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A B S T R A C T

Since multicore platforms are becoming more common for real-time systems, multicore real-time
scheduling algorithms become more relevant. For a more efficient use of the additional processing
capacity of multiple cores, many of these algorithms allow tasks to migrate between cores, which
improves the schedulability of task systems, but comes at the cost of additional migration overhead.
One possible approach to reduce this overhead is the restriction of migration to predefined migration
points that are known to be beneficial. For semipartitioned scheduling algorithms, an approach
exists that identifies a set of potential migration points at which migrating tasks can be split statically,
so that at run time, each job of the task migrates at this point. This has the disadvantage that it is
impossible to avoid task migration, even if the actual run times of the current job would otherwise
allow the job to finish on its current core.

This thesis presents a solution for this problem by introducing dynamic migration decisions.
Instead of using a statically selected point, an algorithm for dynamic migration decisions tries to
choose the latest possible migration point out of the predefined set, depending on the run-time
behaviour of the current job. In order to use as much run-time information as possible, the presented
algorithms use the concept of evaluation points, which are defined as the latest possible points at
which migration decisions can be made. For each migrating job, an evaluation point is initially set
and repeatedly recalculated, until migration decisions can no longer be delayed and a migration point
is selected. From this approach, three algorithms are derived, which differ in the way evaluation
points are defined. The algorithms presented in this thesis define evaluation points as points in code,
points in execution time, and a combination of both, respectively.

All presented algorithms can be combined with any semipartitioned scheduling algorithm. It is
shown that dynamic migration decisions do not cause any deadline misses in any task set, if the task
set is schedulable with fixed migration points. An analysis of the additional required operations
shows, that both the number of evaluation points, and the required effort for each evaluation point
are at most logarithmic for all algorithms in the average case. Since the required effort decreases
with increasing run times, the static assignment of split tasks to cores needs to consider only a
constant overhead for each part of a split task.

All presented algorithms have been implemented on a Raspberry Pi v2 model B, based on a
FreeRTOS port. Time measurements of this implementation indicate, that the overhead for dynamic
migration decisions is unlikely to impact the schedulability of a given task system. While dynamic
migration decisions make it possible to avoid migration if the current run times allow it, the measured
response times show no significant adverse impact of the additional overhead of the presented
algorithms.
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KU R Z FA S S U N G

Da Echtzeitsysteme immer häufiger Mehrkernplattformen verwenden, werden Echtzeit-Schedulin-
galgorithmen für mehrere Kerne immer relevanter. Um die zusätzliche Kapazität mehrerer Kerne
effizienter zu nutzen, erlauben viele dieser Algorithmen Tasks, zwischen Kernen zu migrieren, was
die Planbarkeit verbessert, aber zu zusäzlichen Migrationsoverheads führt. Eine möglicher Ansatz
zur Verminderung dieses Overheads ist die Einschränkung von Migration auf als vorteilhaft bekannte,
vordefinierte Migrationspunkte. Für semipartitionierte Schedulingalgorithmen existiert ein Ansatz,
der eine Menge potentieller Migrationspunkte definiert, an denen migrierende Tasks statisch geteilt
werden können, sodass jeder Job dieses Tasks zur Laufzeit an diesem Punkt migriert. Das hat den
Nachteil, dass Taskmigration nicht vermieden werden kann, selbst wenn die tatsächliche Laufzeit
des aktuellen Jobs es erlauben würde, den Job auf dem aktuellen Kern zu fertigzustellen.

Diese Arbeit präsentiert eine Lösung für dieses Problem, indem dynamische Migrationsentschei-
dungen eingeführt werden. Statt einen statisch festgelegten Punkt zu verwenden, versucht ein
Algorithmus für dynamische Migrationsentscheidungen, den spätestmöglichen Migrationspunkt aus
der vorgegebenen Menge auszuwählen, abhängig von verfügbaren Laufzeitinformationen über den
aktuellen Job. Um möglichst viele Laufzeitinformationen zu verwenden, verwendet der vorgestellte
Algorithmus das Konzept von Evaluationspunkten, die als spätestmögliche Punkte definiert sind,
an denen Migrationsentscheidungen getroffen werden können. Für jeden migrierenden Job wird
initial ein Evaluationspunkt gesetzt und wiederholt neu berechnet, bis Migrationsentscheidungen
nicht mehr aufgeschoben werden können und ein Migrationspunkt ausgewählt wird. Ausgehend von
diesem Ansatz werden drei Algorithmen abgeleitet, die sich in der Art der Definition von Evaluations-
punkten unterscheiden, Die in dieser Arbeit präsentierten Algorithmen definieren Evaluationspunkte
als Punkte im Code, Punkte in der Ausführungszeit bzw. als Kombination aus Beidem.

Alle präsentierten Algorithmen können mit beliebigen semipartitionierten Schedulingalgorithmen
kombiniert werden. Es wird gezeigt, dass dynamische Migrationsentscheidungen keine Deadlineüber-
schreitungen verursachen, wenn das gegebene Task Set mit statisch festgelegten Migrationspunkten
planbar ist. Eine Analyse der benötigten Operationen zeigt, dass im durchschnittlichen Fall sowohl
die Anzahl an Evaluationspunkten, als auch der benötigte Aufwand für jeden Evaluationspunkt
maximal logarithmisch zur Anzahl der Migrationspunkte ist. Da sich der erforderliche Aufwand mit
steigenden Laufzeiten verringert, muss die statische Zuweisung von geteilten Tasks zu Kernen nur
einen konstanten Overhead für jeden Teil eines aufgeteilten Tasks berücksichtigen.

Alle vorgestellten Algorithmen wurden auf einem RaspBerry Pi v1 Modell B implementiert, ausge-
hend von einem Port von FreeRTOS. Zeitmessungen dieser Implementierung deuten darauf hin, dass
eine Beeinträchtigung der Planbarkeit eines gegebenen Task Sets durch dynamische Migrationsent-
scheidungen unwahrscheinlich ist. Während dynamische Migrationsentscheidungen bei ausreichend
kurzen Laufzeiten die Vermeidung von Migration erlauben, zeigen die gemessenen Antwortzeiten
keinen signifikanten nachteiligen Einfluss des Overheads der präsentierten Algorithmen.
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1I N T R O D U C T I O N

The trend towards multicore systems also affects real-time scheduling, and poses new problems for
scheduling algorithms in theory as well as in practical application, such as the tradeoff between
schedulability and the reduction of overhead for task migration. One possible solution for this
specific problem is the restriction of task migration to predefined migration points. This thesis
presents an improvement of an already existing approach to restrict migration. In the existing
approach, migrating tasks are determined to migrate at a statically defined migration point. For this
approach, this thesis will introduce dynamic migration decisions, so that a migration point is chosen
at run time, out of a set of statically defined potential migration points. This makes it possible to
delay or even avoid migration, if the actual run times of the task allow this.

This chapter will first clarify the benefits of dynamic migration decisions, and later provide an
overview over the remaining thesis.

1.1 Motivation

In the last decades, progress in hardware development has led to a continuing increase in processor
speed. This increase in speed was first achieved by increasing the processor frequency, but due
to energy consumption and heating problems, this approach was only viable up to a certain point
[BBB15]. After a frequency ceiling was hit, instead of increasing the processor speed, hardware
platforms with multiple processors were developed. This trend has not only affected general purpose
platforms, but also embedded environments. With this trend, and due to increasing workload of
real-time applications, real-time systems are increasingly often run on multicore platforms [BBB15].

Adapting real-time scheduling algorithms for multicore platforms is, however, not trivial, and
multiple different approaches have been developed in order to solve this problem [DL78]. In order to
use the processing capacity of additional cores more efficiently, many multicore scheduling algorithms
allow tasks to migrate between different cores. Consider, for example, a task set consisting of three
tasks, each of which has a period of three time units and a worst-case execution time (WCET) of
two time units. Out of this task set, no two tasks can be fully fit on one core, which renders the task
set unschedulable on two cores without task migration. With task migration, however, one task
can be split in two parts, each of which will be executed on a different core, so that the task set is
schedulable on two cores.

While it is beneficial for scheduling, tasks migration leads to additional overhead. A significant
part of this overhead is caused by cache misses, when the migrated task is resumed. These cache
effects can be caused by migration as well as preemption and are called cache-related preemption
and migration delay (CPMD) [BBA10]. For migrations, this overhead is even higher than for
preemptions, even though the difference decreases with increasing load [BBA10]. Estimations of
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1.1 Motivation

CPMD are difficult, with worst-case overhead significantly higher than the average case [BBA10]
[HP09], which is especially disadvantageous for real-time scheduling, since in order to prevent
deadline misses, the worst-case run times have to be considered.

Since CPMD is caused by cache misses, the extent of the overhead depends on the size of the
active working set at the time of migration [BBA10]. This observation can be leveraged in the
reduction of migration overhead by restricting task migration to a set of statically defined points in
the code with a small working set. There are multiple approaches that use this strategy to reduce
migration overhead, and this thesis provides an improvement of one of these approaches. The
approach in question first defines multiple migration points for each task [Kla+19]. Depending on
the requirements of the task set, one of these migration points is then chosen statically for each
required task migration. The downside of this approach is that each migrating task will always
migrate at the same point, regardless of actual run times. Even if faster run times would make it
possible to avoid migration entirely, split tasks still migrate at their assigned migration points, which
not only increases the response time of the task itself, but also unnecessarily impacts other tasks by
increasing the traffic on the network on chip.

This thesis provides a solution for this problem by introducing dynamic migration decisions.
Instead of always migrating at a fixed point, out of the initially defined set of migration points, one
migration point will be chosen at run time out of a given set of potential migration points at run
time, depending on the actual run-time behaviour of the task. If the task runs faster than expected,
migration might be delayed or even avoided.

1.2 Organization of this Thesis

The remaining thesis is structured as follows. In order to provide some context for the algorithms
presented later in this thesis, Chapter 2 will provide some context over some fundamental concepts
of real-time scheduling in general, and real-time scheduling in multicore systems in particular,
before explaining some existing approaches to reduce CPMD. Based on this, Chapter 3 will state the
general requirements for dynamic migration decisions and present multiple algorithms for selecting
migration points at run time. The efficiency of these algorithms and the additional overhead they
need will be discussed in Chapter 4, before implementation details of the presented algorithms are
discussed in Chapter 5. Chapter 6 will present measurements results of both overhead for migration
decisions and response times of tasks with the given algorithms, while Chapter 8 will provide some
concluding remarks and point out some potential improvements of the presented algorithms.
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2F U N DA M E N TA L S

This thesis presents an improvement to an existing approach to reduce migration overhead in
semipartitioned scheduling, which is a category of multicore scheduling algorithms in real-time
systems. Real-time systems are operating systems for applications that need to adhere to predefined
timing constraints, because any violation of these constraints can lead to negative consequences.
Examples are multimedia systems, embedded systems such as cell phones, but also safety-critical
systems such as control systems for automobiles or power plants. Given the importance of timing
requirements, any scheduling algorithm for real-time systems has to ensure that all deadlines can
be met.

In order to ensure this, a model is needed to represent timing behaviour and constraints of the
scheduled tasks. The task model that will be used in this thesis will be presented first in the remaining
chapter. Based on this task model, some further fundamental concepts of real-time scheduling will be
explained, before elaborating on the problems of multicore scheduling, as well as some approaches
to solve these problems.

2.1 Task Model

In comparison to general-purpose systems, the tasks for real-time systems and their timing behaviour
are known beforehand. The timing behaviour of a task can be represented in a task model, which is
used by a real-time scheduling algorithm in order to make scheduling decisions or to verify that
timing constraints can be met. While there are different ways to represent tasks, in this thesis, the
three-parameter task model is used, which will be presented in this section. As the name indicates,
this model represents each task by three parameters. Based on these parameters, various properties
of tasks and task sets can be determined. Some of these properties will be explained later in this
section, together with some general assumptions about tasks.

The model that will be used in this work, and which will be explained in the remaining section,
is based on the description in [BBB15].

2.1.1 The Three-Parameter Task Model

The set of tasks to be scheduled is known before run time. It is comprised of n tasks and referred
to as τ= {τ1, . . . ,τn}, with each task represented by some τi . At run time, each task releases an
infinite number of jobs, which are instances of tasks and must be executed within the given time
limits. These timing constraints, as well as other timing behaviour of a task are specified by three

3



2.1 Task Model

parameters. With these parameters, each task τi can be defined as follows:

τi = (Ci , Di , Ti)

Ci represents the worst-case execution time (WCET) of a task. For any task τi , each job is
guaranteed to finish in no more than Ci time units of execution. Since scheduling decisions rely on
the correctness of the specified Ci , a pessimistic estimation must be used, and any overhead of a
task, such as overhead caused by interrupts, or cache effects following preemptions or migrations,
must be included in the WCET.

Timing constraints of task τi are represented by its relative deadline Di . Di specifies, that every
job released by τi must be completed until Di time units after its release. If missed deadlines only
lead to mild consequences, deadlines can be defined as soft of firm deadlines, which means that
deadline misses are acceptable to a certain degree. In this thesis, however, all deadlines are assumed
to be hard deadlines, which means that no job is allowed to miss its deadline.

The time between two job releases of the same task is specified by the parameter Ti of a task
τi . For periodic tasks, this parameter refers to the exact time between two successive job releases,
while for sporadic tasks it defines the minimal time.

2.1.2 Properties of Task Sets

Based on the specified parameters of a task set, the suitability of a scheduling algorithm for a given
task set can be verified. However, in many cases, it is more useful to make more general statements
about groups of task sets instead of some given task set in particular. For this purpose, different
properties of tasks and task sets can be used. Examples for these properties are the utilization of
tasks and task sets, as well as the classifciation of task sets based on the relation between deadline
and period.

Based on the latter relation, different groups of task sets can be defined. Task sets that contain
only tasks, for which the deadline equals the period are called implicit-deadline task sets. If the
relative deadline of each task in a task set is lower than or equal to its period, this task set is referred
to as constrained-deadline task set, whereas otherwise, the task set is called an arbitrary-deadline
task set.

Another useful value is the utilization of tasks and task sets. The utilization of a task is the
ratio of its WCET and its period, and is represented by ui =

Ci
Ti

. The utilization of a task set is the
sum of the utilization of all tasks, so that Usum(τ) =

∑
τi∈τ ui . Another useful value is the maximal

utilization Umax(τ) =max{ui | τi ∈ τ}.

2.1.3 General Assumptions about Tasks

In order to make scheduling decisions, some assumptions must be made about the scheduled tasks.
This thesis is based on the following assumptions.

• Each job is ready for execution immediately after its release, and can therefore be scheduled
without delay.

• All tasks are fully preemptive, so that the job with the currently highest priority can be
scheduled immediately after its release.

• No job relinquishes the processor on its own, before it has finished execution.

• All tasks are independent from each other, so that the timing behaviour of each task can be
determined independent of the remaining task set.
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• Any overhead is already included in the specified WCETs, so that no additional overhead needs
to be considered.

While these assumption do not necessarily represent the realistic behaviour of real-time task systems,
many results regarding the schedulability of task sets rely on these assumptions. Therefore, these
constraints will also be assumed to be valid for the algorithms that will be presented in later chapters.

2.2 Scheduling in Real-Time Systems

The specification of the timing behaviour of a task set can be used by a real-time scheduling algorithm,
in order to make scheduling decisions. Before the tasks are executed, however, the scheduling
algorithm has to verify that the given task set can be scheduled without violating any timing
constraints. If a given task set can be scheduled by some algorithm A without deadline misses, this
task set is called A-schedulable.

Different scheduling algorithms can be compared to each other, with regards to the task sets
that are schedulable by these algorithms. For this comparison, several metrics exist. One of this
metrics is the utilization bound of a scheduling algorithm. If a scheduling algorithm has a utilization
bound of u, then each task set with a utilization of u or less is schedulable by this algorithm. An
algorithm A is called optimal, if any task set for which any schedule exists that meets all deadlines is
also A-schedulable.

Scheduling decisions can be made statically or at run time. In this thesis, only scheduling
algorithms that make decisions at run time are considered. These decisions are made according to
priorities that are assigned to jobs, so that at each time instant, the job with the highest priority is
running. The assignment of priorities can be more or less flexible, depending on the scheduling
algorithm. Fixed task-priority algorithms assign priorities to tasks statically, so that each job has
the priority that was statically assigned to the corresponding task. In fixed-job priority algorithms,
jobs of the same task can have different priorities, but the priority assigned to a job does not change
during its execution. Algorithms in which the priority of a job can change arbitrarily are called
dynamic-priority algorithms.

Examples for real-time scheduling algorithms are Earliest Deadline First (EDF) [LL73] and
Deadline Monotonic (DM) [Aud+00]. EDF assigns the highest priority to the job with the earliest
absolute deadline. Since, with this policy, jobs of the same task can have different priorities, whereas
the priority of a job, relative to other released jobs, does not change, EDF is a fixed job priority
algorithm. EDF is known to be optimal for uniprocessor scheduling, and has a utilization bound of 1
for implicit-deadline systems [LL73]. DM is a fixed-task priority algorithm that assigns the highest
priority to the task with the shortest relative deadline. For constrained-deadline task sets on unicore
platforms, DM is the optimal fixed-priority scheduling algorithm [LW82].

2.3 Multicore-Scheduling in Real-Time Systems

On multicore platforms, more than one task can execute at each time instant. Which task can be
scheduled on which core and at which speed depends on the hardware platform. In this thesis, only
homogeneous multicore systems are considered. This means that each task can execute on each
core at the same speed [DB11].

But even with this constraint, real-time scheduling is still more complicated on multicore plat-
forms than it is on unicore platforms, and results of unicore scheduling are not necessarily valid for
multicore scheduling [DL78]. In order to overcome these problems and to leverage the additional
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processing capacity of multicore platforms, various scheduling algorithms have been developed and
analyzed. Depending on the degree to which tasks are allowed to migrate between cores, these
algorithms can be classified into global, partitioned and semipartitioned scheduling algorithms.

2.3.1 Global Scheduling

Global scheduling does not restrict task migration, and tasks are assigned to cores dynamically, so
that at each time instant, the tasks with the highest priority are executing on the available cores.

