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A B S T R A C T

Microparallelism runtimes are an important tool for developing parallel software that enables the
usage of feather-weight threads. Randomized work-stealing is the prominent way of scheduling
and load balancing in these platforms, and the fork-join model is often used to express the task-
parallelism. That entails a parallel calling stack, a so-called cactus stack. Work-stealing guarantees
bounds on time and space consumption and promises nearly linear speedup for computations with
sufficient parallelism. However, in practice, performance depends on many factors like the method
used to implement tasks and the cactus stack, as well as the synchronization used internally. Fibril
implements continuation-stealing tasks and an efficient cactus stack that performs similar or better
than existing runtimes like Intel Cilk Plus and Threading Building Blocks. However, Fibril uses
blocking synchronization internally. Locks serialize critical sections and cause bottlenecks, where
threads have to wait until they can acquire the lock. Lock-based synchronization of critical sections
with high contention results in bad scaling over many cores.

This thesis presents a fully lock- and wait-free implementation of continuation-stealing tasks
and cactus stack, that supports the fork-join model. It is based on the implementation of Fibril, but
replace the locks by a wait-free algorithm, that allows better utilization of CPU cores. Benchmark
results show that the wait-free approach scales better over many cores. However, simultaneous
multithreading can partially compensate for the worse scalability of locks. Furthermore, the cactus
stack implementation, adapted from Fibril, resulted in reduced performance, below that of Cilk Plus,
in some benchmarks. That indicates that there is still room for improvement in the cactus stack
implementation, but also in terms of memory management and performance of the parallel calling
convention.
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KU R Z FA S S U N G

Mikroparallelismus Laufzeitumgebungen sind ein wichtiges Werkzeug bei der Entwicklung von
paralleler Software, dass die Verwendung von federgewichtigen Fäden ermöglicht. Randomisiertes
Work-Stealing ist eine beliebte Methode der Ablaufplanung und der Lastenverteilung in solchen
Programmierplattformen und das fork-join Programmiermodel wird oft genutzt, um die Taskpar-
allelität auszudrücken. Dies hat einen parallelen Aufrufkeller zur Folge, der auch als Cactus-Stack
bezeichnet wird. Work-Stealing hat obere Schranken für die Laufzeit und den Platzverbrauch und
verspricht annähernd linearen Speedup für Berechnungen mit ausreichender Parallelität. In der
Praxis hängt die Leistung allerdings von mehreren Faktoren ab, wie dem Verfahren, wie Tasks und
der Cactus-Stack implementiert sind, und welche Art der Synchronisierung in der Laufzeitumgebung
verwendet wurde. Fibril ist eine Implementierung, die Tasks mit Continuation-Stealing umsetzt und
einen effizienten Cactus-Stack verwende, und damit vergleichbare oder bessere Leistung erzielt als
existierende Laufzeitumgebungen wie Intel Cilk Plus und Threading Building Blocks. Allerdings
verwendet Fibril blockierende Synchronisierung. Blockierende Synchronisierung serialisiert einen
kritischen Abschnitt und kann zu einem Flaschenhals werden, wobei Fäden warten müssen, bis sie
den kritischen Abschnitt betreten können. Blockierende Synchronisierung von kritischen Abschnitten,
um die es einen starken Wettstreit gibt, skaliert schlecht mit vielen Prozessorkernen.

Dieser Arbeit stellt eine komplett nicht-blockierend und warte-frei synchronisierte Implemen-
tierung von Continuation-Stealing basierten Tasks und Cactus-Stack vor, die das fork-join Program-
miermodel unterstützt. Die Implementierung basiert auf der Fibrils, ersetzt aber die blockierende
Synchronisierung durch einen warte-freien Algorithmus, der es ermöglicht, Prozessorkerne besser
auszulasten. Die Ergebnisse der Benchmarks zeigen, dass der warte-freie Ansatz besser mit der
Anzahl verwendeter Prozessorkernen skaliert. Allerdings kann die Verwendung von Simultanem
Multithreading das schlechtere Skalieren von blockierender Synchronisierung zum Teil ausgleichen.
Außerdem verursacht der auf Fibril basierte Cactus-Stack Leistungseinbrüche, unter die Leistung
von Cilk Plus, in manchen Benchmarks. Das zeigt, dass es in der Implementierung des Cactus-Stacks,
aber auch was die Speicherverwaltung und Leistung der parallelen Aufrufkonvention angeht, noch
Verbesserungspotenzial gibt.
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1I N T R O D U C T I O N

Multi-core processors for Personal Computers (PCs) and PC-like systems exist for around one and a
half decades. In recent years the average core count of multi-core processors more than doubled,
increasing potential computing power. However, the software must be written explicitly parallel
to take advantage of additional processor cores. Furthermore, a problem needs to have sufficient
parallelism to scale with the number of cores, when computed in parallel. Some problems cannot
be parallelized.

Writing efficient and correct parallel software is difficult. Some tools and strategies help develop
parallel software. When it comes to task-parallel software, using kernel-level threads is often not
the right approach since the creation of these threads is computationally expensive and does not
yield good performance when the problem is split into many small tasks. For such applications,
feather-weight threads, or fibers, are a better solution. These are user-space scheduled threads with
low costs for creation and destruction.

To use fibers, a microparallelism runtime is required, that implements an interface to create
and schedule the fibers. Such a runtime consists of a pool of kernel-level threads, the workers,
that execute the fibers. Work-stealing is the prominent way of scheduling and load balancing in
microparallelism runtimes.

The fork-join model is a flexible and easy-to-use way of expressing parallelism. It is often used
as an interface for creating and synchronizing work packages in the form of fibers. Task creation
can be implemented as child-stealing, where the created task is scheduled for execution, or as
continuation-stealing, where the created task is executed directly, and the continuation of the forking
function is scheduled for execution, instead. The implementation can have a fundamental impact
on the performance of a runtime.

Furthermore, fork-join parallelism entails a tree-like calling stack, a so-called cactus stack. The
cactus stack forms as a result of the diverging structure of dependencies between tasks due to the
parent-child relationships between them. The way a microparallelism runtime implements its cactus
stack has a direct influence on its performance and space consumption. Ideally, the cactus stack
implementation should yield good speedup and have a low memory footprint. In practice, however,
implementations cannot fully reach these goals or have to restrict interoperability between serial and
parallel code. This is also known as the cactus stack problem. Yang and Mellor-Crummey [YMC16]
have presented a “practical” solution to the cactus stack problem that promises good performance
and low physical memory consumption, while being fully interoperable.

The research project Extensible Micro-Parallelism Experimentation Runtime (EMPER) will be
used as the basis for the implementation work of this thesis. It is a microparallelism runtime that
uses child-stealing to implement asynchronous tasks. It uses fully wait-free work-stealing dequeues
for scheduling and wait-free private semaphores for synchronization of tasks.

1
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Figure 1.1 – Comparsion of micro-parallelism runtimes.

The X axis are the number of worker threads and the Y axis are the speedups Tserial/TP , where TP is the
execution time using P worker threads.

Figure 1.1 shows the performance of different microparallelism runtimes on 1–96 threads. Intel
Threading Building Blocks (TBB) [CM08; Suk09] and EMPER both use child-stealing, while Intel Cilk
Plus [Rob13] and Fibril [YMC16] use continuation-stealing. While both methods can perform nearly
identical in some cases, there are many problems where child-stealing performs very poorly, while
continuation-stealing can achieve relatively good speedups. In this example, Fibril out-performs
both TBB and EMPER by up to 10.2×. Cilk Plus does not perform as well in this application but still
manages to perform up to 5.8× better than the child-stealing runtimes.

However, Fibril uses locked based synchronization internally, as highlighted in red in Listing 1.1.
Locks serialize a critical section and can cause threads to wait at the beginning of the section.
This is considered to hinder scalability by preventing parallelism and, thus, speedup. This thesis
assumes that replacing the lock-based synchronization by a lock- and wait-free algorithm can
further improve performance. Therefore, in this thesis, the possibilities of a fully lock- and wait-free
implementation of a fork-join parallelism runtime with lazy task creation will be explored and
analyzed. For this purpose, continuation-stealing tasks and a cactus stack based on the work of
Yang and Mellor-Crummey [YMC16] will be implemented in EMPER, as the basis for the wait-free
approach.

1 /* ... */
2 sync_lock(frptr->lock);
3 if (frptr->count-- == 0) {
4 if (frptr->stack.ptr != fibrili_deq.stack) {
5 stack_reinstall(frptr);
6 }
7 sync_unlock(frptr->lock);
8 longjmp(frptr, frptr->stack.top);
9 } else {

10 if (frptr->stack.ptr == fibrili_deq.stack) {
11 STATS_COUNT(N_SUSPENSIONS, 1);
12 stack_uninstall(frptr);
13 }
14 sync_unlock(frptr->lock);
15 }
16 /* ... */

Listing 1.1 – An excerpt of Fibril’s code with lock-base synchronization.

2



2F U N DA M E N TA L S

This chapter will first give an introduction into fork-join parallelism and the cactus stack, in Sec-
tion 2.1. Then the so-called “cactus stack problem” will be explained in Section 2.2 and strategies to
solve it in Section 2.3. Finally, EMPER will be explored briefly in Section 2.4.

2.1 Introduction to Fork-Join-Parallelism

The fork-join model is used to express logical task parallelism. It consists of the two keywords fork
and join1 that allow manipulation of the control flow of a program. In the following, the term strand
will be used to describe a series of sequentially executed instructions that do not contain a fork or
join. More precisely, fork and join form the starting and ending points of a strand [Hal12].

fork “splits” a strand into two, it “forks” the strand, whereby the initial strand ends and two new
strands begin. The two new strands may be executed in parallel, but do not have to. join has the
opposite effect of fork. Where fork splits strand, join merges them. At a join two or more strand
reunite, and only a single strand leaves the join. More precisely, the incoming strands end and a
new strand leaves the join. The execution of strands in an application forms a Directed Acyclic
Graph (DAG), where the fork and join points are the vertices, and the strands are the edges. Time
defines the direction of the edges [Hal12].

This model of fork-join parallelism can be further restricted in its combination with functions.
The resulting model of strict fork-join parallelism [Hal12] requires that every function has exactly
one incoming strand and one outgoing strand, analogous to a fully serial model. A function can fork
off another function. The two functions have an asymmetric relationship with the forking function
being the parent and the forked off function being the child. For this strictness property to hold, a
function can fork off arbitrarily many child functions that may (but do not have to) run in parallel

1Sometimes different names are used, e.g. in Cilk [FLR98] they are called spawn and sync, but the semantics usually
remain the same.

a()

foo()
fork

b()

c()

join

e()

Figure 2.1 – A DAG of strict fork-join parallelism.
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2.1 Introduction to Fork-Join-Parallelism

with the parent function and each other, but before the function can return, it has to join with all of
its children. A join synchronizes a parent function with its children since the parent has to wait
for all of its children to finish execution. In a similar fashion to function calls where the caller, the
parent function, cannot return before the callee, the child function, does, the child function is strictly
nested within the parent, as shown in Figure 2.1. That means that serial semantics are preserved. If
a program is executed by one processor and strands are not executed in parallel, but rather in a
serialized fashion, all forks behave like function calls. This property that the semantics of a program
remain the same if all forks are substituted for function calls (and joins become no-ops) is referred
to as C elision or serial elision of a program [FLR98].

1 foo() {
2 a();
3 fork b();
4 c();
5 join;
6 e();
7 }

Listing 2.2 – A simple fork-join example.

When it comes to implementing a runtime that supports fork-join parallelism, many decisions
regarding the architecture have to be made. Some of which can have a fundamental impact on
performance and efficiency. In the following, major design choices will be analyzed and discussed.

Generally, such a runtime has a pool of worker threads, in the following referred to just as
workers, that execute in parallel. These workers execute tasks, which are feather-weight threads.
The usage of kernel-level threads as tasks is disadvised because the creation of kernel-level threads
is too expensive. When a worker encounters a fork, it creates a new task, that is then scheduled
for execution by the pool of workers. Listing 2.2 shows a code example for such a scenario and
Figure 2.1 the corresponding DAG. Assume worker W1 executes function a() before forking off
function b(). The first decision to be made is which worker executes which function. W1 can continue
to execute c() and have another worker W2 execute b(), or it can execute b() itself and have the
W2 continues with the execution of c(). While this might seem like a minor detail, it can very well
have a tremendous influence on efficiency as will be discussed in more detail in Section 2.1.2 and
Section 2.1.3. Similarly, when joining b() and c(), executed by W1 and W2, only one worker can
continue after the join and execute f(). The choice is between W1 that initially executed a() (or
another specific worker, to be more general) or the worker executing the last task to join [Rob14].
This decision and its consequences will be discussed in Section 2.1.4. Scheduling of tasks, even
though not the focus of this thesis is important for the understanding of advanced topics of this
thesis and will be explored in Section 2.1.1. Lastly the main topic of this thesis, the fork-join call
stack or cactus stack will be explained in Section 2.1.5 and the problems encountered when trying
to implement it efficiently in Section 2.2.

2.1.1 Scheduling by Work-Stealing

Scheduling is a broad field of study. The impact scheduling has on performance is analyzed in
much detail. Depending on the application and the requirements, different scheduling strategies
are suitable. For scheduling and load balancing fork-join tasks in multicore systems, randomized
work-stealing has become the established strategy. It is used by Cilk [FLR98], Cilk++ [Lei09;

4



2.1 Introduction to Fork-Join-Parallelism

Fri+09], Intel Cilk Plus [YMC16; Rob13], OpenMP [YMC16; Rob14], TBB [CM08; YMC16; Rob14]
and Fibril [YMC16].

