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A B S T R A C T

Computation and developing time are both highly contested resources, especially in embedded
real-time systems. Therefore, a system that can automatically reduce processor usage provides
an invaluable advantage over either choosing a more powerful and consequently more expensive
processor or optimizing code by hand. Various disturbances can cause a control loop which is
implemented on a real-time operating system to become unbalanced and thus cause the Quality
of Control (QoC) to decrease. Conversely, there are also situations where the system is close to
equilibrium, and the controller needs little effort to keep it stable. Therefore, it may make more
sense to save computation time by not running certain job activations.

A Linear Time-Variant System (LTVS), which is the basis of this work, emulates the temporal
evolution of the system and the QoC. A clock-driven scheduler is augmented by a mechanism, which
allows certain job activations to be omitted according to a strategy. This strategy is formalized into
a policy and learned by the Deep Reinforcement Learning (DRL) algorithm. The implementation
is realized and optimized using the two most common model-free algorithms, Q-learning and
State–action–reward–state–action (SARSA), extended by an Artificial Neuronal Network (ANN). The
Neuronal Network (NN) is used to determine whether and in which estimated state the actuation
is necessary. With little effort, it can be adjusted how close the system will get to its minimum
QoC. The evaluation shows that the DRL approach can adapt to different system behaviors and
outperforms the Supervised Learning (SL) policy by Rheinfels on two simulated reference systems.
To conclude, the DRL approach turned out to be a promising solution for the trade-off between QoC
and utilization, especially for more complex systems with long-running tasks.
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K U R Z FA S S U N G

Sowohl Rechen- als auch Entwicklungseit sind besonders in eingebetteten Echtzeitsystemen eine
hart umkämpfte Ressource. Systeme, welche die Prozessorlast automatisch reduzieren können,
haben daher einen sehr großen Vorteil gegenüber herkömmlichen Systemen. Sollten diese Systeme
nämlich ihre Leistungsgrenze erreichen, so kommt nur die Wahl eines leistungsfähigeren und folglich
teureren Prozessors oder die Optimierung des Codes von Hand in Frage. Verschiedene Störungen
können dazu führen, dass ein Regelkreis, der auf einem Echtzeit-Betriebssystem implementiert
ist, aus dem Gleichgewicht gerät und somit zu einem Abfallen der Quality of Control (QoC) führt.
Umgekehrt gibt es aber auch Situationen, in denen das System nahe am Gleichgewicht ist und der
Regler wenig Aufwand benötigt, um dieses stabil zu halten. Oft kann es deshalb sinnvoller sein, sich
die Berechnungszeit einzusparen, indem man bestimmte Job-Aktivierungen nicht ausführt.

Die Grundlage dieser Arbeit bildet ein Linear Time-Variant System (LTVS), welches die zeitli-
che Entwicklung des Systems und der Quality of Control (QoC) emuliert. Um bestimmte Job-
Aktivierungen gemäß einer bestimmten Strategie auslassen zu können, wird das System um einen
taktgesteuerten Scheduler erweitert. Diese Strategie kann durch eine Policy formalisiert und mit
Hilfe des Deep Reinforcement Learning (DRL)-Algorithmus gelernt werden. Die Umsetzung des
Algorithmus erfolgt durch die beiden gängigsten modellfreien Ansätze, nämlich Q-learning und
State–action–reward–state–action (SARSA) in Kombination mit einem künstlich neuronalen Netz.
Dieses wird verwendet, um zu bestimmen, ob und in welchem geschätzten Zustand die Regelung not-
wendig ist. Außerdem kann mit geringem Aufwand eingestellt werden, wie nahe das System seiner
minimalen QoC kommen darf. Die Auswertung mehrerer simulierter Experimente hat ergeben, dass
der Deep Reinforcement Learning (DRL)-Ansatz sich an unterschiedliche Systemverhalten anpassen
kann und den Supervised Learning (SL)-Ansatz von Rheinfels auf zwei simulierten Referenzsystemen
übertrifft. Zusammenfassend lässt sich sagen, dass sich der DRL-Ansatz als eine vielversprechende Lö-
sung für den Kompromiss zwischen QoC und Auslastung erwiesen hat, insbesondere für komplexere
Systeme mit lang laufenden Aufgaben.
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1I N T R O D U C T I O N

In the late 1950s, the term of optimal control was first used to describe the problem of designing
a controller to minimize a measure of a dynamical system’s behavior over time [SB18, p. 16].
When in 1950 Richard Bellman and others tried solving this task, the approach of Reinforcement
Learning (RL) was born. An important extension called Deep Reinforcement Learning (DRL) gained
popularity in 2013 because it was able to learn to play Atari games [Mni+13]. In the meantime, it
has proven to be applicable to many other fields as well.

Compared to the other algorithms in the field of Artificial Intelligence, like Supervised Learning (SL),
RL has the following advantages [SB18, p. 12]:

• No need for large data sets

• Ability to generate entirely new solutions that humans would never have considered

• Easier adaptability to new circumstances.

The main task of this thesis is to save execution time and cost by minimizing the actuation for
a control system implemented on a Real-Time Operating System (RTOS), while maintaining its
stability. This problem is very well suited for the DRL approach. The changing state of the controller
can be used as input for a Neuronal Network (NN), which is able to continuously learn whether
to activate a job or not for a given state. Before the system is reaching a point of instability, the
algorithm has to trigger the actuation.

Figure 1.1 shows how a policy influences the behavior of a Real-Time Control System (RTCS).
In general, the design of a RTCS includes a digital control loop as well as an internal clock and
scheduler to execute a control task. This task’s purpose is to bring the system close to equilibrium.
Performing this task as often as needed is vital for the system stability. A policy can model how
many activations are required in order to keep the system’s stable.

Figure 1.1 broadly outlines the structure of the specific system, which is considered in this thesis.
This particular system contains a physical control loop which consists of a plant, a sensor, a controller
and an actuator. The plant describes its physical portion, which should be balanced by the movement
of the actuator. To achieve this balance, the controller gets information about the physical state from
the sensor and calculates a suitable reaction, which the actuator should perform. A second loop is
formed via the RTOS scheduler by a policy interacting with the controller. A policy decides whether
to activate the controller depending on the estimated system state and Quality of Control (QoC)
[Gau+18, p. 1]. There are three different events measure, compute and actuate, which impact the
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1 Introduction

state of the physical control system, resulting in a new state and QoC. These two values influence
the decision of the policy whether to activate all three events or leaving out the actuation, which
saves computing time.

Scheduler PolicyClock

Plant

Controller

estimated state, estimated QoC

RTOS

Control Loop

action

Figure 1.1 – An overview of the given environment, including a simplified illustration of the
control loop and the RTOS. The policy interacts with the RTOS based on the estimated state
and QoC.

The QoC is a physical quantity used to express the performance of the controller. The system models
used in this thesis have a minimum QoC. Multiply sources of disturbance can effect the system’s
QoC. To evaluate the soundness of the trained system, measurement noise and external disturbances
will be simulated. If the controller compensates the disturbance whenever possible, a very high
utilization rate is obtained, which isn’t needed to hold the QoC above its minimum value.

The trade-off between utilization and QoC will be defined by a policy, e.g., QoC > QoCmin. This
policy can be learned through different approaches. Rheinfels implemented a SL policy, which can
achieve this goal using multiple restrictive assumptions [Rhe19, p. 53]. As previously mentioned, SL
requires a large labeled data set in complex environments and needs to be retrained for changing
environments. RL on the other hand is learning an optimal policy by trial and error and can therefore
adapt to any kind of environment change, with no need of labeled data. To be able to interact in
continuous state spaces, as provided by the RTCS, the classic RL approach can be extended by a NN.
This technique, called DRL is able to solve very complex problems, but can lead to unstable learning.
To overcome this instability, several optimizations can be used resulting in faster convergence and
therefore faster learning speed. To learn the defined policy, the estimated state and QoC is given as

2



1 Introduction

input to the NN. The prediction whether to actuate or not is then provided via the two output nodes
by choosing the maximum value. These so called action-value functions are calculated by the RL
algorithm for a given estimated state and action and learned by the NN through gradient-descent.
To keep the execution time that is needed to predict the favored action within acceptable limits, the
design of the NN must be considered.

This thesis starts with a short overview of definitions and notations in Chapter 2, followed by
the system model, QoC and RTOS forming the environment as given in Chapter 3. In addition,
Chapter 3 contains a description of the two main components of the DRL, the NN and the classic RL
approach. Before introducing the implemented DRL policy in Chapter 5, the problem statement will
be refined in Chapter 4 using the information provided up to that point. The evaluation following
Chapter 6 compares optimizations and the outcome of several experiments measured by defined
metrics. Finally, Chapter 8 summarizes the evaluation and discusses its influence on the overall
execution time.

3





2N O TAT I O N

In this chapter, definitions and notations of quantities used in the thesis are introduced. Some
definitions are adopted from [Rhe19] to establish connections when needed.

Vector and Matrix

Matrices are given in upper case letters, e.g., A and B, with their transposed forms being AT . Special
matrices are defined when their definition is required, making an exception for the identity matrix
assigned as I . Just like scalars, vectors are written in lower case letters. A matrix A ∈ Rn×n is said to
be symmetric and positive definite (s.p.d.) iff ([Bos07, p. 259]):

x T Ax > 0, ∀x ∈ Rn\{0} (2.1)

and to be symmetric and positive semi-definite (sp.s.d.), if

x T Ax ≥ 0, ∀x ∈ Rn. (2.2)

1 denotes a column-vector comprised of ones, i.e. [1 1 ... 1]T .
For two matrices A and B of the same dimension m× n, the Hadamard product [HJ12, p. 477] can
be written as :

(A◦ B) = (ai j · bi j) =







a11 · b11 · · · a1n · b1n
...

. . .
...

am1 · bm1 · · · amn · bmn






∈ Rm×n. (2.3)

Functions

The total derivative of some function f (x) with respect to x is given by f ′(x). Furthermore, the
gradient of a function f (x), given as the vector of the partial derivatives ∂

∂ x i
with respect to the n

dimensional vector x is donated as:

∇x f (x) := [
∂

∂ x1

∂

∂ x2
...

∂

∂ xn
]T . (2.4)

Random Distribution

The probability density of a value x is denoted as Pr{x}, while the expectation operator is written by
using E with its argument in curly braces.
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2 Notation

Two forms of the normal distribution are used in this thesis: the first one is the univariate normal dis-
tributionN (µ, σ2) with µ ∈ Rd as mean value and its variance σ2 > 0 given by Equation (2.5).
The second one is the d-dimensional multivariate normal distribution N (µ, Σ) with mean vector
µ ∈ R and s.p.d. covariance matrix Σ ∈ Rd xd , as described in Equation (2.6) ([Dek+05b, p. 64]).

x ∼ N (µ, σ2) ⇔ Pr{x} =
1

σ
p

2π
e(−x−µ2)/2σ2

(2.5)

x ∼ N (µ, Σ) ⇔ Pr{x} =
1

p

(2π)d detΣ
e−

1
2 (x−µ)

TΣ−1(x−µ). (2.6)

The real uniform distibution U [a, b] with given interval [a, b] is defined as ([Dek+05b, p. 60]):

x ∼ U (a, b) ⇔ Pr{x} =

¨

1
b−a a ≤ x ≤ b

0 otherwise.
(2.7)

Letters having a hat, e.g., x̂ , indicate that the value can not be determined exactly and is therefore
estimated. Real and natural numbers are given as R and N respectively, while other sets are written
in gothic capital letters.
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3F U N D A M E N TA L S

First, this chapter gives an overview of the shared environment in Section 3.1. A short explanation of
the concepts and structures used in NNs is provided in Section 3.2, followed by a comparison of the
two main problem types a NN can solve. Afterward, the second component RL, and its environment
and proof, given by the Markov Decision Processes (MDP), are introduced in Section 3.3.