While unicore scheduling algorithms can still be applied, the results for these algorithms regarding
the use of available processing capacity are not transferable. An example for this is EDF. In global
scheduling, EDF is no longer optimal [DB11], and even with m cores, the utilization bound is still 1.
This was shown by Dhall and Liu [DL78], based on a constructed implicit-deadline task set with
utilization of 1+m ∗ ε that is unschedulable by EDF on m cores. This task set consists of m tasks
with period 1 and WCET 2 ∗ ε, and another task with period 1+ ε and WCET 1. When this task set
is scheduled on m cores, using EDF, then all available processors will be used by the shorter tasks
first, so that the longer task misses its deadline. With ε→ 0, Usum(τ)→ 1, which shows, that the
utilization bound of global EDF is no more than 1, regardless of the number of cores.

There is, however, an optimal algorithm for global scheduling. This algorithm is called Pfair
scheduling [BBB15]. A pfair scheduler breaks each job into subjobs of the length of one time unit.
At run time, the scheduler ensures, that for each job, the number of finished subjobs at each time
instant is proportional to the utilization of its task, with a deviation from this assigned share of
no more than one time unit. An implicit-deadline task set τ is Pfair-schedulable on m cores, if
Usum(τ)≤ m and Umax(τ)≤ 1, which makes the algorithm optimal for implicit-deadline task sets.
Despite its optimality, this algorithm is rarely used because of practical considerations. Aside from a
complicated implementation, scheduling decisions are needed at each time unit, which leads to a
high overhead due to the number of required preeemptions and migrations.

Regardless of the algorithm, global scheduling has several drawbacks. Since tasks can run on
each core, additional synchronization between cores is needed, in order to coordinate the access to
tasks. With no restriction on task migration, migrations are difficult to predict, which leads to very
pessimistic estimations of the required migration overhead [DB11].

2.3.2 Partitioned Scheduling

Partitioned scheduling does not allow any task migration, so that each task can only be executed on
its assigned core. Since tasks are assigned to cores before run time, partitioned scheduling has two
phases. In the assignment phase, tasks are assigned to cores statically, before they are run in the
execution phase.

In the execution phase, the tasks are scheduled separately on each core. Since this allows the
dynamic scheduling algorithm to ignore all other cores, results and algorithms of unicore scheduling
can be applied. Furthermore, neither coordination between cores nor task migration are needed,
which reduces the overhead that is needed for this approach.

The partitioning phase is, however, more complicated [DB11]. Finding an assignment of tasks to
cores that makes optimal use of the available processing capacity is proven to be equivalent to the
bin-packing problem [DL78], which is known to be NP-hard in the strong sense. Thus, partitioning
algorithms have to use heuristics instead of exact algorithms.

But even with an optimal assignment, the granularity of tasks can impact the use of the available
processing capacity. This can be shown by an example of a task set τ, consisting of m+ 1 tasks τi

with an utilization of ui =
1
2 + ε. With the given utilization, no more than one task can be scheduled
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on each core, so that no partitioned scheduling algorithm is able to schedule τ on a platform with
m cores. With ε→ 0, this leads to a utilization bound of no more than m+1

2 [DB11].
This means, that despite needing less overhead at run time, the static assignment of tasks to

cores is complicated and the use of the available processing capacity can be heavily impacted by
tasks with high utilization.

2.3.3 Semipartitioned Scheduling

Semipartitioned scheduling is a modified version of partitioned scheduling that allows limited migra-
tion, in order to reduce the unused processing capacity. As in partitioned scheduling, semipartitioned
scheduling algorithms consist of an assignment and an execution phase.

The assignment phase starts as in partitioned scheduling, by assigning tasks to cores. The
approaches differ, however, when the currently processed core has not enough processing capacity
left for any entire remaining task. In this case, semipartitioned scheduling allows the splitting of one
remaining task, so that the first part of this task can be assigned to the current core. The remaining
part of this task is later assigned to one or multiple other cores. At run time, split tasks will migrate
between cores. Migration can happen either between jobs, or during job execution. Both of these
approaches have their own benefits and drawbacks.

2.3.3.1 Migration between jobs

For migration between jobs, each job of a migrating task is statically assigned to one core. At run
time, a task migrates only after the current job has been finished. This approach is used in different
semipartitioned scheduling algorithms, such as EDF-fm [ABD05], or the algorithm proposed by
Dorin et al [Dor+10]. The advantage of this approach is the relatively low migration cost, since
less data needed between two different jobs, which leads to fewer cache misses. Furthermore, the
required coordination between cores is relatively simple. The drawback of this approach is the
difficulty of load distribution. Since each job executes on its assigned core until it is finished, its
load cannot be distributed evently on its assigned cores, which can lead to a short-term overload on
the assigned core in some algorithms [ABD05]. This is especially disadvantageous for hard-deadline
task sets. Anderson et al. even state that this approach cannot be optimal for sporadic task sets with
hard deadlines [And+14].

2.3.3.2 Migration during job execution

In order to distribute the load of migrating tasks more evenly, many semipartitioned scheduling
algorithms allow task migration during job execution, after a job has executed for a specified amount
of time. Instead of assigning entire jobs to one core, the partitioning algorithm splits migrating
tasks into multiple parts, which are then assigned to different cores. Examples for this approach
are EDF-WM [KYI09], EDF-SS [ABB08], or EKG [AT06]. If task migration during job execution
is allowed, additional coordination between cores is needed, in order to avoid the simultaneous
execution of multiple parts of the same task. There are different approaches to solve this problem.
One possible solution, used by EDF-SS [ABB08] is to define fixed time windows, in which each partial
task is allowed to migrate. Alternatively, split tasks can be modeled as separate tasks, with their own
WCETs and deadlines. In this model, jobs of migrated tasks are not released, until the preceeding
job has finished execution. This approach is used by EDF-WM [KYI09] and another algorithm by
Burns et al [Bur+12].

7



2.3 Multicore-Scheduling in Real-Time Systems

2.3.3.3 Summary of semipartitioned scheduling

In summary, semipartitioned scheduling has several advantages compared to global or partitioned
scheduling. Compared to global scheduling, task migration is limited to some statically known tasks.
Each job of a migrating task can migrate at most once per split, and for each migration, the target
core is known in advance. Since this limits the number of migrations and increases the predictability
of migrations, semipartitioned scheduling allows more optimistic estimations of migration overhead.

Compared with semipartitioned scheduling, more task sets are schedulable, if tasks can be split.
However, task splitting requires additional synchronization between cores and causes migration
overhead [BBA11].

2.4 Approaches to reduce Cache-Related Preemption and Mi-
gration Delays (CPMD)

As discussed in the previous section, algorithms that improve schedulability in theory, often increase
the overhead needed for preemptions and migrations. In order to make these theoretically more
efficient algorithms more viable in practical application, several approaches have been developed to
reduce this overhead.

2.4.1 Approaches to reduce Preemption Overhead

There exist several strategies to reduce the overhead caused by preemptions. Some of these ap-
proaches are already included in semipartitioned scheduling algorithms. For example, EDF-SS
and EKG both have parameters that allow to decrease the number of preemptions, at the cost of
schedulability [ABB08] [AT06].

Other approaches exist independent of specific algorithms, such as the concepts of preemption
thresholds and preemption points. A preemption threshold is an additional parameter that can be
asigned to a task or job, in order to limit preemptions. A job with a given preemption threshold can
only be preempted by another job with a priority that exceeds the specified preemption threshold.
With a preemption threshold higher than the actual priority, the likelyhood of preemptions decreases
[BBY13]. If preemption points are used, tasks can only be preempted at statically defined preemption
points. This makes preemptions more predictable, and, if beneficial preemption points are chosen,
the worst-case overhead for preemptions is reduced [BBY13].

2.4.2 Approaches to reduce Migration Overhead

Approaches to reduce migration overhead exist in both hardware and software. Sarkar et al. propose
a hardware-based solution to reduce cache-related delays by transferring cache lines of migrating
tasks between cores [Sar+09]. This transfer is initiated immediately before the task migrates, so
that the transfer has ideally already been completed, before the migrating task is resumed. Since
this requires the specification of the target core before a task migrates, this approach can only be
applied, if the migration target is known in advance. In order to reduce the time for the cache-line
transfer, an additional functionality is presented to limit the transfer to memory regions that can be
specified by the application before a task migrates.

Software solutions to reduce migration overhead include the specification of migration points,
analogous to the previously described use of preemption points. As with preemption points, the use
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of migration points increases predictability, and can reduce the worst-case migration overhead, if
beneficial migration points are chosen. Migration points are used by different approaches.

Bertozzi et al. propose the use of migration points in global scheduling. Migration points can be
chosen by the developer, who can also provide additional information about the data that needs to
be transferred at this point. At run time, any migration request is delayed, until the next migration
point is reached [Ber+06].

Migration points can also be used in semipartitioned scheduling [Kla+19]. Before a task set is
partitioned, an algorithm chooses potential migration points for each task. Aside from the working
set size, the definition of migration points also considers the distance to other migration points, in
order to simplify task splitting. In the assignment phase, migrating tasks are split at one of their
predefined migration points. At run time, each split task will migrate, when this migration point is
reached.

2.5 Contributions of this thesis

This thesis is an improvement of the previously described approach of automated task splitting. One
drawback of this approach is the static determination of designated migration points, regardless of
actual run times. If task execution needs less time than the specified WCET, scheduling algorithms
with unlimited migration might be able to finish a migrating task within the time assigned to the
first core, so that migration can be avoided. This, however, is not possible, if the task is determined
to migrate at a statically chosen migration point.

In order avoid migration if possible, this thesis introduces dynamic migration decisions to the
algorithm presented in [Kla+19]. Dynamic migration decisions are applied at run time, so that
the task is still partitioned as before. But instead of migrating at the migration point chosen by
the partitioning algorithm, a migration point is chosen dynamically out of the already defined set
of potential migration points, depending on the run-time behaviour of each job. If the job needs
less time than expected, this approach can allow to delay, or even avoid migration. The algorithm
presented in this thesis is independent of the underlying scheduling algorithm, and can applied to
any scheduling algorithm that can work with fixed migration points.

To clarify the intent and the benefits of dynamic migration decisions, Figure 2.1 provides an
example of different approaches to limit migration in semipartitioned scheduling. In each approach,
the migrating task is split into two parts, as shown in Figure 2.1a. In this case, the splitting point is
the same for all algorithms, but note that due to the granularity of sections between migration points,
approaches using limited migration might have to migrate earlier. The run time behaviour with a
run time of two thirds of the estimated WCETs is illustrated for each approach in the remaining
subfigures. Figure 2.1b shows unrestricted migration. In this case, the full WCET assigned to the first
core is used, before the task migrates. If the overhead is ignored, this leads to the best response time.
The overhead for this approach can, however, be high, and impact both schedulability and response
times. To mitigate this problem, migration can be limited to a statically determined migration point,
as shown in Figure 2.1c. In this scenario, all sections are executed on their statically assigned core,
so that the task migrates earlier than necessary, which increases the response time, and makes it
impossible to avoid migration, even with faster run times. Figure 2.1d shows the behaviour with
dynamic migration decisions. Since an additional section can be executed within the assigned
WCET, the task migrates at a later migration point, and migration can be delayed. Note that with a
fixed release time of the second partial task, the response time is improved, even without avoiding
migration.
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C1:

C2:

(a) partitioned task as scheduled with worst-case run
times

C1:

C2:

(b) migration at an arbitrary point

C1:

C2:

(c) migration at a statically assigned point

C1:

C2:

(d) dynamically chosen migration point

Figure 2.1 – Comparison of different approaches to limit migration: in all approaches, the task
is split as shown in figure 2.1a. The task is split according to the estimated WCETs, but in this
instance only executes for two thirds of its WCET at run time. Figure 2.1b shows migration at
an arbitrary point in the code, so that the task migrates after executing for its statically assigned
run time. In figure 2.1c, the task migrates at its statically assigned migration point, regardless
of actual run times. With dynamic migration decisions, as shown in figure 2.1d, migration can
be delayed until the next migration point.

For the dynamic choice of migration points, different approaches will be presented. Each approach
can be applied to any semipartitioned scheduling algorithm that works for fixed migration points.
For each of these mechanisms, the required overhead will be estimated. Both overhead and response
times will be measured for an implementation on a Raspberry Pi v2b, using a port of FreeRTOS as
underlying operating system.
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3A R C H I T E C T U R E

In this thesis, different algorithms for dynamic migration decisions will be presented, based on
the existing approach using statically determined migration points. All algorithms are designed to
execute as much code as possible on the current core, under the limitation, that no core is used
longer than planned by the partitioning algorithm. For this, already available information about
predefined migration points and split tasks is used.

In order to provide an overview over the already given information, the initial situation is
summarized first in this chapter, before the notation for relevant concepts is defined. Before
presenting any specific algorithm, the necessary requirements are defined, that must be fulfilled
by dynamic migration decisions, in order to prevent deadline misses. After these requirements are
defined, a general approach for dynamic migration decisions is outlined, and based on this approach,
three different algorithms will be presented.

3.1 Initial Situation

The algorithm presented in this thesis is an extention of the previously described algorithm using
fixed migration points. Thus, all information available for fixed-migration scheduling can still be
used for dynamic migration decisions. This information includes all potential migration points and
the WCETs between them, as well as information about split tasks, such as the assigned cores and
the migration points at which the task is supposed to migrate with fixed-migration scheduling.

In the context of this thesis, dynamic migration decisions for any split task τi will only use
information about the task itself. Information about other tasks, or otherwise available slack
time, will not be considered. This allows dynamic migration decisions to work independent of
the underlying scheduling algorithm. The presented algorithms can therefore be applied to any
semiparitioned scheduling algorithm that works with fixed migration points.

All presented algorithms are designed for hard-deadline task systems. This means, that any
schedulable task set will be guaranteed to meet all deadlines with fixed-migration scheduling, and
is not allowed to miss any deadlines due to dynamic migration decisions.

Since dynamic migration decisions require additional operations, they will cause some additional
overhead. This overhead will be discussed in Chapter 4. In the current chapter, any overhead, caused
by dynamic migration decisions or other operations, is assumed to be already included in the given
WCETs, and will not be considered further.
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3.2 Notation

In this section, the notation for relevant concepts will be defined. This includes concepts for already
available information, such as tasks, migration points and the static assignment of sections to split
tasks. Furthermore, the notation of time instances and the available budget will be introduced.

3.2.1 Tasks

The scheduled task set is comprised of n tasks and is denoted as τ = {τ1, . . . ,τn}. For tasks, the
3-parameter task model is used, so that for each task, WCET, deadline and period are given. A task
with these parameters is denoted as τi = (Ci , Di , Ti)

3.2.2 Migration Points

Since task migration is only allowed at predefined points, potential migration points are statically
identified by the task splitting algorithm presented in [Kla+19]. This algorithm splits task τi in p
sections, divided by migration points x i, j , with j ∈ {0, . . . , p}, where x i,0 and x i,p represent the start
and the end of τi , respectively. Section indices start at 1, so that section j with statically known
WCET ci, j , is located between migration points x i, j−1 and x i, j , as depicted in Figure 3.1.

For convenience, if there is no ambiguity about the task in question, the task index is omitted, so
that x i, j and ci, j are denoted as x j and c j . Also for conveniance, an order is defined on all migration
points of a task τi , so that

x j ≤ xk ⇔ j ≤ k

The WCET between two migration points x j and xk with j ≤ k is denoted as W C ET
�
x j , xk

�
, with

W C ET
�
x j , xk

�
=

k∑
l= j+1

cl

and

W C ET
�
x j , x l

�
=W C ET

�
x j , xk

�
+W C ET (xk, x l) for all j ≤ k ≤ l

The minimal and maximal section WCETs of taskτi are denoted as cMini and cMax i , respectively.
Since, at run time, the largest section might have already been completed, so that its WCET is not rel-
evant anymore, the maximal section length for any section following migration point xm is defined as

cMax i(m) =max
�

c j | m< j
	

Since fewer sections have to be considered at a later point in the code, cMax i(m) canot increase
with increasing m:

m≤ m′⇒ cMax i(m)≥ cMax i(m
′)

τi :

x0 x1 x2

. . .

x j−1 x j

. . .

xp−1 xp

c1 c2 c j cp

Figure 3.1 – sections of task τi: section indices start at 1, so that c j refers to WCET between
x j−1 and x j
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While the WCETs are known between migration points, there is no such information available
for arbitrary points. At an arbitrary point pos in the code, the WCET until another migration point
has to be estimated, using information about the surrounding migration points. For this purpose,
the recently reached migration point is referred to as xcur r , while the next available migration
point is referred to as xnex t . If the current position coincides with some migration point x j , then
xcur r = xnex t = x j . Otherwise, xnex t = xcur r+1. With this information, the WCET from pos until
migration point x j can be estimated by the following inequation:

W C ET
�
xnex t , x j

�≤W C ET
�
pos, x j

�≤W C ET
�
xcur r , x j

�

3.2.3 Split Tasks

If a task τi is chosen as migrating task by the partitioning algo, it is split in q partial tasks τl
i =

(C l
i , Dl

i , Ti), with l ∈ {1, . . . , q}. These partial tasks are scheduled on their assigned cores as separate
tasks, according to their task parameters.

When the partitioning algorithm splits a migrating task, each partial task τl
i is assigned a range

of sections between two migration points. The start and end points of this range are referred to as
xstar t(l) and xend(l) respectively, with

star t(1) = 0

end(q) = p

star t(l + 1) = end(l) for all l ∈ {1, . . . , q− 1}
Since the specified WCET for each partial task must be sufficiently large for all assigned sections to
fit in, it is known that:

C l
i ≥W C ET

�
xstar t(l), xend(l)

�

While Ci can be larger than required by the assigned sections, it is assumed in the remaining thesis,
that with full section WCETs, no additional section fits in.

Note that with dynamic migration decisions, sections do not necessarily run on their assigned
core. In this case, τl

i refers to all sections that run on the lth assigned core of τi , regardless of static
section assignment.