In contrast to work sharing scheduling strategies, where new tasks after creation get assigned
to a worker in hopes of reaching an even distribution of work among workers, the idea behind
work-stealing is that newly created tasks are not shared, but rather kept with the worker that created
the task, but can be stolen by another work. The algorithm for randomized work- stealing as described
by Blumofe and Leiserson [BL99] works like this: Every worker has its own ready-queue for new
tasks, as can be seen in Figure 2.2. The queues are double-ended queues, dequeues, that have a
top and a bottom end. A worker treats its dequeue like a linear stack, pushing new tasks to the
bottom, and after finishing a task, the worker pops the next task to be executed from the bottom
end. If a worker runs out of work, that is, its dequeue is empty, and an attempt to pop failed, then
it becomes a thief and tries to steal tasks off the top ends of other workers’ dequeues. It therefore
randomly selects a worker, the victim, and attempts to steal the topmost task from the victim’s
dequeue. Should the thief fail to steal from the victim (in case the victim’s dequeue is empty), then
the procedure is repeated, starting with selecting a new victim. When the thief eventually succeeds,
it then proceeds to execute the stolen task. By doing so, it potentially creates new tasks that are
then pushed to the bottom of the thief’s dequeue again.

This way of scheduling tasks minimizes communication between workers and the migration of
data because workers are only required to interact with each other when they run out of work and
have to steal. Conversely, in a work-sharing scheduler, tasks will be assigned to workers even if
they still have work to do. And since the data a task works on is often related to the data of the
parent task, migration of tasks also includes migration of data. More precisely, when a processor
executes a task, and the task spawns a new task, the work the new task will do is, in many cases,
directly linked to the data of the parent task. Therefore, the same processor executes it, the data is,
with high probability, already present in caches, whereas, should the task be executed by a different
processor, there is a higher chance that the new processor has to load the data from slower memory.

Furthermore, Blumofe and Leiserson showed that randomized work-stealing, when stealing is
unrestricted achieves strong bounds on time and stack space for strict multithreaded computations.

Worker 0 Worker 1 Worker 2

Figure 2.2 – Work-stealing dequeues example.

5



2.1 Introduction to Fork-Join-Parallelism

The given definition of “strict” computations requires that in a fork-join activation tree, the only
edge into the subtree emanates from the parent that spawned the subtree and goes to the root of
the subtree. The only edges leaving the subtree are joining edges that go from a given task to the
ancestors of that task. Strict fork-join parallelism, as defined in Section 2.1, is a subclass of strict
multithreaded computations. Strict fork-join parallelism is even more restrictive because it allows
only one join edge from the root of the subtree to its parent.

Blumofe and Leiserson proved that a randomized work-stealing scheduler can achieve the follow-
ing upper bounds for expected execution time and stack space usage, when stealing is unrestricted:
Let T1 be the work of a deterministic, strict multithreaded computation, its execution time of the
computation on one processor, and let T∞ be the critical path length, or span, of the computation,
its ideal execution time on an infinite number of processors2, with constant value c∞, the span
overhead. Then the computation can run on P processors in expected time

TP ≤ T1/P + c∞T∞. (2.1)

This inequation, also known as “Brent’s Lemma”, guarantees linear speedup in the number of
processors P when the average parallelism of the computation is much larger than the number
of processors P, that is T1/TP � P. Furthermore, if S1 is the required stack space to execute the
computation on one processor, then the computation on P processors uses

SP ≤ PS1. (2.2)

The bound given by the second inequation guarantees that the increase in stack space usage by
parallel execution of the computation is linear in the number of processors P at worst [YMC16].

2.1.2 Child-Stealing

When it comes to implementing a fork-join runtime, there is a design choice of how to map tasks
onto workers, as pointed out at the end of Section 2.1. In the following, one of these alternatives
will be explored and analyzed. Child-stealing is probably the more intuitive way of implementing
fork. The worker executing the task that encounters a fork creates the new task and leaves it to be
stolen for execution by another worker. The initial worker continues normally with the execution
of its task after the fork. Figure 2.3 shows such a scenario, where the task T2, created at a fork, is
executed by W2, another worker than W1, the one that created the task.

While this design might look appropriate for a fork-join runtime, it has a flaw concerning memory
consumption that can reduce the performance and efficiency of a runtime using it. The following
example will help to illustrate the downside of child stealing. The loop in Listing 2.3 iterates n times,
spawning a new task each iteration. The loop is an example that also stands for more complex
loops, where the number of iterations n cannot be computed in advance, because it can depend on
results of the execution of iterations, like a while(true) { ... } loop with break condition inside
the loop. In child-stealing the task executing the loop has to run the whole loop to completion,
creating all n tasks, before it reaches the join and can start to execute any of the new tasks, as seen
in Figure 2.4. If there are no free workers available that can start working on the n tasks right
away, this requires space to hold all n tasks in memory at the same time. This space consumption is
proportional to n and, therefore unbounded for some loops. Depending on the problem size and the
loop, child-stealing can be impractical in such scenarios. Moreover, allocating the required memory
to store many tasks can hurt performance, lowering speedup. To circumvent this space blowup, there
are strategies to restrict the creation of tasks. Unfortunately, there is the possibility of restricting

2The critical path length of a computation can also be understood as the longest path of instructions, from start to end of
the computation, that has to be executed sequentially.
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W1 W2

fork

T1

T1 T2

Figure 2.3 – Example timeline of child-stealing.

parallelism too much and, thus, decreasing the achievable speedup. Nevertheless, child-stealing has
some advantages worth mentioning compared to its alternative (discussed in Section 2.1.3). It is
easier to implement as “just a library”, without compiler support, and it can have a performance
advantage in some situations because the costs of creating and dispatching a task is generally a bit
lower [Rob14].

1 for (int i = 0; i < n; i++)
2 fork f(i);
3 join;

Listing 2.3 – An example of a forking loop.

2.1.3 Continuation-Stealing

In child-stealing, fork is a statement that a new task must be created. There is no way of specifying
that a task should be created and leaving the decision whether a task will be created to the runtime
to decide based on the availability of free workers. Such lazy task creation [MKH91] is necessary to
bound the space consumption of task creation without hindering speedup, as discussed previously (in
Section 2.1.2). This is also referred to as dynamic parallelism since the decision is made dynamically
at run-time.

Continuation-stealing is a way of implementing a dynamic fork that allows for concurrency
but does not enforce it. When a worker W1 is executing a task T1 and encounters a fork, it creates
the new task T2 but starts to work on the new task T2 right away and pushes the continuation of
the initial task T1 onto the bottom of its work-stealing dequeue. The continuation of T1 can then
be stolen by another worker, W2, that continues the execution of the initial task, thus creating
parallelism. The left timelines of Figure 2.5 illustrate this scenario. However, in the case that there
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fork

join

f(0)
f(1)

f(2)
f(n-1)

Figure 2.4 – DAG of a forking loop.

is no available worker that steals the continuation, W1 will eventually complete the execution of T2

and then try to pop T1 from the bottom of its dequeue. Since T1 was not stolen, W1 will succeed and
continuing the execution of T1 itself, as shown by the right timelines of Figure 2.5. Semantically this
is identical to a function call. Therefore, the parallelism is dynamical and depends on the availability
of free, or work-stealing, workers.

The difference between child-stealing and continuation-stealing becomes apparent when going
back to Figure 2.4, the loop example of Section 2.1.2. With continuation-stealing, the worker
encountering the fork inside the loop will spawn the new task and start executing it right away,
leaving the continuation to be stolen. If a free worker is available, it will steal the continuation,
execute the next iteration of the loop, and by doing so, spawn one more task, which will, in
turn, be executed right away, leaving the continuation for the next thief to steal. The amount of
simultaneously existing tasks is linear in the number of worker P and therefore bounded, whereas
with child-stealing all n tasks will be spawned before any of them are executed if there are no free
workers.

However, while fork is semantically identical to a function call, if the continuation is not stolen,
the computational costs associated with fork are not comparable. Since the continuation has to
be saved and restored and has to be pushed to and popped from the work-staling queue, the costs
become a multiple of that of a function call [Rob14].

8



2.1 Introduction to Fork-Join-Parallelism

W1 W2

fork

T1

T2 T1

W1 W2

fork

T1

T2

T1

T3

Figure 2.5 – Example timelines of continuation-stealing.

2.1.4 Joining Strategies

For implementing join, there are two options to chose from regarding which worker executes a
task after joining, called “stalling” and “greedy” scheduling. With stalling scheduling, the worker
that was executing the task before any fork, or for that matter any other specific worker3, has to
continue executing following a join. In Figure 2.1, that would be the worker that executed a().
The name “stalling” comes from the fact that the worker that has to execute the task might be busy,
while free workers that could continue execution of the task are not allowed to do so. The free
workers can then try to find any other work, but if there is not any, they have to wait and “stall”
until new work is available.

With greedy scheduling, on the other hand, the last worker to join, whether it is the worker
executing the task that encountered the join or one executing a child task, will proceed to execute
after the join. That way, there are no stalling workers as long as there is work to do. Furthermore,
greedy scheduling is necessary in order to achieve the time-bound of Equation (2.1). Since greedy
scheduling is a form of stealing in a work-stealing scheduler because the worker executing a task
can change at the join, also called joining steal, a stalling scheduler would restrict stealing and thus
break the time-bound [Rob14; BL99].

Nevertheless, stalling schedulers have an advantage when it comes to task identity. Stalling
schedulers preserve the identity of a task and, therefore, work better with some mutex implementa-
tions, where a change of the executing worker, as happens with greedy scheduling, can break break
the mutex or cause a deadlock [Rob14].

2.1.5 Cactus-Stack

Fork-join parallelism entails a particular non-linear call stack, a so-called cactus stack. To understand
how it differs from a linear call stack of a C-like language, it helps to understand first how a linear
stack works and why it suffices. In such a C-like language, every function instance has an activation
frame that contains its state. That includes the arguments for the function instance, the return

3A system might have additional constraints for scheduling, e.g. tasks might have affinities towards workers.
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address, and the local variables the function uses. When a function is called, an activation frame for
a new function instance is allocated, and when the function instance returns the activation frame
is freed again. The order in which activation frames are allocated and freed, when a program is
executed, matters, and dictates the layout of active activation frames. Figure 2.6 shows the invocation
tree for a simple function fib(n) that computes the nth number in the Fibonacci-sequence, for
which the code is given in Listing 2.4. The invocation tree shows the relationship between function
instances. The node fib(3) represents a function instance of the fib(n) function invoked with
argument 3. It calls itself recursively with arguments 2 and 1 during its lifetime. Therefore the node
of function instance fib(3) is the parent of nodes fib(2) and fib(1) in the invocation tree. The
child nodes are arranged from left to right in the order they are invoked, fib(2) is called before
fib(1) in function instance fib(3).

A depth-first traversal of the invocation tree matches the order in which function instances are
invoked during the execution of a program. Since in a serial program, a call suspends execution of
the caller until the callee returns, a parent node’s lifetime in the invocation tree cannot end before
its child node’s lifetime does. Therefore, all function instances on the path from an alive node to
the root of the invocation tree, including the root, must be alive, too, at the same moment in time.
Furthermore, no two function instances with the same depth in the invocation tree can be alive at
the same time, because a parent function instance is suspended until its child has returned and can
thus not invoke any other function instance. Hence, all activation frames of child function instances
of a given parent function instance can reuse the same memory area4. This property allows a serial
program to use a linear stack, where the activation frame for a callee is allocated directly beneath
the activation frame of the caller. When the callee returns, the activation frame will be freed, and the
space on the stack can be reused. Figure 2.7 illustrates this growth and shrinking of the linear stack.
It shows how the arrangement of activation frames changes over the course of the computation of
fib(4).

1 int fib(int n)
2 {
3 if (n < 2)
4 return n;
5 int a, b;
6 a = fib(n - 1);
7 b = fib(n - 2);
8 return a + b;
9 }

Listing 2.4 – Fibbonacci function.

Conversely, in a parallel program, using fork and join, a function can have multiple active children
at the same time. The very idea of fork is to have a function fork off a child function and then
continue execution in parallel with the child, allowing to call or fork more children. Therefore, while
the invocation tree stays the same, the argument that nodes with the same depth in the invocation
tree cannot be alive at the same time is not true anymore in a parallel program. Without the property
that a function can have only one child at any moment in time, a linear stack does not suffice for
allocating activation frames anymore. Any attempt to allocate an activation frame for a new child
on a linear stack, while there is already an active child’s activation frame on the linear stack, would
lead to a collision, because a new activation frame is always allocated directly beneath the parent’s

4In case the activation frames differ in size, the memory area will overlap only partly.
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fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

Figure 2.6 – The invocation tree of fib(4).

activation frame. In Figure 2.7, when fib(3) would try to allocate an activation frame for fib(1)
while the one of fib(2) is still alive, it would try do so at the same point on the linear stack, causing
a collision of both function instances’ activation frames.

1 int fib(int n)
2 {
3 if (n < 2)
4 return n;
5 int a, b;
6 fork a = fib(n - 1);
7 b = fib(n - 2);
8 join;
9 return a + b;

10 }

Listing 2.5 – Parallel version of the Fibbonacci function.

fib(4)

fib(3)

fib(4)

fib(3)

fib(2)

fib(4)

fib(3)

fib(2)

fib(1)

fib(4)

fib(3)

fib(2)

fib(4)

fib(3)

fib(2)

fib(0)

fib(4)

fib(3)

fib(2)

fib(4)

fib(3)

fib(4)

fib(3)

fib(1)

Figure 2.7 – Linear stack example for the invocation of fib(4).
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In order to solve this problem a different data structure has to be used to allocate activation
frames. When a function instance already has one active child, whose activation frame is located on
the same linear stack as its own and it wants to create a new child, it has to allocate a new linear
stack for the new child to use. The child function instance can then allocate its activation frame on
the top of the new stack and use it as a normal linear stack, except that in order to return, the child
function instance has to switch back to the parent’s linear stack. To do so, it has to store a pointer
to the parent’s activation frame located on the parent’s stack. That way, a tree of stacks is formed,
with the linear stacks being the nodes, pointing to the parent node. More precisely, an N -ary tree is
formed, since a function instance can have multiple children on different stacks simultaneously and
a stack can have arbitrarily many activation frames with multiple children. This tree-like stack data
structure that can be traversed from the leaves to root (but usually not the other way) is also known
as cactus stack [YMC16].

At any moment in time, during the execution of a computation, the invocation tree of active
function instances consists of the subset of the invocation tree’s nodes that are alive at that moment
in time. If at any moment during computation, every extant leaf of the tree is executed by a worker,
that is, no suspended frame is a leaf of the invocation tree of active function instances, as present
at that instant, then all leaves are “busy”. This is referred to as the busy-leaves property. From this
property follows that there are no more than P leaves at any moment during execution, where P
is the number of workers. Furthermore, S1 is defined as the stack space consumption of the path,
from a leaf to the root, that requires the most space. Therefore, the stack space is bounded by PS1,
the space-bound of Equation (2.2), if the busy-leaves property is maintained [BL99].