3.1 Environment

This section outlines the environment the agent of the RL approach interacts with. An overview of
the environment and the influence of the single components are provided in Figure 3.1. A detailed
description is presented in this section. The environment consists of the control loop formalized
by a Linear Time-Variant System (LTVS) in Section 3.1.1. The QoC is used to measure how well
the control loop meets its specification, with its corresponding formula introduced in Section 3.1.2.
The last environment component, the RTOS, which can affect the system performance by executing
control tasks, is described in Section 3.1.3.

7



3.1 Environment

Environment

SchedulerClock

Plant

Controller

Policy

Ĵk, x̂k

k

RTOS

Control Loop

xk+1 = A(ak)xk +G(ak)νk
x̂k = Cxk
Ĵk = x̂Tk Q̂x̂k

ak

Figure 3.1 – The environment consists of the control loop and the RTOS. In this figure, simplified
versions of both are illustrated. The action a is influencing the system at a given time step k
and a policy provides the best action.

3.1.1 Linear Time-Variant System

The linear time-variant system is simplified on the premise that execution times are deterministic. It
is derived from the Linear Impulsive System (LIS) used in Rheinfels’ master thesis [Rhe19, p. 10].
At first, time step tk and span are defined, given by the following formulas:

tk < t l ⇔ k < l t ∈ (t0, T ) ∀l, k ∈ N0 (3.1)

tk ≥ t0 . (3.2)

Then the LTVS can be set up as:

xk+1 = A(ak)xk + G(ak)νk. (3.3)

The equation describes the system’s dynamics in time, where xk+1 is the consecutive state at time
step k+ 1. The matrices A(i) and G(i) are chosen from finite sets of A and G, which are assumed
to be given and defined for the evaluated systems presented in Appendix B. With attention to
the system that needs to comply with a given QoC specification Ω̂, the parameter ak is chosen.
In Rheinfels’ master thesis, the events measure, compute, and actuate are considered separately
but combined in this thesis to one matrix A(i). This simplification was done because varying
execution times are not within the scope of this work [Rhe19, p. 15]. Defining both matrices as
the following, given the restriction for G(i)G(i)T to be symmetric and positive semi-definite (sp.s.d.):

A(i) ∈ A , i ∈ {0, 1} (3.4)

G(i) ∈ G , i ∈ {0, 1}. (3.5)

8



3.1 Environment

More details on this topic can be found in Appendix B and the previously mentioned master thesis
[Rhe19]. Given this system description, ak needs to be chosen correctly to keep the control loop close
to equilibrium. It is understood that picking ak = 1 in every time step k achieves this goal. If the
system does not regulate according to its specifications, the controller is already broken beforehand.
Although this may be true, choosing ak to be one in every time step k is not necessary to stabilize
the system. Therefore, a policyπ can be defined, able to decide which ak to take in a given time step k:

ak = π( x̂k, Ĵk), (3.6)

depending on the measured state x̂k and the measured QoC. The usage and form of the QoC will
be defined in Section 3.1.2. Only a part of the state xk is measurable, so this results in another
equation with a given matrix C:

x̂k = C xk =





0 I 0 0
0 0 I 0
0 0 0 I



 xk , C ∈ Rnxm. (3.7)

The last unknown variable in Equation (3.3) νk encodes stochastic measurement and process noise.
It offers the possibility to include measurement noise and external disturbances to the formula. The
noise is assumed to have zero mean and be white, resulting in:

E{νk} = 0 (3.8)

E{νkν
T
l } =

¨

I k = l

0 else.
(3.9)

The values are drawn from a Gaussian distribution [Rhe19, p. 12]:

νk ∼ N (0, I). (3.10)

Furthermore, it must be ensured that G(i)G(i)T being sp.s.d. hold so that the covariance matrix of
G(i)νk becomes sp.s.d..

3.1.2 Quality of Control (QoC)

The QoC is a quadratic control error function that can be used to assess how closely a control loop
meets its specification [Rhe19, p. 17]:

Ĵk = x̂ T
k Q̂ x̂k. (3.11)

Q̂ is a given s.p.d. weight matrix, defined in Appendix B. Its derivation can be retraced in [Gau+18,
p. 1]. An undesirable control loop behavior results in higher costs and indicates how close the
system is to its equilibrium. In the rest of the thesis, the mathematical definition of the QoC is given
by the following formula, normalizing the range of the value to lay between 0 and 1 [Rhe19, p. 17]:

Ω̂k :=
1

Ĵk + 1
. (3.12)

Every system model used in this work has a predefined lower limit called minimum QoC Ωmin, which
can be looked up in Appendix B. Falling below this lower bound results in asymptotical instability
and must be avoided.

9



3.1 Environment

3.1.3 Real-Time Operating System (RTOS)

The other part of the environment is the RTOS, which implements the basic operations of this system
measuring, computing, and actuating. The system uses a clock-driven scheduler, as indicated in
Figure 3.1. It is assumed that control tasks are scheduled periodically with deterministic execution
times. These control tasks Ti are given as:

Ti := (p, ϕi , Di , emean). (3.13)

This formula defines the task as a quadruple of ϕi , period p, relative deadline Di , and execution
time emean. To simplify matters, there are no execution intervals, which means that in contrast to
[Rhe19, p. 16], execution times have to be assumed constant. Concrete values for those variables
are provided in Table B.1, which can be found in Appendix B.

3.2 Artificial Neuronal Networks

Artificial Neuronal Network (ANN) — or short only NN — is a technique or algorithm that tries to
mimic the function of a human brain. In a highly simplified way, the human brain can be viewed
as millions of interconnected neurons, which have the ability to extract and link information. A
perceptron, an abstract model of a single neuron, is able to imitate this functionality1. Combining
them into a multi-layered network, which means connecting them in series, results in an algorithm
powerful enough to solve complex problems.

3.2.1 Perceptron

The history of Artificial Intelligence started in the 1940s and had a breakthrough with the introduction
of the perceptron by Rosenblatt [Ros58, p. 389]. These perceptrons are mathematical functions that
collect and classify information according to their specific architecture. They consist of multiple
inputs xk and only one output y j . The quantities a j are known as activations and combine the inputs
xk, weights wk, and the bias b to a linear function as shown in Equation (3.14). Each of them is
then transformed using a non-linear activation function σ(·) [Bis06, p. 227].

a j =

�

n
∑

k=1

wk xk + b

�

(3.14)

y j = σ(a j). (3.15)

The reason for using an activation function lies in the concept of non-linearity. In Equation (3.14),
the input vector and the quantities show a linear relationship. When adding an activation function,
which is non-linear, the output will be non-linear, too. The Leaky Rectified Linear Unit (Leaky ReLU)
[MHN13], an optimized ReLU activation function [GBB11], solves the problem of dying neurons
when the gradient is less or equal to zero. The linear activation function and the Leaky ReLU
activation function are defined as:

σl(a j) := a j (3.16)

σr(a j) :=

¨

0.01a j a j < 0

a j a j ≥ 0.
(3.17)

1Perceptron and neuron are treated equally in this thesis.
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x2 w2 Σ

x1 w1

x3 w3

yj

WeightsInputs Sum Activation Function Output

b

Figure 3.2 – A graphical representation of a perceptron with three inputs x1, x2, x3, weights
w1, w2, w3 and bias b forming the linear regression Equation (3.14). The activation function
σ is applied to the linear combination, resulting in the output y j .

Combining all these information results in Figure 3.2. Many perceptrons, which are connected in
series are called Multi-Layer Perceptron (MLP)2, forming a generic model that can adapt to training
data [Wer74, p. 12].

3.2.2 Multi-Layer Perceptron

To solve more complex problems, many perceptrons are combined, forming a MLP, which performs a
series of functional transformations [Bis06, p. 227]. More formally, a MLP can be described as a model
ŷ = f ∗(x , w), approximating an existing function y = f (x) [GBC16, p. 164]. w consists of the
parameters, which are learned during training. In a NN they are represented as weights and bias
values. To give an overview of the layout, the structure of a MLP is shortly explained in the following.

First, a method how to count the number of layers in a NN is explained. Many authors, among others
Russell Reed argue that the input layer has no activation function and should not be part of the total
number of layers [RM98, p. 32]. Thus, the network given in Figure 6.1 has three layers consisting of
two hidden layers and one output layer. Such a NN with more than one hidden layer is called a Deep
Neuronal Network and is able to perform deep learning [Dec86, p. 180]. A standard MLP’s input
layer consists of nodes, that bring initial data into the system, and are often referred to as input
units because they do not perform a transformation. The number of neurons per hidden layer and
output layer can contain more or fewer neurons, depending on the problem and its complexity. A
series of fully connected layers, which means each output is used as input for the next layer, is called
a Fully Connected Neural Network, illustrated in Figure 3.3. In mathematical terms, a fully connected
layer is a multivariate function given as Rnk 7→ Rn j . Using this type of network results in numerous
links and consequently in multiple weights, which must be learned during training [Bis06, p. 368].

2In literature, MLP is often used ambiguously to any Feed-Forward Network (FFN).
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1

σl

σl

σl

σl

σl

1

σl

σl

σl

σl

σl

1

σr

σr

x1

x2

x3

x4

ŷ1

ŷ2

w1
1,1

w1
2,1

b25

Input Layer Hidden Layer Output Layer

Figure 3.3 – A fully connected MLP network with input, output and two hidden layers. Weights
wl

k, j are illustrating the affine transformations between the connected neurons. These neurons
are drawn as nodes containing σ if there is an activation function used. Nodes containing 1 are
used to symbolize the bias to be added in every layer except the input.

3.2.3 Training

Giving a certain data set, learning to map inputs to outputs can be defined as training. This process
involves finding a set of weights for the NN, that are good enough to solve a specific problem. To
determine the learning process properly, variables need to be introduced. The notations are based
on [Bis06], leading to the representations explained in the following paragraph.

Each layer l ∈ (1, 2, ..., nl), has an assigned matrix of weights W l and a vector of bias values
bl . bl

j represents the bias of neuron j in layer l. Accordingly, wl
k, j is the weight of the neuron j in

layer l for the activation al−1
k of the neuron in layer l − 1. An illustration is given in Figure 3.3. The

activation of a single neuron and an entire layer is defined in Equation (3.18) and Equation (3.19),
respectively [Bis06, p. 229]:

al
j = σ

�

n
∑

k=1

wl
k, ja

l−1
k + bl

j

�

(3.18)

al = σ
�

W l al−1 + bl
�

. (3.19)

Propagating the calculated activation al feed-forward through every layer is called forward propa-
gation. The observed outputs Ŷ can be compared to the expected values Y , using for example the
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3.2 Artificial Neuronal Networks

Mean Squared Error (MSE) or Mean Absolute Error (MAE), given in the following:

LMSE(Y, Ŷ ) =
1
n

n
∑

j=1

(y j − ŷ j)
2 (3.20)

LMAE(Y, Ŷ ) =
1
n

n
∑

j=1

|y j − ŷ j |, (3.21)

where
Ŷ = [ ŷ1 ŷ2 ... ŷn]

T . (3.22)

The actual training step is to minimize this loss function by using an optimization algorithm to find a
local minimum. One of the most common algorithms is the gradient descend method, which updates
the weights and bias thanks to the gradient. Its form can be seen in the following [Bis06, p. 240]:

wl
k, j ← wl

k, j −α
∂ L(Y, Ŷ )
∂ wl

k, j

. (3.23)

The learning rate α ∈ (0, 1] determines the gradient’s step size, where the gradient can be calcu-
lated using the backpropagation algorithm. To simplify the notation, the Hadamard product can be
used, resulting in the following calculation for the output δnl and hidden layers error δl [Nie18,
pp. 45–47]:

δnl = ∇a L ◦σ′(anl ) (3.24)

δl = δl+1W l+1 ◦σ′(al). (3.25)

Given these formulas, the gradient for every weight can be derived by:

∂ L(Y, Ŷ )
∂ wl

k, j

= δl
ja

l−1
k . (3.26)

The NN is trained by computing the forward propagation followed by the loss calculation and
backpropagation. After the gradient descent step is applied, the next iteration starts. This process
continues until the loss value is small enough or the maximum number of iterations is reached.