3.2.4 Execution Time

When a section is run on the current core, dynamic migration decisions must ensure that the
execution time of the current partial job does not exceed the WCET of the current partial task. For

τl
i :

start of
execution
lth core tcur r

end of
budget

actual run times
of sections

planned WCETs
of sections

Figure 3.2 – depiction of timeline for partial task τl
i : time coresponds to execution time of

partial task, with transparent preemptions. For all finished sections the actual execution time
can be used, while the time for unfinished sections has to be estimated by the given WCETs.
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compliance with this condition, only the execution time of the current partial job is relevant, as
opposed to the time that has passed since task release. Thus, any time value considered in dynamic
migration decisions corresponds to the execution time of the current partial job. Interruptions of
the task, for example by preemptions, are transparent for this view.

According to this view on time, when a time instant t is considered, t refers to the time instant
at which the current partial job has been executing for t time units. The position in the code at time
t is referred to as pos(t), while the time instant at which migration point x j is reached is denoted as
t(x j). When a migration decision is made, tcur r refers to the current time of the decision. If pos(tcur r)
does not match any migration point, then pos(tcur r) can be estimated by xcur r < pos(tcur r)< xnex t ,
so that the remaining WCET until any given migration point can be estimated accordingly.

3.2.5 Budgets and Reachability

In order to ensure that no task runs longer than allowed, each partial task τl
i is assigned a budget cor-

responding to its assigned C l
i . The remaining budget of τl

i at time instant t is referred to as Bl
i (t), with

Bl
i (0) = C l

i

Bl
i (t) = Bl

i (0)− t

= C l
i − t

If at some instant t, a migration point x j can be reached within the remaining budget, even if all
remaining sections run with worst-case run times, x j is called reachable at t. Reachability can be
expressed as follows:

x j is reachable at t⇔W C ET
�
pos(t), x j

�≤ Bl
i (t)

For reachability, some properties can be derived:

• if x j is reachable at t, then any xk ≤ x j is also reachable at t

• if x j is reachable at t, then x j is still reachable at any later time instant t ′ ≥ t

• if x j is unreachable at t, it might become reachable at some later time instant t ′ ≥ t

While the first statement is obvious, the latter two statement can be shown by comparing the changes
of the remaining budget with the changes of the remaining WCET. Between pos(t) and pos(t ′), the
remaining budget decreases by the actual execution time between these points, while the remaining
WCET decreases by W C ET (pos(t), pos(t ′)). Since the execution time never exceeds the WCET, the
remaining WCET decreases at least as fast as the remaining budget, so that all reachable migration
points remain reachable later in time, and previously unreachable migration points might become
reachable.

Further statements about reachability can be derived from the assignment of sections to partial
tasks. Since all sections assigned to τl

i are known to fit into C l
i , but no additional sections fit in with

worst-case run times, the following statements hold:

• if τl
i starts at any x j ≥ xstar t(l), then xend(l) is reachable at t = 0.

• if τl
i starts at any x j < xstar t(l), then xend(l) is not reachable at t = 0.

Whenever the execution of a task is depicted in the remaining thesis, timing information is
illustrated as shown in Figure 3.2. As in this figure, start and end point of the assigned budget, as
well as the current time will be marked. Before the current time, the actual run times are depcited,
while after the current time instant, only WCETs are available.

14



3.3 Requirements for dynamic Scheduling

3.3 Requirements for dynamic Scheduling

As discussed in previous sections, the algorithm for dynamic migration decisions can be added to
any semipart fixed-migration scheduling algo, in order to delay migrations. This requires, that,
regardless of the underlying scheduling algorithm, dynamic migration decisions do not lead to any
deadline misses, for any schedulable task set. The compliance with this requirement will be proved
for each scheduling algorithm presented later in this chapter. In order to simplify these proofs, some
sufficient conditions for this will be defined in this section.

In order to derive these conditions, the desired property is specified first.

Definition 1. Let M be an algorithm for dynamic migration decisions. M is schedulability preserving, iff
for any semipartitioned scheduling algorithm A that uses fixed migration points, and any A-schedulable
task set, M can be applied without causing any deadline misses.

From this definition, conditions can be derived that can be used to verify that a given algorithm
preserves schedulability.

Theorem 1. Let M be an algorithm for dynamic migration decsions. M is schedulability preserving, if
for any semipartitioned fixed-migration scheduling algorithm A, any A-schedulable task set τ, and any
migrating task τi ∈ τ with p migration points, the following conditions hold when M is applied:

1. all jobs of all τl
i execute within their budget

2. for each job of τi , some partial job reaches xp

If the migration decisions of M for τi are only based on information about τi and ignore other
information, such as run times of other tasks or otherwise available slack, then the above conditions are
not only sufficient, but also necessary.

Proof. First, the sufficiency of the defined condition is shown, by assuming that the specified
conditions hold. Condition 1 implies that all jobs of each τl

i execute within their given budget, as
do all other tasks. Hence, the A-schedulability of τ guarantees that every job of each τ j ∈ τ can
execute for C j time units before its deadline, which is sufficient for all non-migrating tasks to meet
their deadlines. Condition 2 ensures, that, for all jobs of all migrating tasks τi , some partial job
reaches the end of τi . According to condition 1, this partial job is completed within its budget, and
is therefore reached before the partial deadline. Since the deadline of each partial job is not later
than the deadline of the entire job, all jobs of all tasks meet their deadlines.

In order to show the necessity of the above conditions, it suffices to show that there exists a case,
in which deadlines will be missed without one of the above conditions. Without Condition 1, a job
of τl

i will need more time than planned. If all other tasks on this core execute with worst-case run
times, and there is no otherwise available slack, then some deadline will be missed on this core.
Without the second condition, some job of τi has not been completed, before the last partial job
ends. Thus, this job cannot be finished, before the next job of τi is released, which will lead to a
deadline miss, if the deadline of τi is not longer than its period.

From this, minimal required end points for all partial tasks can be derived:

Theorem 2. Let M be an algorithm for dynamic migration decisions that fulfills the above conditions.
Let τ be a task set that is schedulable with the given algorithm. Then, for each migrating task τi ∈ τ,
each partial task τl

i reaches xend(l).
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Proof. Let τl+1
i be any partial task that is required to reach xend(l+1). According to the properties of

reachability, this can only be guaranteed, if xend(l+1) is reachable at t = 0, which is requires τl+1
i to

start at some x j ≥ xstar t(l+1). Since star t(l + 1) = end(l), each partial task τl+1
i is only guaranteed

to reach xend(l+1), if the previous partial task τl
i reaches xend(l).

Since Condition 2 requires τq
i to reach xp = xend(q), the rest follows by induction.

Since the above condition implies Condition 2, two conditions can be defined to simplify the
verification of dynamic migration algorithms. An algorithm for dynamic migration decisions that
only considers information about the currently processed split task is schedulability preserving, if
the following conditions are fulfilled by each split task τi:

(S1) all partial tasks τl
i end or migrate within their budget

(S2) all partial tasks τl
i reach xend(l)

Aside from proving that a given algorithm preserves schedulability, Condition (S1) can also be
used in the construction of a dynamic migration algorithm itself. If both conditions can be verified
later, all dynamic migration decisions regarding partial task τl

i can assume xend(l) to be reachable
without further considerations.

3.4 Dynamic Migration Decisions

As stated before, the goal of dynamic migration decisions is to delay migration as far as possible.
In order to do so, information about reachability is used. Since more optimistic estimations of
reachability are possible when more sections have been completed, migration decisions are also
delayed as far as possible. In the remaining section, different approaches to delay migration decisions
will be presented. Each presented algorithm will be verified using the conditions defined in the
previous section.

3.4.1 A Simple Approach

A relatively simple algorithm can be defined, that decides at each migration point whether to migrate.
At each migration point, the WCET of the next section is compared to the remaining budget, and
the decision is made accordingly.

It can be easily shown that this approach preserves schedulability. Since the task migrates only,
if the next migration point is not reachable, each partial task τl

i that starts at some migration point
x j ≥ xstar t(l) will reach xend(l). With τ1

i starting at x0, Condition (S1) is fulfilled. Condition (S2)
also holds, since at each migration point, the task is only continued on the current core, if the next
migration point is identified as reachable.

The drawback of this approach is its potentially high overhead. At each migration point, the
WCET of the next section is compared with the remaining budget, which is kept updated at each
timer tick. In a system that separates address spaces of operating system and application, the
remaining budget is part of the operating system, so that at each migration point, access to kernel
data is necessary. This can be expensive, especially for tasks with a high number of migration points.

3.4.2 Skip Reachability Checks by using Evaluation Points

In order to reduce the overhead, all further approaches will try to reduce the the number of
reachability checks. Instead of inserting reachability checks at each migration point, reachability
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will be evaluated only at a few selected points, which do not necessarily coincide with migration
points. These points will be referred to as evaluation points. Each migration point that has been
neither identified as evaluation point nor chosen for task migration, will be skipped.

Note that the skipping of migration points still requires additional overhead at each migration
point, in order to ensure that no evaluation point is skipped. This requires a comparison of the
current migration point to the next migration point with a special function. If this comparison is
done by the application, the indices of these migration points are only accessed by the operating
system, when an evaluation point is reached. This means, that these indices can be kept in the
address space of the application without causing a significant overhead, so that migration points
can be skipped without accessing kernel data.

While this approach can reduce the effort for most migration points, evaluation points can still
require a higher overhead. Thus, all algorithms presented in the following are designed to keep the
number of evaluation points as low as possible. In order to use as much run-time information as
possible at each evaluation point, evaluation points are set as late as possible. From this, a general
approach of algorithms using evaluation points can be derived. Initially, an evaluation point is
defined as the latest possible point from which migration decisions can be made without exceeding
the budget. When this evaluation point is reached, more run-time information is available, and
a further delay of migration decisions might be possible. If migration decisions can be delayed,
another evaluation point is defined, and the task is resumed. Otherwise, a migration point is chosen,
at which the task will migrate.

There are different ways to define evaluation points. In the remaining chapter, an algorithm will
be presented for each of the following definitions:

(A1) Evaluation points are defined by a position in the code

(A2) Evaluation points are defined by a point in execution time

(A3) Evaluation points are defined by either a position in the code or a point in execution time

Each presented algorithm will be illustrated by applying it to example task τi , which is depicted
in 3.3. This task is divided into 12 sections. Each section has a WCET of 6, except for section 9 with
c9 = 10, and section 10 with WCET c10 = 8. At run time, each section will need exactly one half of
its assigned WCET. Dynamic migration decisions will be made for the first partial task τ1

i , which has
an assigned budget of B1

i (0) = 40. The partitioning algorithm has split the task at xend(1) = x6.

3.4.3 Evaluation Points as Position in Code

This algorithm is an improvement of the previously presented simple approach. As in the simple
approach, all reachability checks are done at migration points, but in this case, only a few migration
points are selected as evaluation points, so that most checks will be skipped.

τi

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12
x0

xend(1)
x6

Figure 3.3 – Used example task for the remaining chapter. Aside from sections 9 and 10 with a
WCET of 10 and 8 timer ticks, respectively, all sections have a WCET of 6. The task is split at x6,
with a budget of 40 assigned to the first partial task.
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An evaluation point xeval is defined as the last migration point, at which migration decisions can
be made without exceeding the budget. Since immediate migration is possible at each evaluation
point, the last reachable migration point is chosen. This leads to the following definition of evaluation
points:

xeval :=max
�

x j | W C ET
�
xcur r , x j

�≤ Bl
i (tcur r)

	

After an evalation point is chosen, the actual task is resumed. When the chosen evaluation point
is reached, the sections in the mean time might have been executed faster than expected, so that
further migration points might be reachable within the remaining budget. In this case, another
evaluation point is defined. Otherwise, the task migrates immediately.

3.4.3.1 Example

In Figure 3.4, this algorithm is applied to the previously defined example task. Initially, xend(1) = x6

is known to be reachable, while x7 is estimated to be reached at t = 42, which is not within the given
budget. Thus, x6 is chosen as the first evaluation point. With run times of one half of the estimated
WCETs, x6 is reached at t = 18. At this time, x9 is estimated to be reached at t = 40, while x10 is
unreachable, so that xeval is set to x9. When x9 is reached at t = 29, x10 is identified as the last
reachable migration point, and therefore chosen as xeval , while at x10, migration decisions can still
be delayed until x11. At t = 36, x11 is reached. At this point, 4 time units of the budget remain,
while the next section has a WCET of c12 = 6, which makes x12 unreachable. This means, that
migration decisions cannot be delayed until the next migration point, and the current job migrates
immediately.

tcur r = 0

tcur r = 18

tcur r = 29

tcur r = 33

tcur r = 36

. . .

40x0

xeval
x6

. . .

x0 x6 x9

. . .

x0 x9 x10

x0 x10 x11

x0 x11

Figure 3.4 – Given example task, executed with Algorithm (A1). xeval is initially set to x6.
With actual runtimes, x6 is reached earlier than expected, so that migration decisions can be
delayed until x9. After reaching x9, further evaluation points are set at x10 and x11, until at x11,
migration decisions cannot be delayed further and the task migrates at x11.
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3.4.3.2 Schedulability

In order to be schedulability preserving, the algorithm presented above has to fulfill the conditions
defined in the previous section. This is shown in the following two theorems.

Theorem 3. Algorithm (A1) fulfills (S1), i.e. no budget is exceeded.

Proof. A migrating task can only migrate or end at a migration point that has been chosen as xeval .
xeval is reachable by definition.

Theorem 4. Algorithm (A1) fulfills (S2), i.e. each τl
i reaches xend(l).

Proof. Let τl
i be a partial task that starts at some x j ≥ xstar t(l). According to the properties of

reachability, this means that xend(l) is always reachable by τl
i . Since xeval is defined as the maximal

reachable migration point, no evaluation point of τl
i can be smaller than xend(l). Thus, τl

i cannot
migrate, before xend(l) is reached, and τl+1

i starts at some x j ≥ xstar t(l+1).
With τ1

i starting at x0 = xstar t(1), it follows by induction that each partial task τl
i starts at some

x j ≥ xend(l) and reaches xend(l).

3.4.3.3 Calculation of xeval

The above algorithm requires a search algorithm to identify the next evaluation point. Since xeval

is defined as the maximal reachable migration point, and both xcur r and xend(l) are known to
be reachable, any search algorithm can start to search at max(xcur r , xend(l)), without considering
previous migration points. In order to select the next evaluation point out of the remaining candidates,
various algorithms can be used, three of which will be discussed here.

A relatively simple solution is to use linear search. Linear search tests all migration points from
the defined starting point until the first unreachable migration point, and has an effort linear to all
reachable migration points. While this is beneficial in scenarios with a small remaining budget, it
can lead to a relatively high effort, if many additional migration points are reachable.

Since all migration points preceeding xeval are reachable, and all succeeding migration points
are unreachable, search algorithms for sorted lists can be applied, such as binary seach. The effort
needed for binary seach is logarithmic to the number of all migration points following the defined
starting point, regardless of reachability. This can lead to a higher overhead with many remaining
unreachable migration points. The worst-case effort is, however, still logarithmic.

Both linear and binary search only consider the reachability of migration points, but do not
use additional available information, such as the upper bound of section lengths, given by cMax i .
The upper bound of section lengths can be used, in order to estimate the number of additional
reachable migration points. With a given budget B, and a known maximal section length cMax , at
least

�
B

cMax

�
further migration points are reachable. This estimation is, however, not exact and can

leave some reachable migration points undetected. In order to improve the result, the estimation
can be applied again. After a migration point x j has been identified as reachable, the remaining
budget after x j can be estimated by B −W C ET

�
xcur r , x j

�
. With the remaining budget, additional

reachable migration points can be identified.
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Based on this, a third search algorithm is presented. This algorithm identifies reachable migration
points x r(n), using the following recurrent definition:

r(0) =max (cur r, end(l))

r(n+ 1) = r(n) + step(n+ 1)

step(n+ 1) =

�
Bl

i (tcur r)−W C ET
�
xcur r , x r(n)

�

cMax i (r(n))

�

Since the number of reachable migration points is limited and r(n) ∈ N, this recurrence reaches its
fixpoint r in a finite number of steps. The number of steps is logarithmic, depending on the ratio of
average and maximal section lengths and the number of reachable migration points, and will be
further discussed in Chapter 4.

Even after a fixpoint is reached, there might sill be some unidentified reachable migration points.
The upper bound of this number can be derived from the step-function. When step(n+1) = 0, then
the estimated remaining budget at x r(n) is less than cMax i . Within this budget, less than cMax i

cMini
can

be reachable, so that from x j , at most
 

cMax i
cMini

£
− 1 additional migration points are reachable, which

are identified via linear search.
With similar section lengths, the estimations used by this algorithm are more accurate, so that

less loop iterations are needed. Compared to binary search, this algorithm considers only reachable
migration points, which is beneficial in scenarios with longer run times. The disadvantage of
this algorithm is the more complicated implementation. Additional comparisons and expensive
operations such as integer division will lead to a higher run time for each loop iteration compared
to linear or binary search. Furthermore, the estimation gets less precise with more uneven section
lengths, so that with a large ratio of maximal and average section length, even more loop iterations
than for binary search might be needed.

Since binary search and the previously described algorithm both have advantages in specific
situations, both will be considered as possible search algorithms and evaluated in further chapters.
Due to the linear effort, linear search will not be further considered for this approach. In order to
reduce run time, all presented search algorithms need to calculate the WCET between arbitrary
migration points in constant time. This can be done by calculating the difference of cumulative
WCETs.

3.4.3.4 Discussion of Approach (A1)

The described approach defines the last reachable migration point as evaluation point and migrates
the task only, if no further section can be fit in the remaining budget. Since migration is avoided, if
any further migration point is reachable, the budget is used optimally, with regards to the given
constraints and the given information.

The disadvantage of this approach is the potentially high number of recalculations, as shown
in the previous example. With faster run times, more recalculations are needed, which leads to a
higher overhead.

3.4.4 Evaluation Points as Point in Execution Time

This approach tries to reduce the number of recalculations by defining evaluation points as points
in execution time, rather than as points in the code. In the previous approach, recalculations are
needed, if the remaining budget at an evaluation point is larger than expected. With an evaluation
point as point in time, the remaining budget is the same as expected, regardless of actual run times.
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In this approach, an evaluation point teval is defined as the latest possible point in time, at which
a migration decision can be made without exceeding the remaining budget. When the evaluation
point is reached, it can be either delayed, or a migration point xmigr is chosen, at which the task
will migrate without further calculations.