Listing 2.5 shows the parallel version of the fib(n) function. The cactus stack layout for
the parallel computation of fib(4), as formed by continuation-stealing, is shown in Figure 2.8.
Analogous to the linear stack example of Figure 2.7, the activation frame for the first child function,
the forked off child function, is allocated on the linear stack, below its parent’s frame. When the
continuation of the parent function is stolen and the second child function is invoked, its stack frame
is allocated on a new stack. The cactus-stack layout for child-stealing is different, and it depends on
the implementation and the work-stealing actually happening at run-time, in general.

The fact that for fork-join parallelism, a linear stack is not sufficient comes directly from the
structure of fork-join parallelism itself. Therefore, every fork-join parallelism runtime has to imple-
ment a cactus stack, whether it uses child- or continuation-stealing, greedy, or stalling scheduling.
An efficient implementation of the cactus stack is necessary to achieve good performance while
maintaining practicality [YMC16; Lee+10]. In Section 2.2, the problems of implementing the cactus
stack will be discussed, and in Section 2.3, some strategies to solve these problems will be shown.

2.2 The Cactus-Stack Problem

The way a work-stealing fork-join parallelism runtime implements the cactus stack defines fun-
damental properties of the runtime, like its performance, efficiency, or even usability. Ideally, it
should have the following three properties: It should maintain the time-bound of Equation (2.1) and
space-bound of Equation (2.2), induced by the work-stealing scheduler. The time-bound enables a
program with sufficient parallelism to achieve nearly perfect linear speedup when using the runtime,
while the space-bound ensures space consumption does not blow up and stays at a practical level
to be usable for general-purpose systems. For software to be reusable and to be usable with serial
binaries that are compiled to use a linear stack, it needs to be interoperable with serial code. That
means, in particular, that functions that fork off other functions and functions that can be forked
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fib(3)

fib(4)

fib(3)

fib(2)

fib(2)
fib(4)

fib(3)
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fib(1)

fib(1)
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fib(1)
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fib(2)
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Figure 2.8 – Continuation-stealing cactus stack example for for the invocation of fib(4).

off should use a standard, serial calling convention. This property is also known as serial-parallel
reciprocity [YMC16; Lee+10].

In practice, however, it turned out that it is difficult to achieve all three properties simultaneously,
and most implementations sacrifice one property to maintain the other two. This is also known as the
cactus stack problem. Cilk [FLR98] uses a custom calling convention that prohibits serial C code from
calling a cilk function directly, to maintain the strong time- and space-bounds. TBB [Suk09] allows
calling a parallel function, but restricts stealing and thereby breaks the time-bound to avoid space
blowup, leading to sub-linear speedup for some computations [YMC16]. In Section 2.3, various
approaches and implementations will be discussed.

To better understand why it is difficult for a cactus stack implementation to achieve all three
properties, it is necessary to understand why a naive implementation of the behavior described in
Section 2.1.5 does break the space-bound. The following explanation assumes a runtime using a
greedy work-stealing scheduler that implements continuation-stealing. As explained in Section 2.1.4
a stalling scheduler already breaks the time-bound and can, therefore, not be used to solve the
cactus stack problem fully . Furthermore, child-stealing can result in unbounded space consumption
for keeping track of created tasks, which can be impractical. And while this space consumption does
not break the space-bound of Equation (2.2), which is concerned with stack space blowup, a case,
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similar to the following example, can be made to show that a naive implementation would break
the space-bound as well.

As described in Section 2.1.1 and Section 2.1.3, when a task returns from a fork the executing
worker tries to pop the bottommost task, the previously pushed continuation, from its work-stealing
dequeue. If the continuation was stolen by another worker, the attempt will fail. In accordance with
greedy scheduling, the worker then has to try to resume the stolen continuation. If the task that
returned from the fork, is not the last to join, that is, there are other pending children, then the
worker cannot resume the continuation and now has a suspended activation frame on its stack. The
worker has to start work-stealing to find new work and allocate an activation frame for the new
task, should it find one. However, the worker cannot do so on its current stack because it inhibits
the suspended frame. If the worker would use the space below the suspended frame, it could cause
a collision, because another worker could resume the suspended frame, before the stolen task is
completed, as per greedy scheduling. If the resumed task then tries to use the same space on the
stack to allocate another activation frame, it would cause the collision. The suspended frame can
also not be moved in order to prevent this from happening. Moving a frame to a different address in
memory would invalidate pointers to local variables inside the frame 5. That is the core issue of the
cactus stack problem. Solving the cactus stack problem means finding a solution that maintains all
three of the postulated properties.

The naive approach of using a new stack, whenever the current one is blocked by a suspended
frame, does not satisfy the space-bound, since each stack could hold as little as one frame, while still
occupying S1 pages of memory. The space-bound of Equation (2.2) requires that every worker P
does not use more than S1 pages of stack space. However, the activation frames of any worker can
be scattered over up to D stacks, where D is the fork depth, the maximum amount of forks on any
path from a leaf to the root of the invocation tree. Therefore, the space consumption becomes DPS1,
which breaks the space-bound for any D > 1. This can lead to impractical space consumption since
D depends on the application and can be arbitrarily large. Solving the space blowup often requires
sacrificing other properties. Cilk [FLR98] allocates continuations on the heap and thereby avoids
having suspended activation frames blocking the stack. However, to do so, it is necessary to use a
custom calling convention that prohibits serial code from directly calling a cilk function. Thus losing
serial-parallel reciprocity. Other approaches restrict stealing to specific tasks and stall to maintain
the space-bound, sacrificing the time-bound by doing so, which leads to sub-linear speedup for some
computations [YMC16; Lee+10; Suk09].

2.3 Related work

There are different strategies to try to solve the cactus stack problem. Most solve it only partly and
lose the interoperability with serial code or have only strong bound on time or space, and the other
bound is weak at best. In the following, some of these approaches and existing implementations will
be discussed. Table 2.1 gives an overview of strategies and implementations and their properties.

The idea behind “recompile everything” is to allocate activation frames on the heap rather than
on the stack. That way, the situation that a stack is blocked because of a suspended frame can
be avoided. However, since the serial calling convention allocates frames on the stack, parallel
functions are not interoperable with serial code anymore. A custom compiler has to be used, that
supports heap-allocated activation frames. Therefore, everything that is supposed to work with

5In a native environment pointers are not updated when when a frame is moved to different address in memory. Banning
the use of pointers to local variables would impair the interoperability of a runtime, thus, resulting in a runtime that does not
solve the cactus stack problem.
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Serial-Parallel- Time Space
Strategy reciprocity Bound Bound

recompile everything no very strong very strong
one stack per worker yes very strong no
depth-restricted stealing yes no very strong
limited-depth stacks yes no very strong
new stack when needed yes very strong weak
Fibril yes very strong strong
recycle ancestor stacks yes very strong weak
leapfrogging yes no strong
TLMM cactus stacks yes strong strong

Table 2.1 – Attributes of different strategies for implementing a cactus stack.

the parallel code has to be recompiled to work with the custom calling convention. However, in
case functionality of a binary, already compiled without the parallel calling convention in mind,
is used, it will not work. Lee et al. [Lee+10] speculate about the possibilities of using “binary-
rewriting” techniques to patch such binaries to be compatible. For shared libraries, this would
have to be done “on the fly”, at startup of the application or at loading time of the shared library.
Such techniques, however, would be difficult or impractical to implement due to optimizations
in the binaries. Nevertheless, there are implementations using this approach. Cilk [FLR98] and
Cilk++ [Lei09; Fri+09] implement heap-allocated continuations in combination with a greedy work-
stealing scheduler. These implementations rely on a custom compiler. At a spawn6, the compiler
generates code that saves all local variables to the heap-allocated continuation activation frame.
After stealing a continuation or after resuming a suspended continuation after a sync, the local
variables will be loaded from the heap-allocated continuation again. That way, there are never
suspended frames on the stack, and one stack per worker is sufficient. Thus, a strong time- and
space-bound can be maintained in favor of serial-parallel reciprocity [Lee+10].

Another strategy, called “one stack per worker”, limits every worker to only one linear stack.
When a worker has a suspended frame on its stack, it starts work-stealing and executes stolen tasks
on its own stack, using the next free space below the suspended frame. More precisely, the thief sets
its base pointer to the top of the stolen continuation’s frame residing in the victim’s stack, to access
local variables in the stolen frame. Then it sets its stack pointer to the next free space on its own
stack. When the worker executes the stolen continuation, and a new function is called or forked
off, the new frame will be allocated on the thief’s stack at the position of the stack pointer, thus
growing the thief’s stack. When the thief was already deep in its stack, and the stolen continuation
is shallow in the victim’s stack, the thief’s stack can potentially grow very deep, up to 2S1. With this,
the busy-leaves property does not hold anymore, since the stack grows much larger than S1. Since a
worker has to steal work whenever the deepest frame on its stack cannot be resumed or popped, its
stack grows further. This process can repeat arbitrarily many times in succession and, therefore,
breaks the space-bound [Lee+10; YMC16].

A variation of “one stack per worker” is called “depth-restricted stealing”. To prevent the stack
from growing arbitrarily large, a worker is only allowed to steal frames that are deeper in the victim’s
stack than the bottommost frame on its own. A frame already deep in the stack will not grow the
stack as much as a shallow one. Thus, a workers stack should not become larger than S1, and a

6Cilk uses the keywords spawn and sync, instead of fork and join.
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strong space-bound can be achieved. However, by restricting stealing, a worker can come into a
situation where there is work to do, but the worker is not allowed to execute any of it, due to the
restriction, and has to stall, thereby breaking the time-bound. Sukha [Suk09] has shown that for
some computations, “depth-restricted stealing” is not faster than a sequential execution, yielding
only constant speedup [Lee+10; YMC16]. TBB combines child-stealing with a stalling scheduler
that uses a strategy similar to “depth-restricted stealing”. TBB is entirely library-based and does not
need dedicated compiler support. It is fully serial-parallel reciprocal and has a strong space-bound,
but no time-bound.

Another strategy similar to “one stack per worker” is “limited-depth stacks”. As the name suggests,
this strategy bounds the size a stack can grow, by limiting the maximal depth of a worker’s stack.
When a certain depth is reached, the worker is not allowed to perform further stealing until frames
on its stack are freed. That way, a strong space-bound can be achieved, but the time-bound is
sacrificed because the time spent waiting cannot be compensated for. This prevents linear speedup
for computations with copious parallelism [Lee+10].

The strategy “new stack when needed” is essentially like the example given in Section 2.2.
Whenever a worker has a suspended frame on the top of its stack, and it has to go work-stealing, it
allocates a new stack to execute the stolen tasks on. Analogous to “one stack per worker”, the thief
uses its base pointer to address local variables in the stolen frame by setting it to the stolen frame
on the victim’s stack, while the thief’s stack is used to allocate new frames in case of a call or fork.
Since there are no frames allocated below a suspended frame, it can be resumed immediately when
it gets ready, and the busy-leaves property is maintained. Therefore, the physical space consumption
of extant leaves is bounded by PS1 at any moment in time, because there are only P extant frames
simultaneously and a leaf’s stack can only grow S1 deep. However, as explained in Section 2.2, the
virtual space consumption is up to DPS1 with D being the fork depth, because the stack ancestry of
any leaf can be scattered over D linear stacks and any of the linear stacks could individually grow
up to S1 large at some moment in execution. Thus, physical space consumption can grow up to
DPS1, too, and the stack space consumption breaks the bound of Equation (2.2). Furthermore, as
long as a linear stack contains any frames, it cannot be recycled, and the memory freed. As a result
of the high virtual memory usage, a lot of swapping can occur, because unused portions of linear
stacks are backed up by swap space, even though they do not contain any data [Lee+10]. Intel
Cilk Plus [Rob13], the successor of Cilk and Cilk++, implements a strategy similar to this. To avoid
breaking the space-bound, the worker have to take linear stacks from a pool with a limited amount.
When the pool is empty, a worker cannot acquire a new stack and has to stop work-stealing and
stall until another worker puts an unused stack back into the pool. By limiting the total amount of
stacks, a strong space-bound is achieved, while serial-parallel reciprocity is maintained. However,
the time-bound is sacrificed due to stalling, when the limit of available stacks is reached [YMC16].

As a solution to the high virtual address-space consumption and swapping of “new stack when
needed”, Lee et al. [Lee+10] suggest the unmapping of unused stack frames, so that they are no
longer backed by swap space. Although, they suspect it might incur too much overhead since the
stack space has to be remapped before being usable again. Instead, the possibility of a lazy stack
frame reclaim is suggested. Yang and Mellor-Crummey [YMC16] further pursued this strategy. They
implemented a fully library-based runtime with a greedy continuation-stealing scheduler, that works
similarly to Cilk’s randomized work-stealing scheduler. However, they implement fork and join as
C macros and do not rely on compiler support. When a worker has a suspended frame on top of
its stack and has to allocate a new stack in order to execute stolen tasks, it unmaps the unused
portion of the stack from the page boundary below the suspended frame to the bottom end of the
stack. They use the madvise Linux system call with the MADV_DONTNEED flag which, instructs the
Operating System (OS) that pages can be freed and do not need to be backed up by swap space
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any longer, but that the mapping in virtual address space should remain. When a memory address
in a region that was unmapped this way is reaccessed, a page fault is triggered, and the OS will
allocate a new page for the accessed address. Therefore reclamation of stack space becomes a
no-op and happens automatically. That way they achieve a strong space-bound of SP ≤ P(S1 + D)
for physical memory, while virtual address space consumption can still be up to DPS1, which they
deem “practical” for 64-bit address spaces. Furthermore, their implementation is fully serial-parallel
reciprocal, since they do not rely on a custom calling convention. They also claim the implementation
can maintain the strong time-bound but omit a prove. Nevertheless, the results presented by Yang
and Mellor-Crummey support this. They also show that the unmapping of stacks and the thereby
incurred increase in page faults do not have a strong impact on performance.