3.2.4 Regression and Classification

Machine learning aims to automate the learning process so that the task performs in the best possi-
ble way. Whether the output Y is discrete or continuous, one distinguishes two types of learning
problems: the regression problems and the classification problem. Therefore, the decision of which
approach to take depends on the kind of data and the desired kind of output.

The output variable is continuous or numerical for regression, and categorical or discrete for clas-
sification [Bis06, p. 10]. As seen in Figure 3.4 classification tries to find a function to divide the
data set into classes. It can either be a binary classification problem, as shown in Figure 3.4, or a
multi-class problem. Classification is mostly a supervised learning concept because often labeled
data sets are used. However, there are application areas where reinforcement learning was applied
successfully, for example, in object detection [PS18] and even image classification [HB20].

Regression, on the other hand, can be equivalently found in SL and RL. The output is a real
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3.2 Artificial Neuronal Networks

value, which can be either nature or a floating-point value. It is used to find the best fit and pre-
dicting the outcome accurately, seen in Figure 3.4. The algorithm can be divided into linear and
non-linear regression, depending on the linearity of the resulting model.

−10 −5 0 5 10

−5

0

5

10

15

Classification

−2 0 2

−200

−100

0

100

200

Regression

Figure 3.4 – Comparison of classification and regression problems. Dividing the data set into
classes using classification can be seen in the left figure. Fitting a line through the data points
in regression is provided in the right figure.

3.3 Reinforcement Learning

RL is a branch of machine learning, where an agent tries to solve a task by trial and error. It explores
the environment whose dynamics are unknown to find an optimal chain of actions. By choosing
an action, the agent can change the state of the environment, and receives immediate feedback
through a reward. The task of an RL agent is to maximize the expected sum of rewards, which can
be achieved by following an optimal policy. A policy is defined as a mapping from state to action.
The main difference between RL and other machine learning methods like SL or Unsupervised
Learning (USL) is that it does not depend on data acquisition. Furthermore, it is defined in terms of
optimal control of an MDP. This chapter introduces the RL approach and is based on [SB18].

3.3.1 Agent-Environment Interaction

RL is a part of machine learning that is focused on learning through interaction [SB18, p. 25]. While
interacting with the environment, an agent receives immediate feedback based on his chosen action.
Because the only information an agent can get is the current state and the next state gathered
through his transition, most of the environment is unknown. So, the agent is searching for an
optimal path through the environment by trial and error. This interaction is illustrated in Figure 3.5.
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Agent
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xk+1

reward
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xk

Figure 3.5 – Interaction of the agent with the environment [SB18, p. 48].

To describe this procedure more precisely, the agent interacts with the environment at each time
step k. At each time step k the agent can select an action ak ∈ A from a set of actions available in
state xk. These states xk ∈ X are the representation of the environment. As a consequence of the
chosen action ak, the agent receives a reward rk+1 ∈ R and continues to the next state xk+1 [SB18,
p. 68]. When the agent approaches an optimal behavior, the process is finished.

3.3.2 Markov Decision Process

The RL environment interface can be formally described as a MDP [SB18, p. 47]. In a finite MDP,
the sets of A, X, and R all have a limited number of elements. All states in MDP have the Markov
property, referring to the fact that the future state xk+1 only depends on the current state xk and
action ak [SB18, p. 48]:

Pr{xk+1, |xk, xk−1, ..., x0, ak, ak−1, ..., a0} = Pr{xk+1|xk, ak}. (3.27)

The main problem of MDPs is to find a policy π for the agent. This so-called agent’s policy maps a
state xk to an action ak and ensures the Markov property. The goal is now to find a policy π, which
maximizes the expected sum of rewards rk+1 from every state xk. The commutative discount return
Gk is then given as [SB18, p. 54].:

Gk := rk+1 + γrk+2 + γ
2rk+3 + ... =

∞
∑

i=0

γk rk+i+1. (3.28)

where γ ∈ [0, 1) denotes the discount factor increasingly attenuated the rewards lying in the future.
Choosing the discount factor to be zero results in the agent only maximizing the immediate reward,
whereas setting it close to one, the agent tries to focus more on future rewards. After defining the
available overall reward, the agent needs to know how good it is to be in a particular state xk. This
way of measuring can be done by a state value Vπ(x) or state-action value Qπ(x , a) function. The
latter is defined as [SB18, p. 58]:

Qπ(x , a) := Eπ {Gk|xk = x , ak = a} = Eπ

¨∞
∑

i=0

γk rk+i+1|xk = x , ak = a

«

. (3.29)

It calculates the expected sum of rewards while taking action ak in state xk and by following policy
π. A policy π∗ is called optimal, if its expected return is better or equal than the other policies. The
resulting optimal state-action value function can then be written as Equation (3.30) and expanded
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to Equation (3.31):

Q∗(x , a) := max
π

Qπ(x , a) (3.30)

Q∗(x , a) := E
n

rk+1 + γ max
a∈A

Q∗(xk+1, a)|xk = x , ak = a
o

:=
∑

rk+1∈R

Pr
n

xk+1, rk+1|xk, ak)(rk+1 + γ max
a∈A

Q∗(xk+1, a)
o

.
(3.31)

The second formula is called the Bellman optimality equation for Q∗ [SB18, p. 64]. It offers a unique
solution independent of the policy, for each state-action pair. When the optimal Q∗-value for an
action is known, the policy can be defined by choosing the actions with maximum Q-value, also
called the greedy policy:

πq(x) = argmax
a∈A

Q(x , a). (3.32)

If the probability and reward functions are known, the Bellman optimality equation can be solved
using model-based algorithms. These functions are not predefined for many other problems, which
is why model-free algorithms, like Monte Carlo or temporal difference, are chosen.
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4P R O B L E M S TAT E M E N T

All the information provided up to that point can be used to formalize a more detailed and precise
problem statement. This section focuses specifically on the trade-off between utilization, associated
with an existing control algorithm, and the QoC and the associated cost savings. In addition, the
possibilities and assurances of the system are presented in order to get an overview of the require-
ments and the goal of this thesis.

As mentioned before, it can be assumed that the system is well-defined to guarantee stability
over all time steps tk, when the action ak ∈ {0, 1} is always chosen to be 1. This leads to the
following assurance:

Ω̂k ≥ Ωmin , ak = 1, ∀k ∈ {t0, ..., tk−1}. (4.1)

Choosing the action variable ak to be 1 means that all three events measuring, computing, and
actuating are activated. In Rheinfels’ master thesis, the tasks measuring and computing are set to
be mandatory. Mandatory tasks are conducted at every controller period since they are critical for
updating the state estimation [Rhe19, p. 17]. The situation is different for the optional actuating
task, where the task can be left out without significantly lowering the estimate [Rhe19, p. 17].

The costs needed to perform the actuation task result in higher overall costs L(ak). For each
of the three tasks, a runtime can be calculated 3, which is a larger or smaller part of the total task
time. The individual costs for the task lme, lco, lac depend on their phase ϕ, deadline D, and mean
execution time e for a given period p. This means cost calculations, depending on the chosen ak can
be written as:

L(ak) =











lme+lco+lac
lme+lco+lac

= 1 ak = 1

lme+lco
lme+lco+lac

ak = 0.

(4.2)

After calculating the cost for one time step k, the costs per run must be estimated. Furthermore, it
must be ensured that in every time step the estimated QoC Ω̂ is above its minimum Ωmin. Formalizing
these two requirements results in the following:

lim
N→∞

1
N

N
∑

i=k

L(ai) and Ω̂k ≥ Ωmin , ∀k ∈ {t0, ..., tk−1}. (4.3)

3The costs for the tasks can be looked up in Appendix B.3
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4 Problem Statement

It should be noted that the infinite number of time steps N is finite in practical terms and set to a fix
number of time steps in the simulation. Given all the information about the environment and the
costs above, the final goal of this thesis can be summarized in the statement below:

In every time step k choose an action ak, that minimizes the costs given in Equation (4.3) under
the assumption of a stable system, where Ω̂k ≥ Ωmin in every time step tk.

To ensure this behavior, a policy π( x̂ , Q̂) can be defined, as mentioned in Equation (3.6), which
generates the action ak to be chosen. To get access to the current state xk needed for the evaluation
of the policy an observer is used to access a state estimation x̂ ∈ X̂. It is assumed that this state
can be used to estimate the QoC Ω̂ as well [Rhe19, p. 17]. The policy π( x̂ , Q̂) depends on the
current estimated system state x̂ only, which is a restriction adopted from Rheinfels to reduce the
complexity of the problem by allowing the policies to be time-invariant [Rhe19, p. 17]. Comparing
the restriction of the environment and the MDP reveals that both depend on the current system
state x̂k, making the environment well-suited for the approach of RL.

18



5D E E P R E I N F O R C E M E N T
L E A R N I N G P O L I C Y

The approach of DRL algorithms have proven their ability to address a wide range of previously
unsolvable problems [FL+18, p. 312]. DRL combines the classic RL algorithms with the functionality
of a NN. As mentioned in Section 3.3 RL can be used to lean a policy, which is able to make assurances
about the environment by choosing a suitable action. With a given model-free environment as
described in Section 3.1, only model-free algorithms like SARSA or Q-learning seem suitable. They
both belong to the category of temporal difference learning and can bootstrap, which is essential in an
environment with no final state. Furthermore, like most real-world problems, the state of the given
system is continuous in time, leading to a problem when using the classic Q-learning and SARSA
algorithm. Both save their updated action-value function in look-up tables, which does not scale in
large or continuous state spaces. Therefore, the action-value function will be approximated by using
a NN. The resulting DRL algorithm and its implementation details will be described in this chapter.
First, Section 5.1 starts with the general introduction of Temporal Difference Learning (TDL), which
includes the model-free algorithms Q-learing and SARSA, followed by adjustment for continuous
state spaces in Section 5.2 and the reward modeling in Section 5.3.

5.1 Temporal Difference Learning

In a model-free environment that contains no final state, TDL can be very useful. These methods
sample from the environment, like Monte Carlo methods, and perform updates based on current
estimates, like dynamic programming methods [SB18, p. 119]. In contrast to Monte Carlo methods,
TDL is updating its previous predictions in every time step and does not need to wait until the final
outcome is known. Simply speaking, the algorithm is able to bootstrap [SB18, p. 89].

The idea behind TDL methods is that they only use experience gathered from exploring the environ-
ment to solve the prediction problem. After gaining some experience they follow a specific policy π
and update their estimated Q-values Qπ for the states x of a given setup. The question is to know
how much experience an agent needs to be able to learn a policy π, and more important, learn it in
an intended way. This leads to a problem, which is known as the exploration-exploitation trade-off.

A decision-making system which has only incomplete knowledge of the world has two options:
repeating a decision that has worked well last time (exploit), or gaining new experience and maybe
a higher reward by trying a random action (explore). This is important as learning is online, and no
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5.1 Temporal Difference Learning

batches of data are given like in SL. Data is affected only by the data gathered while exploring and
the taken actions. Occasionally it is worth taking another action to get better results. Exploration
does also have disadvantages like higher risks and slower convergence. Hence, exploring in early
epochs and with increasing probability exploiting in the later epochs seems to be a good compromise
and is called the ε-greedy policy. It in this thesis as follows [SB18, p. 127]:

πε(ak| x̂k) =

(

1− ε + ε/|A| ak = argmax
a∈A

Q( x̂k, ak)

ε/|A| otherwise.
(5.1)

The ε-greedy strategy selects the action ak with the highest Q-value and a probability of 1− ε in a
particular estimated state x̂k, or randomly selects one from all possible actions of the state with the
ε probability. |A| represents the number of all possible actions ak in state x̂k. Normally, the initial
value of ε is set to be 1.0 and decayed depending on the exploration rate by 0.9 or 0.99.

In this work, the state is initialized at the start of every epoch and continues randomly because of
noise and disturbances. Every epoch is divided into several time steps tk where the main algorithm
is evaluated. ε is initialized by 1.0 and decayed every epoch depending on the exploration rate
εdeca y . In this thesis it was discovered that both system models do not need to explore more than
using the value of 0.9, because of the randomness gathered from noise and disturbances.

