch_ia64_kernel_ftrace.c missing

FILE_arch_ia64_kernel_paravirt.c logical

FILE_arch_ia64_kernel_paravirt_patch.c logical

FILE_arch_ia64_kernel_paravirtentry.S logical

Arch: mips 5

FILE_arch_mips_kernel_8250_platform.c logical

FILE_arch_mips_kernel_irq_rm7000.c logical

FILE_arch_mips_kernel_r6000_fpu.S logical

FILE_arch_mips_mm_tlb_r8k.c logical

FILE_arch_mips_pci_pci_rt2880.c missing

Arch: mn10300 8

FILE_arch_mn10300_kernel_gdb_io_serial.c missing
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FILE_arch_mn10300_kernel_gdb_io_serial_low.S missing

FILE_arch_mn10300_kernel_gdb_io_ttysm.c missing

FILE_arch_mn10300_kernel_gdb_io_ttysm_low.S missing

FILE_arch_mn10300_kernel_gdb_low.S missing

FILE_arch_mn10300_kernel_gdb_stub.c missing

FILE_arch_mn10300_kernel_profile.c missing

FILE_arch_mn10300_kernel_profile_low.S missing

Arch: sh 1

FILE_arch_sh_kernel_iomap.c undead

Arch: openrisc 1

FILE_arch_openrisc_kernel_prom.c undead

Arch: hexagon 1

FILE_arch_hexagon_kernel_stacktrace.c undead

Arch: m32r 5

FILE_arch_m32r_mm_cache.c undead

FILE_arch_m32r_mm_extable.c undead

FILE_arch_m32r_mm_init.c undead

FILE_arch_m32r_mm_mmu.S undead

FILE_arch_m32r_mm_page.S undead



L I S T O F A C R O N Y M S

API application programming interface

CPP C preprocessor

LKM loadable kernel module

RegExp regular expression

SAT (boolean) satisfiability problem

SPL Software Product Line

CC Configuration Coverage

FM Feature Model

DSL domain specific language

MUS minimal unsatisfiable subset
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