The strategy “recycle ancestor stacks” is another variation of “new stack when needed”. The
difference is that when a worker starts work-stealing, it does not allocate a new stack right away.
Instead, it checks blocked stacks first. If the suspended frame on top of a blocked stack is suspended
at a join and an ancestor of the stolen frame, then the worker uses that stack to execute the stolen
task, rather than a new stack. Since resuming the suspended frame requires completion of all
descendants, which includes the stolen frame, the suspended frame cannot be resumed before the
stolen frame is completed, and a collision on the stack cannot happen. This strategy can reduce
space consumption greatly, but still does not hold a strong space-bound. Furthermore, the search
for a usable stack introduces further overhead, weakening the time-bound [Lee+10].

A technique very similar to “recycle ancestor stacks” and “depth-restricted stealing” is called
“leapfrogging”. Originally suggested for implementing futures by Wagner and Calder [WC93], it can
be used as a strategy to implement cactus stacks. Instead of searching for a reusable stack like with
“recycle ancestor stacks”, stealing is restricted to tasks that are descendants of the suspended frame
on a worker’s current stack. If such a task is found, it is executed on the worker’s stack. That way, a
collision of frames can be avoided. Since no new stacks are allocated at all, a strong space-bound
can be achieved. However, stealing is restricted even more than with “depth-restricted stealing”,
resulting in a weak time-bound [YMC16].

A solution that uses memory mappings to implement cactus stacks was suggested by Lee et
al. [Lee+10]. They implemented a runtime based on Cilk-5 and called it Cilk-M. It uses Thread-Local
Memory Mappings (TLMMs) to simulate linear stacks for workers. Every worker sees only its linear
stack, and all worker stacks are at the same location in virtual memory but can have individual,
thread-local mappings to physical pages. The rest of the virtual address space is shared, making
the area the stacks are mapped a TLMM area. When a worker steals a task, it has to access local
variables in the stolen frame. In order to do so, it maps the physical page the stolen frame resides in
and its ancestry pages, the pages further up in the stack, to its own stack. The pages get mapped to
the same virtual addresses they had in the victim’s stack. That way, the addresses of local variables
remain the same, and pointers into frames are still valid. Since all stacks are in the same region in
virtual address space, the thief has to unmap any physical pages currently mapped at these addresses,
including pages containing suspended frames. Victim and thief then share the same physical pages
and see the same stack ancestry. The thief can then start to execute the stolen frame. However, since
victim and thief share the physical page the stolen frame resides in, the thief has to be cautious
when it has to call or fork a function while executing the stolen frame. If victim and thief try to
use the same space below the stolen frame in the shared page to allocate new frames, it would
come to a collision. Therefore, the rest of the shared page is unusable for the thief, and it has to
set its stack pointer to the next lower page boundary and map new pages below the stolen ones
to allocate frames there. These new pages are private to the thief until he becomes the victim of
another worker, and the pages get stolen, in which case they become shared pages. This leads to
fragmentation in the stack, and some pages can contain as little as one frame, but space can be
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reclaimed after a join. The way Cilk-M implements the cactus stack prevents stacks with only one
frame, and virtual and physical memory is conserved. Therefore, a strong time- and space-bound
can be achieved, while serial-parallel reciprocity is maintained. However, Cilk-M needs an OS that
supports TLMM. But, currently, there are no such OSs, so an implementation would have to use a
custom, modified kernel, making it impractical for real-world applications. Another downside is
that workers cannot see or access each other’s stacks. Thus, stack-allocated shared data structures,
such as MCS locks, do not work with Cilk-M [YMC16; Lee+10].

2.4 EMPER

EMPER is the microparallelism runtime used as the basis for the implementation of this thesis.
EMPER is the acronym of Extensible Micro-Parallelism Experimentation Runtime. It is a research
project. It is implemented using mostly high-level C++ language features with the purpose of
being easily extensible to research different aspects of microparallelism. It supports testing different
scheduling strategies, e.g., work-stealing with affinity hints to exploit data locality. Furthermore, it
uses lock-free data structures and analyzes its effects on scaling.

In the following, the initial state of EMPER, before the implementation work of this thesis, will
be analyzed to understand what this thesis is building on. EMPER already uses a greedy randomized
work-stealing scheduler, but as mentioned above, it also supports other strategies. Its scheduler is
lock- and wait-free through the usage of lock-free work-stealing dequeues and private semaphores.
It uses child-stealing to implement asynchronous tasks but does not offer a direct fork-join interface.
Instead, mapping fork-join onto asynchronous tasks and private semaphores can be used to create
similar behavior. This could either be done in the form of user-defined functions or with compiler
support, similar to Intel Cilk Plus. However, it is not possible to create dynamic parallelism this way.

Furthermore, when a task is blocked at a semaphore and has to wait for child tasks, the worker
has to allocate a new stack to execute stolen tasks. The result is a behavior similar to a cactus stack
implementation using the “new stack when needed” strategy. While this should hold a strong time-
bound and has full serial-parallel reciprocity, the space-bound is not maintained. Additionally, child-
stealing can result in unbounded space consumption for bookkeeping of created tasks. Overall, an
implementation of fork-join parallelism with room for improvements. Nevertheless, the parallelism
offered by EMPER in the form of asynchronous tasks works well for other parallel programming
models.
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3A R C H I T E C T U R E

This chapter shall give an overview off what this thesis tries to accomplish, in Section 3.1, the
abstract components of the implementation and their relationships, in Section 3.2, and basic design
used in Section 3.3.

3.1 Approach of this Thesis

The object of this thesis is to implement a fast, efficient, interoperable fork-join microparallelism
runtime in C++, that uses only lock- and wait-free synchronization internally, and analyze its effect
on scaling. Therefore, the implementation uses continuation-stealing for the benefits of lazy task
creation and to avoid the potentially unbounded space consumption of bookkeeping of tasks. For
work-stealing, the preexisting lock-free queues of EMPER’s scheduler are used. The cactus stack
implementation is based on the work of Yang and Mellor-Crummey [YMC16] since it can be used
for a purely library-based runtime that does not rely on compiler support. Furthermore, it promises
to be a practical solution to the cactus stack problem that fully solves the problem and does not
require a custom kernel like the approach of Lee et al. [Lee+10]. However, the implementation of
Yang and Mellor-Crummey [YMC16] uses locks to synchronize internal data-structures. Thus, lock-
and wait-free algorithms are used instead.

3.2 Components

In order to achieve the desired behavior and to build the cactus stack, the implementation needs
some components to manage the state and coordinate interactions between workers. Each function
instance, that forks off child functions, has an associated continuation to save and restore the state
of that function instance. Continuations also keep track of child function instances, have a reference
to the stack on which the frame of the function instance is located, and take the role of tasks,
which are pushed onto or are popped and stolen from work-stealing dequeues. The scheduler has
a work-stealing dequeue per worker. Workers can invoke the scheduler to push tasks to or pop
them from their work-stealing dequeue. In case a worker runs out of work, the scheduler performs
randomized work-stealing. When a task is stolen, the victim can call the scheduler and try to resume
the stolen task. The scheduler then checks if the continuation can be resumed, if the victim is the
last child of the continuation, and resumes the continuation or starts work-stealing to find a new
task. Each worker has one stack or context as they are called in EMPER, to execute tasks on. When
a worker needs a new stack, because its current one is blocked by a suspended task, the worker can
invoke the context manager to allocate a new context.
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3.3 Basic Design

The basic design of this implementation is very similar to that of Fibril [YMC16], using continuation-
stealing to build a cactus stack following the “new stack when needed” strategy. The key building
blocks are fork, join, work-stealing and managing of stacks. In the following, these four parts will
be explained separately.

3.3.1 Forking

The purpose of fork is to create the necessary conditions for parallelism to happen. Therefore, it
has to do two things: create a task that can run concurrently and scheduling it, so that it can be
stolen. Since the continuation of a frame is a task and running the task means resuming execution
of the continuation, the state of the continuation has to be updated at a fork. More precisely, the
pointer to the instruction of the function, where execution has to continue, needs to be updated
to the next instruction following the fork. Then the continuation is pushed to the bottom of the
executing worker’s work-stealing dequeue, where it can be stolen by other workers. With this, all
preparations are done, and the worker can now start to execute the child function that should be
forked off. The worker can call the child function normally and use its linear stack to allocate a
stack frame. If another worker steals the continuation, parent and child will execute in parallel.

When the worker that encountered the fork and executed the child function returns from the child
function, it tries to pop the bottommost task from its work-stealing dequeue, in order to check if the
continuation was stolen. If the popping was successful, the worker can be sure that the continuation
was not stolen, because no worker can push tasks to any other work-stealing dequeue than its own.
In this case, the worker can continue the execution of the parent function instance normally, making
the fork semantically equivalent to a function call. However, if the continuation was stolen, the
worker cannot continue normally, because another worker already continued execution of the parent.
The worker can then try to resume the continuation. The worker has to check if the continuation
is waiting at a join, and if the worker’s child task was the last one to finish. If both conditions are
met, the worker can restore the state saved in the continuation and continue the execution of the
function instance following the join. If the conditions are not met, that is one or more other child
tasks are still in execution or the parent task has not reached a join yet, the continuation cannot be
resumed. In this case, the worker has run out of work, since the popping of the bottommost task can
only fail if the dequeue is empty. The worker then has to start work-stealing itself to find new work.

3.3.2 Joining

A join statement is a synchronization point between parent and concurrent child tasks. Therefore,
when a worker encounters a join, it has to check if the continuation of the parent task was stolen
at a fork. If the continuation was never stolen, then the worker that reached the join has already
finished executing all child tasks itself and can continue execution after the join. However, if the
continuation was stolen, the worker has to try to resume the continuation. Similar to the case of
fork, when the continuation is stolen, the worker can only resume the continuation if all child tasks
have finished. If that is the case, the worker can resume the continuation and continue execution
after the join. Otherwise, the worker has to start work-stealing to find new work.
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3.3.3 Running stolen Tasks

When a worker successfully steals a task from another worker, it has to run the task. That means
the worker has to restore the saved state of the continuation and start executing the function at the
saved position, after a fork. Since the function instance’s stack frame is located on another worker’s
stack and the other worker is using its stack to execute the forked child function, the thief cannot
use the stack of the continuation. However, the worker has to access the stack frame of the function
instance to read and write local variables when executing the function instance. Therefore, the thief
has to use its own stack to allocate stack frames, if the stolen function instance calls or forks more
child functions, and use a pointer, saved in the continuation, that points to the stack frame, to access
its local data.

3.3.4 Managing Stacks

In order to properly build the cactus stack and avoid collisions, workers have to switch to a new
stack or switch back to an old stack at the right moment in execution. A new stack is necessary when
a worker has a suspended frame on top of its stack and has to start work-stealing, as explained in
Section 2.1.5. Conversely, when a suspended frame is resumed, the worker that continues execution
of that frame needs to switch to the stack that contains the suspended frame. Since every worker
can have only one stack at a time, the worker has to free its current stack before switching to the
one with the blocked frame. This is safe because the current stack of the worker is always empty at
that point.

The point at which workers might switch stacks is always when trying to resume a continuation
when a worker returns from a fork, and finds its continuation to be stolen, or when a worker
encounters a join. If a worker cannot resume the continuation, it has to check whether its stack
is the stack the continuation points to. If the continuation has a reference to another stack than
the worker’s current stack, the worker does not have to switch stacks and can start work-stealing.
Otherwise, if the continuation points to the worker’s current stack, the worker has to allocate a new
stack before it can steal work and execute new tasks. Additionally, the worker has to unmap unused
pages of the continuation’s stack.

However, if a worker can resume a continuation, the opposite is the case. If the continuation
points to the worker’s stack, the worker is already on the correct stack and can immediately resume
execution. Otherwise, the worker has to free its current stack and switch to stack the continuation
points to before it can resume the continuation.
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4I M P L E M E N TAT I O N

The fork-join implementation of this thesis is designed to work on hardware with x86-64 (AMD64)
Instruction Set Architecture (ISA), using the standard System V Architecture Binary Interface
(ABI) [Mat+14] for the AMD64 architecture that defines the calling convention and stack frame
layout. However, a similar approach could also work on different architectures.

4.1 Fibril

This section introduces the continuation-stealing cactus stack implementation of this thesis. EMPER
is extended with a class Fibril, named after the runtime Fibril [YMC16], which it is based on,
that implements the fork-join Application Programing Interface (API) with continuation-stealing.
Listing 4.6 shows the base structure of the Fibril class and its interface. An object of type Fibril
functions as a task that can be scheduled and pushed to a worker’s work-stealing dequeue and can
be stolen and executed consequently. It has a member of the type Continuation that implements the
actual continuation behavior. A continuation is always tied to a function instance and its stack frame,
it is the continuation of that function instance. Every function instance, that forks off child functions,
needs its own Fibril object. The constructor of Fibril invokes the constructor of its continuation.
The fork() and join() methods belong to the API of EMPER, while run() and tryResume() are
called internally by the scheduler. In the following sections, the code of Fibril will get extended
stepwise until all major implementation details are explained.

1 class Fibril {
2 Continuation continuation;
3

4 inline Fibril() : continuation() { /* ... */ }
5

6 void run() { /* ... */ }
7

8 void fork(/* ... */) { /* ... */}
9

10 void join() { /* ... */ }
11

12 void tryResume() { /* ... */ }
13 }

Listing 4.6 – Basic members of the Fibril class.
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4.2 Continuations

The Continuation class implements the hardware-specific logic that allows saving the state of a
function instance and restoring it at a later point to resume execution of the function instance. The
state of a function instance consists of the values of all arguments and local variables and the point
in machine code where execution should continue. A function instance keeps its local variables
on the stack, within its stack frame, or in registers. Since the location of a stack frame in memory
should not be changed, as explained in Section 2.2, it is sufficient to save all values held in registers
in the stack frame and then save a pointer to the stack frame, in order to preserve the state of local
variables.