3.4.4.1 Calculation of teval

As specified, teval is defined as the latest point in execution time, at which migration decisions can be
made. This means, that at teval , at least one further migration point must be reachable, as illustrated
in Figure 3.5. For the next migration point to be reachable, the remaining budget must be at least
as large as the WCET of the remaining current section. The budget required for this is not known
exactly, since at the defintion time of teval , neither the current section at teval , nor the exact position
within this section are known. Thus, the minimal remaining budget is estimated by the full section
WCET of the largest relevant section. A section is considered relevant in this context, if it ends at a
potentially unreachable migration point. Given that at each point, both xnex t and xend(l) are known
to be reachable, teval for partial task τl

i can be calculated as follows:

teval := Bl
i (0)− cMax i(m)

m :=max (nex t, end(l))

Note that instead of the above estimation, m could also be calculated as the exact last reachable
migration point by using any search algorithm described for the previous approach. But assuming
that the differences between section lengths are relatively small, and considering that teval can still
be recalculated at a later point, the above heuristic is used instead, since it requires only a constant
effort.

When teval is calculated initially for a partial task, cMax i(m) might be larger than the available
budget. In this case, xmigr is set immediately. Otherwise, after teval is set, the task is executed until
the defined evaluation point is reached. At teval , the largest section might have been completed in
the meantime, so that cMax i(m) has decreased. In this case, a new teval is set, and the migration
decision is delayed further. If no such delay is possible, a migration point xmigr is chosen, at which
the task will migrate.

3.4.4.2 Calculation of xmigr

When no further delay of teval is possible, a migration point xmigr is chosen, at which the task
will migrate. Ideally, xmigr is the last reachable migration point at teval . In most cases, however,
pos(xeval) is somewhere between two migration points, so that reachability can only be estimated.

t = teval : . . . . . .

teval

at least one
migration point
neeeded here

Figure 3.5 – At any teval , at least one migration point must be reachable. This means, that,
regardless of the position in the code, the rest of the current section must fit in the remaining
budget.
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t = 0

t = teval

x1

. . .

x0 cMaxteval

x1 x2 x3

. . .

x0 tcur r

Figure 3.6 – Problems of reachability calculations at teval : Since, at teval , the exact position in
section 2 is unknown, the time until x2 has to be estimated by using the full section WCET. This
leads to a pessimistic estimation that falsely identifies x3 as unreachable.

As shown in Figure 3.6, this can lead to the false identification of migration points, including xend(l),
as unreachable. Thus, instead of calculating the reachability of available migration points from the
current position, a heuristic is used, based on the knowledge about reachability. With this heuristic,
xmigr is defined as:

xmigr :=max
�
xnex t , xend(l)

�

When xmigr is reached, the current job migrates without further calculations.

3.4.4.3 Example

This algorithm is applied to the example task, as shown in Figure 3.7. The maximal section length
following xend(1) = x6 is given by c9 = 10. With a budget of 40, teval is set to 40− 10= 30. Since
this is more than the current time, migration decisions can be delayed, and the task is executed
until t = 30. At t = 30, the evaluation point is reached. Section 9 has been completed at this point,
so that the largest remaining section is section 10, with c10 = 8. This allows migration decisions
to be delayed until t = 32. At t = 32, section 10 is still running. Since its remaining run time is
estimated by its full WCET, migration decisions cannot be delayed further. The algorithm chooses
a migration point xmigr =max(xnex t , xend(1)) =max(x10, x6) = x10 and returns to the task. At x10,
the task migrates.

Note that at the time of migration, the next migration point could be identified as reachable,
and by ignoring this, the algorithm leads to a non-optimal use of the given budget in this case.

3.4.4.4 Schedulability

If migration decisions are made according to this algorithm, schedulability is preserved, which will
be shown here. In order to prove that no budget is exceeded, the following lemma will be shown
first.

Lemma 1. At each calculation of teval , xnex t is reachable.

Proof. Let teval(n) be the nth evaluation point of the partial task τl
i , so that teval(0) represents the

start of τl
i . The lemma can be shown by induction over n:

At teval(0), the current partial task has just migrated to the current core. Since migration is only
possible at migration points, the current position is at some migration point x j , so that xcur r(0) =
xnex t(0) = x j , which means that xnex t(0) is reachable.

For evaluation point teval(n+1), different cases can be considered. If xend(l) has not been reached
yet, then xnex t(n+1) not larger then xend(l), and therefore reachable. If no section has been completed
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t = 0 :

t = 30 :

t = 32 :

t = 33 :

. . .
x8 x9

. . .

x0 10teval

cMax i(m) = 10

x8 x9
x0 8teval

cMax i(m) = 8

x9
x0 8 xmigr

cMax i(m) = 8

x9
x0 xmigr

Figure 3.7 – Example task, executed with Algorith (A3). With a budget of 40 and a maximal
section length c9 = 10, teval is initially set to 30. When teval is reached, the largest section
has been completed, so that teval can be delayed until t = 32. At t = 32, no further delay of
migration decisions is possible, and xmigr is set to xnex t = x10, where the task migrates.

since the last evaluation point, then xnex t(n+1) is equal to xnex t(n), which is reachable by induction
hypothesis. This leaves the case, in which xnex t(n+1) is larger than both xnex t(n) and xend(l). In this
case, the reachability of xnex t(n+1) can be shown by calculating the the remaining budget at teval(n+1):

Bl
i (teval(n+1)) = C l

i − teval(n+1)

= C l
i −

�
C l

i − cMax i (m(n))
�

= cMax i (m(n))

m(n) =max (nex t(n), end(l))

≤ nex t(n+ 1)− 1

With this estimation of m(n), the remaining budget can be estimated:

Bl
i (teval(n+1)) = cMax i (m(n))

≥ cMax i (nex t(n+ 1)− 1)

≥ cnex t(n+1) =W C ET
�
xcur r(n+1), xnex t(n+1)

�

With a sufficiently large budget for the full section WCET between xcur r(n+1) and xnex t(n+1), xnex t(n+1)
is reachable at teval(n+1).

From this, Condition (S1) can be derived.

Theorem 5. Algorithm (A2) fulfills (S1), i.e. no budget is exceeded.

23



3.4 Dynamic Migration Decisions

Proof. No partial task can execute longer than until xmigr is reached. xmigr is defined at some
evaluation point, with xmigr =max(xnex t , xend(l)). Since xend(l) is always reachable, and, according
to the previous lemma, xnex t is reachable at teval , xmigr is reached within the given budget.

Theorem 6. Algorithm (A2) fulfills (S2), i.e. each τl
i reaches xend(l).

Proof. The task cannot migrate, before xmigr is reached, which is at least xend(l) by definition.

3.4.4.5 Discussion

This algorithm defines evaluation points as points in execution time. Since the remaining budget at
evaluation points does not depend on run-time behaviour, this approach is beneficial, if the sections
of the given task run faster than expected. Evaluation points are recalculated, if the section with the
maximal length has completed in the meantime, but compared with the first approach, recalculations
are less likely.

The disadvantage of this approach is that not all reachable migration points are identified as
such, so that in some cases, the task migrates earlier than necessary, as shown in the example task.
This problem is most likely to occur with uneven section WCETs, and large sections at the end of the
task. With the already given mechanism for identifying potential migration points, large differences
between section lengths are, however, unlikely, since the algorithm used for this aims for a relatively
even distribution of migration points, in order to simplify task partitioning [Kla+19].

3.4.5 Combination of both approaches

When comparing the previous algorithms, Algorithm (A2) needs less evaluation points at the start
of the task, while Algorithm (A1) is more exact at the end of the task. In order to combine the
advantages of both approaches, the following algorithm starts as in Approach (A2), and continues
as in Approach (A1).

The first evaluation point teval of a partial task is defined as a point in time, as in Approach (A2).
When teval is reached, xeval is defined, using the definition of xmigr . At xeval , the algorithm proceeds
as Approach (A1). Note that xeval is set at the first teval , instead of trying to delay teval . While a
recalculation of teval is possible, this would allow a delay in the size of the difference of the maximal
section lengths, so that in most cases, more time can be gained by recalculating xeval .

3.4.5.1 Example

The application of Algorithm (A3) to the example task is shown in Figure 3.8. As in the previous
approach, the first evaluation point teval is set to 30. At t = 30, xeval is set, without trying to
delay teval . When xeval is calculated, the same definition as for xmigr is used, so that xeval is set to
max(xnex t , xend(l)) =max(x6, x10) = x10. When x10 is reached, the next migration point is identified
as reachable, and the next evaluation point is set to x11. At x11, no further migration point is
reachable, and the task migrates.

In this example, less evaluation points are needed than for Algorithm (A1), and compared to
(A2), migration can be delayed until x11, instead of migrating at x10.

3.4.5.2 Schedulability

Like the previous approaches, this algorithm is schedulability preserving. This can be shown by
using results of the previous proofs.

24



3.4 Dynamic Migration Decisions

t = 0 :

t = 30 :

t = 33 :

t = 36 :

. . .
x8 x9

. . .

x0 10teval

cMax i(m) = 10
x8 x9

x0 xeval

x8 x9
x0 x10 xeval

x8 x9
x0 xeval

Figure 3.8 – Example task, executed with Algorithm (A3). With a given budget of 40 time units,
and a maximal section length of 10 time units, teval is initialized with 30. When teval is reached,
xeval is set to xnex t = x10. At x10, migration point x11 is identified as reachable and is chosen as
next evaluation point. At x11, no further migration points are reachable, and the task migrates.

Theorem 7. Algorithm (A3) fulfills (S1), i.e. no budget is exceeded.

Proof. The first xeval is defined as max(xnex t , xend(l)). Since xend(l) is always reachable, and xnex t is
reachable at teval , as shown in the previous lemma, the first xeval is always reached within the given
budget. Further recalculations of xeval ensure, that each new xeval is also reachable, as discussed
for Algorithm (A1).

Theorem 8. Algorithm (A2) fulfills (S2), i.e. each τl
i reaches xend(l).

Proof. As shown for approach (A2), the initial xeval is at least xend(l). Since migration is not possible
before xeval , Condition (S2) is fulfilled.

3.4.5.3 Search Algorithms for xeval

When xeval is reached, the next evaluation point is calculated as in Algorithm (A1), and the same
search algorithms can be used. In this case, however, a different situation in regards to reachability
has to be considered, so that different search algorithms are suitable for this approach. Due to
its definition, the remaining budget at teval is at most cMax i . As shown in Figure 3.9, this bound

t = t(xeval): . . . . . .

≤ cMax iteval

≤
�

cMax i
cMini

�
sections

Figure 3.9 – Additionally reachable sections at the first xeval in the combined approach. The
number of sections is bounded by the ratio of maximal and minimal section length.
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limits the number of reachable migration points to
�

cMax i
cMini

�
. This limit impacts the suitability of the

presented search algorithms.
Linear search tests the reachability of migration points only, until the first unreachable migration

point is identified. This limits the number of required loop iterations to
�

cMax i
cMini

�
+1, which is assumed

to be a relatively small number.
The effort needed for binary search is logarithmic to the number of all remaining migration

points, regardless of reachability. With a low variance in section lengths, and a sufficiently high
number of unreached migration points, binary search will need more loop iterations than linear
search.

With a remaining budget of at most cMax i , the estimation used in the third search algorithm is
unlikely to identify any further reachable migration points, and is therefore unsuitable for the given
situation.

Based on these considerations, linear search is used as search algorithm for Algorithm (A3).

3.4.5.4 Discussion

The combined approach starts with an evaluation point defined by a point in execution time, and
proceeds with evaluation points defined as last reachable migration points. While the first evaluation
point makes it possible to reduce the number of recalculations with short section run times, the
remaining evaluation points ensure the identification of all reachable migration points. Since in this
approach, the number of reachable migration points at each xeval is limited and relatively small,
evaluation points will likely cause less overhead than in Algorithm (A1).

On the downside, elements of both previous algorithms need to be implemented for this approach,
and overhead for both kinds of evaluation points needs to be considered.
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The goal of dynamic migration decisions is to execute as much code as possible in each partial task,
without impacting the schedulability of the task set. In this chapter, the presented algorithms will be
evaluated with regards to this goal. The first section will discuss, how much code can be executed
on each core, before the task migrates.

The schedulability has already been discussed in the previous chapter, under the assumption
that all overhead is already included in the section WCETs. When tasks are scheduled using dynamic
migration decisions, the overhead has to be considered when the budget is allocated for each
partial task, as well as when dynamic migration decisions are made, and can therefore impact both
schedulability and budget usage. The additional overhead caused by dynamic migration decisions
will be analyzed in the second section of this chapter.

4.1 Usage of Budget

In order to avoid migration and reduce response times, each algorithm tries to use the budget assigned
to the current partial task as efficiently as possible. Compared to semipartitioned scheduling with
unrestricted migration, in which the full budget is always usable, the granularity of the given sections
will lead to some unused budget in most cases. In the remaining section, the maximal amount of
unused budget before migration will be discussed for each presented algorithm.

When the next migration point is unreachable, even an optimal algorithm needs to migrate
immediately, and will thus leave some budget unused in most cases. The amount of unused budget
is, however limited. In an optimal algorithm, a split task will only migrate at migration point x j ,
if x j+1 is unreachable, i.e. if the remaining budget at x j is smaller than the next section WCET
c j+1. Since the simple approach, as well as Algorithms (A1) and (A3) always test the reachability of
the next migration point immediately before migrating, these algorithms are optimal in respect of
budget use.

Algorithm (A2), however, allows migration at non-optimal migration points, as already shown in
the example illustrated in Figure 3.7. While in this example, the task migrates earlier than needed,
Algorithm (A2) can also lead to unnecessary migrations. The maximal unused budget can be derived
from the definition of teval . When teval is reached, and no delay of migration decisions is possible,
cMax i(m) time units of execution remain at teval , with m = max(xcur r , xend(l)) In the worst case,
the next migration point xnex t > xend(l) is reached immediately after teval , so that for a migration at
x j , cMax i( j − 1) time units of the budget remain unused. This is at least as much as for all other
approaches, with a difference increasing with the difference between section WCETs.

In conclusion, the relatively low overhead of Approach (A2) comes at a cost of a less efficient
usage of the given budget. For all presented algorithms, the maximal remaining budget depends on
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the length of the current of the maximal remaining section, so that regardless of the used algorithm,
the budget can be used more efficiently with decreasing section lengths.

4.2 Overhead

In the previous chapter, the algorithms for dynamic migration decisions were presented under the
assumption that no overhead needs to be considered. In practical application, however, different
aspects of both scheduling algorithms and dynamic migration decisions have to consider the overhead
caused by various operations, some of which will be analyzed in this section. The analysis will be
limited to additional operations for dynamic scheduling decisions. Other overhead sources, such as
operations for task management, or cache-effects caused by task migration, have already been there
before the introduction of dynamic migration decisions, and will therefore not be discussed further.

Since all approaches require comparisons of the remaining budget, the remaining budget has to
be updated at each timer tick. Additionally, Algorithms (A2) and (A3) require the identification of
teval , which can also be done by a comparison in the tick handler, if no separate interrupt mechanism
is used for this purpose. This overhead is constant and very small, but has to be considered for each
timer tick.

The remaining overhead for the simple approach is relatively easy to analyze. At each migration
point between two sections, the reachability of the next migration point is tested. The overhead
required for this can be included in the WCETs of each section. While this overhead is constant, it
can be high in a system that uses different address spaces for kernel and application data.

For all other approaches, the overhead at each migration point includes the logging of the current
section, and a comparison with the currently defined evaluation point. The overhead for this is
constant and can be inluded in the WCET for each section. Since this can be implemented without
access to kernel data, the required overhead is relatively small, even if separate address spaces are
used.

Access to kernel data is, however, needed at each evaluation point, additionally to the calculations
for migration decisions. If evaluation points are triggered by application code, a context switch might
be needed, depending on the operating system. For time-triggered evaluation points, overhead
needs to be included for either polling in the tick handler, or an interrupt mechanism. The time
required for this depends highly on operating system and hardware platform, so that generalized
statements about this overhead are difficult to make. While in practical application, this overhead
must be considered for each evaluation point, in the remaining section, it is assumed to be already
implicitly included.

The remaining discussion will focus on the effort needed for the calculations at each evaluation
point. The time needed for these calculations is highly dependent on both task parameters and
run-time behaviour. In order to estimate this overhead, it is useful to consider the purpose of the
analysis, and limit the estimation to a set of scenarios that are relevant for this purpose. In this
section, the overhead of dynamic migration decisions will be disussed for the following purposes:

• Partitioning of the task set: when a task set is partitioned, the assigned budgets must include
time for dynamic migration decisions. In order to preserve schedulability, enough additional
budget must be included for each τl

i , so that xend(l) is still always reachable.

• Dynamic migration decisions: the overhead must be considered in reachability checks. In order
to preserve schedulability, any migration point x j is only allowed to be identified as reachable,
if the additional overhead still allows the task to migrate at x j within the remaining budget.
Additionally, for each partial task τl

i , xend(l) must still be always identified as reachable.
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• Evaluation of the average-case run-time overhead: even if the task set remains schedulable,
split tasks should not be significantly slowed down by dynamic migration decisions. To evaluate
this, the average-case run-time overhead is estimated.

The overhead required for these purposes will be discussed for each algorithm in the remaining
section.

4.2.1 Overhead for Partitioning

When a task is split by the partitioning algorithm, the assigned budget must include overhead for
dynamic migration decisions. As stated above, the budget of a partial task τl

i is sufficiently large,
if xend(l) is reachable, i.e. if the budget is not exceeded, if τl

i migrates at xend(l). Thus, the set of
relevant scenarios can be limited to cases, in which the current partial task migrates at xend(l). These
cases are analyzed in the following subsection for all algorithms using evaluation points.

4.2.1.1 Overhead for Algorithm (A1)

The overhead for relevant scenarios in this case is illustrated in Figure 4.1. This figure depicts the
overhead needed for partial task τl

i , in case xend(l) is chosen for migration. Note that while the figure
depicts a partial task in the middle of τi , the following discussion can also be applied to the first
and last partial tasks τ1

i and τq
i .