The resulting action ak, whether chosen randomly or not, is used to estimate the next state x̂k+1

and leads to a change in the action-value function. Updating this Q-value can be done on-policy
and off-policy. The most common on-policy method is called SARSA, introduced in Section 5.1.1,
whereas a common off-policy method is the Q-learning algorithm, explained in Section 5.1.2 [SB18,
p. 154].

5.1.1 SARSA

SARSA is an on-policy method that estimates the Q-value for the current policy π written as
Qπ(ak, x̂k) with given action ak and states x̂k. Its name comes from the quintuple (State, Action,
Reward, State, Action), including all necessary information needed to update the state-action value
function. As mentioned in the previous chapter, ak can choose to be the maximum expected Q-value
or random. It is called on-policy because it follows a given policy in every time step k. In this case, the
previously mentioned ε-greedy policy is used. Being part of the TDL algorithms results in updating
the estimated Q-value in every time step k, by a given formula including the temporal-difference
error δk, which is calculated by the difference of the temporal-difference target and the prediction
value [SB18, p. 129]:

δk := rk+1 + γQ( x̂k+1, ak+1)
︸ ︷︷ ︸

temporal−di f f erence tar get

− Q( x̂k, ak)
︸ ︷︷ ︸

predic t ion value

(5.2)

Q( x̂k, ak) ← Q( x̂k, ak) +αδk. (5.3)

Hence, the action-action value function can be updated every time step k with step size α ∈ [0, 1)
which results in the minimization of the temporal-difference error. Combining this algorithm and
the ε-greedy policy, introduced in the previous chapter results in the algorithm illustrated in Algo-
rithm 5.1.
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1: Initialize states X = {1, . . . , nx}
2: Initialize actions A = {1, . . . , na}
3: Initialize Q-values Q(x , a) = 0
4: Initialize learning rate α ∈ [0, 1), typically α = 0.1
5: Initialize discounting factor γ ∈ [0, 1)
6: for each epoch do
7: Initialize x1 ∈ X
8: Choose a1 from x1 using ε-greedy
9: for each time step k and x̂k 6= terminal do

10: Take action ak, observe rk+1, x̂k+1
11: Choose ak+1 from x̂k+1
12: Q( x̂k, ak) ←− Q( x̂k, ak) +α[rk+1 + γ Q( x̂k+1, ak+1)−Q( x̂k, ak)]
13: Calculate π based on Q (e.g., ε-greedy)
14: x̂k ← x̂k+1
15: ak ← ak+1
16: end for
17: end for

Algorithm 5.1 – The SARSA algorithm calculating the Q-values in each time step k, including
Equation (5.1) and Equation (5.2) [SB18, p. 130].

The Q-value update is accomplished under the assumption that x̂k is not the terminal state after
every transition from state x̂k to state x̂k+1.

Furthermore, the algorithm converges with probability 1 to an optimal policy and state-action
value function under the assumption that all state–action pairs are visited an infinite number of
times. Also, the convergence of the policy is required, which for ε-greedy can be achieved by setting
ε = 1/k [Sin+00, pp. 293–295].

5.1.2 Q-Learning

In comparison to the previously described SARSA algorithm, the Q-learning approach is updating
its state-action values off-policy [SB18, p. 131]:

δk := rk+1 + γ max
a∈A

Q∗( x̂k+1, a)−Q( x̂k, ak) (5.4)

Q( x̂k, ak) ← Q( x̂k, ak) +αδk. (5.5)

The difference resides only in calculating the temporal-difference target, depending on the maximum
state-action value of all viable actions in A. Accordingly, it is not following the ε-greedy policy and
is therefore called off-policy. Because of this property, the convergence proof is much simpler and is
only requiring the state-action value pairs to be updated [SB18, p. 157].

Both algorithms have their advantages and disadvantages, making them more or less optimal
in different systems. While Q-learning directly learns the optimal policy, SARSA learns a “near”
optimal policy. This results in SARSA being more conservative, while in Q-learning the agent can be
more aggressive by trying to get the best possible reward [SB18, pp. 131–132].
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5.1 Temporal Difference Learning

In this thesis, both of them are used and compared, mainly because there is more space of op-
timization when using Q-learning [Mni+15, p. 529] and SARSA acting more conservative.

5.2 Nonlinear State-Value Function Approximation

Applying the algorithms introduced in the previous chapter to the given environment, results in
one big problem. The classic TDL approaches save their state-action values in a look-up table. By
increasing the complexity of the problem the table’s capacity can be overwhelmed by the numerous
state-action values. Furthermore, there are often no discrete states or actions in natural environ-
ments, which faces the agent with continuous states and actions.

In this thesis, there are only two options (performing the actuation task or not), but many states the
system can remain. As a result, the MDP needs to be formalized as continuous while not violating
the given Markov property [SB18, p. 57]. The temporal-difference algorithms are adapted to be able
to handle continuous state spaces. After talking about the general adjustment, the NN architecture
used in this thesis is presented.

Neuronal Network

Loss Function

Environment

ak

x̂k

(x̂k, ak, rk+1, x̂k+1)

∇

pred.

Q

Figure 5.1 – An overview of the action-value approximation using a NN. The environment is
providing the states, while the NN estimates the best possible action ak. The network is trained
using gradient descent. This optimization process requires a loss function. To simplify the
picture, the QoC is considered as part of the state x̂k.

There are two ways to approximate the action-value function: a linear, as described in Section 5.1
or a non-linear by using NN. The latter is described in this section. Recall the Bellmann Optimality
Equation, where the optimal state-action value is defined by the sum of the direct reward rk+1 and
the maximum of the discounted Q-value of the next step k+ 1. This equation can also be solved
using a non-linear approximator like a NN. It is done by using the loss4 as define in Equation (5.6)
to update the weights w of the network.

L(w) = E
§

�

(rk+1 + γ max
a∈A

Q( x̂k+1, a, w))−Q( x̂k, ak, w)
�2ª

. (5.6)

After calculating the loss, the gradient descend step is performed, as seen in Section 3.2.3. The NN
is now able to "learn" the optimal value function, which helps the agent to choose the best possible

4Calculated by using the MSE in this formula. In this case Q-learning is used for illustration.
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5.2 Nonlinear State-Value Function Approximation

action ak in an estimated state x̂k with QoC Ω̂k. For a better overview, this process is illustrated in
Figure 5.1.

5.3 Reward Function Modeling

A reward function r : X×A×X→ R provides feedback while the agent explores the environment,
given the goal of maximizing the overall reward. In fact, the reward function has a significant
influence on the agent’s behavior. Hence, it is essential to know which components to examine to find
the best possible reward function. They can be divided into two groups: general and problem-specific
components. First, the problem-specific goals, which are in this thesis the goal of minimize the
overall costs, under the assumption, that the QoC stays close to equilibrium are introduced. As a
result, the agent needs to get feedback for:

• Keeping the QoC above its lower limit rq(Ω̂k)

• Sparing processor time when a job is not activated ru(ak)

General components include:

• Frequency of feedback

• Reward or punishment

• Ratio of values

In the following, each of the points will be introduced in more detail, including some ideas based
on [Esc21, pp. 25–33].

The first one is the frequency at which an agent gets feedback by the reward. When the reward is
given sparsely, the agent is not rewarded very often, resulting in no feedback when the agent is
exploring spaces far away from the goal. Therefore, learning might take more time. However, this
can also be an advantage because the agent is less often led to specific sub movement sets. The
other way is to build a reward function, which gives continuous feedback how near the agent is
to the desired state, resulting in faster learning speed, but might lead to unintended behavior. A
good example might be rewarding the agent when it is close to breaking the QoC bound. The agent
learns that playing on the edge leads to the highest reward, regardless of the given risk of failure
when it does not actuate early enough.

The second point is how to structure the reward numerically. By obtaining positive rewards, the
agent will try to sum them up. This can lead to the same unintended behavior as mentioned before:
always collecting the highest reward and therefore forcing risky situations. Negative rewards let the
agent stay away from certain situations, but give disincentive to stay away from the possible optima.

The last component is the value rq(Ω̂) in relation to the value ru(a). When rewarding the agent
frequently with the value of 1 by not actuating and only punishing it with a value of −1, when
falling below the minimum QoC, the agent does not take the low QoC into account. Based on these
aspects, the reward functions used in this thesis are presented.
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5.3 Reward Function Modeling

The utilization reward is calculated by:

ru(ak) =

¨

u ak = 0

0 otherwise,
(5.7)

where u is some positive coefficient. The QoC reward, was evaluated using several approaches,
finally resulting in three different functions, which are defined in the following:

rΩ1

�

Ω̂k

�

=

¨

q1 Ω̂ ≥ Ωmin

0 otherwise
(5.8)

rΩ2

�

Ω̂k, Ω̂k+1

�

=

¨

q2 (Ω̂k+1 − Ω̂k) > q3

0 otherwise
(5.9)

rΩ3

�

Ω̂k, Ω̂k+1

�

= (Ω̂k+1 − Ω̂k)q4, (5.10)

where again q1, q2, q3 and q4 are some adjustable positive coefficients. For the double integrator
system model an additional reward function rΩd

with positive coefficient d is used:

rΩ4
=

¨

Ω̂k+1 < Ωmin and a = 1) d

0 otherwise.
(5.11)

Both reward parts are added to generate the over all reward:

r(ak, Ω̂k, Ω̂k+1) = rΩ(Ω̂k, Ω̂k+1) + ru(ak). (5.12)

The fitting coefficient values for both system models were evaluated empirically. The reward
functions are chosen to be as simple as possible, focusing on the two central aspects of minimizing
the utilization and maximizing the QoC. rΩ2

and rΩ3
have their focus on the QoC. difference, where

a fast decreasing of the QoC. is punished harder than a slow decreasing one. Because the formulas
provide a large enough space of parameter freedom, the "else case" is set to be zero. A special
additional reward function for the double integrator is used because this system model has the
particular case that one actuation is enough to restabilize the system in most cases. Hence, the
reward can be set more precisely here.
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6E VA L U AT I O N

In this chapter, the approach of DRL will be tested using two different simulated system models:
an inverted pendulum and a double integrator. Both express different system behavior, which is
influenced by adjustable process and measurement noise. The chapter evaluates the trade-off
between QoC and utilization by applying the DRL algorithms to the two experimental setups.
First, the evaluation metric defined in Section 6.1 which will be used to determine the algorithm’s
performance is introduced. An overview of different optimization methods for the algorithms is
provided in Section 6.2. In the following sections, the structure of the implemented DRL algorithm,
including parameter assignment (Section 6.3), the network architecture, and implementation details
(Section 6.4), algorithms (Section 6.5) and reward function modification (Section 6.6), are proposed.
The evaluation of the experiment setup and outcomes using the previously defined evaluation
matrices are given in the last chapter (Section 6.7). It contains the experimental evaluation of the
two system models and a comparison to the existing approaches for the same environment, given in
Rheinfels’ master thesis [Rhe19, p. 74].

6.1 Evaluation Metrics

Finding a way of measuring the performance of DRL can be quite difficult, especially for making
it comparable to Supervised Learning or other policies. Therefore, the metrics given in [Rhe19,
p. 19] are used, which focus on measuring the trade-off between QoC and utilization. They will be
explained in the following.