4.2.1 x86-64 - Calling Convention and Stack Layout

To build continuations that also support building a cactus stack, it is useful to understand first how
the calling convention works and how the resulting layout of a stack frame is structured. The x86-64
architecture has 16 64-bit wide general-purpose registers. When a function calls another function,
half of the general-purpose registers, the scratch registers, rax, rdi, rsi, rdx, rcx, r8, r9, r10 and
r11, have to be saved by the caller, while the callee preserves the other half, rbx, rsp, rbp, r12,
r13, r14, and r15. The rsp register is used as the stack pointer and rbp as the base pointer of a
stack frame. Furthermore, the registers rdi, rsi, rdx, rcx, r8 and r9 are used to pass arguments
to functions. These registers pass the first six function arguments, in the order, they are listed, rdi
passing the first and r9 passing the sixth argument. Further arguments are passed on the stack
in reverse order. If a function wants to return a value, it can pass it back to the caller in the rax
register.

Figure 4.1 illustrates how the stack grows downwards on an x86-64 machine when a function
a() calls a function b() that accepts eight arguments. Initially, there is only the stack frame of
function a() on the stack. It contains a return address and the saved base pointer of the caller
function, rbp. The base pointer register rbp points to the saved rbp value of the caller and marks
the base of the stack frame, the top end of the stack frame’s variable size area where local variables
are stored. The stack pointer register rsp points to the bottom end of the stack frame. Before the
actual call to b() happens, the caller has to save caller saved registers. It writes the values of live
variables, held in registers, back to the variables inside its stack frame. Then, to pass the eight
arguments to the callee, a() first moves the first six arguments the registers rdi, rsi, rdx, rcx, r8
and r9, before pushing the remaining two arguments, b() arg7 and b() arg8, in reverse order
onto the stack. Next, the call instruction is executed. It pushes the return address, the address of
the next instruction following the call instruction, ret a(), onto the stack, and sets the instruction
pointer rip to the first instruction in the code of function b(). Since the callee has to build its stack
frame and needs to use the rbp register to point to the new stack frame, it has to save the current
value of rbp by pushing it onto the stack, because rbp is a callee saved register. It then moves the
value of rsp to rbp, before subtracting an offset from rsp, so rsp points further down on the stack,
in order to reserve the space for the local variables of b() on the stack. With this, the stack frame of
b() is fully build up, and the function can start executing its code. To address local variables, it can
use the base pointer with a negative offset, and to address the arguments on the stack, rbp with a
positive offset of 16 bytes or more, has to be used.

When function b() wants to return, it has to dismantle its stack frame first. It sets the rsp to
rbp and can then pop the saved rbp of the caller function back from the stack into the rbp register.
The stack pointer rsp points the return address, and the ret instruction can be executed. The ret
instruction pops the return address, pointed to by rsp, from the stack into the instruction pointer
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Figure 4.1 – Example of a linear stack on x86-64.

register rip. Execution continues in the caller function. Function a() has to remove the arguments
pushed onto the stack by adding an offset to rsp. The callee’s stack frame is now completely
cleaned up, and the function a() can restore values from its stack frame to registers and continue
execution [Mat+14].

These processes can be exploited to build continuations and a cactus stack without having
dedicated compiler support. In order to save the state of a stack frame, a continuation has to back
up the stack and the base pointer of the stack frame. If the continuation can ensure that the compiler
generates code to write back all values kept in registers when saving the state of a function instance,
saving rsp and rbp is sufficient to restore the state later on. Since the base pointer of a stack frame
does not change, a continuation can save a copy of it one time, when it is created, and reuse it
over its lifetime. The same7 applies to the stack pointer. The only thing else that has to be saved to
restore the state of a function instance is an instruction pointer to the instruction in the function’s
code, where execution should continue when the continuation is resumed. The saved instruction
pointer has to be updated every time the continuation is saved since a function can be saved and
restored at different points.

Since the compiler already generates code to save the caller saved registers before a function
call, function calls can be used as the basis to implement the save operation of a continuation. The

7The stack pointer changes when arguments are passed to a function, but returns to its original position after the call
returns. It can only change when the function uses variable length arrays and the size of one array changes after the
continuation has been initialized. However, the use of variable size arrays is disadvised.
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continuation only needs to instruct the compiler to also generate code that saves the callee saved
registers before the function call, too. Furthermore, the call instruction pushes the return address
onto the stack. Since it is a pointer to the next instruction following the call instruction, it can be
used as the saved instruction pointer. Additionally, in order to build a cactus stack, a worker needs
to be able to access the local data of an function instance, when resuming a continuation, but use a
different stack to allocate new stack frames when calling or forking functions. Since local variables
are addressed by the base pointer, while pushing arguments and calling functions uses the stack
pointer, this behavior can be created by having a worker, that resumes a continuation, set its base
pointer to the value saved in the continuation, to point to the stack frame, and set its stack pointer
to the top of its stack, to allocate stack frames there.

4.2.2 The fibril keyword

If the size of a stack frame is fixed, the value of rsp does not change over the lifetime of the stack
frame. In that case, it is possible to address local variables and arguments via the stack pointer,
rather than the base pointer, because the relative position between stack pointer and variables does
not change. Therefore, when the compiler knows the exact size of a stack frame and that its size is
fixed, the compiler often decides to omit the base pointer and use the stack pointer to address local
variables and arguments as an optimization. Doing so gives the compiler one more general-purpose
register for holding the values of local variables or the overhead of saving and restoring the value of
rbp can be saved if the function does not use the register.

However, since workers require that local variables of a function that use continuations to fork
are addressed via the base pointer for building the cactus stack, this optimization would prevent
this approach to build a cactus stack. Therefore, the compiler must be instructed not to use this
optimization for functions that fork off other functions. The GNU Compiler Collection (GCC) [Gcc]
offers a function attribute optimize that allows specifying optimizations a function should be
compiled with. These optimizations can then differ from the optimizations used for the rest of the
compilation unit. With this function attribute, the compiler can be instructed to use or not use the
optimization of omitting the base pointer. EMPER uses a preprocessor macro to define the fibril
keyword, as seen in Listing 4.7, that defines the optimize function attribute with the string value
no-omit-frame-pointer. This attribute instructs the compiler to use the frame pointer to address
variables and arguments for the function it is used on. Therefore, the fibril keyword has to be
used for all functions that use continuations to fork off child functions.

1 #define fibril __attribute__((optimize("no-omit-frame-pointer")))

Listing 4.7 – The fibril macro.

Nevertheless, there are cases where the compiler generates code to address local variables via
the stack pointer, despite the use of the fibril keyword. One such example is aligned objects that
are stored as a local variable inside the stack frame. Since a stack frame is not necessarily aligned
properly, the compiler has to generate code that aligns the stack pointer and positions the object
relative to the stack pointer on the stack. Therefore, such objects can not be stored on the stack in
functions that fork.
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4.2.3 The membar() Memory-Barrier

Since the compiler generates code for function calls that only saves the caller saved registers, the
compiler needs to be also instructed to save the callee saved registers when saving the state of a
function instance at a fork. Furthermore, fork needs to be a memory barrier for the compiler, so
that no operations can be reordered over the fork, and all writes are issued before the fork happens.
EMPER uses the membar() macro, shown in Listing 4.8, that functions as a memory barrier for the
compiler. The macro takes a function call as the argument. The inline assembler statement after the
call clobbers the callee saved registers and memory, causing the compiler to assume these registers
will be used, and their values will not be preserved by the statement. Therefore, the compiler has to
create code that saves the registers and restores the values afterward. Since the call is the only other
statement in the scope, the compiler saves the registers at the beginning of the scope, before the call
statement, and restores the values afterward8, resulting in a call that preserves the caller and callee
saved registers. Furthermore, clobbering of memory acts as a read and write memory barrier. It tells
the compiler that the assembler statement will read or write memory locations other than the input,
output, or clobbered registers. To preserve consistency, the compiler has to write back all values
hold in registers to memory. The compiler also has to assume that the values might have changed
after the statement, so if values from such variables are needed, they have to be loaded again from
memory. Effectively, this instructs the compiler to generate a function call that serves as a memory
barrier and saves all registers. A function call with this macro can be used as the basis to implement
continuations and thus fork.

1 #define membar(call) \
2 do { \
3 call; \
4 asm( "nop" : : : "rbx", "r12", "r13", "r14", "r15", "memory" ); \
5 } while (0);

Listing 4.8 – The membar() macro.

4.2.4 The Continuation Class

The Continuation class implements the core functionality for continuations of a stack frame that
can stop execution and save the state of a function and restore it at a later point and resume execution
at the same position in the function. Listing 4.9 shows the code of this class, used to implement fork
and join in the Fibril class. It can also be used to implement functionality similar to the setjmp()
and longjmp() functions of the C standard library.

8The code for this macro was copied from the source files of Fibril [YMC16]. It provides the described behavior. However,
it seems to be unspecified whether registers are saved before the function call or just before the asm statement (after the
call) [Gcc].
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1 class Continuation {
2 void* bp;
3 void* sp;
4 void* ip;
5

6 inline Continuation() {
7 register void* rbp asm("rbp");
8 register void* rsp asm("rsp");
9 bp = rbp;

10 sp = rsp;
11 ip = nullptr;
12 }
13

14 void execute(void* rsp) {
15 asm( "mov %0, %%rsp \n\t"
16 "mov %1, %%rbp \n\t"
17 "jmp *%2 \n\t"
18 : : "r" (rsp), "r" (bp), "r" (ip) : "memory");
19 }
20

21 /* ... */
22 }

Listing 4.9 – The Continuation class.

The class has three fields bp, sp, and ip, which store the saved base pointer, stack pointer
and instruction pointer. The constructor initializes the base and stack pointer with the values of
the current stack frame. By using the register keyword with an inline assembler statement, the
compiler can be instructed to place a variable in a specific register. When the variable is read
without writing it first, the last value of the register can be accessed. Doing this with the rbp and
rsp registers, the base and stack pointer, allows reading the values of the current stack frame and
initializing the respective class members. Since the continuation has to save the stack frame of a
function and not of the constructor itself, it has to be marked as inline, or else the compiler could
decide to make the constructor a dedicated function with its own stack frame. That would initialize
the members with the wrong values.

The execute() function is used to resume the continuation. It loads the base pointer register
rbp and the stack pointer register rsp, before jumping to the position pointed to by the saved
instruction pointer ip. The base pointer is set to the saved value in bp. However, to support building
a cactus stack, the function accepts a value for the stack pointer as the argument. That way, a worker
can pass a pointer to the top of its own stack, rather than the stack pointer saved in the continuation.
If a worker needs to load rsp with the saved value sp, it can pass the value to the function as the
argument.

Since the value of ip has to be a pointer to the instruction where execution should continue, it is
only initialized with the nullptr in the constructor. It must be set to a proper value for each point
in a function where execution should be continued later. Therefore, the Fibril class that uses the
continuation has to set the value for every fork and join.

4.2.5 Building the Cactus Stack

The Fibril class combines the membar() macro with the Continuation class to implement the
fork() and join() methods that can be called by the user and the run() method that is invoked
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by EMPER internally to execute stolen tasks. Listing 4.10 shows the code for the basic fork-join
functionality. Since the constructor calls the constructor of Continuation, that needs to be inlined
in the forking function, Fibril’s constructor also needs to be inlined, as described in the previous
subsection. The fork() function is only a wrapper that uses the membar() macro to call the actual
fork function forkImp(), a C++ lambda expression, in a way that saves all registers and works as a
memory barrier. fork() can be inlined as well, to save one function call and improve performance.
forkImp() first sets the saved instruction pointer in the continuation to the next instruction after the
call. It uses a GCC builtin-function that reads the return address of its stack frame since the return
address points exactly to the instruction following the call in the caller. Therefore, it may not be
inlined and uses the function attribute noinline. This enables a potential thief of the continuation
to resume the function instance at the correct position following the fork. To enable a thief to steal
the continuation, the Fibril object has to be scheduled. The scheduler is invoked and pushes a
pointer to the object to the bottom of the executing worker’s work-stealing dequeue, where it can
be stolen by other workers. After that, the function that should be forked off, func, which is passed
to the forkImp() function as an argument, can be executed.

When func returns, the executing worker has to try to pop the Fibril object off the bottom of
its work-stealing dequeue to check whether it was stolen by another worker. If it was not stolen
and the worker succeeds, it can return from the forkImp() function and thereby resume execution
of the function instance that invoked the fork. However, if the object was stolen and the attempt
to pop it failed, the worker cannot return, since another worker already resumed execution at the
point where the return address points to. The worker then has to try to resume execution by calling
resume() method of the scheduler with the Fibril object as the argument. The scheduler then tries
to resume the object by invoking its tryResume() method, which will be explained in Section 4.3
and Section 4.4.
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1 class Fibril {
2 Continuation continuation;
3

4 inilne Fibril() : continuation() { /* ... */ }
5

6 void run() {
7 continuation.execute(worker.tos);
8 }
9

10 inline void fork(/* func, ... */) {
11 auto forkImp = [](Fibril *fr, /* func, ... */) __attribute__((noinline)) {
12 fr->continuation.ip = __builtin_return_address();
13 scheduler.push(fr);
14 func(/* ... */);
15 if (! scheduler.pop())
16 scheduler.resume(fr);
17 };
18

19 membar(forkImp(this, /* func, ... */ ));
20 }
21

22 void join() {
23 if (/* this was not stolen */)
24 return;
25

26 auto joinImp = [](Fibril *fr) __attribute__((noinline)) {
27 fr->continuation.ip = __builtin_return_address();
28 scheduler.resume(fr);
29 };
30

31 membar(joinImp(this));
32 }
33

34 /* ... */
35 }

Listing 4.10 – The basic fork() and join() implementation of the Fibril class.

The run() method is invoked by a thief that stole the Fibril object. It calls the execute()
method of the continuation with a pointer to the top of the thief’s stack to resume the execution of
the stolen task. The worker’s stack pointer register rsp is set to the top of its own stack and its base
pointer register rbp is set to the value saved in the continuation, the base of the stack frame on the
victim’s stack.

The join() method serves as a wrapper function similar to fork(), that uses the membar()
macro to call joinImp(). If the continuation was stolen at a previous fork in the caller function
instance, then joinImp() has to synchronize with child tasks and wait for all child tasks to finish.
In order to do so, it has to try to resume the execution in the same way forkImp() does when the
Fibril object was stolen. If it was not stolen, then there cannot be any child task, and thus, join
can return immediately.
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1 fibril int foo()
2 {
3 int i;
4 Fibril frame;
5 frame.fork(a);
6 frame.fork(b);
7 c();
8 frame.join();
9 return;

10 }

Listing 4.11 – The example function foo().