At the start and end of each partial task, time is required for task release and task migration,
respectively. Since this overhead was already needed for statically assigned migration points, it will
not be discussed further. Between evaluation points, other migration points have to be skipped.
As already mentioned at the beginning of this section, the overhead needed for the logging of
the current section and for skipping migration points is relatively small and constant, and can be
included in the section WCETs.

The interesting part is the overhead caused by evaluation points. The number of evaluation
points can be deduced by considering constraints on reachability in the relevant scenario. Since in
all relevant cases, the partial task τl

i task will migrate at xend(l), xend(l)+1 is always unreachable until
the task migrates. This means that at the first evaluation point, xend(l) is the last reachable migration
point and therefore chosen as the next xeval . When xend(l) is reached, xend(l)+1 is still unreachable,
so that the task migrates immediately. Thus, in all relevant cases, each partial task needs exactly
two evaluation points.

τl
i

(rel) (eval1) (sec) (skip) (eval2) (migr)

(calc) (calc)

Figure 4.1 – Operations needed by Algorithm (A1) for partial task τl
i , if τl

i migrates at xend(l).
At the start and end of the current partial task, overhead is caused by its release (rel), and the
preparations for its migration (migr). Dynamic migration decisions are made at the evaluation
point immediately after migration (eval1), and when xend(l) is reached (eval2), where the
decision is made to migrate immediately. Both evaluation point require the calculation (calc) of
the next evaluation point. Between these evaluation points, sections of the task are executed
(sec). Between each consecutive section, a migration point is skipped (skip).
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With a fixed number of evaluation points, the overhead for each evaluation point is needed in order
to identify the additional overhead for each budget. At each evaluation point, the next evaluation
point is calculated. This value is compared with the current migration point, and, depending on the
result, the task either migrates or resumes execution. The only potentially non-constant overhead is
the search for the next xeval . In the general case, the time required by the search depends on the
used search algorithm. In all relevant cases, however, xend(l) is identified as the next evaluation
point, which makes it possible to reduce the required overhead. As discussed in the previous chapter,
all search algorithms can start under the assumption, that max(xcur r , xend(l)) is reachable. Any
search algorithm that starts with a reachability test of max(xcur r+1, xend(l)+1) can therefore provide
the result in constant effort. While linear search does this implicitly, other search algorithms can
be easily extended by this test, so that max(xcur r+1, xend(l)+1) is tested, before the actual search
algorithm is started. With this modification, the overhead that each budget of a partial task needs to
include is constant and independent of task parameters.

4.2.1.2 Overhead for Algorithm (A2)

The operations needed by approach (A2) in the relevant case are shown in Figure 4.2. As for
the previous approach, the overhead caused for task release, task migration and the skipping of
migration points will not be discussed further, and only the time needed for evaluation points is
analysed.

As in Algorithm (A1), the number of evaluation points is fixed, since teval cannot be recalculated,
if the current partial task τl

i migrates at xend(l). Any delay of teval is only possible, if cMax i(m) has
changed since the current teval has been defined. This requires a change of m=max(xcur r , xend(l)).
If the task will migrate at xend(l), then xend(l) has not been passed yet at teval , so that xcur r ≤ xend(l).
This means that both at the time of the definition of teval , as well at teval itself, m= xend(l). Since
m stays the same, no recalculation of teval is possible.

With the limited number of evaluation points, the additional overhead to include in the budget
is defined by the initial calculation of teval , the effort needed at teval , and the additional effort at
xmigr .

Initially, the available budget is tested to ensure that migration decisions can be delayed. If this is
the case, teval is calculated, and the task is resumed. Otherwise xmigr is calculated as the maximum
of two available values. In both cases, only constant effort is needed. When teval is reached, xmigr is
calculated after a failed attempt to delay teval . This also requires only a constant effort. At xmigr ,
migration is started in a constant amount of time.

τl
i

(rel) (init) (sec) (skip) (eval) (end)(migr)

(calc) (calc)

Figure 4.2 – Operations needed by Algorithm (A2) for the current partial task τl
i , if τl

i ends at
xend(l). As for Algorithm (A1), overhead is caused by task release (rel) and migration (migr),
as well as for skipping migration points (skip) between sections (sec). For dynamic migration
decisions, overhead is needed at the start of τl

i , when teval is initialized (init), when teval is
reached (eval), and when the chosen migration point has been reached (end). At the initial
migration point and at teval , overhead is caused by the calculation of the next evaluation point
(calc).
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With a fixed number of evaluation points and a relatively small, constant effort for the calculations
at each of them, only a constant overhead has to be included by the partitioning algorithm.

4.2.1.3 Overhead for Algorithm (A3)

The overhead needed for Algorithm (A3) is depicted in Figure 4.3. As in the previous algorithms,
only overhead for evaluation points is considered, and overhead for task release, migration, and the
skipping of migration points will be ignored. The number and effort of evaluation points can be
derived from the results of the previous algorithms.

Initially, when teval is calculated, two possible cases need to be considered. If the budget is too
small to define teval , the partial task proceeds as in Algorithm (A1), with the respective overhead.
Otherwise, teval is calculated with constant effort. When teval is reached, xeval is calculated. Since
at this point xnex t ≤ xend(l), the xeval will be set to xend(l), so that at xend(l) the task migrates after a
calculation with constant effort, as shown for Algorithm (A1).

While this approach needs to include more operations than the previous approaches, the overhead
for these operations is still constant.

4.2.2 Overhead for Dynamic Migration Decisions

Not only the partitioning algorithm, but also dynamic migration decisions have to consider the
additional overhead, in order to ensure that all partial tasks migrate within their budget. This must
be ensured for all migration points that are identified as reachable. Since this includes migration
points after the statically assigned end points, the relevant cases cannot be limited to scenarios, in
which the current partial task τl

i migrates at xend(l). Without this limitation, the overhead calculated
in the previous subsection cannot be applied for this purpose.

The goal of this overhead calculation is to choose evaluation points so that at each evaluation
point, migration within the given budget is still possible. This means, regardless of the algorithm,
that the definition of any evaluation point e needs to include overhead for the following operations:

(E1) the remaining calculations until e is determined

(E2) all calculations at e, in case e cannot be delayed further

(E3) the initiation of migration at the selected migration point

τl
i

(rel) (eval1) (sec) (skip) (eval2) (eval3)(migr)

(calc1) (calc2) (calc3)

Figure 4.3 – Operations needed by Algorithm (A3) for the current partial task τl
i , if τl

i ends at
xend(l). As for the previous algorithms, overhead is caused by task release (rel) and migration
(migr), as well as for skipping migration points (skip) between sections (sec). Dynamic migration
decisions need time at the start of τl

i , when teval is initialized (init), when teval is reached (eval1),
and when the next chosen evaluation point xeval is reached (eval2). At each evaluation point,
overhead is caused by some calculations. Initially, teval is calculated (calc1), while at teval , xeval

is set (calc2). When xeval is reached, the next evaluation point has to be calculated (calc3),
before the decision is made to migrate immediately.
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Note that only the case without further delay of e is considered. The other case is ignored, since the
possibility to delay e implies the existence of a later point that still fulfills the above conditions.

Since the overhead needed for the above operations depends on the algorithm, this overhead
will be discussed separately for each approach.

4.2.2.1 Overhead for Algorithm (A1)

Algorithm (A1) includes the overhead in reachability tests, by adding the additional overhead to the
required WCET. The overhead needed for this can be estimated by analyzing the previously listed
operations.

Operations (E2) and (E3) are needed when xeval is reached, and include the calculation of the
next evaluation point, and the subsequent decision to migrate. Since the task migrates immediately
in all relevant cases, the calculation ends, when xcur r+1 is identified as unreachable. As discussed
in the previous subsection, this can be done in a constant amount of time, if the reachability of
max(xcur r+1, xend(l)+1) is tested first.

Operations at (E1) include the remaining calculation of the last evaluation point, the subsequent
decision against migration and the return to the task. Out of these operations, the remaining
calculation is the only potentially non-constant part. Since the calculated overhead will be used for
reachability tests, in order to determine the suitability of some migration point x j as evaluation point,
the overhead can be estimated under the assumption that x j will be chosen and x j+1 is unreachable.
Thus, for the remaining calculation, time needs to be included from the test of x j until the test of
x j+1. The required effort for this depends on the used search algorithm.

Since linear search processes all migration points consecutively, only two loop iterations are
needed, and only a constant effort is required.

Binary search, however needs logarithmic effort. When x j has been identified as reachable, and
xp has not yet been tested, the reachability of p − j migration points is still unknown. If binary
search is implemented so that the lower element is chosen in intervalls of uneven length, then
blog2(p+ 1− j)c additional loop iterations are needed, until x j+1 is tested. In order to prevent
overhead calculations at run time, this number can be estimated by blog2(p− end(l))c, before
scheduling is started. Alternatively, the number of loop iterations can be estimated by a sufficiently
high constant value. If, for example, overhead for 32 loop iterations is included, this overhead is
sufficient for all tasks with less than 232 sections, which is probably a reasonable assumption.

The search algorithm using the estimation by cMax only needs a constant number of loop
iterations. After the first loop has identified x j as reachable, no additional reachable migration
points can be identifed in the next loop iteration, and the first loop ends. The second loop tries to
identify additional reachable migration points by linear search. With x j+1 unreachable, this loop
will end after the first iteration. Thus, this algorithm needs to include the constant overhead needed
by two iterations of the first loop, and one iteration of linear search.

In summary, the overhead to include in reachability tests for dynamic migration decisions depends
on the search algorithm, and is either constant, or can be estimated by a relatively low, statically
known value.

4.2.2.2 Overhead for Algorithm (A2)

In this approach, the overhead is subtracted from the calculated teval , so that the remaining budget
at teval includes additional time for migration decisions. This overhead can be determined by
considering the required actions for the previously listed operations.

32



4.2 Overhead

At (E1), teval is recalculated after a test if migration decisions can be delayed. Operations for
(E2) include the failed attempt to delay teval , and a subsequent calculation of xeval , while at (E3),
the current migration point is recognized as chosen migration point and migration is started.

These are the same operations that need to be included by the partitioning algorithm. As already
discussed, only a constant overhead is required.

4.2.2.3 Overhead for Algorithm (A3)

Since different kinds of evaluation points are used in this approach, the overhead that need to be
considered by migration decisions needs to be considered separately.

First, teval is initialized at the start of the task. The definition of teval must include the overhead
for the remaining current calculation, the calculations at teval , and for migration at xeval . While the
former two operations have already been discussed for Algorithm (A2), the overhead for the last
operation is the same as for Algorithm (A1). As in the previous algorithms, the required overhead is
constant.

At teval , the next evaluation point xeval is chosen as the maximum of xnex t and xend(l). Since teval

is not recalculated, no overhead is considered in this decision, and the correctness of the resulting
xeval has to be ensured by the previous calculation of teval .

When xeval is reached, the task proceeds as in Algorithm (A1). Since, in this case, linear search
is used, the required overhead is also constant.

4.2.3 Overhead at Run Time

The previous section has established the overhead to include, in order to prevent deadline misses.
But even if no deadline is missed, split tasks should ideally not be slowed down significantly by
dynamic migration decisions. To estimate, how much a migrating task will be slowed down, the
general run-time overhead for dynamic migration decisions will be analyzed in this subsection.

Since schedulability has already been established, the average-case overhead is more interesting
than the worst-case overhead. Therefore, the run time overhead will be discussed using a simplified
example task τi .

Task τi has p sections. In order to simplify estimations, each section has a WCET of c time units,
except for the last section, which has a WCET of cp ≥ c, which allows to show the effects of uneven
section lengths. Thus, cMax i( j) = cMax i = cp for all migration points x j . At run time, each section
executes for a∗ c time units, with 0< a ≤ 1. With the given run times, the time at which a migration
point x j < xp is reached can be calculated:

t(x j) = a ∗ c ∗ j

Dynamic migration decisions are made for the first partial task τl
i . If the available budget is used

optimally, the example task will migrate at migration point xm < xp. For migration at xm, at least c
time units of the budget remain, when xm−1 is reached. This allows an estimation of the available
budget:

B1
i (t(xm−1))≥ c

⇒ B1
i (0)≥ t(xm−1) + c

= a ∗ c ∗ (m− 1) + c
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4.2.3.1 Overhead for Algorithm (A1)

The relevant factors for run-time overhead are the number of evaluation points, and the time needed
for each evaluation point. Both will be discussed for the example task.

In order to estimate the number of evaluation points for the example task, a function f (n) will
be defined. This function determines the number of remaining sections between the nth evaluation
point and xm. With this function, the nth evaluation point can be defined as xm− f (n). Since the nth
evaluation point is calculated, when the (n− 1)th evaluation point is reached, the current position
at the time of calculation is xcur r = xm− f (n−1). With this information, the remaining budget at this
time can be estimated:

B1
i (tcur r) = B1

i (0)− tcur r

= B1
i (0)− t

�
xm− f (n−1)

�

≥ (a ∗ c ∗ (m− 1) + c)− (a ∗ c ∗ (m− f (n− 1)))

≥ a ∗ c ∗ ( f (n− 1)− 1) + c

Since each section has length c, the number of additional reachable migration points r(n) at the nth
calculation of xeval can be estimated with the given budget:

r(n) =

�
B1

i (tcur r)

c

�

≥
�

a ∗ c ∗ ( f (n− 1)− 1) + c
c

�

= ba ∗ ( f (n− 1)− 1) + 1c
≥ a ∗ ( f (n− 1)− 1)

From this, a recursive definition of f (n) can be derived:

f (0) = m

f (n+ 1) = f (n)− r(n+ 1)

≤ f (n)− a ∗ ( f (n)− 1)

= (1− a) ∗ f (n) + a

A non-recursive function can be defined as follows:

f (n)≤ (1− a)n ∗m+ a ∗
�

n−1∑
i=0

(1− a)i
�

= (1− a)n ∗m+ a ∗
�

1+
n−1∑
i=1

(1− a)i
�

< (1− a)n ∗m+ a ∗
�

1+
1

1− (1− a)

�

= (1− a)n ∗m+ a+ 1

Since f (n) ∈ N, f (n) can be rounded down, so that:

f (n)≤ b(1− a)n ∗m+ 1c
From this, the number of calculations of evaluation points can be approximated. If xm−1 is an
evaluation point, then at most two further recalculations are needed when xm−1 is reached: the
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first calculation sets xm as next evaluation point, while the second calculation at xm identifies no
further reachable migration points, so that the task migrates at xm. If xm−1 is no evaluation point,
only the seccond calculation is needed. This means, that when xm−1 is reached, at most two further
calculations are needed. The number of all previous calculations can be estimated using f (n). If
xm−1 is the result of the nth calculation, then n can be derived by calculating the value of n for
which f (n) = 1. Since the given definition of f (n) is an approximation rather than an exact value,
the minimal value of n for f (n)≤ 1 is estimated.

b(1− a)n ∗m+ a+ 1c ≤ 1

⇔ (1− a)n ∗m+ a+ 1< 2

⇔ (1− a)n ∗m< 1− a

⇔ (1− a)n−1 <
1
m

⇔
�

1
1− a

�n−1

> m

⇔ n− 1> log 1
1−a

m

⇔ n> log 1
1−a

m+ 1

⇔ n≥
�
log 1

1−a
m
�
+ 2

Since, at xm−1, two additional calculations are needed until the task migrates, at most
�
log 1

1−a
m
�
+4

calculations are needed. In summary, this means that the number of calculations is logarithmic, and
increases with faster run times.

The time that is needed for each recalculation depends on the reachability of the remaining
sections, and the used search algorithm. Linear search needs one loop iteration for each reachable
migration point. From the start of partial task τl

i until its migration at xm, all migration points from
xend(l)+1 until xm+1 are tested at least once, and no more than twice. As already discussed, the effort
needed for binary search is logarithmic to the number of all remaining migration points.

The number of loop iterations for the third search algorithm can be estimated analogous to the
number of evaluation points needed by Algorithm (A1). In this analogy, the estimated remaining
budget after the nth loop iteration corresponds to the remaining budget at the nth evaluation point.
In each loop iteration, the search algorithm estimates a reachable migration point by dividing the
estimated budget by cp, the migration algorithm calculates the next xeval by effectively dividing the
remaining budget by c. Both algorithms end, when the remaining budget is too small for c, or cp,
respectively. The number of loop iterations needed by this search algorithm can therefore also be
estimated by a similar equation, in which m is substituted by the number of reachable sections, and
a represents c

cp
.

With these estimations, each partial task can require a logarithmic number of evaluation points.
At each evaluation point, logarithmic effort is needed for calculations, in addition to the overhead
that is needed to invoke the system call representing evaluation points.

4.2.3.2 Overhead for Algorithm (A2)

As already discussed, each calculation of teval or xmigr needs only a relatively small, constant effort.
Thus, the interesting part is the number of recalculations of teval . In order to estimate the magnitude
of the number of evaluation points, first, the necessary conditions fur multiple recalculations are
defined. An evaluation point can only be delayed, if the largest remaining section has been completed
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between the previous and the current evaluation point. For n recalculations, a subsequence of n
sections with descending WCETs is needed. All sections in this subsequence must be larger than all
following sections outside of this subsequence. At run time, each of these sections must complete its
execution, until the next evaluation point is reached. This means, that for a larger n, the average
run time of these sections must be shorter than the difference between their WCETs.

In theory, it is possible to construct scenarios in which the number of evaluation points is linear
to the number of migration points. Realistically, considering the above conditions for a large number
of recalculations, the number of additional evaluation points is likely to be very low. In the given
example task, no recalculation is possible, since cMax i( j) is equal for all migration points x j < xp.

4.2.3.3 Overhead for Algorithm (A3)

The run-time overhead for this approach can be derived from previous results. As in Algorithm (A2),
a small constant effort is needed for the initial calculation of teval , as well as the calculation of the
first xeval , when teval is reached. As opposed to the previous algorithm, no recalculations of teval

are possible, so that the remaining run-time overhead is caused only by recalculations of xeval .
Compared to Algorithm (A1), the remaining budget at each xeval is bounded by cMax i . This

limits both the number of additional evaluation points, and the number of reachable migration
points at each evaluation point. The number of additional evaluation points is limited by the number
of migration points that can be reached within the remaining budget. In the example task, at least c
time units of budget remain when xm−1 is reached. Since each section until xm−1 needs a ∗ c time
units of execution, at most

� cp−c
a∗c
�
+ 1 sections can be executed until the task migrates at xm.