As mentioned before, the QoC defines how far away a system is to its equilibrium. To make it
comparable between system models, its scaled from [Ωmin,1] to lay between [0, 1]. The first metric
is known as the QoC metric mΩ. It describes the average QoC over N time steps in one simulation run.

mΩ :=
1
N

N
∑

k=1

max
§

Ωk −Ωmin

1−Ωmin
, 0
ª

. (6.1)

The second metric called utilization metric mu gives an overview of the utility by calculating how
many jobs are activated in a given time step k. As mentioned before, it is also normalized to lay
between 0 (all jobs activated) and 1 (no job is activated). The results are then averaged across all
time steps as seen in Equation (6.1). More precisely, a+k ∈ AnT denotes the vector of all optional
activations and u+ ∈ Rn+T the corresponding worst-case utilization [Rhe19, p. 19].

mu :=
1
N

N
∑

k=1

max

�

1−
(u+)T a+k
(u+)T1

�

. (6.2)
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6.1 Evaluation Metrics

Given vk , mb calculates how often the QoC falls below its minimum. This metric, called bound metric
mb is then defined as the relative amount of violations during the simulation and also averaged
across all time steps.

vk :=

¨

0 Ωk ≥ Ωmin

1 Ωk < Ωmin
(6.3)

mb :=
1
N

N
∑

k=1

max (1− vk) . (6.4)

The resulting metric is the product of all the other metrics:

m := mΩmumb. (6.5)

6.2 Optimization

In RL, especially when using DRL, there is a lot of room for improvement. A multitude of adjustments
can be done to increase the algorithm’s performance. The most common methods will be introduced
in the following chapters. This is embedded by a short evaluation that ends in a discussion about its
effectiveness. To give an overview of the optimization strategies and their way of interacting with
the whole system and the DRL approach, Figure 6.1 can be refereed.

Neuronal Network

Target
Network

Loss Function

Mini Batch

(x̂k, ak)

Replay Memory

Environment

ak

x̂k

Random Sampling

(x̂k, ak, rk+1, x̂k+1) x̂k+1

rk+1

Copy

w

target Q

∇

pred.

Q

Figure 6.1 – An overview of the system, the DRL approach, and the optimizations. The
Experience Replay Buffer (ERB) includes the Mini Batch, which samples random transitions
from the Replay Memory. A Target Network (TN) saves a copy of the weights from the NN.
Optimization like Weight Initialization and Loss Calculation are directly connected to the NN
and can improve its learning speed. Adopted from [Gre+20].

This section starts with the improvement by using a TN, followed by the ERB, containing the replay
memory and the mini batches sampled from. Next, a general overview of the hyper-parameter is
given, as well as the NN improvements consisting of the loss function and weight initialization.

The chosen optimizations are improving the algorithm in most cases but do not yield better results
in every parameter combination.
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6.2 Optimization

6.2.1 Target Network

The learning process of the NN depends on the difference between the predicted value and the
target value. The weight update step can be written more precisely as:

∆w = α[rk+1 + γ max
a∈A

Q( x̂k+1, a, w)−Q( x̂k, ak, w)] ∇wQ( x̂k, ak, w), (6.6)

where ∇wQ is the gradient of the current predicted Q-value. Taking a closer look reveals that the
state-action value function to be approximated is updated by another approximated state-action
value function. Simply speaking, the NN is updating a guess from the current state x̂k with a guess
from the next state x̂k+1. This can lead to unintended correlations and might result in unstable
learning behavior. The idea is now to freeze parameters to make it easier for the network to approx-
imate the state-action value as the target is fixed for an amount of time. This can be achieved by
a so-called TN, which saves a copy of the NN and uses it for the target value used in the Bellman
equation [Mni+15, p. 529]. Therefore, the TN is periodically synchronized with the weights of the
main network. The resulting change in the algorithm can be seen in Algorithm 6.1, together with
the ERB explained in the next chapter.

1: Initialize all variables needed to perform Q-learning
2: Initialize replay memory D to capacity N
3: Initialize state-action value function Q with random weights w
4: Initialize target state-action value function Q

′
with weights w

′
= w

5: for each episode do
6: Initialize x1 ∈ X
7: for each time step k and xk! = terminal do
8: With probability ε select a random action at ak
9: otherwise select ak = maxa∈A Q( x̂k, a, w)

10: Execute action ak in emulator and observe reward rk̂+1 and state x̂k+1
11: Store transition ( x̂ t , ak, rk+1, x̂k+1) in D
12: if enough experience in D then
13: Sample random mini batch of transitions ( x̂ j , a j , r j+1, x̂ j+1) from D
14: for every transition ( x̂ j , a j , r j+1, x̂ j+1) in minibatch do

15: y j =

¨

r j+1 if episode terminates at step j+1

r j+1 + γ maxa′∈A Q
′
( x̂ j+1, a

′
, w

′
) otherwise

16: Perform a gradient descend step on (y j −Q( x̂ j , a j , w))2 with respect to the network
parameter w

17: Every C steps reset Q
′
= Q

18: end for
19: end if
20: end for
21: end for

Algorithm 6.1 – The Deep Q-Learning (DQN) algorithm with ERB buffer and TN. Values with
an apostrophe mark the values gained from the TN, which is updated every C steps. In line
11 the transition is stored into the replay buffer and randomly sampled from it and trained
afterwards [Mni+13, p. 5].
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6.2 Optimization

Figure 6.2 illustrates a common problem, which can be solved by the use of a TN, called catastrophic
forgetting. Under certain conditions, the process of learning a new set of patterns can wholly and
suddenly erase a network’s knowledge of what it had already learned [Fre99, pp. 1–3]. This behavior
can be seen in epoch 500 when the cumulated reward decreases fast, followed by a rapid rise close
to the 1000s epoch. Even though the stability of the algorithm can improve, it might also slow down
its convergence. The decrease in convergence can also be observed in Figure 6.2, where the setting
with the TN reaches the highest cumulated reward as late as epoch 620.
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Figure 6.2 – The cumulative reward of 500 time steps over 1000 epochs. The graph without
the TN suffers from catastrophic forgetting, whereas the graph with the TN rises constantly and
persist at a high cumulated reward.5.

6.2.2 Experience Replay

In 1993 ER was proposed the first time as a technique to speed up RL [Lin92, p. 36]. The key idea
of ER is to buffer experiences gained from previous transitions and train the agent by sampling this
transitions from a buffer [ZS17, p. 2]. A transition is defined by a quadruple (xk, ak, rk+1, xk+1)
consisting of all relevant information needed to perform a DQN step.6 Adding the ERB into the
previously introduced DQN results in Algorithm 6.1.

Using ER can improve the basic DQN algorithm by the following:

• increased learning speed by sampling from multiple mini batches

5The parameter set is given in Table C.1.
6The ERB is only used for the DQN approach in this thesis, because it is more common and less complex.
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• using previous experiences more efficient by reusing them multiple times

• improving the sample efficiency by breaking the temporal correlations [ZS17, p. 7]

To see how the buffer effects the learning process in the given environment, a run was simulated
calculating the cumulated reward over time. The result in Figure 6.3 shows the increased convergence
achieved by the experience replay. Through ER th algorithm is able to get the highest reward before
epoch 400 is reached.
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Figure 6.3 – The cumulative reward of 500 time steps over 1000 epochs. The graph without the
ERB is reaching the highest cumulated reward at epoch 800. With the ERB the graph reaches
the reward of 900 before epoch 400.7

6.2.3 Loss Function

As mentioned before, the NN estimates the state-action value functions for the RL algorithm. Weights
are continuously updated by backpropagating the error to the input and generating a learning effect.
Typically, this is done by using the gradient descent method, which was introduced in Section 3.2.3.
Especially at the beginning of the learning process when using DRL, the error gradients can be
enormous, which leads to a loss of stability. Mnih found a way to improving the stability of the
algorithm by clipping the error term to lay between −1 and 1 [Mni+15, p. 535]. An equivalent
optimization can be made by using the Huber loss.

The Huber loss is containing both MSE and MAE, meaning it is only quadratic when the error
is small and else absolute [Hub92, pp. 73–75]. To customize the range for MAE and MSE an addi-

7The parameter set is given in Table C.2.
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tional parameter δ is used. The Huber loss can be calculated:

LH(Y, Ŷ ) =

¨

1
n (Y − Ŷ )2 for |(Y − Ŷ )| ≤ δ

δ(|(Y − Ŷ )| − 1
nδ), otherwise.

(6.7)

Figure 6.5 provides the resulting plots for the three loss functions in the range [−2, 2]. It can be
seen that the gradient of the MAE is the same throughout, which means the gradient will be large
even for small loss values. MSE squares the error resulting in very high gradients for outliers. Huber
loss combines the advantages of both functions and is also adjustable. Residuals larger than δ are
minimized with MAE, while residuals smaller than δ are minimized using MSE.
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Figure 6.4 – Corresponding losses for the three functions MSE, MAE and Huber loss with
δ = 1.0 and δ = 0.1.

6.2.4 Weight Initialization

The weight initialization technique to be chosen for a NN can determine how fast a network converges
or whether it converges at all. In general, weights represent the strength of the connection between
different layers and therefore affect the gradients. Two central problems go along with wrong weight
initialization, called the vanishing and exploding gradient problem. Vanishing gradients result in
very slow convergence and can even stop the network from converging. Exploding gradients lead to
large error gradients accumulation and result in massive updates. In the worst case, it can result in
"NaN" weight values, which leads to an unusable NN because they can not be used or updated.

He et al. show that using the He initialization method leads to good results when using the ReLU
activation function or their improved forms [He+15, p. 5]. In his paper, the focus was placed on
faster convergence and comparison to the state-of-the-art initialization called Xavier [GB10]. Given
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the following formulas for the two methods:

wk, j = U
�

−
p

6.0
p

nk + n j
,

p
6.0

p

nk + n j

�

(6.8)

wk, j = N (0, 1)
p

2.0
p

nk
, (6.9)

where nk is the number of incoming and n j is the number of outgoing connections. The bias tensors
are initialized with one. It’s important to keep in mind that those formulas are optimized for the
ReLU/Leaky ReLU activation function and need to be changed to achieve the same results for other
activation functions.

In Figure 6.5 the cumulated reward over 100 epochs can be seen. It compares the three initialization
methods He, Xavier and the weights initialized by zero in the given environment using the DRL
algorithm. Initializing the weights with zero results in a symmetry problem. When all the hidden
neurons start with the zero weights then all of them will follow the same gradient. This only effects
the scale and not the direction of the gradient [Bis06, p. 240], which leads to poor performance. He
initialization can reach a higher cumulated reward within the first 90 epochs. Empirical evaluations
have shown that both methods He and Xavier provide good results because in long training runs
(500 epochs or more), the initialization methods play only a small role compared to other factors.
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Figure 6.5 – Cumulated reward for 500 time steps in 100 epochs, where the He initialization
reaches a higher cumulated reward8. The zero initialized NN shows almost no improvement
whereas the Xavier network shows a small improvement.

8The parameter set is given in Table C.2.
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6.3 Parameter Assignment

After presenting the more complex optimization methods, there is also another way of optimizing the
DQN algorithm by choosing the optimal hyperparameters. Model hyperparameters are parameters
that cannot be learned during training but are set beforehand [FH19, p. 4]. All these variables affect
the learning of the NN differently. Choosing these parameters is one of the most challenging and
time-consuming parts of the DRL process because the agent needs to be trained to see how the
hyperparameter effects the performance. Other papers with similar environments can help to find a
good value to start with, but there is no prior way to know whether to choose the value to be high,
low, or something between. Only after several training runs and multiple parameter combinations
there can be a guess by watching the improvement of the total reward.

Choosing the right hyperparameter also requires an overview of all possible adjustments, which
can influence the outcome of the experiments. Therefore, a summary is provided in Table 6.1,
containing all viable parameter options and ranges. It has to be taken into account that all possible
combinations for the network architecture and reward function are not tested because there are
simply too many possibilities of adjustment.

Category Parameter Type Value Range

Neuronal Network

Network Architecture −

Loss
MSE −
Huber δ ∈ [0, 10]

Weight Initialisation
He −
Xavier −

DRL Algorithm

Learning Rate α ∈ (0, 1]

Algorithm
Deep SARSA −
Deep Q-Learning −

Discount Factor γ ∈ [0, 1]

Epsilon Greedy ε ∈ [0, 1]

Epsilon Greedy Decay Rate εdeca y ∈ [0, 1]

Experience Replay Buffersize N ≥ 1

Mini Batch Size D ≥ 1

Target Network Update Frequency C ≥ 1

Reward −

Simulation Parameter
Epochs E ≥ 1

Time steps T ≥ 1

Table 6.1 – An overview over the possible parameter combinations and values divided into
three categories.