To illustrate how the class works, Listing 4.11 shows a simple function that uses fork and join,
and Figure 4.2 shows the corresponding stack layouts. The foo() function uses the fibril keyword
to ensure the generated code uses the base pointer to address local variables. Initially the worker
W1 is executing the function. It has the stack frame of the function on its stack. The dummy variable
i and the Fibril object frame are stored inside the stack frame. The initial state is identical to a
normal, linear stack. The base pointer rbp of W1 points to the base of the stack frame and the stack
pointer rsp, to the end. When W1 starts to execute the fork of function a(), it first saves the values
held in registers onto the stack. Then the actual fork function, forkImp(), is called, and its stack
frame is allocated. After the continuation is pushed into the worker’s work-stealing dequeue, the
function calls a().

When worker W2 steals the continuation and resumes it, the base pointer register of W2 rbp
is set to point to the stack frame of the function instance of foo() on the stack of W1. The stack
pointer of W2 points to the top of its stack, leaving some space as linkage region, as explained in
Section 4.7. W2 can then start executing foo() at the first instruction after the fork of a(). Since the
next statement is the fork of function b(), W2 has to do the same steps as W1 did before. First, W2

saves its registers, because of the membar() call, then the stack frame of the forkImp() is allocated
on the stack of W2. The remaining steps are identical to what W1 did, updating the rip of the
continuation, pushing the Fibril object to W2’s work-stealing dequeue, and executing function b().
Both forks use the same continuation but have to update it and push it into different work-stealing
dequeues.

The continuation can now be stolen again. In this example, the worker W3 steals the continuation
from W2 and executes it. Again, W3’s base pointer rbp is set to point to the stack frame of foo()
on W1’s stack, while the stack pointer of W3 rsp, points to its own stack. W3 will then call function
c() normally, allocating the stack frame on its own stack. Function foo() has now three workers
executing child tasks.

4.3 Bookkeeping of Child-Tasks

Continuations save the state of a function instance. Therefore, a function instance may not return
before all child tasks have finished. This also conforms to strict fork-join parallelism. To prevent a
function instance from returning premature, it has to synchronize with its child tasks by using a join
statement after forking, before a return statement. Since EMPER uses a greedy scheduler, Fibril
objects have to keep track of child tasks, so that the last worker to finish its work can resume the
continuation at a synchronization point.
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Figure 4.2 – Example of a cactus stack.
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1 class Fibril {
2 Continuation continuation;
3 int activeChildren = 0;
4

5 void run() {
6 if (activeChildren == 0)
7 activeChildren = 2;
8 else
9 activeChildren++;

10 continuation.execute(worker.tos);
11 }
12

13 void join() {
14 if (activeChildren == 0)
15 return;
16 /* ... */
17 }
18

19 void tryResume() {
20 if (--activeChildren > 0) {
21 return; /* start work-stealing */
22 }
23 /* resume continuation */
24 }
25

26 /* ... */
27 }

Listing 4.12 – The active children counter of the Fibril class.

Listing 4.12 shows the implementation of Fibril with a counter variable, activeChildren,
of type int for active children. Initially, the counter is zero. When a task is stolen and the run()
method is invoked, the counter is incremented before the continuation is executed. If the counter
is still zero, the thief is the first to steal the Fibril object. In this case, the thief has to increment
the counter by two, one time for itself and one time for the victim, since there are two workers
executing. Otherwise, the thief only increments the counter by one, accounting for itself.

When a worker encounters a join, it first checks if the counter is still zero. In that case, no
stealing happened, and the worker can continue executing. However, if the counter shows a value
greater than zero, at least one steal occurred, and the worker has to try to resume the continuation.
Similar to when a worker notices that the continuation was stolen at a fork, it invokes the scheduler
that tries to resume the continuation by calling the tryRsume() method. This method decrements
the active children counter by one. Then it checks if the counter has become zero again. If the
counter is zero, the worker was the last to finish its work and can, therefore, resume the continuation.
Otherwise, if the counter is still greater than zero, there are still active children. In that case the
method returns, and the scheduler starts work-stealing to find a new task for the worker.

4.4 Context Management

In Section 3.3.4, the basics of how this implementation has to handle stacks or contexts, as they are
referred to in EMPER, are explained. Listing 4.13 shows the corresponding implementation details.
The Fibril class requires a reference to the context the saved stack frame is located on. Therefore,
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in the constructor, the context reference gets initialized with the pointer to the current context of
the executing worker. In the tryResuem() method, the switching of workers’ contexts can happen.
If a worker was executing the last active task and the children counter reaches zero, the worker
has to check whether its current context is the one the stack frame is located on. If that is the case,
the worker can resume the suspended stack frame immediately. However, if the worker’s context is
not the context the stack frame is located on, the worker has to free its current context by handing
it back to the context manager and make the context with the suspended frame its new context.
That is necessary, so workers always maintain a correct reference to their working context. In order
to resume the continuation, the worker invokes the execute() method of the continuation and
passes the saved stack pointer rsp as an argument. After the method has finished, the base and
stack pointer point to the same stack frame, and the worker can continue to execute the function
instance normally. The branching of the cactus stack for this function instance and stack frame is
thereby reversed.

Otherwise, if the worker is not the last and cannot resume the continuation, it has to check
whether its current context is the stack the suspended frame is located on, to see if it has to switch
contexts. If the worker’s context is not the context the suspended frame is located on, the worker has
nothing to do and can return from the method immediately. If the contexts are the same, the worker
has to switch to a new context, since another worker will resume the context later and make it its
context. Furthermore, it has to unmap the unused pages from the next page boundary below the
suspended stack frame, pointed to by the saved stack pointer of the continuation, to the bottom end
of the stack. In order to do so, the unmap() method of the context manager is called with the stack
to unmap and the stack pointer, saved in the continuation, as arguments. The context manager uses
the madvise() system call with the MADV_FREE flag to instruct the OS to unmap the physical pages,
but keep the mapping in the virtual address space. Fibril [YMC16] used the MADV_DONTNEED flag
that caused the OS to unmap the physical pages immediately, since MADV_FREE was not available,
yet, at the time of publication. The MADV_FREE flag allows the OS to free the physical pages lazily
at a later point if memory is needed elsewhere. This reduces unnecessary un- and remapping and
should improve performance. If a page is accessed again, before it is unmapped, the OS will mark
the page as being in use again and will not free it subsequently. When a page was unmapped by the
OS and is accessed again afterward, a page fault is triggered, and the OS will map a new physical
page to the page frame that was accessed. Finally, after unmapping the unused pages of the context,
the worker allocates a new context to execute stolen tasks from the context manager, before the
method returns to the scheduler.
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1 class Fibril {
2 Continuation continuation;
3 int activeChildren = 0;
4 void* context;
5

6 inilne Fibril() : continuation() {
7 context = worker.context;
8 }
9

10 void tryResume() {
11 if (--activeChildren > 0) {
12 if (context == worker.context) {
13 contextManager.unmap(worker.context, continuation.rsp);
14 worker.context = contextManager.alloc();
15 }
16 return; /* start work-stealing */
17 }
18 if (context != worker.context) {
19 contextManager.free(worker.context);
20 worker.context = context;
21 }
22 continuation.execute(continuation.rsp); /* resume */
23 }
24

25 /* ... */
26 }

Listing 4.13 – The context management of the Fibril class.

In the examples of Listing 4.11 and Figure 4.2, there can be multiple different scenarios of how
the stack layouts change, depending on which steals happen and which worker returns last. If
the continuation was never stolen from worker W1, it would return from the fork of function a()
like from a normal function call and could then fork off b() and call c() itself, and no parallelism
would occur. If the continuation is only stolen once by W2, there are different outcomes, depending
on which worker finishes its work first. If W2 returns from the fork of b(), and the continuation
was not stolen from W2, it will call c() and eventually return and call the join() method of the
Fibril object. When W1 is still executing a(), W2 cannot resume the continuation. Since the now
suspended stack frame of foo() is not located on W2’s context, the worker can start work-stealing
and execute the next stolen task on its context. Figure 4.3 shows how the stack layouts change
when worker W1 returns from the fork of a() before W2 reaches the join. First, W1 returns from a()
and finds the continuation was stolen and calls the scheduler, which calls the tryResume() method.
Since W2 has not decremented the counter of active children, W1 cannot resume the continuation
and has to start work-stealing. However, since the suspended task is located on W1’s context, W1’s
context is the same context as pointed to by the Fibril object, W1 has to unmap the unused pages
on the stack and allocate a new context to execute stolen tasks on. When W2 eventually reaches
the join, it will be able to decrement the counter to zero and resume the suspended stack frame. It
will unmap its current context and set it to the context with the suspended frame and then resume
execution by setting its stack and frame pointer to the stack frame of foo().

There are other possible scenarios. Worker W1 could steal the continuation back from W2 and
execute function c(). Depending on which worker finishes last, W1 could switch back to its initial
context. Otherwise, W2 will switch to the context with the suspended frame, as explained above.
Continuing from the final situation of Figure 4.2 with three workers, there are even more potential
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outcomes, depending on the order in which the workers finish their tasks. In every case, the last
worker to finish will resume foo() and possibly change the worker’s context.

4.5 Scheduler Context

The previous sections explained the main functionality of the Fibril class. However, there is an
important topic that was left out so far: Race conditions and synchronization. This section will
explain race conditions resulting from the context management, introduced in Section 4.4, and how
to solve them. The more general, but also more complex, synchronization of data races that occur
in conjunction with shared variables and data structures will be discussed in Section 4.6.

When a worker is executing the tryResume() method, there are two situations where the worker
has to switch its working context. Both context switches form a critical section, whereby two workers
can end up racing for a given context. In both situations, the fundamental problem is that a worker
is still using its context for execution of scheduling and the tryResume() method, while another
worker already switches to the same context, producing collisions on the stack with undefined
behavior. The first situation occurs when a worker has to free its current context in order to switch
to the context of the continuation with the suspended stack frame. If the worker frees its context
while it is still using the context, various things can happen. The context manager could give the
context to another worker, that wants to allocate a new context, and start executing on the context,
while it is still in use, or the context manager could hand it back to the memory allocator, which
could unmap the memory region of the context. In both cases, undefined behavior and crashes
will be the result. The other situation is when a worker has to switch to a new context because the
current context has a suspended stack frame blocking it. The situation occurs when the owner of
a stack is not the last one to finish its work. Then another worker will be the last one, the one to
resume the continuation and switch to the context with the suspended frame. Since the owner of
the stack has already decremented the counter, the resuming worker can switch to the stack as soon
as it finishes its work, this includes the time before the owner of the context has switched to a new
context. Again, possibly resulting in a collision on the stack with undefined behavior.

In both scenarios, the underlying problem is that a worker is making a context available for
another worker or freeing it, while the worker is still using the stack, having the stack frames of
function instances in execution located on the stack. A simple solution to this problem is to move to
neutral ground before executing the critical section. In the case of EMPER, that means splitting the
address space into an application space and a scheduler space. The application space consists of the
working contexts that are used to allocate stack frames for application code that uses EMPER, while
the scheduler space consists of the workers’ stacks, the stacks of the pthreads that serve as workers.
At a fork or join, before the worker invokes the scheduler and the tryResume() method, it has to
switch back to the scheduler space and when a worker resumes a continuation at a join or after
stealing it, the worker switches to the application space. The switch to the application space happens
automatically since the worker sets its base and stack pointer to application contexts. In order to
switch back to the scheduler space, the Continuation class is used. It implements the setJmp()
and longJmp() methods, as shown in Listing 4.14. At the beginning of the workers’ main routine,
before the worker starts work-stealing and executing tasks, a Continuation object is instanced,
and the setJmp() method is invoked to create an entry point. The scheduler’s resume() method
that is called by fork, if the continuation was stolen, and by join, as shown in Listing 4.10, calls the
longJmp() method of the worker’s continuation to switch back to the worker’s main routine, on the
worker’s stack. The worker then tries to resume the suspended Fibril object by calling the object’s
tryResume() method. In case the resume is successful, the worker switches back to the application
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Figure 4.3 – Example of unmapping of unused stack pages.
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space, as explained above. Otherwise, the method returns, and the worker invokes the scheduler to
start work-stealing.

1 class Continuation {
2 /* ... */
3

4 __attribute__(noinline)
5 setIp() {
6 ip = __builtin_return_address();
7 }
8

9 void setJmp() {
10 membar(setIp());
11 }
12

13 void longJmp() {
14 execute(sp);
15 }
16 }

Listing 4.14 – The setjmp() and longjmp() implementation.

4.6 Synchronization

The counter of active children is a shared variable and can be accessed by multiple workers simulta-
neously. Therefore, its access needs to be synchronized to avoid a data race situation. Furthermore,
stealing or popping from a work-stealing dequeue is a critical section as well. The dequeue itself
gets accessed in parallel and needs to be synchronized internally. However, since EMPER already
offers a locked and a lock- and wait-free implementation, the synchronization of work-stealing
dequeues is not within the scope of this thesis. But, the Fibril class uses stealing and popping
of tasks as a signaling mechanism between workers, since the two actions are mutually exclusive.
As shown in Listing 4.10, when a worker returns from a forked off function, it tries to pop the
previously pushed continuation from its work-stealing dequeue. If it finds the task was stolen, the
worker will try to resume it and thereby decrement the counter of active children. On the other
hand, the thief that stole the task will run the task, and by doing so, increment the counter. Since
the counter represents the level of parallelism and stealing increases parallelism, while trying to
resume decrements it, the counter has to be in sync with steals and resume attempts. If the counter
is out of sync, when a steal happens, there is a race for the counter variable. If the victim notices the
steal and decrements and uses the value of the counter to decide whether to resume the function
instance, before the thief has incremented the counter after the steal, the value used by the victim
will be too low, potentially leading the victim to erroneously resuming the continuation. Therefore,
stealing a task and incrementing the counter of active children form a critical section and need to
appear as an atomic action to other workers.