The number of reachable migration points at each xeval is at most
�

cMax i
cMini

�
, which limits the

number of loop iterations, when the next evaluation point is searched by linear search.
Both number and effort of evaluation points decrease with similar section lengths. As in Algorithm

(A1), the number of evaluation points increases with the ratio of WCETs to actual run times, although
with faster run times, this approach is likely to need less evaluation points. The bound on the number
of reachable migration points at each xeval allows the use of a simpler search algorithm, and limits
the number of loop iterations to a relatively low value.

Compared to Algorithm (A2), the average-case overhead for this algorithm is higher in most
cases.
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The previously described algorithms are implemented on a Raspberry Pi v2 model B, which features
a quadcore processor based on ARM Cortex-A7 [Ras]. As operating system, the FreeRTOS port
piRTOS is used. Starting with the already existing partitioned EDF scheduling algorithm, task
migration is introduced, in order to provide a semipartitioned scheduler. Based on the infrastructure
for semipartitioned scheduling, the three algorithms using evaluation points are implemented.

In order to provide some background for the implementation, first, the initial situation is outlined,
which is given by the partitioned scheduling algorithm provided by piRTOS. Based on this, the
additionally introduced functionality for task migration is described, and the actual implementation
of dynamic migration decisions is presented.

5.1 Initial Situation

The implementation of dynamic migration decisions is based on the partitioned scheduling algorithm
provided by piRTOS [Jar19]. Since piRTOS is a port of FreeRTOS for the architecture of a Raspberry
Pi with multiple cores, this section will first provide some general information about FreeRTOS,
before the implementation of partitioned scheduling in piRTOS is described.

5.1.1 FreeRTOS

FreeRTOS [Bar16] is an open-source operating system for real-time applications. It is designed
mainly for embedded systems and small microprocessors, and provides a real-time scheduler, mem-
ory management and other functionalities, such as synchronization primitives or mechanisms for
communication between tasks. These functionalities can be used by a user-defined application,
which consists of a set of tasks [Bar16].

When tasks are scheduled dynamically, each task has a state, which is represented by a task
queue. Tasks that are ready for execution are contained by the readylist, while tasks that cannot be
executed, before some event occurs, are located in a queue for blocked tasks. Multiple queues for
blocked tasks exist for different kinds of events. One of these queues is the list for delayed tasks,
which contains tasks that wait for the release time of their next job. Additionally, event lists can be
defined, which contain tasks that wait for other events. Tasks that are not currently available for
scheduling are located in a list for suspended tasks.

Due to the assumptions that were made about tasks in Chapter 2, only some of these task states
are relevant for the remaining chapter. While the lists for ready and delayed tasks will be used by
the implementation of dynamic migration decisions, the list for suspended tasks and all other lists
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for blocked tasks will not be discussed further, since all jobs are assumed to be always ready for
execution from release until completion.

5.1.2 Partitioned Scheduling in piRTOS

In order to use FreeRTOS on a Raspberry Pi with four cores, the FreeRTOS port piRTOS [Jar19] is
used. This port provides multicore scheduling algorithms for global and partitioned scheduling, but
no implementation of semipartitioned scheduling. Thus, a semipartitioned scheduling algorithm is
added, before dynamic migration decisions are introduced. Semipartitioned scheduling is imple-
mented by adding a function to migrate a task to its next assigned core. In order to provide some
context for this implementation, the relevant existing infrastructure provided by piRTOS is outlined
first.

As FreeRTOS, piRTOS organizes tasks by using different queues representing task states. When
partitioned scheduling is used, each core has its own set of lists. At run time, each task is passed
between the lists of its assigned core, according to its current state.

The states that are relevant for the implementation of this thesis, as well as the functions that are
used to change the state of a task, are illustrated in Figure 5.1. A task changes into the ready state,
when its next job is released. Job releases are implemented in the function xTaskIncrementTick(),
which is used to handle timer interrupts. This function identifies all tasks that need to be released
at the current time instant, and passes these tasks from the list for delayed tasks to the readylist.
If the priority of one of the currently released tasks is higher than the priority of the currently
running tasks, a switch of the currently running task is requested. When a job of a periodic task
ends, vEndTaskPeriod() is called, which removes the current task from the readylist, calculates its
next release time, and inserts it into the list for delayed tasks. Before vEndTaskPeriod() returns, the
currently running task is switched.

Switches of the currently running task are implemented before the return from an interrupt, if a
designated flag is set. In this case, the function vTaskSwitchContext() is called. This function chooses
the new highest-priority task from the readylist and sets it as the currently running task. After this
task is chosen, its context is restored before returning from the interrupt. Since vTaskIncrementTick()

is already executed as interrupt handler, it suffices to set the specified flag in order to request a task
switch. In order to update the currently running task outside of interrupts, a software interrupt and
subsequent task switch can be triggered by the function taskYIELD().

delayed ready

running

taskYIELD() /
vTaskSwitchContext()vEnd

Task
Peri

od()

xTaskIncrementTick()

Figure 5.1 – Existing data structures for partitioned scheduling: tasks are passed between
running, ready and delayed state by different functions of the operating system.
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5.2 Migration in piRTOS

Based on the existing infrastructure for partitioned scheduling, semipartitioned scheduling is imple-
mented by adding a function to migrate tasks between cores.

Compared to global scheduling, the possibilities for task migration in semipartitioned scheduling
are limited. Based on this limitations, some assumptions about task migration are made, in order
to reduce the complexity of the required infrastructure. In the following implementation, task
migration is only possible for statically selected tasks with statically assigned target cores. Each core
is assigned to at most two migrating tasks. Out of these tasks, at most one task starts at this core,
and at most one task starts on another core. Before a task migrates, migration has to be requested
explicitely by the original core.

Based on these assumption, a function for task migration is added. The implementation of this
function is described in the remaining section, starting with the additional data structures, and
continuing with the required synchronization between original and target core.

5.2.1 Transfer Between Cores

When a task migrates, it has to be passed between task lists of different cores. Since parallel access
to already existings task lists would require additional synchronization at multiple points, migrating
tasks are not directly inserted into a task list on the target core. Instead, migrating tasks are passed
between lists indirectly, using an additional buffer for newly arrived tasks on each core.

The interaction between this buffer and the existing task queues is depicted in Figure 5.2. When
a task requests migration, the original core inserts this task into the buffer for arrived tasks on the
target core. Later, the target core removes this task from the buffer, and inserts in one of its task
lists, depending on the given task parameters.

With the above limitations of task migration, race conditions regarding the access to the buffer
for arrived tasks can be avoided without further synchronization. Since at most two tasks can arrive
at each core, it is possible to assign a separate buffer slot to each task, by allocating two slots on
each core. Each buffer slot is only written, when its assigned task is either inserted or removed.
Since these operations cannot happen simultaneously, no further synchronization of this buffer is
required.

delayed

ready/
running

delayed

ready/
running

arrived arrived

Core 1 Core 2

Figure 5.2 – Data structures to allow task migration between two cores: the existing lists are
extended by a buffer for migrated tasks. In order to pass tasks between cores, the migrating
task has to be inserted in the designated buffer on the target core. From there, the target core is
responsible for inserting the task into the appropriate queue.
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5.2.2 Synchronization for Task Migration

Even though race conditions regarding the access to the buffer for arrived tasks can be avoided,
some synchronization is still required for the coordination between original and target core. After a
migrating task has been inserted into the buffer for arrived tasks, the target core must be notified.
This notification can be implemented in different ways, such as per interprocessor interrupts or
mailbox mechanisms. For simplicity, in this implementation, the arrival of a migrating task is detected
via polling in the tick handler. At each timer tick, the target core tests for arrived migrating tasks,
and inserts these tasks in the appropriate task queue.

Without further synchronization, this approach leads to a race condition, as depicted in Figure
5.3. Since migration is initiated by the original core, a migrating task is written to the buffer for
arrived tasks while it is still running on the original core. If the target core detects and schedules
this task before the task switch on the original core, the migrating task executes on two cores at the
same time.

In order to prevent this scenario, a new flag is added for each task, in order to signal that this
task is still used by the original core. This flag is set by the original core before the insertion in the
buffer, and reset by the original core after the switch to the next task. When the target core finds
a migrating task in its buffer, and this flag is still set, the task is ignored until the next timer tick.
This can lead to a delay between the partial tasks, as depicted in Figure 5.4. In the worst case, the
tick handler of the target core tests the flag immediately before it is reset. In this case, the delay
consists of the time interval from this unsuccessful test until the migrating task can be scheduled,
i.e. until the return from the next timer tick, in which the flag was reset. The size of this interval is
less than two timer ticks, but needs to be considered, when the task set is partitioned. If a different
communication mechanism between original and target core is used, a reduction of this delay might
be possible.

5.2.3 Implementation of Task Migration

The previously described mechanism for task migration is implemented at different points in the
code. The initiation of task migration on the original core is implemented in the new function

Core 1:

Core 2:

. . . . . .

. . . . . .

tick

put task
in buffer

take task
from buffer

start migr. tick handler yield next task

lower-prio. task tick handler

task runs
on both cores

Figure 5.3 – Potential race condition without further synchronization: the migrating task is
taken from the buffer by Core 2, before Core 1 has scheduled the next task. As a result, the task
is scheduled on multiple cores at the same time.
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Core 1:

Core 2:

. . . . . .tick handler tick handleryield

set flag,
put task
in buffer

reset
flag

. . . . . .tick handler tick handler

check flag,
ignore task

check flag,
take task

from buffer

tick tick

delay

Figure 5.4 – Synchronization of task switches: Core 2 cannot take the migrating task from the
buffer, until Core 1 has reset the in-use flag after the switch to the next task.

vTaskMigrate(), while instructions to reset the additional flag are added to the assembler code after
each task switch. The polling for arrived tasks on the target core is added to the tick handler.

For these functions, additional data is needed for each task struct. A new member variable l

represents the index of the current partial task. For each partial task, additional information is
stored, such as identifiers of assigned cores, which are contained in the array assignedCores[]. Aside
from scheduling information, the flag inUse is added to each task, in order to indicate whether the
task is still in use by its original core. To simplify the assembler code that is needed to reset this flag,
each core gets an additional pointer inUsePtr, which can be set to the address of the in-use flag of
the current task before the call to taskYIELD().

With this information, the function vTaskMigrate() can be implemented, as shown in Listing 5.1.
In this function, the index l of the current partial task is updated, and the target core is identified.
This information is used in order to write a pointer to the current task in the buffer on the target
core, after the in-use flag is set. When the task has been written to the buffer, it is removed from
the readylist, and inUsePtr is set to a pointer to the element inUse of the current task. The latter
two operation require the suspension of the scheduler, so that no task can change its state in the
meantime. This is needed to prevent race conditions in regards to the access of the readylist, and in
order to prevent unrelated task switches from resetting the current in-use flag, before the current
task is removed from the readylist. After the scheduler has been resumed again, the current task is
switched out by a call to taskYIELD(). When taskYIELD() has switched to the next task, the inUse flag
is reset, so that the migrating task can be passed to the appropriate task list on the target core.

Note that in this implementation, buffer slots are assigned depending on whether the task
migrates during the execution of its current job or migrates back to its first assigned core after
completing a job. According to the previously defined assumptions about migrating tasks, no
assignment conflicts are possible.

5.3 Dynamic Migration Decisions

If the previously described function vTaskMigrate() is called at fixed points in the application code,
semipartitioned scheduling with statically selected migration points can be implemented. Based

41



5.3 Dynamic Migration Decisions

1 vTaskMigrate(isEndOfTask) {
2 task = currentTask[cpuid];
3

4 task ->l = isEndOfTask ? 0 : task ->l + 1;
5 targetCore = task ->assignedCores[task ->l];
6

7 task ->inUse = 1;
8 taskArrived[targetCore ][ isEndOfTask ? 0 : 1] = task;
9

10 // suspend scheduler on current core
11

12 inUsePtr[cpuid] = &task ->inUse
13 // remove task from readylist
14

15 // resume scheduler on current core
16

17 taskYIELD ();
18 }

Listing 5.1 – Function for Task Migration

on this, dynamic migration decisions are introduced. Instead of calling vTaskMigrate() at statically
defined points, a new function vTaskEndSection() is called at each migration point, in order to
decide at run time, whether to call vTaskMigrate(). This decision is based on one of the previously
defined algorithms. Since the implementation of the simple approach is not very complex, only the
implementation of the three algorithms using evaluation points will be presented in the remaining
section.

Even though piRTOS does not implement separate address spaces for operating system and
application, the implementation of dynamic migration decisions will keep the values of xcur r and
xeval in the application code, in order to clarify the concept. The value of teval , which is needed
by Algorithms (A2) and (A3), however, does not need to be accessed by the application and will
therefore be stored by the operating system.

All algorithms for dynamic migration decisions need some additional information about both
partial tasks and migration points, which is stored in the task struct. These additional variables
will be discussed first, before the implementation of dynamic migration decisions is presented. The
presentation of these algorithms will start with a function to skip migration points, which is identical
for all algorithms using evaluation points. In order to decide which migration points will be skipped,
the evaluation points are implemented, which will be discussed for each algorithm separately.

5.3.1 Data Structures for Dynamic Migration Decisions

Since dynamic migration decisions are based on information about migration points and partial
tasks, this information is added to each task struct. An overview of this additional data is provided
in Listing 5.2.

In order to decide about reachability, the currently available budget is stored in the member
variable budgetLeft. The remaining budget is initialized at the release of each partial task, using the
assigned budgets stored for each partial task in the array budgets[]. It is decremented at each timer
tick that interrupts the execution of this task. The statically assigned end points for each partial task
are contained in the array plannedEnds[].
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1 struct TCB {
2 ...
3

4 // already defined:
5 inUse;
6

7 numCores; // q
8 coreIDs []; // ids of assigned cores
9 relDeadlines []; // partial deadlines

10 l; // index of current partial task
11

12 // additional information about core allocations
13 budgets []; // budgets allocated on assigned cores
14 plannedEnds []; // end(l) for each l
15 budgetLeft; // remaining budget
16 budgetEval; // budget - t_eval , needed for (A2), (A3)
17

18 // Information about sections of task
19 numSections; // p
20 WCETsCumulative []; // wcet from x_0 until x_(j+1)
21 WCETsMax []; // cMax_i(m)
22 xCurrPtr; // pointer to x_curr
23 xEvalPtr; // pointer to x_eval or x_migr
24

25 ...
26 }

Listing 5.2 – Additional Member Variables for Dynamic Migration Decisions

Aside from partial tasks, information about migration points is needed. The number of sections is
given by numSections, while information about section WCETs is stored in the array WCETsCumulative[].
Instead of the WCET of each section, this array contains the WCET from the start of the task until the
end of each section. This makes it possible to calculate the WCET between two arbitrary migration
points by subtracting the cumulative WCETs from each other. The maximal section WCET following
each migration point is contained in the array WCETsMax[].

Since xcur r , xeval and xmigr are each stored by the application, the task struct contains only
pointers to each of these values. These pointers are represented by the variables xCurrPtr and
xEvalPtr. When an evaluation point is defined as a point in execution time, the variable budgetEval

contains the remaining budget at the next evaluation point. In order to simplify comparisons with
the remaining budget, this variable contains the value of Bl

i (teval) instead of teval . Since this value
is never accessed by the application, it can be stored in the task struct.

At run time, this information can be accessed by retrieving the appropriate array elements.
In order to simplify the access to these elements, and in order to avoid the translation between
zero-based array indices and one-based indices for sections and partial tasks, some macros are
defined in order to access array elements. An overview over these macros and their definitions
is given in Listing 5.3. For the current partial task τl

i , the statically assigned end point xend(l) can
be retrieved by the macro CURR_PLANNED_END(). WCETs between two arbitrary migration points x i, j

and x i,k of the current task τi can be calculated in constant time by the macro WCET_BETWEEN(j, k).
When WCETs are used by dynamic migration decisions, the relevant WCET starts usually at xcur r

and includes additional overhead. For this purpose, the macro WCET_UNTIL(j, ovrh) can be used.
The maximal section WCET of the current task τi following a specified migration point x i,m can be
retrieved by using the macro WCET_MAX(m).
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1 // WCET from the start of a given task until migration point x_j
2 #define WCET(task , j) \
3 ( j ? 0 : task ->WCETsCumulative[j - 1] )
4

5 // WCET between two migration points of the currently running task
6 #define WCET_BETWEEN(j, k) \
7 ( WCET(current_task[cpuid], k) - WCET(current_task[cpuid], j) )
8

9 // WCET until the currently running task reaches migration point x_j , if a ↘
specified overhead is included

10 #define WCET_UNTIL(j, ovrh) \
11 ( WCET_BETWEEN (* current_task[cpuid]->xCurrPtr , j) + ovrh )
12

13 // maximal section WCET following migration point x_m of the currently ↘
running task

14 #define WCET_MAX(m) \
15 ( current_task[cpuid]->WCETsMax[m] )
16

17 // statically assigned end point of the currently running partial task
18 #define PLANNED_END(task) \
19 ( current_task[cpuid]->plannedEnds[current_task[cpuid]->l] )

Listing 5.3 – Macros for Accessing Array Data

5.3.2 Skipping Migration Points

With given values for xcur r and xeval , a decision can be made whether to skip the current migration
point. This decision is made at each migration point, and is the same for all algorithms using
evaluation points. It is implemented by the function vTaskEndSection(), which is shown in Listing 5.4.
This function increments the value of the current migration point, compares it to the value of the
next evaluation point, and decides accordingly whether to skip the current migration point. If the
current migration point cannot be skipped, vTaskEvaluate() is called, which implements evaluation
points and depends on the used algorithm. Since the value of xcur r is written in vTaskEndSection(), a
pointer to its value is passed as parameter. Since, in Algorithms (A2) and (A3), the value of xeval

can be changed asynchronously when teval is reached, this parameter is also passed as a pointer.
In order to reduce run-time overhead, this function can be inlined in the application code, but for
clarity, it is presented as a separate function.