It is to mention that the network architecture can be adjusted but is set to an empirically chosen
structure. This was done to reduce the possible parameter permutations. The best evaluated struc-
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ture is introduced in Section 6.4. The other major influence in learning, the reward function, is used
as defined in Section 5.3 and modified in Section 6.6.

After setting these two parameters there are still many possibilities left to choose from. Most
of them where set by comparing the system model and behavior to other research papers and then
continuously adapting them. As previously mentioned, the only way of finding the best fitting
parameter is by trial and error. So the experiments provided in Section 6.7 contain the best results
gathered empirically and some change in parameter to see their impact on the overall result.

6.4 Network Architecture and Implementation Details

Selecting a network architecture for a given problem is non-trivial. There are several factors, which
can influence the learning behavior and lead to non-optimal results. Within the approach of DRL it
is even more important that the NN is able to adapt fast because the function to be approximated is
generated by exploration and not by a given data set. This section describes the network architecture
chosen to learn the policy π( x̂ , Ω̂) which maps the trade-off between utilization and QoC. As few
layers and neurons as possible were used, as well as an activation function that could be calculated
and derived fast.

The state of the system models x̂ as described in Section 3.1, contains four estimated values
( x̂1, x̂2, x̂3, x̂4), each of them describing one part of the system state. These states are passed to the
NN, in addition of the QoC Ω̂. As seen in Equation (3.11) the estimated Ω̂ can be calculated with
the measured state x̂ and therefore does not need to be given as input. To simplify the application it
is also passed to the network.

After determining the number of neurons for the input layer the number of neurons in the output
layer needs to be adjusted. The NN needs to approximate the state-value function for the actions
ak = 0 and ak = 1 in every estimated state x̂k to find out which function provides the maximum
value. There are two possibilities: using two NNs, each of them approximating one state-value, or
using one NN with two output neurons for every possible action ak. The latter is chosen related to
the fact that it is able to map context from one action to another. In every time step k the whole net
is updated independently of the chosen action. When using two networks there is a slight chance
that one network is updated less often than the other which can result in less optimal behavior and
leads in general to a higher need for random actions.

Another complex part of building a a NN is selecting the number of hidden layers and their amount
of neurons. Too many neurons can lead to overfitting [Yin19], while not enough neurons can slow
down the learning process. A single-layer network can only be used for linear-separable functions,
whereas a MLP can overcome the limitation of linear-separable by being able to approximate more
complex shapes. For regression problems both single-hidden layer [WEH15] and two-hidden layers
[Qu+16] are commonly used. Actually, the number of hidden layers and their amount of neurons
depend on the complexity of the problem and the surrounding layer architecture. Therefore, it has
to be evaluated empirically. During the implementation of this thesis, both suggestions where tried,
which results in in the best performance for two hidden layers consisting of five neurons each. The
neurons are chosen to be fully connected, because linking every neuron needs no special assumption
about the input [ML17, pp. 5–7]. This generality makes them applicable to many kinds of problems.
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There is also the need to choose a proper activation function. When obtaining a regression prob-
lem, the last layer normally consists of a linear activation function. The most common functions
for the hidden layers are the Sigmoid and ReLU functions. The optimized ReLU function, called
Leaky ReLU, defined in Equation (3.17) is used in this thesis, because it has some advantages over
other activation functions. Because rectified linear units are nearly linear, they can be calculated
faster than the Sigmoid function and make linear models easy to optimize with gradient-based
methods. Furthermore, they do not have the problem of vanishing gradients [GBB11, p. 318].

It is to mention, architecture described in the following is used for both the inverted pendulum and
double integrator because they have the same amount of estimated states.

Regression or Classification

The NN is trained like a regression problem using the Huber loss and Leaky ReLU activation, while
the final choice which action to take is actually a classification problem. Going more into details,
each output estimates the total reward gained for each action. Even if these output values are
discrete, the last decision to take the topmost candidate is done by classification. As a result, the
network can be labeled as regression with its final choice made by classification.

6.5 Algorithms

As mentioned in Section 5.1, the two temporal difference methods SARSA and Q-learning are
used in the DRL approach. Both of them are updating the temporal difference learning formula
slightly different. As seen in Equation (5.2) and Equation (5.4), Q-learning takes the maximum
possible reward of the new state x̂k+1, whereas SARSA still follows the policy to the new state x̂k+1.
In the following, both algorithms are compared regarding their execution times and learning behavior.

Both algorithms are trained for several epochs containing a finite number of time steps. In ev-
ery time step, a DRL step is performed, including the state-action value function approximation
with subsequent action decision and the NN training step. To estimate the average execution time
per time step measurement is performed, where SARSA, Q-learning, and Q-learning with ER and
TN are compared. The result is provided in Figure 6.6. The slight discrepancies in execution time
can be explained by the usage of the same NN. Nevertheless, the execution time of the optimized
Q-learning approach is higher because the experience replay buffer takes time for saving, sampling,
and learning the mini batches. Furthermore, there is also the cost of updating the TN every C time
steps.

Furthermore, the algorithms differ in their behavior when it comes to a decision whether to actuate or
not. As previously mentioned in Section 5.1.2, the SARSA algorithm is behaving more conservative
because of its on-policy behavior. Figure 6.7 shows how often the QoC falls below its minimum value
before the policy is learned. As expected, the optimized Q-learning approach performs best because
it needs fewer epochs to learn. The interesting comparison is between SARSA and the non-optimized
Q-leaning algorithm. SARSA is violating the minimum QoC half as much as Q-learning does. It must
be considered that Q-learning with the given parametrization also takes twice the amount of epochs.
This observation can also be made in experiment 2.1 and 3.1, located at Appendix D, where only
SARSA is able to not fall below the minimum QoC, when process and measurement are increased.
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Figure 6.6 – Average execution time over 500 steps with standard deviation. Measured are the
experiments 1.1, 1.6 and 1.11, as given in Table D.1.
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Figure 6.7 – Average count of the QoC not obeying its minimum. This figure shows the
experiments 1.1, 1.6 and 1.11, as given in Table D.1
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6.6 Reward Function Modification

The reward function has an important influence on the behavior of the DRL algorithm. It is used
to influence the agent’s decision by rewarding or punishing it depending on the chosen action.
In this thesis, it is used to learn the policy π( x̂ , Q̂), which maps the trade-off between the QoC
and utilization. The given reward functions defined in Section 5.3 are able to achieve this goal.
Furthermore, with the choice of the coefficients the algorithm is able to adjust how close the system
will get to its minimum QoC. Figure 6.8 shows the change in QoC over several time steps. The
reward was chosen to be rΩ1

with the utilization parameter u set to one. The horizontal gray line
signals the minimum QoC Ωmin. The relation between utilization and QoC can be mapped with the
values of the two parameters u and q1. Increasing q1 results in higher priority for the QoC and
therefore is further apart from its minimum. In contrast, however, a small q1 results in violating
the minimum QoC barrier. Since the output for the algorithm depends on different factors, this
modification does not yield to every parameter combination in general. Nevertheless, it is possible
to prioritize either the QoC or the utilization rate, even if the values for the coefficients need to be
evaluated empirically.
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Figure 6.8 – This figure shows the changing of the QoC over 100 time steps. The distance to
the minimum QoC increases by incrementing the QoC reward parameter q1.

6.7 Interpreting the Evaluation Metrics

This section provides an interpretation of the evaluated metric and execution statistics gathered
through several experiments. The experiments are conducted in the environment, which was in-
troduced in Chapter 3 and evaluated under the conditions listed in Appendix C.3. The highlighted
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parameters in Appendix C.3 indicate the values to be evaluated. They were chosen because their
modifications turned out to be most promising.

The best parameter combinations can be seen in Table D.1, Table D.2, and Table D.3, which
were empirically gathered after several test runs. The learning parameter combinations are not the
same for all the tables because they differ in process and measurement noise. Their interpretation
and comparison is given in Section 6.7.1. Table D.4 shows the evaluation metrics achieved by the
different policies proposed in Rheinfels’ [Rhe19, p. 74] and this thesis. The evaluated metric and
execution statistics of all policies are explained and interpreted in Section 6.7.2.

6.7.1 Process and Measurement Noise

First, the difference between the system models inverted pendulum and double integrator will be
analyzed. Both system models behave differently, especially when seeing how fast the system is
moving away from its equilibrium, without actuating. In all three settings, given the inverted
pendulum system model, the SARSA algorithm is able to outperform the Q-learning approach by the
overall evaluation metric m. This is particularly well illustrated in Table D.2 and Table D.3, where
only SARSA is able to achieve 1.0 in the bound metric mb. The excellent performance of SARSA
may refer to its conservative behavior not to take actions, which might result in losing rewards. The
double integrator is able to stay in its equilibrium state much longer before actuation is needed.
This might be a reason for the Q-learning approach to outperform SARSA in this case. Furthermore,
the double integrator is more susceptible to catastrophic forgetting, so a TN, early stopping and a
more explicit reward is used in some experiments.

Comparing the different algorithms used in the experiments leads to the following assumptions.
Although SARSA is performing better with the inverted pendulum it takes more epochs to learn
and therefore more over all execution time. As mentioned before in Section 6.5 this leads to a
higher number of QoC violation. Furthermore, the Q-learning approach can be optimized using the
experience replay buffer, which might lead to better performance when trying out more parameter
combinations and other reward functions.

The chosen reward functions are used as defined in Section 5.3. The best results are achieved
using the Ω1 reward for no measurement noise, might depend on the simplicity of the function.
Therefore, it is much easier to balance the QoC and utilization, as explained in Section 6.6. However,
it is possible that more complicated reward functions might lead to better results, as provided in
Table D.2.

The hyperparameter α and γ are in the expected range. α is higher for the inverted pendulum
because it has a faster decrease in QoC and therefore needs to speed up learning to cumulate reward.
γ is high for both system models, because the agent needs to consider future rewards with greater
weight. In this case, the agent needs better long-term planning to avoid the system from fall below
the minimum QoC bound.

As expected, the overall evaluation metric m decreases, when increasing the process and mea-
surement noise, because there is more need to actuate to counteract the decrease of the QoC.

Given the three tables with the metric evaluation information, it can be seen that DRL is a valid
approach to trade-off utilization against QoC in this environment setting. In all tables but 1, there is
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6.7 Interpreting the Evaluation Metrics

at least one experiment, which is able to not violate the minimum QoC (Ωmin) over all evaluation
runs and leaving out actuations. The exception is the double integrator in Table D.3, which is only
able to achieve a value of 0.9167 in terms of mb.

6.7.2 Policies

In this section, the interpretation for the metric and execution statistics from the static controller
πstat ic , PI policy πPI [Rhe19, pp. 49–52], the data generator πDG [Rhe19, pp. 28–30],the SL policy
πSLP [Rhe19, pp. 25–27], and DRL policy πDRL is provided. There are some differences in the
implementation of the environment for the πDRL , which must be pointed out before the policies can
be compared against each other. The πDRL metric is evaluated under the circumstances of:

• A restricted model, with deterministic execution times

• Evaluation and training on other hardware

• A fixed covariance matrix Nk.

Despite these limitations, a comparison can be made because the calculation error of NK is minimal9

and the different hardware10 only effects the execution times. The deterministic execution time
must be kept in mind because it can lead to slightly different results11.

The static controller (experiments 4.1 and 4.6) maximized the QoC metric mΩ as well as the
bound metric mb. It also minimized all execution time statics. For the inverted pendulum, the DRL
policy πDRL is the only one able to reach a bound metric mb of one. Furthermore, it’s the policy with
the highest overall evaluation metric m. In comparison to the other three policies, the QoC metric
mΩ is higher than the utility metric mu. This ratio is adjustable up to a certain degree, as presented
in Section 6.6, but does not reach a small value like 0.2192 for mΩ. The DRL policy πDRL is reaching
an overall evaluation metric m close to the PI policy πPI , but can to reach a bound metric mb of one
for this system.