Furthermore, while a worker unmaps the unused pages of a blocked context with a suspended
frame, the context may not be resumed by another worker simultaneously. Otherwise, it is possible
that pages get unmapped after the resuming worker has already allocated a new stack frame,
resulting in erroneous and undefined behavior.
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4.6.1 Lock-Based

The lock-based way of synchronization is relatively straight forward. Listing 4.15 shows where a
lock must be used to prevent race conditions in the Fibril class. Any mutual exclusion locking
mechanism can be used. Here, a mutex from the standard library is used. The counter of active
children is protected by the mutex. In order to synchronize the critical section formed by stealing
and incrementing the counter of active children, the thief has to lock the Fibril object inside the
atomic steal operation of the work-stealing dequeue. Then when the run() method is executed,
the counter can be incremented safely. The object can then be unlocked before the stolen task is
executed. That way, the critical section appears as an atomic operation to other workers.

The tryResume() method has to protect the counter from parallel access and also ensure that
if unused pages of a blocked context get unmapped, the context can not be resumed, before the
operation is finished. In order to synchronize the operations, the lock is acquired before the counter
is accessed, and released after the unmapping, if the worker cannot resume the context, or after
decrementing the counter, if the worker can resume the context.

1 class Fibril {
2 Continuation continuation;
3 int activeChildren = 0;
4 void* context;
5 std::mutex mutex;
6

7 void tryResume() {
8 mutex.lock();
9 if (--activeChildren > 0) {

10 if (context == worker.context) {
11 contextManager.unmap(worker.context, continuation.rsp);
12 worker.context = contextManager.alloc();
13 }
14 mutex.unlock();
15 return; /* start work-stealing */
16 }
17 mutex.unlock();
18 if (context != worker.context) {
19 contextManager.free(worker.context);
20 worker.context = context;
21 }
22 continuation.execute(continuation.rsp); /* resume */
23 }
24

25 void run() {
26 if (activeChildren == 0)
27 activeChildren = 2;
28 else
29 activeChildren++;
30 mutex.unlock();
31 continuation.execute(worker.tos);
32 }
33

34 /* ... */
35 }

Listing 4.15 – The lock-based synchronization of the Fibril class.
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4.6.2 Lock- and Wait-Free Algorithm

For the lock- and wait-free implementation of the synchronization of the critical sections formed
by stealing and incrementing the counter of active children, and of preventing the resumption of
a context while parts of it get unmapped, are separated. Listing 4.16 shows the corresponding
code. The counter of active children itself becomes an atomic variable that ensures that basic
operations like increment, decrement, subtraction, load and store are executed atomically. The
counter gets initialized with the value INT_MAX the biggest positive number that fits in a variable
of type int to account for every possible steal that could happen9. The variable gets decremented
in the tryResume() method, similar to the basic implementation without synchronization. Since
the decrement is an atomic operation, no further action is required. However, the counter cannot
reach zero, because the assumption is that much less stealing and decrementing than INT_MAX will
occur. Therefore, a second counter steals of type int is used to keep track of the number of steals
that happen. This counter is initialized with zero and is incremented in the run() method. Since
there is always only one worker executing a function instance at any point in time, although over
the duration of a function instance’s lifetime it can be resumed and executed by multiple workers,
the run() method is also only executed by one worker at a time and acts as a serialized section.
Thus there is no race condition when incrementing the counter. When a worker reaches the join()
method and the steal counter is greater than zero, that is the continuation was stolen at least once,
the worker has to try to resume the continuation. However, if the worker would only execute the
tryResume() method and decrement the counter, it would not reach zero, even if the child task
was the last to join. Therefore, the counter of steals and the counter of active children have to be
synchronized, to obtain the actual number of active children, before the worker tries to resume
the continuation. Since there cannot happen more steals at this point, it is safe to set the active
children counter to its correct value. The active children counter served as a counter for finished
child tasks so far since it was decremented for every worker that tried to resume the continuation.
To calculate the correct value, it has to be set to the number of steals, the number of active children,
minus the number of already finished child tasks. To accomplish that, its initial value, INT_MAX, has
to be subtracted from it, and the number of steals, plus one for the initial worker, has to be added to
it. Since two operations would expose an invalid intermediate state, it is done in one subtraction.
First, the number of steals gets subtracted from INT_MAX. The result represents the number of steals
that was accounted for but did not happen. Then, the result is subtracted from the active children
counter in one atomic operation. After that, the counter shows the correct value and will eventually
reach zero when a worker tries to resume the continuation.

In order to Synchronize the resumption of a context and the unmapping of parts of its context,
an additional atomic variable resumable of type bool is required. This variable indicates if the
continuation is resumable and is used to communicate between the worker that unmaps the context
and the worker that wants to resume it. The initial value of the variable is false. When a worker has
to unmap pages of its context and switch to a new one, it sets the value to true, after finishing the
unmap operation. The worker that is the last to finish its work and has to resume the continuation
has to read the value of the variable. If the value is already true, the unmapping has finished, and
the worker can proceed to resume the continuation. However, if the value is still false, it means the
unmapping is still in progress, and the worker cannot resume the context. If the worker had to wait,
the algorithm would not be wait-free. Therefore, the worker will not wait, but start work-stealing to
find other work, instead. In this case, the unmapping worker has to resume the continuation itself,

9In practice a 64-bit wide unsigned integer variable can be used. It is safe to assume that less than 264 steals will happen.
Furthermore, if that many steals could happen, the counter would be to small for every implementation, regardless of the
type of synchronization.
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after finishing the operation. Since this needs to be signaled to the worker, the variable is not just
read, but instead, the value of the variable gets exchanged atomically. Thus, the unmapping worker
also reads the value when setting it to true, and the worker that tries to resume the continuation
also writes a value when checking the variable. When the resuming worker reads the variable, it sets
its value to true itself. The unmapping worker will see that the value is not false anymore when
setting the variable to true, which indicates that the resuming worker already checked the variable
and started work-stealing. In this case, the unmapping worker has to resume the continuation itself.

1 class Fibril {
2 Continuation continuation;
3 void* context;
4 std::atomic<bool> resumable = false;
5 std::atomic<int> activeChildren = INT_MAX;
6 int steals = 0;
7

8 void tryResume() {
9 if (--activeChildren > 0) {

10 if (context == worker.context) {
11 contextManager.unmap(worker.context, continuation.rsp);
12 if (resumable.exchange(true) == true)
13 continuation.execute(continuation.rsp); /* resume */
14 worker.context = contextManager.alloc();
15 }
16 return; /* start work-stealing */
17 }
18 if (context != worker.context) {
19 if (resumable.exchange(true) == false)
20 return; /* start work-stealing */
21 contextManager.free(worker.context);
22 worker.context = context;
23 }
24 continuation.execute(continuation.rsp); /* resume */
25 }
26

27 void run() {
28 steals++;
29 continuation.execute(worker.tos);
30 }
31

32 void join() {
33 if (steals == 0)
34 return;
35

36 /* auto forkImp = ... */
37

38 activeChildren.fetch_sub(INT_MAX - (steals + 1));
39 membar(joinImp(this));
40 resumable = false;
41 steals = 0;
42 }
43

44 /* ... */
45 }

Listing 4.16 – The wait-free synchronization of the Fibril class.
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4.7 Linking Regions

When a function is forked off, arguments have to be passed to the function. Therefore, the forkImp()
function has to take the arguments of a function that is forked off and pass them on to the function
when calling it. The forkImp() function also receives two arguments itself, a pointer to the Fibril
object and a function pointer to the function to be forked off. The first six arguments are passed
via registers, whereas further arguments have to be passed on the stack. The area on the stack
where arguments are located is referred to as linking region. Figure 4.4 illustrates how the stack
layout changes when a function takes more than six arguments and linking regions are introduced.
It is a modified version of Figure 4.2 where function a() takes seven arguments and function b()
takes eight arguments. When worker W1 calls the forkImp() function to fork off function a(),
it first pushes the memory arguments onto the stack in reverse order. The first argument to the
forkImp() function is the pointer to the Fibril object. The second argument is the function pointer
to a(). The remaining arguments are the arguments for function a(). Therefore, W1 has to call the
forkImp() function with a total of nine arguments, whereof the last three are passed on the stack.
After moving the arguments to the registers and pushing them on the stack, the forkImp() function
is invoked, and the stack frame is allocated, similar to the case without stack arguments. However,
when the function returns, the caller function has to clean up the stack and pop the arguments.
The forkImp() function itself has to forward the arguments to function a(). In order to do so, the
arguments have to be moved to the correct registers and copied on the stack. Since the first two
arguments for forkImp() are not passed to a(), there is only one stack argument out of the seven.
After the first six arguments are in the correct registers and the last argument, forkImp() arg9 of
the forkImp() invocation, is pushed onto the stack as a() arg7, function a() is called, and the
stack frame is allocated.

W1

ret

%rbp

foo()

forkImp() arg9

forkImp() arg8

forkImp() arg7

%rbp1

%rsp1

W1

ret

%rbp

foo()

forkImp() arg9

forkImp() arg8

forkImp() arg7

ret foo()

%rbp foo()

forkImp()

%rbp1

%rsp1

W1

ret

%rbp

foo()

forkImp() arg9

forkImp() arg8

forkImp() arg7

ret foo()

%rbp foo()

forkImp()

a() arg7

ret forkImp()

%rbp forkImp()

a()

%rbp1

%rsp1

Figure 4.4 – Example of argument passing.

42



4.7 Linking Regions

When a worker steals a continuation and executes it, it continues at the instruction directly
following the call of the forkImp() function. However, the first instructions after a function
with stack arguments will pop the stack arguments. That means the stack pointer rsp will get
incremented. If the thief sets its stack pointer to the very top of its working stack when resuming
the stolen continuation, it will increment the stack pointer, pointing to an area outside the allocated
stack, resulting in undefined behavior and errors. Therefore, the worker has to leave some space
to the top end of the stack and treat it as the linking region, that can then be freed from the stack
when popping arguments. The Fibril class reserves an 128 byte large area as linking region. By
choosing a fixed size, the effective number of arguments, a forked off function may take, is limited
to the six arguments passed in registers plus the number of arguments that fit inside the linking
region10, minus the number of arguments used by the forkImp() function itself.

After stealing the continuation of foo() from worker W1, in Figure 4.4, worker W2, in Figure 4.5,
first frees an area, equivalent to three stack arguments, on its stack. Then, when calling the
forkImp() function itself to fork off function b() that takes eight arguments, it has to push the last
four arguments for b() onto the stack in order to pass them to forkImp(). The remaining steps are
executed analogously to W1 forking off a().

10On x86-64 a stack argument of numeric or pointer type is always 8 byte wide. Thus, 16 arguments fit in an 128 byte
large linking region.

forkImp() arg9

forkImp() arg8

forkImp() arg7

W2

%rsp2

%rbp2

W2

%rsp2

%rbp2

W2

forkImp() arg10

forkImp() arg9

forkImp() arg8

forkImp() arg7

ret foo()

%rbp foo()

forkImp()

%rbp2

%rsp2

Figure 4.5 – Example of the linking region on a thief’s stack.
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5A N A LY S I S

In this chapter, the performance of EMPER’s new lock- and wait-free continuation-stealing tasks
will be evaluated. First, the lock-based version of the continuation-stealing tasks will be compared
against EMPER’s wait-free child-stealing tasks, that existed before the work of this thesis. Then the
wait-free version of the continuation-stealing tasks will be compared against the lock-based version
and then against Fibril [YMC16]. Furthermore, the impact unmapping of stacks has on performance
will be evaluated. Then EMPER’s wait-free continuation-stealing tasks will be compared against
existing runtimes like Fibril, Intel Cilk Plus [Rob13], and TBB [CM08; Suk09]. Finally, suggestions
for future work will be discussed.

For the evaluation, the twelve benchmarks described in Table 5.1 were used. These benchmarks
have been used in previous publications about the cactus stack problem and are adopted from Fibril
and adjusted for C++. The Source Lines of Code (SLOC) were counted using SLOCCount [Whe01].

5.1 General Setup

All benchmarks were run on a Non-Uniform Memory Access (NUMA) system with 4 Intel Xeon
E7-4830 v3 CPUs, running at 2.10 GHz. Each CPU package has its own NUMA-node and 12 cores
with 2-way Simultaneous Multithreading (SMT), giving the system a total of 96 hardware threads.
The total available main memory is 512 GiB. The operating system used on the machine was

Benchmark Input Description SLOC

cholesky 4000/40000 Cholesky factorization 455
fft 226 Fast Fourier transformation 3055
fib 42 Recursive Fibonacci 40
heat 2048× 500 Jaccobi heat diffusion 149
integrate 104 (ε= 10−9) Quadrature adaptive integration 59
knapsack 32 Recursive knapsack 97
lu 4096 LU-decomposition 274
matmul 2048 Matrix multiply 115
nqueens 14 Count ways to place N queens 48
quicksort 108 Parallel quicksort 66
rectmul 4096 Rectangular matrix multiply 291
strassen 4096 Strassen matrix multiply 377

Table 5.1 – Description of the 12 benchmarks.
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5.1 General Setup

Ubuntu Linux 18.04 with kernel version 4.15.0. The compiler used to compile all benchmarks, the
Fibril [YMC16] and Intel Cilk Plus runtimes, and EMPER was GCC 7.4.0. GCC 7.4.0 has native
support for Intel Cilk Plus and could be used to compile the Intel Cilk Plus version of the benchmarks
as well as all the other versions. All code was compiled with optimization level -O2. For the TBB
versions of the benchmarks version 2017 Update 7 of the TBB runtime was used. For the Intel Cilk
Plus and Fibril benchmarks, the latest version available in the respective public repositories were
compiled. The Fibril runtime was adjusted to also use the MADV_FREE flag for madvise(), to allow
for a fair comparison.

All benchmarks were performed using 4 KiB memory pages and 64 KiB stacks. EMPER tries to
pin worker threads to hardware threads by setting affinities towards hardware threads in pthread
attributes. Each experiment was run eleven times in total, where the first run was a warm-up run.
The execution time of the remaining ten runs was measured, and the mean execution time was
recorded. The MADV_FREE flag was used in all experiments, if not specified differently.