Since evaluation points in Algorithm (A1) are always reached synchronous to the task execution,
no race conditions can occur between skipped migration points and evaluation points. Algorithms
(A2) and (A3), however, define some evaluation points as time instances, which can be reached

1 vTaskEndSection(xCurrPtr , xEvalPtr) {
2 *xCurrPtr ++;
3 if (* xCurrPtr == *xEvalPtr) {
4 vTaskEvaluate ();
5 }
6 }

Listing 5.4 – Function representing Migration points
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at any point, including during the execution of vTaskEndSection(). Since both xeval and xcur r are
accessed when teval is reached, race conditions must be ruled out.

A possible race condition can occur, if, due to compiler optimizations, xcur r is compared to xeval ,
before its updated value is written back to its memory location. If, in this case, teval is reached
immediately after xeval has been read for the comparison, and if xcur r has not been written back yet,
the next xeval is calculated using an outdated value of xcur r . If xcur r has just been set from x j−1 to
x j , then xeval can might be set to xnex t ≤ xcur r+1 = x j . Since the new value of xeval will not be used
until the next migration point, this evaluation point will be missed.

In order to prevent evaluation points from being missed, it suffices to ensure that xcur r is always
written back to its memory location before it is compared to xeval , which can be done by declaring
xcur r as volatile.

5.3.3 Dynamic Migration Decisions

If a migration point cannot be skipped, vTaskEvaluate() is called. The behaviour of this function is
different for all approaches, so that the implementation of this function and dynamic migration
decisions in general are discussed separately for each algorithm in the remaining section.

Note that additional to the implementation of vTaskEvaluate(), the first evaluation point of a
task is set before the return from vEndTaskPeriod(), after the current job has been released. Since
this initialization is similar to the operations at the start of each other partial tasks, a discussion of
changes in vEndTaskPeriod() will be omitted.

5.3.3.1 Dynamic Migration Decisions of Algorithm (A1)

In Algorithm (A1), all evaluation points are defined as selected migration points, so that all migration
decisions are made in vTaskEvaluate(), which is shown in Listing 5.5.

When an evaluation point is reached, the algorithm tries to delay migration by recalculating xeval .
If further migration points are reachable, xeval is set to a new value, and vTaskEvaluate() returns to
the task. Otherwise, migration cannot be delayed further, and the task migrates, using the previously
defined function vTaskMigrate(). When the migrated task is resumed on the next core, the next xeval

is calculated. On the new core, it is possible that the next section is larger than the budget that is
assigned to this core, so that the task has to migrate again immediately. For this reason, migration

1 void vTaskEvaluate () {
2 task = current_task[cpuid];
3 x_curr = *task ->xCurrPtr;
4

5 x_eval = calculateNextEvalPoint ();
6

7 while (x_curr == x_eval) {
8 vTaskMigrate(false);
9 x_eval = calculateNextEval ();

10 }
11

12 *task ->xEvalPtr = x_eval;
13 }

Listing 5.5 – Implementation of Dynamic Migration Decisions in Algorithm (A1)
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and recalculation are executed in a loop. Note that this is only possible, if the next section was
assigned to a later partial task, so that schedulability condition (S2) still holds.

In order to identify the next evaluation point, calculateNextEval() is called, which implements
the used search algorithm. As already discussed, different search algorithms can be used. Since
both linear and binary search are widely known search algorithms, only the search algorithm that
identifies migration points by estimating the section lengths will be presented. This algorithm is
shown in Listing 5.6.

This search algorithm consists of two loops. In the first loop, reachable migration points are
identified by estimating the WCET of each section by the maximal remaining section WCET. Each loop
iteration starts with some migration point xminEval that is known to be reachable. The remaining

1 #define OVRH_NEXT WCET_LOOP_1 + WCET_LOOP_2
2

3 #define OVRH_THIS_1 2 * WCET_LOOP_1 + WCET_LOOP_2
4 #define OVRH_THIS_1 2 * WCET_LOOP_2
5

6 #define OVRH1 OVRH_SYS + OVRH_NEXT + OVRH_THIS_1
7 #define OVRH2 OVRH_SYS + OVRH_NEXT + OVRH_THIS_2
8

9 calculateNextEvalPoint () {
10 task = current_task[cpuid];
11 x_curr = *task ->xCurrPtr;
12

13 minEval = MAX( x_curr , CURR_PLANNED_END ());
14

15 // loop 1: identify reachable migration points using cMax_i(curr)
16 while (True) {
17 // estimate remaining budget after minEval is reached
18 estBudgetLeft = task ->budgetLeft - WCET_UNTIL(minEval , OVRH1);
19

20 // estimate number of additional reachable migration points
21 step = estBudgetLeft / WCET_MAX(minEval);
22 if (step < 1) {
23 break;
24 }
25

26 // check if end of task is reachable
27 if (minEval + step >= task ->numSections) {
28 return task ->numSections;
29 }
30

31 minEval += step;
32 }
33

34 // loop 2: identify further reachable migration points via linear search
35 for (i = minEval; i < task ->numSections; i++) {
36 if (WCET_UNTIL(i + 1, OVRH2) > task ->budgetLeft) {
37 // i + 1 unreachable
38 return i;
39 }
40 }
41 return task ->numSections;
42 }

Listing 5.6 – Search Algorithm to Identify the Next Evaluation Point
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budget when xminEval is reached is estimated by subtracting the WCET until xminEval from the
currently remaining budget. The remaining budget at xminEval is then used to identify further
reachable migration points by dividing its value by the maximal section WCET after xminEval . If
no further migration point can be identified as reachable, the loop ends. If this number exceeds
the number of available migration points, the end of the task is known to be reachable, and xp is
returned as next evaluation point. Otherwise, this number is used to update xminEval before the next
loop iteration. Since some reachable migration points can be missed by this estimation, the final
result is obtained by a second loop via linear search.

In each WCET calculation, overhead is included as discussed in Chapter 4. As discussed, this
overhead includes the remaining time for the current search, the time for the search at the next
evaluation point, and a constant overhead for all other operations. In Listing 5.6, the required time
is calculated statically, with given WCETs for each loop iteration, and for the operations outside of
the search algorithm. For the current search, different values are included for each loop. If the last
reachable migration point has been identified in the first loop, only one further iteration of each loop
is needed, so that it suffices to include two iterations of the first, and one iteration of the second
loop. The second loop only requires two iterations from the identification of the last reachable
migration point until the end of the loop. The overhead for the search at the next evaluation point
is calculated for the case that at this point, no further migration points are reachable. Since both
loops end, when the last reachable migration point has been identified, only one iteration of each
loop has to be considered.

5.3.3.2 Dynamic Migration Decisions of Algorithm (A2)

In Algorithm (A2), migration decisions are made in both vTaskEvaluate() and in the function that
handles teval . Since teval is defined as a point in time, a mechanism is needed to initiate migration
decisions at the specified time. This can be done by different mechanisms, such as interrupts that
are triggered after a specified amount of execution time. For simplicity, this implementation polls
for teval in the tick handler, as shown in Listing 5.7. At each timer tick, the remaining budget is
compared to budgetEval, and when both values are equal, migration decisions are made. In order
to try to delay the evaluation point, teval is recalculated with current run-time information. If no
such delay is possible, xmigr is defined. The calculated value is then written to the memory location
pointed to by xEvalPtr, so that the designated migration point can be identified by the application.

The initial value of budgetEval is set after each task migration in vTaskEvaluate(), as shown in
Listing 5.8. As opposed to the previous algorithm, the current task always migrates, when the
selected migration point has been reached. After the migrated task has been resumed on the target
core, budgetMin is initialized. If this value is smaller than the remaining budget, the task can continue,
until the teval is reached. Else, migration decisions cannot be delayed and a migration point is
chosen immediately. If xend(l) has not yet been reached, xmigr is set to xend(l). Otherwise, the task
migrates again instead of returning to the task. As in the previous algorithm, this possibility requires
task migration to be implemented in a loop.

As in the previous algorithm, overhead needs to be included when the next evaluation point is
calculated. This overhead is always constant and can be determined according to the discussion in
Chapter 4. When a value for the required time is given, this value is added to budgetEval.

5.3.3.3 Dynamic Migration Decisions of Algorithm (A3)

Since this approach is a combination of the previous algorithms, its implementation will not be
discussed in detail. Time-triggered evaluation points can be implemented similar to Approach
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1 xTaskIncrementTick () {
2 ...
3 task = current_task[cpuid];
4 if (task ->budgetLeft == task ->budgetEval) {
5 // t_eval is reached
6 x_curr = *task ->xCurrPtr;
7

8 m = MAX(x_curr , CURR_PLANNED_END ());
9 task ->budgetEval = WCET_MAX(m) + OVRH;

10

11 if (task ->budgetEval == task ->budgetLeft) {
12 m = MAX(x_curr + 1, CURR_PLANNED_END ());
13 *task ->xEvalPtr = m;
14 }
15 }
16 ...
17 }

Listing 5.7 – Evaluation Point in Algorithm (A2)

1 void vTaskEvaluate () {
2 task = current_task[cpuid];
3 x_curr = *task ->xCurrPtr;
4

5 for (;;) {
6 vTaskMigrate ();
7

8 // initialize budgetMin for new core
9 m = MAX(x_curr , PLANNED_END ());

10 task ->budgetMin = WCET_MAX(m) + OVRH;
11 if (task ->budgetMin > task ->budgetLeft) {
12 return;
13 }
14

15 // not enough time to delay decision , decide here
16 if (x_curr < CURR_PLANNED_END(task)) {
17 *task ->xEvalPtr = CURR_PLANNED_END ();
18 return;
19 }
20

21 // end(l) is already reached , try again on next core
22 }
23 }

Listing 5.8 – Implementation of Selected Migration Points in Algorithm (A2)
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5.3 Dynamic Migration Decisions

(A2), except that in this case, no recalculation of budgetEval is needed. The implementation of
vTaskEvaluate() is similar to Approach (A1), with the difference, that budgetEval is calculated after a
migrated task is resumed. If budgetEval is too large for the assigned budget, this approach continues
as in Algorithm (A1).
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6M E A S U R E M E N T S

In Chapter 4, both benefits and overhead of dynamic migration decisions have been discussed from
a theoretical view. In order to approximate the additional overhead, the overhead for all purposes
discussed in Chapter 4 is measured. Additionally, the effect of dynamic migration decisions on split
tasks is evaluated by comparing the chosen migration points and measuring response times. Before
measurement results are presented, the applied methods are clarified.

6.1 Methods of Measurements

All measurements in this chapter are done on a Raspberry Pi v2 model B, using the implementation
described in Chapter 5. As in Chapter 4, the focus of this section are the additional operations that
are needed for dynamic migration decisions, as opposed to the overhead for task migration itself,
which has already been needed before dynamic migration decisions were introduced. Thus, the
overhead for vTaskMigrate() is excluded from measurements.

If not specified otherwise, time intervals are measured using the Processor Cycle Counter of the
performance measuring unit, which provides a 32-bit register the value of which is incremented for
each CPU cycle [Arm]. For measurements, the CPU frequency is set to 600 MHz.

Measurements are made for a task that is split into a specified number of partial tasks, each of
which has a specified number of assigned sections. Since all migration points before xend(1) will be
skipped by all algorithms, the number of sections in the first partial task is not relevant for most
measurements and is set to one, if not specified otherwise. When a of sections for other partial
tasks is specified, the WCETs of these sections are assigned randomly, using a uniform distibution
between the minimal and maximal section WCETs, which are calculated from the assigned budget
and a specified ratio of maximal to minimal section WCET.

Each section is implemented by a loop that waits actively, until a calculated number of timer
ticks has passed. One timer tick refers to the time between two tick interrupts, which are generated
by the Generic Timer. While in the original implementation of piRTOS, the interval between two tick
interrupts has a length of 1.2 miliseconds, this time is set to 0.15 miliseconds instead, in order to
increase the speed of measurements. Since dynamic migration decisions do not depend on absolute
WCETs, when the relative size of the WCETs stays the same, this should not impact measurements
results.

Note that the general significance of these measurements is limited. Since run times depend
on the underlying hardware and software, these results cannot be generalized for all systems. For
example, an operating system that separates the address spaces of system and application will need
a significantly higher overhead at each evaluation point. Furthermore, the example task is run
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6.1 Methods of Measurements

without further tasks in the task set, so that possible interference from other tasks is not included.
Aside from this, measurements in general only represent a lower bound of required WCETs.

6.2 Overhead for Dynamic Migration Decisions

In Chapter 4, the additional overhead that is caused by dynamic migration decisions was discussed
theoretically. In order to estimate the actual required time, each kind of overhead that has been
analyzed in Chapter 4 will be measured in this section. This includes measurements of the overhead
to include by the partitioning algorithm, the overhead to include by dynamic migration decisions,
and the average-case run-time overhead. Furthermore, the overhead for skipping migration points
and for polling for teval in the tick handler will be measured. Measurements results for all of these
overheads will be presented in the remaining section.

6.2.1 Overhead for Skipped Migration Points

The WCET of each section needs to include the overhead for skipping migration points, which is
implemented in vTaskEndSection(). Since this function is the same for all algorithms using evaluation
points, this operation is measured only for Algorithm (A1) and the simple approach.

The time is measured from the call of vTaskEndSection() until the return from this function, for
all function calls in which migration points are skipped. Measurements are made for a task that is
split in two partial tasks, each of which has 101 statically assigned sections of 10 timer ticks each.
Each section runs with its full WCET. Of this task, 50 jobs are measured, so that 10000 migration
points are skipped. In order to avoid interference of tick interrupts, timer interrupts are disabled for
the measured operations.

The results can be seen in Table 6.1. In average, the simple approach needs more time for
each migration point, which can be explained by the additional accesses to the array that contains
the section WCETs, which are needed for the reachability check. The maximal measured time is
slightly above 1 µs for the simple approach and below 0.8 µs for Algorithm (A1). In relation to one
timer tick, both values are relatively small. Even though the simple approach requires more time,
the difference between both algorithms is relatively small. This is due to the lack of separation of
address spaces in the given operating system.

Additionally, the time for polling of teval in the tick handler was measured. For this, the previously
defined task was used, and the first 10000 unsucessfull checks of teval were measured. The average
required time was 81.69 ns, with a standard deviation of 2.00 and a maximal value of 281.67 ns.
While this is a relatively short time, this overhead is required for each timer tick.

Note that all measured operations in this subsection can be optimized. Different optimizations,
such as function inlining, can be applied to reduce the run times of skipped migration points, while
polling for teval can be avoided entirely by using an interrupt mechanism instead.

Simple Approach Algorithm 1

max avg stdev max avg stdev
780.00 134.73 8.76 1033.33 220.86 9.58

Table 6.1 – Measured time in nanoseconds for each skipped migration point
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6.2 Overhead for Dynamic Migration Decisions

6.2.2 Overhead to Include in Budgets

When the partitioning algorithm assigns tasks to cores, it has to include time for dynamic migration
decisions in the budgets of each split task. The operations that need to be considered in the calculation
of this time have already been analyzed in Chapter 4 and will be measured in this subsection.

At the start of each partial task, the initialization of the first evaluation point needs to be
considered, under the assumption that the task will migrate at its statically assigned end. For this,
the time is measured from the return from vTaskMigrate() until the return from vTaskEvaluate() for
all algorithms. Additionally, the last evaluation point is measured, at which the task migrates,
by measuring the time from the call of vTaskEvaluate() until the call of vTaskMigrate(). For all
algorithms that use time-triggred evaluation points, the time for one such evaluation point at which
no recalculation of teval is possible has to be included. These operations in the tick handler are also
measured for Algorithms (A2) and (A3). The overhead that needs to be included in the budget of
each split task is calculated as the sum of these measured overheads.

Measurements are made for a task that is split into four parts, each of which has two assigned
sections of 10 timer ticks. Since, for this purpose, only cases with migration at the statically assigned
migration points are relevant, all sections run with their full WCET. Of this task, 1000 jobs are
measured, so that data is available for 3000 evaluation points of each type. As in the previous
measurements, timer interrupts are disabled for the measured time intervals.

The results are shown in Table 6.2. For all algorithms, the maximal measured overhead lies
between 2.2 µs and 3.3 µs , with Algorithm (A3) requiring the most, and Algorithm (A2) requiring
the least time. This result is expected, since Algorithm (A2) migrates at xmigr without further
reachability checks and does not need complex calculations for migration decisions, while Algorithm
(A3) needs to include overhead for all types of evaluation points, while still requiring a call to
calculateNextEvalPoint() before migrating.

With less that 4 µs , the overhead that needs to be added to each budget is relatively small and
is unlikely to impact the schedulability of a given task system.

6.2.3 Overhead to Include in the Calculation of Evaluation Points

When the next evaluation point is calculated, the overhead for dynamic migration decisions must be
considered by this calculation. In this subsection, this overhead is calculated from the measured
overhead of all relevant operations, according to the analysis in Chapter 4,

As discussed in Chapter 4, the definition of time-triggered evaluation points needs to consider
the same overhead that is added to the budgets. Since this overhead has already been measured in
the previous subsection, it will not be discussed further.

Algorithm 1 Algorithm 2 Algorithm 3

max avg stdev max avg stdev max avg stdev
Start 2015.00 283.92 56.23 470.00 103.74 11.60 2103.33 314.20 56.66
End 706.67 312.43 14.77 785.00 180.61 19.12 613.33 181.64 13.73
teval 953.33 229.26 22.93 488.33 145.33 10.87

Sum 2721.67 596.35 2208.33 513.61 3204.99 641.17

Table 6.2 – Measured time in ns to include in the budgets of split tasks: For each algorithm, the
relevant operations are measured and added. The overhead that needs to be considered by the
partitioning algorithm can be estimated by the sum of the maxima of all partial overheads.
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6.2 Overhead for Dynamic Migration Decisions

This leaves the overhead that needs to be included in reachability checks of Algorithms (A1)
and (A3). This overhead is caused by the remaining calculation of xeval , the return to the actual
task, and the calculations when xeval is reached, under the assumption that no further migration
point is reachable.