Taking a look at the execution time statistics reveal that average execution time of the DRL policy
πDRL is faster than the SL policy πSLP and a little slower than the PI policy πPI . These values should
be taken with caution because they are measured on different hardware.

In conclusion, the following can be drawn from this comparison:

• Given these system models the DRL algorithm demonstrates to be a viable method for the
trade-off utilization against QoC and leads to better results that the SL approach.

• The DRL is able to adjust how close the system can get to its minimum QoC.

• Up to a certain value, the DRL can deal with increased process and measurement noise.

• The NN employed by the DRL is able to reduce the average execution significantly by leaving
out unnecessary actuations.

9Proof and error calculation is given in Appendix A.1.
10Specification for the training and evaluation hardware is provided in Appendix D.
11A comparison example is given in Appendix A.2.
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7R E L AT E D W O R K

Learning policies that improve the trade-off between QoC and utilization have been addressed in
several works. Lozoya et al. analyze these control performance and resource utilization trade-offs
[Loz+13]. The focus of this paper lies on the implementation of feasible "resource/performance-
aware policies", which deviate from the standard periodic sampling approach [ÅW90, p. 66]. To
that end they take a look at different embedded control systems, including several control loops
[Loz+13, p. 270]. These policies are divided into feedback scheduling and event-driven control. In
event-driven control the task period is adjusted by the controllers in direct response to the applica-
tion’s performance [Loz+13, p. 272]. Feedback scheduling involves choosing a suitable sampling
period using feedback from scheduling among other considerations. The key point is to improve
the overall control performance of all tasks by making optimal use of limited resources [Loz+13,
p. 270].

In Rheinfels’ thesis, a controller implemented on a RTOS and disturbances, which degrades the
QoC are given [Rhe19, pp. 7–10]. A state estimate gathered from the controller is influencing the
policy, which decided to activate a job or not. The policy is enforced by a lock-driven scheduler
[Rhe19, p. 16]. He worked out several experiments in which he could show that the SL policy is
a viable choice to achieve a good trade-off between QoC and utilization under several restrictive
assumptions [Rhe19, p. 53]. This thesis provides an improvement, of the theoretic RL approach by
Rheinfels [Rhe19, pp. 43–48] on the same simulated system.

In a study by Sander et al. RL with ER was used on real-time control experiments involving a
pendulum swing-up problem and a vision-based goalkeeper robot [ABB12, p. 201]. They demon-
strate, that ER is able to improve the RL algorithm by presenting the same available data multiple
times [ABB12, pp. 209–211]. In the given experiments ER was able to outperform the TDL ap-
proaches SARSA and Q-learning. The experiments were performed using a general framework,
which was provided to make ER available with any RL technique [ABB12, pp. 203–205]. Although,
this work is not focusing on the trade-off between QoC and utilization it shows, that in real-time
control experiments an ER is able to outperform the classic TDL approaches.

For unknown continuous non-linear systems with control restrictions, Xiong et al. provided an
effective technique based on the RL approaches. Three NNs are used in this paper. A recurrent
NN to identify the unknown dynamical system and two feed-forward NNs used to implement the
actor-critic method. The critic was chosen to approximate the optimal control under optimal costs
[YLW14, p. 558]. Furthermore, the weights of the action NN and the critic NN are guaranteed to be
uniformly ultimately bounded when utilizing Lyapunov’s direct technique, while the closed-loop
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7 Related Work

system remains stable [YLW14, p. 554].

Bin et al. used the integral quadratic constraints (IQCs) to analyze the stability of a feedback
control loop [Qin+12, p. 993]. An analysis of the IQCs is performed on a feedback control loop
that includes a PI controller, a mass-spring system, and a reinforcement-learning-trained recurrent
network. This work only focusing on the stability of the system, but is even able to achieve this while
learning [Qin+12, p. 997]. The algorithm is performed by using actor-critic, where the Q-function
in the critic is represented as a table. This simplification could be made, because only the actor
appears in the feedback loop [YLW14, p. 996]. Thus, the input of the critic has a small dimension.

A real-time autonomous control strategy for multi energy systems were proposed by Ye et al. The
challenge of this setup is, that both the state of the environment and agent’s actions are not only
continuous but also multidimensional [Ye+20, p. 2]. They use a model-free and data driven DRL
based approach, which is able to perform independently of system knowledge [Ye+20, pp. 8–10].
Furthermore, they optimize their approach by 1.7 times speed using prioritized experience replay
[Ye+20, p. 12].
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8C O N C L U S I O N A N D O U T L O O K

Both the DRL approach and Rheinfels’ SL policy were evaluated on the same benchmark systems:
inverted pendulum (Appendix B.1) and double integrator (Appendix B.2). The results show DRL is a
valid choice for the problem, given in Chapter 4, and outperforms the SL policy [Rhe19, pp. 25–28].
This better performance can be observed in the total metric as well as in the average QoC per
experiment. The only disadvantage of the DRL policy is that it is not possible to achieve such a low
utilization as the SL policy. The question is whether this is desirable since a higher average QoC
makes the system more robust against noise and disturbances. Although both algorithms are able
to decrease the utilization, the time it takes to execute the policy increases the overall execution time.

The DRL approach was implemented in a system described in Section 3.1. Its key element is
the control loop, where the QoC is a way to indicate if the system is close to its equilibrium. The
controller was able to counteract the imbalance caused by measurement and process noise. The
conducted experiments in Table D.1, Table D.2, and Table D.3 give an overview of the different
levels of disturbances the DQN is able to handle under the additional requirement of reducing the
utilization.

This was achieved by using a MLP with two output neurons, which is able to predict the action with
the highest prospects of success depending on the estimated state of the system and the QoC. A
special NN was constructed, which takes the constraints on its execution time into account, but was
still able to solve the task of modeling the trade-off. In tandem with the Q-learning and SARSA
algorithms, the NN was able to handle the continues-state spaces given by the benchmark systems.

As previously mentioned, the DQN policy is able to decrease utilization and therefore minimizes
costs by reducing the execution time. Furthermore, the detailed overview in Appendix B.3 reveals
that leaving out the actuation saves close to 75% compared to the use of actuation. Even though,
the cost of the actuation is the largest compared to the costs of measuring and computing, it is still a
small part of the overall execution time. As given in Table D.4, the execution time for the prediction
of the NN is higher than the time spared by omitting the actuation job. This results in the fact that
the given system is kept very simple compared to real-world systems.

Even though the overall execution time was exacerbated by the additional costs of the predic-
tion, the technique could still prove beneficial for larger, more complex systems or systems with
optimized hardware for machine learning. Alcon et al. analyze the industrial-quality autonomous
driving software framework Apollo in terms of its observed execution time variability, as well as
the sources behind it [Alc+20]. It’s a complex software, able to handle the real-time computation
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8 Conclusion and Outlook

of large amounts of data generated by ongoing operations. Furthermore, artificial intelligence
algorithms, which bring additional complexity due to large inputs and non-deterministic behavior
are involved. These advanced functions are used in critical domains, which implies a higher focus
on software timing [Alc+20, p. 267]. Compared to the system used in this thesis, Apollo includes
seven software modules able to perceive, predict, locate, map, plan, control, and passing control
commands to the vehicle hardware [Alc+20, p. 269]. Leaving out the control task, and if possible,
the control passing is more rewarding, than in simpler control systems.

In addition to more complex systems, hardware is also becoming increasingly adapted to ma-
chine learning. Capra et al. compare different hardware solutions for the computationally intensive
machine learning approach and also gave an outlook of current and future hardware trends [Cap+20,
p. 225171]. They assume that the focus in the future will be more on mobile and possibly wearable
devices that are part of the IoT [Cap+20, p. 225171]. This leads to hardware limitations since there
is need for smaller, more powerful and energy-efficient CPUs. A RTCS could also benefit from this
development, as it might be possible to shorten the prediction time through hardware support.

Besides this outlook, there is also room for improvement in the DRL approach. The following
provides ideas for future research directions and improvements:

• Optimizing the choice of hyper-parameters [Don+21]

• Only using the estimated state as inputs for the NN and calculating the QoC afterward

• Making ER available for both RL algorithms

• Optimizing the reward function

• Improving stability by using the actor-critic method

• Experimenting how the policy reacts to stronger or different disturbances.

It is very likely that the types of problems, which this approach still faces will be solved either by the
availability of specialist hardware or the increased costs of superfluous activations in increasingly
complex systems.
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AP R O O F S A N D A N A LY S E S

This part contains the error calculation of the two different covariance matrices as well as a metric
and time analysis for deterministic and non-deterministic execution times.

A.1 Covariance Matrix Nk

Due to a flaw in the implementation, the covariance matrix Ñk in [Rhe19, p. 13] was calculated
wrong. This section estimates the absolute and relative error between the wrong covariance matrix
Ñk in [Rhe19, p. 13] and the covariance matrix Nk implemented in this thesis. Starting with the
general derivation of Nk [Rhe19, p. 12]:

dk = G(ak)νk (A.1)

E{dkdT
k } = G(ak)E{νkν

T
k }G(ak)

T (A.2)

Nk = G(ak)IG(ak)
T = G(ak)G(ak)

T . (A.3)

The difference between Nk and Ñk lies in the calculation of G(ak) resp. G̃(ak). N1/2
k means, that Nk

is decomposed using the LDU decomposition [TB97, p. 77], provided in the following:

G(ak) = N1/2
k (A.4)

Nk = LD
1
2 D

1
2 LT (A.5)

Gk = LD
1
2 . (A.6)

The error was done by equating N1/2
k and

p

Nk resulting in the miscalculation:

G̃k =
p

Nk (A.7)

Ñk = G̃(ak)G̃(ak)
T (A.8)

Nk = G(ak)G(ak)
T . (A.9)
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A.1 Covariance Matrix Nk

The absolute and relative errors for every k ∈ {0, 1} are calculated by using the formulas defined
above [AS64, p. 14]. The vales for the matrices Nk can be looked up in Appendix B:
Inverted pendulum:

‖N0 − Ñ0‖2 = 3.288005457975112 · 10−22 (A.10)

‖N0 − Ñ0‖2

‖N0‖2
= 2.558041071589027 · 10−16 (A.11)

‖N1 − Ñ1‖2 = 1.6837207743877178 · 10−17 (A.12)

‖N1 − Ñ1‖2

‖N1‖2
= 1.5289322286752783 · 10−15. (A.13)

Double integrator:

‖N0 − Ñ0‖2 = 1.6744507894869823 · 10−20 (A.14)

‖N0 − Ñ0‖2

‖N0‖2
= 1.2281401160440878 · 10−15 (A.15)

‖N1 − Ñ1‖2 = 1.6744507894869823 · 10−20 (A.16)

‖N1 − Ñ1‖2

‖N1‖2
= 1.2281401160440878 · 10−15. (A.17)

A.2 Execution Times

Evaluation of metrics and execution times for the experiment 2.3 with deterministic and non-
deterministic execution times12. This is just an example of how deterministic and non-deterministic
execution times can differ in metric and execution times and do not yield every parameter combina-
tion in the system models.

12More information are provided in Table D.2.
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A.2 Execution Times
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ent

2.3
avg.m

Ω
avg.m

u
avg.m

b
avg.m

avg.e[s]
std.e[s]

m
in.e[s]

m
a

x.e[s]

D
eterm

inistic
execution

tim
es

0.7843
±

0.0016
0.4041

±
0.0022

1.0000
±

0.0000
0.3171

±
0.0020

9.50
·10

−
7

1.59
·10

−
7

8.31
·10

−
7

2.77
·10

−
6

N
on-determ

inistic
execution

tim
es

0.8592
±

0.0013
0.3441

±
0.0025

1.0000
±

0.0000
0.2957

±
0.0022

1.38
·10

−
6

3.17
·10

−
7

9.27
·10

−
7

2.39
·10

−
6

Table
A

.1
–

M
etrics

and
execution

tim
es

for
the

experim
ent

2.3
w

ith
determ

inistic
and

non-determ
inistic

execution
tim

es.