5.2 EMPER Performance

Figure 5.1 shows the performance of EMPER’s child-stealing tasks, as present in EMPER before the
work of this thesis, and continuation-stealing tasks on 1–96 threads. The continuation-stealing tasks
use lock-based synchronization for the work-stealing deques and continuations, similar to Fibril.
The continuations are synchronized using a spin-lock, and the work-stealing dequeues use Dijkstra’s
protocol for mutual exclusion similar to Cilk’s dequeues [FLR98], which use a spin-lock internally.
In the following, lock-based synchronization for EMPER and Fibril refers to the described type of
synchronization, if not specified differently.

Since workers are pinned to hardware threads in EMPER, the first 48 workers use separate cores,
and the second 48 workers use the second SMT hardware thread of each core. Because of this, the
scaling changes after 48 workers, since workers do not get assigned exclusively to cores anymore
and have to share hardware resources. In some benchmarks, this only leads to less performance
per additional core. However, in some benchmarks, the speedup stagnates or even decreases. This
is most evident in cholesky, lu, and quicksort, where the performance of 96 workers can drop
down to only 0.56× that of 48 workers.

In many benchmarks continuation-stealing greatly outperforms child-stealing, when using 96
threads. In fib, integrate, knapsack, matmul, and nqueens, continuation-stealing outperforms
child-stealing by 24.8×, 16.4×, 13.3×, 7.9× and 20.2×, respectively. In the remaining benchmarks,
continuation-stealing performs either better or similar to child-stealing, except for strassen, where
the performance drops below that of child-stealing after 48 threads. In summary, while the per-
formance increase can be explained partly by the difference in calling convention when forking,
continuation-stealing is a great improvement over child-stealing.

However, Figure 5.1 shows only the lock-based version of the continuation-stealing tasks. Ideally,
the performance can be increased further by using wait-free synchronization.

5.2.1 Wait-Free Performance

Figure 5.2 shows the performance of wait-free and lock-based synchronized versions of EMPER’s
continuation-stealing tasks on 1–96 threads. The “wait-free” version uses the lock- and wait-free
algorithm of this thesis to synchronize the continuations and EMPER’s wait-free work-stealing
dequeues. The “locked (deque only)” uses wait-free continuations and lock-based dequeues, and
the “locked” version uses lock-based synchronization for both.
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5.2 EMPER Performance
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Figure 5.1 – Comparison between EMPER child-stealing and continuation-stealing tasks.

The X axis are the number of worker threads and the Y axis are the speedups Tserial/TP , where TP is the
execution time using P worker threads.
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5.2 EMPER Performance

The integrate benchmark shows that the wait-free version scales better than the locked versions
from 1–48 threads and worse from 48–96 threads so that the locked versions almost catch up in
performance. A possible explanation for this behavior is that the wait-free version generally utilizes
the computational power of a core better than the locked version and, therefore, scales better from
1–48 cores. The idea of SMT is to allow for better utilization of the hardware resources of a CPU core
by sharing some of the resources of one core among multiple hardware threads. Therefore, when
the second SMT hardware thread of a core is used, the wait-free version, which already utilizes
more than half of the computational resources of that core gets less additional resources than the
first hardware thread offered. The version using spin-locks does not use the hardware as effective
since time is spent waiting for locks. In this case SMT can be effective, and one hardware thread of
a core can use more hardware resources, while the other one is waiting. Thus, resulting in better
performance gains on 48–96 cores, compared to the wait-free version and compensating the worse
scaling of blocking synchronization to some extend.

In the benchmarks shown, the wait-free version outperforms the locked versions by 1.06× in
integrate, by up to 1.22× in quicksort, 1.32× in knapsack and 1.33× in cholesky. In the
benchmarks omitted, the performance is within less than 1.1× the performance of each other. The
version “locked (dequeue only)”, using the wait-free algorithm with locked dequeue, only manages
to outperform the fully locked version by a significant margin in knapsack by 1.22×. In all other
benchmarks, the performance is only slightly better or very similar.

There are two possible explanations why the wait-free algorithm of this thesis alone, seemingly,
does not improve the performance a lot. Firstly, it is possible that the critical section of the continu-
ations, where wait-free synchronization is used, is not under much contention and, thus, has no
big impact on performance in general. Secondly, the locks used to synchronize the work-stealing
dequeues and the serialization caused by them could lead to mostly serialized entering of the critical
sections of continuations and, thereby, reducing the contention of the critical section and reducing
its impact on performance.

The lock-based synchronization of continuations requires that the lock is acquired from within
the locked section of a work-staling dequeue when the continuation is stolen. Therefore, it is not
possible to use wait-free work-stealing dequeues in combination with the lock-based version of the
continuations. As a result, the difference in performance caused by the wait-free algorithm of this
thesis, compared to the locked version, cannot be measured and analyzed directly.

However, the wait-free synchronization of continuations enables the use of wait-free work-
stealing dequeues for scheduling. The fully wait-free version, using both wait-free continuations
and dequeues, is an improvement over the locked versions and significantly outperforms them.

5.2.2 Comparison with Fibril

Figure 5.3 shows a comparison of the performance of EMPER’s wait-free continuation-stealing
tasks and Fibril. Except for the quicksort benchmark, where EMPER outperforms Fibril by 1.28×,
Fibril is faster or performs similar to EMPER. In cholesky, fib, knapsack, and nqueens, Fibril’s
performance is 1.48×, 1.36×, 1.3× and 1.24× that of EMPER, respectively.

However, this outcome can be explained by differences in the runtimes. Fibril is written in C and
is very minimalistic, with all the focus on performance. In contrast, EMPER is written in C++ and
uses C++ standard library functionality and heavy-weight constructs like std::function. EMPER
puts much focus on extensibility and maintainability, besides performance. Furthermore, EMPER
has additional functionality like child-stealing tasks and supports multiple scheduling strategies.
Despite these differences, EMPER’s performance comes close to that of Fibril.
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5.2 EMPER Performance
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Figure 5.2 – Comparison of synchronization types in EMPER.

The X axis are the number of worker threads and the Y axis are the speedups Tserial/TP , where TP is the
execution time using P worker threads.

Furthermore, the lock- and wait-free algorithm for the synchronization of continuations, pre-
sented by this thesis, and the wait-free work-stealing dequeues, as used in EMPER, can be imple-
mented in Fibril to improve its performance further. Section 5.3 compares the performance of several
runtimes, including a version of Fibril that employs the wait-free approach of this thesis.

5.2.3 Impact of madvise()

Figure 5.4 shows a comparison of EMPER’s wait-free continuation-stealing tasks using madvise()
with MADV_FREE, MADV_DONTNEED, or no madvise(). Yang and Mellor-Crummey [YMC16] stated
that the overhead of unmapping unused stack pages and the thereby increased amount page faults, is
negligible. However, some of the experiments of this thesis show differing results, where performance
is decreased notably.

In cholesky, heat, knapsack and lu, using the MADV_FREE flag instead of MADV_DONTNEED
improved the performance by 1.7×, 1.18×, 1.46× and 1.27×, respectively. Forgoing madvise()
improved the performance in these benchmarks further by 2.52×, 1.23×, 1.59× and 1.37×, respec-
tively, compared to the version with MADV_FREE. In the remaining benchmarks, all three versions
perform nearly identically.

It is difficult to find the exact reasons for the drop in performance of these benchmarks, since
the amount of steal and unmap operations, and page faults, shown in Figure 5.5 do not indicate
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5.2 EMPER Performance
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Figure 5.3 – Comparsion between EMPER and Fibril.

The X axis are the number of worker threads and the Y axis are the speedups Tserial/TP , where TP is the
execution time using P worker threads.

one single cause. Generally, the unmap operation itself introduces additional time spend executing
madvise(). In the case of cholesky, the amount of unmaps is the highest of all benchmarks. For
some benchmarks, the amount of page faults increases significantly. However, in some benchmarks,
it decreases. Furthermore, unmaps can lower the parallelism of an application. If a worker spends
time unmapping pages, delaying the resumption of a task, in a case where otherwise the task would
be continued and would create a new task, and where no other work is available, workers have to
stall and wait for new tasks to be created. This also applies to page faults delaying task creation.
The amount of steals is lower in all experiments using madvise(), compared to those without.

Unmapping unused stack pages can decrease performance significantly. Reducing the amount of
unmaps could prevent this and further improve the performance of a runtime using this cactus stack
implementation, in some cases. However, further study of this matter is might be.

5.3 Comparison of Runtimes

Figure 5.6 shows a comparison of the performance of EMPER, Fibril, Cilk Plus, and TBB on 1–
96 threads. EMPER uses wait-free continuation-stealing tasks. Fibril is shown in two variations,
using wait-free and lock-based synchronization. “Fibril” is the original version using lock-based
synchronization. “Fibril (wait-free)” is altered to use the wait-free algorithm of this thesis to
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5.3 Comparison of Runtimes
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5.3 Comparison of Runtimes

synchronize its continuations and EMPER’s wait-free work-stealing dequeues for the scheduler. In
both versions, the memory manager for stacks uses a global pool of stacks that is synchronized with
a lock, making it not fully wait-free.

EMPER outperforms Cilk Plus and TBB in most benchmarks. In fib, integrate, matmul,
nqueens, and quicksort, EMPER’s performance is 1.61×, 1.6×, 1.6×, 1.54× and 1.25× that of
Cilk Plus and 9.27×, 9.26×, 4.8×,2.54× and 3.78× that of TBB, respectively. Additionally, EMPER
outperforms TBB in knapsack by 3.68×. However, in cholesky and lu, EMPER’s performance
drops down to 0.52× and 0.81× that of Cilk Plus, and in heat and strassen, to 0.83× and 0.8×
that of Cilk Plus, and 0.78× and 0.88× that of TBB, respectively.

Fibril performs worse than Cilk Plus in cholesky, heat, and lu, three of the four benchmarks
where madvise() has the most significant impact on performance. Cilk Plus does not unmap stacks,
indicating that both EMPER and Fibril could potentially outperform Cilk Plus in these benchmarks,
if the negative effect, unmapping stacks has on the performance, could be reduced.

The wait-free version of Fibril performs very similarly to the original Fibril in most experiments,
using 96 worker threads, except for integrate, where the wait-free version outperforms the lock-
based version by 1.23×. In knapsack, the wait-free version performs better on 48 threads than
the locked version on 96 threads by 1.21× but drops down to only 1.05× the performance on 96
threads. That shows that wait-free synchronization can improve performance, notably. Since Fibril
uses a global pool of stacks that uses lock-based synchronization even in the wait-free version of
Fibril, there might be room for further improvement.

5.4 Future Work

The implementation and evaluation showed that there is room for further improvement of per-
formance, but also usability. Adding dedicated compiler support, similar to Cilk Plus, could have
multiple advantages. Firstly, the compiler could allocate a Fibril object automatically and pass it
to the fork and join methods. Additionally, the compiler could enforce that variables in the stack
frame are addressed using the base pointer and warn or abort compilation if it is not possible for
some reason. This could make the use of fork and join easier and more robust. Secondly, this would
allow compiler-based optimizations, as described by Schardl, Moses, and Leiserson [SML17], further
improving performance in some cases. Moreover, the overhead of the calling convention of fork and
join could be reduced. Fibril and EMPER use a function call to save the state of a stack frame and
the position in code, where execution should continue upon resumption. However, this entails an
additional function call and copying or moving of function arguments. A compiler could produce
more efficient code that reduces some of these overheads while maintaining interoperability.

EMPER and Fibril use a memory manager for stacks, to reduce allocations. These memory
managers use small private buffers for stacks per worker. Fibril uses an additional global pool to
balance between workers. However, Fibril uses lock-based synchronization for the pool. This lock
could become a global bottleneck when under high contention. A wait-free implementation could
potentially improve performance.

On systems with multiple NUMA-nodes, a NUMA-aware runtime could further improve perfor-
mance by reducing access to data that is not local to a NUMA-node. A randomized work-stealing
scheduler that favors stealing from workers in the same NUMA-node could reduce the migration of
tasks across nodes. A memory manager for stacks that uses a global pool per NUMA-node could
reduce the migration of stacks.
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5.4 Future Work
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Figure 5.6 – Comparsion of micro-parallelism runtimes.

The X axis are the number of worker threads and the Y axis are the speedups Tserial/TP , where TP is the
execution time using P worker threads.
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5.4 Future Work

Finally, since madvise() can reduce performance in some cases, reducing the amount of un-
maps could stabilize performance. However, further research could be needed to determine when
unmapping is useful and how to decide efficiently at runtime, whether to unmap stacks or not.
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6C O N C LU S I O N

In this thesis, a fully lock- and wait-free implementation of continuation-stealing tasks and efficient
cactus stack were presented. Continuation-stealing is a way to implement lazy task creation, which
reduces the overhead resulting from the creation and bookkeeping of tasks, compared to child-
stealing. The results showed that continuation-stealing greatly out-performs child-stealing in most
cases. Wait-free synchronization of critical sections can improve performance compared to lock-based
synchronization. This thesis presented a wait-free algorithm for the synchronization of continuations
that allows the usage of wait-free work-stealing dequeues in combination with continuation-stealing.
The results showed that the wait-free approach improved scalability. Furthermore, the wait-free
approach of this thesis could be employed in Fibril [YMC16] and further improved its performance,
as shown in Figure 6.1. Generally, wait-free synchronization scales better over many cores, but
SMT compensates for the worse scaling of locks to some extend. However, in some cases the use of
SMT results in a reduction of performance. That appears to be linked to the use of madvise() to
unmap unused stack pages, in some cases. That partly contradicts the statement of Yang and Mellor-
Crummey [YMC16] that the unmapping of stack pages has a negligible impact on performance.

Fork-join microparallelism runtimes have more room for improvement. Reducing the amount
of unmap operations could stabilize performance in some applications. NUMA-awareness could
reduce the migration of tasks and stacks on NUMA-systems. A wait-free memory manager for stacks
with a shared pool could reduce allocations of stacks by balancing them among workers. Dedicated
compiler support, similar to Intel Cilk Plus [Rob13], could be used to improve usability and further
improve performance by allowing better compiler optimization and an improved parallel calling
convention.
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6 Conclusion
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The X axis are the number of worker threads and the Y axis are the speedups Tserial/TP , where TP is the
execution time using P worker threads.
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L I S T O F A C R O N Y M S

PC Personal Computer

OS Operating System

EMPER Extensible Micro-Parallelism Experimentation Runtime
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ISA Instruction Set Architecture

ABI Architecture Binary Interface
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