The time for the remaining calculation can be determined from the WCETs of loop iterations in
the used search algorithm. Thus, the time required for loop iterations is measured. Loop iterations
are measured for a task that is split in two partial tasks with a budget of each 10000 timer ticks
with 1000 sections assigned to the second partial task, each of which has a WCET of 10 timer ticks.
In order to increase the number of loop iterations for the search algorithm that uses the estimation,
an additional section is added to the end with a WCET of 100 timer ticks, and the second budget
is increased accordingly. At run time, all sections run with 62,5% of their specified WCET. Loop
iterations of multiple jobs are measured, until data exists for at least 2000 loop iterations. Timer
interrupts are disabled during the search.

As shown in Table 6.3, the maximal measured time for loop iterations ranges between 0.8 µs
and 1.6 µs . From these values, the required time for the remaining calculation can be determined,
according to the analysis in Chapter 4. The result of these calculations is also shown in Table
6.3. For binary search, the number of required loop iterations is estimated by 32, which leads to a
comparatively high cost of about 28.3 µs . Alternatively, a lower value could be calculated depending
on the given task parameters. Since the other search algorithms need to include only a constant
number of loop iterations, significantly less time has to be included for these algorithms with 2.1 µs
for linear search and 4.2 µs for the search algorithm using the estimation.

Additional to the time for loop iterations, the time from the end of the search until the return
from vTaskEvaluate() was measured for Algorithms (A1) and (A3), using the same task as before.

Since the overhead at xeval with no further reachable migration points has already been measured
for all algorithms in the previous subsection, the overhead to include in reachability checks can now
be calculated by combining the given values for the used migration algorithm with the given value
for the used search algorithm. Since linear search has already been chosen for Algorithm (A3), and
ruled out for Algorithm (A1), the overhead is only calculated for the combinations of Algorithm
(A3) with linear search, and Algorithm (A1) with the other two search algorithms.

The results for these combinations are shown in Table 6.4. With the already high estimated
overhead for the remaining calculation of binary search, the combination of Algorithm (A1) and
binary search needs to include by far the most time with more than 31.1 µs . In combination with
the other search algorithm, only 7.1 µs are required. The least overhead needs to be included by
Algorithm (A3), due to the relatively low overhead of the remaining calculation if linear search is
used.

Search using Estimation Binary Search Linear Search

max avg stdev max avg stdev max avg stdev
iter 1583.33 285.37 50.43 883.33 154.97 31.44 1028.33 157.85 23.10

calculation 2 * est + lin 32 * bin 2 * lin

loop ovrh 4204.99 28266.56 2056.66

Table 6.3 – Overhead for the remaining calculation, when xeval has been identified. From
the maximal time for one loop iteration, the overhead for the remaining calculation can be
determined.
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Considering that dynamic migration decisions currently calculate with time units of timer
ticks, which have a significantly higher time interval than the calculated overheads, the current
implementation estimates this overhead for all algorithms with one timer tick, which is unlikely to
have a significant impact on the behaviour of dynamic migration decisions.

6.2.4 Run-Time Overhead

Aside from the overhead that needs to be considered by scheduling and migration functions, the
average-case run-time overhead is measured for all algorithms using evaluation points. Since
Algorithm (A1) can be combined with different search algorithms, the overhead caused by these
algorithms will be compared.

6.2.4.1 Comparison of Search Algorithms for Algorithm (A1)

As discussed in Chapter 3, different search algorithms can be used to identify the next migration
point. Since linear search has already been dismissed as potential search algorithm for Algorithm
(A1), only the other two search algorithms are measured.

In order to measure the overhead for the search, measurements are made from the call of
calculateNextEvalPoint() until the return from this function. Timer interrupts are disabled during
measurements. The measured task is split into two partial tasks. In order to get run times for
large amounts of input data, the second partial task is assigned 10000 sections. Both partial tasks
have a budget of 100000 timer ticks. This budget is distributed among the sections according to a
specified ratio of maximal to minimal section length. Since the accuracy of the estimation using
cMax i(m) depends on the variance in section WCETs, and the possible range of ratios produced by
the task splitting algorithm presented in [Kla+19] is unspecified, measurements are made for ratios
of 1.5, 2, 4, and 9. Aside from representing a wide range of plausible ratios, these values result in
integer values for maximal and minimal section WCET with a symmetric distance from the average
section WCET of 10 ticks. In order to measure the behaviour for different numbers of available
and reachable migration points, measurements are made with actual run times of i

8 ∗W C ET , with
i ∈ {1, . . . , 8}. Multiple jobs are measured, until at least 25 measurements have been made for each
configuration.

The results are shown in Figure 6.1. As expected, the overhead of binary search stays constant
with differing variances of section lengths, while the search algorithm using the estimation needs
more time for higher variances. Contrary to expectations, the results of this search algorithm improve
with for cMini

cMax i
= 4. One possible explanation for this could be the effect of the maximal section

Algorithm (A1) Algorithm (A3)
Binary Search Search using Estimation Linear Search

Current Search 28266.56 4204.99 2056.66
Return to Task 150.00 150.00 295.00
next xeval 2721.67 2721.67 3204.99

Overhead 31138.23 7076.66 5556.65

Table 6.4 – Calculation of the overhead to include in reachability checks. This overhead is
calculated from the time for the remaining current calculation, the time until the return to the
task, and to the overhead for the next migration point, which has already been measured in the
previous subsection. The time is specified in nanoseconds.
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was measured for a budget of 100000 with a maximal
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Figure 6.1 – Measured time for binary search and the search algorithm using the estimation
depending on the ratio of run times to WCETs, measured for different ratios of maximal to
minimal section WCET.
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WCET on the time for the integer division that is needed in each loop iteration. Integer division is
not provided by all ARM-v7 processors [Arm], and is therefore implemented by a library function.
With the given budget size, the maximal section has a WCET of 16 time units, which is a power of 2
and could therefore lead to beneficial behaviour of the division function.

In order to test this, further measurements have been made for a task with the same ratio of
maximal to minimal WCET and the same number of sections, but with a budget of 150000 time
units assigned to the second partial task. These parameters result in a maximal section WCET of 24
instead of 16 time units, which could increase the time needed by the division function. As shown in
Figure 6.1c, the measured time was indeed significantly higher than for the previous measurement,
while equivalent measurements for binary search did not lead to any significant differences.

According to the results, the performance of the search algorithm using the estimation exceeds
the performance of binary search for a ratio of maximal to minimal section WCET of 1.5, needs
a similar amount of time for a ratio of 2, but leads to a higher overhead if this ratio increases.
Aside from the variance of section WCETs, the suitability of this algorithm also depends on the
behaviour of integer divisions on the current platform, so that even on the current platform, further
measurements with more adverse maximal section WCETs would be required in order to make
definite statements about the resulting overhead.

6.2.4.2 Average-Case Overhead for Evaluation Points

In order to approximate the average-case run-time overhead, the total overhead by all dynamic
migration decisions is measured, and the number of evaluation points is counted. The number of
evaluation points is interesting, since the overhead for each evaluation point can increase significantly,
if address spaces for system and application are separated.

The overhead for evaluation points is measured from the call until the return of vTaskEvaluate(),
with the time for vTaskMigrate(). Time-triggered evaluation points are measured from the start until
the end of the respective code in the tick handler. The measured times are added for each partial
task. When evaluation points are counted, the start of the task in vEndTaskPeriod() is also counted as
evaluation point, since the first evaluation point has to be initialized. Evaluation points at which a
task migrates between two cores are counted for both partial tasks.

Since the behaviour of tasks with many sections and multiple migrations is interesting, the
measured task is split into four partial tasks, each of which is has a budget of 10000 time units and
is assigned 1000 sections. Measurements are made for ratios of maximal to minimal section length
of 1.5 and 9, and for run times of i

8 ∗W C ET with i ∈ {1, . . . , 8}. For each configuration, 10 jobs
are measured for each algorithm, with Algorithm (A1) using the search algorithm that uses the
estimation.

The overhead for all evaluation points of a partial task is shown in Figure 6.2. As it is clearly
visible, the overhead for Algorithm (A1) exceeds the overhead of the other algorithms by large, while
Algorithm (A3) needs slightly more time that Algorithm (A2). With an increased ratio of maximal
to minimal section WCET, the overhead of Algorithm (A1) increases significantly, which is due to
the used search algorithm. Since Algorithm (A3) is more likely to need more recalculations of xeval

with an increasing variance of section WCETs, the overhead for this algorithm also increases. The
large overhead of Algorithm (A1) can be explained by both the higher complexity of the calculation
at each evaluation point, and the higher number of evaluation points.

The number of evaluation points for each algorithm is shown in Figure 6.3. For all run times
smaller than the WCET, Algorithm (A1) needs the most evaluation points, which is expected, since
with faster run times, the remaining budget is likely to be sufficient for multiple recalculations of
xeval . Algorithm (A3) needs slightly more evaluation points that Algorithm (A2), with a larger
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Figure 6.2 – Total measured overhead dynamic migration decisions depending on run times.
Measurements were made for all algorithms using evaluation points and for different ratios of
maximal to minimal section WCET.

0.2 0.4 0.6 0.8 1
0

5

10

ratio of run time to WCET

nu
m

be
ro

fe
va

lp
oi

nt
s

(A1)
(A2)
(A3)

(a) Measurements for cMaxi
cMini

= 1.5

0.2 0.4 0.6 0.8 1
0

5

10

ratio of run time to WCET

nu
m

be
ro

fe
va

lp
oi

nt
s

(A1)
(A2)
(A3)

(b) Measurements for cMaxi
cMini

= 9

Figure 6.3 – Average number of evaluation points per partial task depending on section run
times. Measurements were made for all algorithms using evaluation points and for different
ratios of maximal to minimal section WCET.
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difference for an increased variance of section WCETs. This is due to the larger remaining budget,
when the first xeval is reached. In comparison, the number of evaluation point needed by the other
algorithms does not differ significantly with differences in section WCETs.

6.3 Selection of Evaluation Points

Since the goal of dynamic migration decisions is to delay migration as far as possible, the effectiveness
of the given algorithms in this regard is measured by comparing the selected migration points for
different algorithms. Since Algorithm (A2) is the only algorithm that chooses potentially non-optimal
migration points, only this algorithm and Algorithm (A3) are measured in order to estimate the
impact of the non-optimal choice.

The measured task is split into two partial tasks with a budget of 500 and 4000, respectively. A
larger budget was chosen for the second partial task in order to force the task to migrate even with
short run times, so that chosen mirgation points can be compared for all measured run times. Since
Algorithm (A2) leads to worse results with fewer migration points and larger differences in section
lengths, measurements are made for all combinations of cMax i

cMini
∈ {1.5, 9} and 20, respectively 200

sections assigned to the second partial task. For each combination, 10 measurements are made for
run times of i

8 ∗W C ET , with i ∈ {1, . . . , 8}
As shown in the Figure 6.4, the difference between both algorithms decreases with more migration

points, although Algorithm (A2) makes non-optimal choices in both cases. With both 20 and 201
sections assigned to the second partial task, the the difference increases with an increasing variance
of section WCETs.

6.4 Response times

In order to determine the impact of dynamic migration decisions on the run time of a task, the
response times of all algorithms are compared to the response times with fixed migration points.
Fixed migration points are implemented by a call of vTaskMigrate() at the appropriate points in the
application code.

The response times are measured from the start of a job in vEndTaskPeriod() until its end in the
same function. In order to avoid interference of the migration delay that is caused by the polling for
arrived tasks in the tick handler, the time from the call until the return from taskYIELD() is excluded.
In order to avoid an overflow of the timer register, the System Timer is used for these measurements,
which provides a 64-bit counter that is incremented with a frequency of 1 MHz [Bcm].

In the previous measurements, section tun times were realized by polling for a calculated value
of the current tick counter of the system. With this method, the exact run time of a section can vary
with the time that has passed since the last tick interrupt. If the execution of the sections is included
in the measurements, these effects can lead to section differences in section run times that depend
on the overhead between sections. In order to avoid this, the implementation of sections has been
changed for the measurements of response times, so that the intended run time is now approximated
by decrementing an integer variable in a loop. While this method still leads to inaccuracies of the
run times, these inaccuracies are now independent of the overhead of dynamic migration decisions.

Measurements are made for two task, both of which are split into four partial tasks, with a ratio
of maximal to minimal section WCET of 9. While the first task has a budget of 5000 timer ticks and
1000 assigned sections for each partial task, the partial tasks of the second task have an assigned
budget of 50 ticks and are split into 10 sections. As in the previous measurements, response times
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Figure 6.4 – Average chosen migration point by Algorithms (A2) and (A3), depending on run
times.

are measured for different run times, in steps of 1
8 ∗W C ET . For each configuration, 10 jobs are

measured for each algorithm.
As shown in Figure 6.5, no significant differences can be determined, regardless of the number

and run times of sections. Since taskYIELD() has been excluded from measurements, most of the
adverse effects of task migration, i.e. the actual cost of data transfer, are not included in the
measurements. This means that the measured results represent the overhead for dynamic migration
decisions without most of the benefits of avoiding task migration. If migration overhead is included,
the response times are likely to improve, if migration can be avoided by dynamic dynamic migration
decisions.

As shown in Figure 6.6, at least one task migration can be avoided by all algorithms for dynamic
migration decisions for run times of less than three fourth of the assigned WCETs of the example
task. For run times of less than one fourth of the given WCET, both tasks could even be finished
without migrating at all, with one exception of Algorithm (A2), in which a non-optimal choice leads
to one task migration for the task with fewer sections.

If task migration can be avoided in more realistic scenarios with a higher load of the task set
and a larger working set of the migrating task, response times are likely to be improved by dynamic
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Figure 6.5 – Response times for all algorithms, depending on run times
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Figure 6.6 – Number of migrations for all algorithms, depending on run times. Since Algorithm
(A1) has the same results for both search algorithms, these results are summarized under (A1)

migration decisions, although more comprehensive time measurements are needed in order to make
more definite statements.
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7F U T U R E W O R K

While the presented approaches for dynamic migration decisions have been designed, analyzed
and implemented, various enhancements of the current status are still possible for the presented
concepts, as well as the practical implementation and the measurements.

The presented concepts rely currently on various limitations, which are not necessarily needed.
As an example, the task sets for which migration decisions can be made are still restricted by the
assumptions stated in Chapter 2, such as the assumption that all tasks are independent from each
other. These restrictions do not necessarily reflect the behaviour of real-world applications. The
implications of lifting these assumptions, and the required adaptions to dynamic migration decisions
could be explored.

Furthermore, in the current approach, migration decisions for a given task ignore the run-time
behaviour of all other tasks, as well as otherwise available slack. If these information were considered,
it might be possible to increase the budget of the migrating task by stealing slack from other tasks,
so that task migration can be delayed further. A concept for this and its implications for preserving
schedulability could be designed.

Aside from theoretical concepts, the current state of the implementation still leaves room for var-
ious optimizations. Task migration, as well as time-triggered evaluation points can be implemented
using interrupt mechanisms instead of polling in the tick handler, and code optimizations, such as
function inlining, can be applied to the skipping of migration points.

In order to get more comprehensive results for the required overhead, the presented algorithms
can be implemented and measured on different hardware platforms and operating systems, using
task sets with a higher load and generally more comprehensive scenarios. Measurements could be
made for platforms with a higher overhead for system calls, in order to estimate the benefits of using
evaluation points. Additionally, static code analysis can be used to determine the actual overhead
that needs to be included by the partitioning algorithm and dynamic migration decisions.

Furthermore, the presented approach could be combined with already existing approaches to
reduce CPMD. With both migration targets and potential migration points statically known, the
mechanism for software-assisted cache-line migration presented in [Sar+09] could be leveraged to
further reduce migration overhead.
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8C O N C LU S I O N

In this thesis, different algorithms for dynamic migration decisions have been presented. These
algorithms are based on an already existing approach to reduce the migration overhead in semi-
partitioned scheduling. In this approach, task migration is limited to a statically defined migration
point, which was chosen by the partitioning algorithm out of a set of predefined potential migration
points with low migration overhead. Since this point is determined statically, each migrating task
always migrates at the same point, regardless of its actual run times, which makes it impossible to
avoid migration, even if the current job needs less time than assigned to the current core.

In order to avoid this problem, and to prevent unnecessary migrations, dynamic migration
decisions were presented in this thesis. Instead of migrating at a statically assigned point, dynamic
migration decisions try to choose the latest migration point that can be chosen without leading to
deadline misses. In order to guarantee that dynamic migration decisions do not lead to deadline
misses, two conditions were defined, which were used to verify all presented algorithms for dynamic
migration decisions.

For making dynamic migration decisions, four algorithms were defined. A simple approach was
presented that needs reachability checks at each migration point, and in order to reduce the number
of these checks, three further algorithms were presented that limit reachability checks to designated
evaluation points. Depending on the algorithm, evaluation points are defined as points in the code,
points in execution time of the current job, or a combination of both.

All algorithms were analyzed with regards to efficiency of budget use and required overhead.
For all algorithms, the assigned budget can be used more efficiently with more migration points and
smaller sections. With a given set of migration points, all algorithms that perform reachability checks
immediately before migrating can use their budget optimally, while the quality for the approach
using only time-triggered evaluation points depends on the differences between section WCETs. For
all algorithms overhead needs to be considered by both the partitioning algorithm and dynamic
migration decisions. This overhead was shown to be constant and relatively low. The average-case
overhead at run time is at most logarithmic to the number of available migration points and is lower
for algorithms that use time-triggered migration points.

A prototype for the presented algorithms was implemented on a Raspberry Pi v2, using the
existing partitioned-scheduling algorithm of the FreeRTOS port piRTOS. Based on this, task migration
was introduced, and all presented algorithms for dynamic migration decisions were implemented.

For this implementation, both overhead and response times were measured. According to
measurement results for the given implementation, a relatively low amount of time needs to be
included in the budget of each partial task for all algorithms. While the average-case overhead is
significantly higher for the algorithm without time-triggered evaluation points, it is still relatively
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8 Conclusion

small. When the response times where measured, the impact of the additional overhead was neglible,
while migration could still be avoided in many cases.

Based on the presented concepts and implementation, various improvements can be made, such
as optimizations of the current implementation to further reduce the overhead, of extensions of
the presented concepts, so that dynamic migration decisions can be improved or applied in more
realistic scenarios.

66



L I S T O F F I G U R E S

2.1 Comparison of different approaches to limit migration: in all approaches, the task
is split as shown in figure 2.1a. The task is split according to the estimated WCETs,
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