45





BS Y S T E M M O D E L S

To evaluate the Reinforcement Learning approach, two different models were assessed. Both pre-
designed in [Rhe19]: double integrator and inverted pendulum. As mentioned before, the model is
simplified, and some matrices only state the result of more complex calculations.

Ak is the matrix describing the continuous dynamics according to (2.17) and combining Am,c,a

(measure, compute, actuate) given in (table 2.1) [Rhe19, pp. 10–12]. The matrix Gk is the fault
input of the extended model in formula (2.14) of [Rhe19, p. 10]. According to (2.17) it is built out
of Gp, where p stands for plant, and the fault input is given in (2.7) [Rhe19, pp. 7–10]. Nk is then
built out of (2.20b), (2.27), and (2.28) [Rhe19, pp. 11–13]. The simplification for the QoC Jk is
derived from formula (2.12) [Rhe19, p. 10].
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B.1 Inverted Pendulum

B.1 Inverted Pendulum

This section is providing the values for the matrices used for describing the inverted pendulum
system model.

A0 =















1.1670 1.5842 · 10−1 0.0000 0.0000 0.0000 5.4139 · 10−3

1.5636 6.6955 · 10−1 0.0000 0.0000 0.0000 5.0694 · 10−2

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
1.0013 1.6245 · 10−2 0.0000 0.0000 0.0000 4.3689
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000















(B.1)

A1 =















1.1668 1.5842 · 10−1 1.2782 · 10−4 −1.1648 · 10−5 0.0000 5.4122 · 10−3

1.4521 6.6774 · 10−1 7.6559 · 10−2 −6.9766 · 10−3 0.0000 4.9628 · 10−2

1.2357 2.0047 · 10−2 −4.0110 · 10−1 9.3900 · 10−2 0.0000 5.3912 · 10−5

2.4223 3.9298 · 10−2 −3.9840 6.5800 · 10−2 0.0000 1.0568 · 10−4

1.0013 1.6245 · 10−2 0.0000 0.0000 0.0000 4.3689 · 10−5

−1.0504 · 10−2 −1.7041 7.2149 · 10 1 −6.5748 0.0000 −4.5830 · 10−3















(B.2)

N0 =















1.8417 · 10−8 1.2548 · 10−7 0.0000 0.0000 2.1117 · 10−10 0.0000
1.2548 · 10−7 1.2729 · 10−6 0.0000 0.0000 9.1850 · 10−10 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.1117 · 10−10 9.1850 · 10−10 0.0000 0.0000 1.0000 · 10−6 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000















(B.3)

N1 =















1.8417 · 10−8 1.2548 · 10−7 3.1251 · 10−11 6.1261 · 10−11 2.5325 · 10−11 −2.6566 · 10−9

1.2548 · 10−7 1.2851 · 10−6 −1.3623 · 10−7 −2.6704 · 10−7 −1.1039 · 10−7 1.1580 · 10−6

3.1251 · 10−11 −1.3623 · 10−7 1.5228 · 10−6 2.9851 · 10−6 1.2340 · 10−6 −1.2945 · 10−4

6.1261 · 10−11 −2.6704 · 10−7 2.9851 · 10−6 5.8516 · 10−6 2.4190 · 10−6 −2.5375 · 10−4

2.5325 · 10−11 −1.1039 · 10−7 1.2340 · 10−6 2.4190 · 10−6 1.0000 · 10−6 −1.0490 · 10−4

−2.6566 · 10−9 1.1580 · 10−5 −1.2945 · 10−4 −2.5375 · 10−4 −1.0490 · 10−4 1.1004 · 10−2















(B.4)

Q̂ =





Qp 0 0
0 0 0
0 0 Rp



 , Qp =

�

550 0
0 550

�

, Rp = 0.8. (B.5)

The minimum QoC (Ωmin) bound was set to allow a maximum angle of 5 °and setting the target to
80%, i.e. 4 °. More details can be found in [Rhe19, p. 69].

Ωmin ≈ 0.0911. (B.6)

B.2 Double Integrator

This section is providing the values for the matrices used for describing the double integrator system
model. The formula for Nk and Q̂ are omitted, because they follow the same calculation formula.
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B.2 Double Integrator

A0 =















1.0000 −4.256 0.0000 0.0000 0.0000 9.0568
0.0000 1.0000 0.0000 0.0000 0.0000 −4.256
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
1.0000 −0.3547 0.0000 0.0000 0.0000 0.0629
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000















(B.7)

A1 =















9.9988 · 10−1 −4.2560 1.2752 · 10−4 1.2214 · 10−4 0.0000 9.0542
3.4736 · 10−3 9.9877 · 10−1 −3.5954 · 10−3 −3.4439 · 10−3 0.0000 −4.1848
1.3980 · 10−2 −4.9582 · 10−1 −5.4920 · 10−1 −2.2350 0.0000 8.7926 · 10−2

−1.1480 · 10−1 4.0716 · 10−2 1.8600 · 10−1 5.0300 · 10−2 0.0000 −7.2203 · 10−3

1.0000 −3.5467 · 10−1 0.0000 0.0000 0.0000 6.2894 · 10−2

−4.8970 · 10−2 1.7368 · 10−2 5.0687 · 10−2 4.8551 · 10−2 0.0000 −3.0799 · 10−3















(B.8)

N0 =















1.2076 · 10−5 −4.2560 · 10−6 0.0000 0.0000 1.2229 · 10−7 0.0000
−4.2560 · 10−6 2.0000 · 10−6 0.0000 0.0000 −2.9556 · 10−8 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.2229 · 10−7 −2.9556 · 10−8 0.0000 0.0000 1.0070 · 10−6 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000















(B.9)

N1 =















1.2076 · 10−5 −4.2556 · 10−6 1.7079 · 10−7 −1.4025 · 10−8 1.2217 · 10−7 −5.9827 · 10−9

−4.2556 · 10−6 1.9998 · 10−6 −3.6429 · 10−8 2.9914 · 10−9 −2.6058 · 10−8 1.2760 · 10−9

1.7079 · 10−7 −3.6429 · 10−8 1.9681 · 10−6 −1.6161 · 10−7 1.4078 · 10−6 −6.8938 · 10−8

−1.4025 · 10−8 2.9914 · 10−9 −1.6161 · 10−7 1.3271 · 10−8 −1.1560 · 10−7 5.6610 · 10−9

1.2217 · 10−7 −2.6058 · 10−8 1.4078 · 10−6 −1.1560 · 10−7 1.0070 · 10−6 −4.9312 · 10−9

−5.9827 · 10−9 1.2760 · 10−9 −6.8938 · 10−8 5.6610 · 10−9 −4.9312 · 10−8 2.4148 · 10−9















(B.10)

Qp =

�

1 0
0 1

�

, Rp = 1. (B.11)

The minimum QoC (Ωmin) are determined by setting maximum and target control error to 1 and
80% respectively. More details can be found in [Rhe19, p. 70].

Ωmin ≈ 0.5000. (B.12)

B.3 Cost Calculation

The following formulas describe, how the cost function Lk is calculated, with period p = 0.2.
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B.3 Cost Calculation

Task ϕ D emean

meassure 0 1
10 p ( 1

15 p+ 1
10 p)/2

compute 1
10 p 1

2 p ( 1
8 p+ 1

6 p)/2

actuate 9
10 p p ( 1

15 p+ 1
10 p)/2

Table B.1 – Temporal behavior of the control tasks [Rhe19, p. 70].

lme ≈ 0.0167 (B.13)

lco ≈ 0.0492 (B.14)

lac ≈ 0.1967 (B.15)

L(0) =
lme + lco

lme + lco + lac
≈ 0.2508 (B.16)

L(1) =
lme + lco + lac

lme + lco + lac
= 1. (B.17)
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CPA R A M E T E R S E T S

This section provides the parameter sets for different evaluations and experiments. They consist
of fixed parameters with given values or methods and parameters to be evaluated. The latter are
marked blue.

C.1 Parameters for the Target Network Evaluation

Parameter description Parameter Value (options)

System model - inverted pendulum
Algorithm - SARSA
Learning rate α 0.7
Discount factor γ 0.95
Initial epsilon greedy probability ε 1.0
Epsilon greedy decay rate εdeca y 0.9
Weight initialisation - He
Reward type r Ω2,

u = 2, q2 = 1, q3 = 0.01
Loss function δ 1.5
Target network update frequency C evaluated (0,10)
Experience replay buffer size N -
Mini batch size D -

Table C.1 – Parameter set for the evaluation of the target network. The noise covariance matrices
amount are set to H = 10−3 and Np = 10−6 respectively.
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C.1 Parameters for the Target Network Evaluation

C.2 Parameters for ER and Weight Evaluation

Parameter description Parameter Value (options)

System model - inverted pendulum
Algorithm - Q-Learning
Learning rate α 0.7
Discount factor γ 0.95
Initial epsilon greedy probability ε 1.0
Epsilon greedy decay rate εdeca y 0.9
Weight initialisation - evaluated

(zero, He, Xavier)
Reward type r Ω1,

u = 2, q1 = 1
Loss function δ 1.5
Target network update frequency C 1
Experience replay buffer size N evaluated (0, 100)
Mini batch size D 10

Table C.2 – Parameter set for the evaluation of the optimization methods. The noise covariance
matrices amount are set to H = 10−3 and Np = 0 respectively.

C.3 Parameters for the Main Evaluation

Parameter description Parameter Value

System model - evaluated
Algorithm - evaluated
Learning rate α evaluated
Discount factor γ evaluated
Initial epsilon greedy probability ε 1.0
Epsilon greedy decay rate εdeca y evaluated
Weight initialisation - He
Reward type r evaluated
Loss function δ 1.5
Target network update frequency C evaluated
Experience replay buffer size N evaluated
Mini batch size D 10
Epochs E evaluated
Time steps T evaluated

Table C.3 – Parameter set for the main evaluation, with cells marked in colour represent the
values to be evaluated.
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DE X P E R I M E N T S

This section provides experiments for the DQN algorithm, where different learning parameter com-
binations are used for both system models. An overview of the evaluated parts of the DQN policy
can be found in Table C.3. Due to the enormous amount of parameter combinations as mentioned
in Section 6.3, it is not possible to evaluate every variety. After running multiple experiments, the
best combinations can be found in Table D.1, Table D.2, and Table D.3. They only differ in process
and measurement noise. Starting with process noise in Table D.1, adding measurement noise in
Table D.2 and increasing the process noise in Table D.3. Table D.4 shows the evaluation metrics
achieved by the different policies proposed in Rheinfels’s [Rhe19, p. 74] and this thesis.

It was taken care not to use the same seed for training13 and evaluation14. Besides the values
of the evaluation metric, execution times of the policy were measured. The execution times indicate
how long the evaluation takes to make a decision whether to actuate or not. Including their sample
mean and standard deviation. In addition, the resulting metric values were complemented by their
95% confidence intervals of the sample mean [Dek+05a, p. 3], as Rheinfels did [Rhe19, p. 74], to
ensure comparability. Care has been taken to evaluate under the same conditions as given in the
previously mentioned master thesis.

13Wall-clock time on the test system: Intel Core i5-5200U, Debian with kernel version 4.19.0, niceness -10,
gcc 8.3.0 using -O3, C++ implementation utilizing Eigen 3.4 [Eig] and framework RlQuaRTSv2 (commit:
2ca0ba43a6edcb71c5a2704d3ad0c5b8b249c46).

14Wall-clock time on the test system: AMD EPYC 7702 64-Core, Debian with kernel version 5.10.0, niceness -10,
gcc 8.3.0 using -O3, C++ implementation utilizing Eigen 3.4 [Eig] and framework RlQuaRTSv2 (commit:
2ca0ba43a6edcb71c5a2704d3ad0c5b8b249c46).
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L I S T O F A C R O N Y M S

QoC Quality of Control

SL Supervised Learning

RTCS Real-Time Control System

LTVS Linear Time-Variant System

RTOS Real-Time Operating System

MDP Markov Decision Processes

RL Reinforcement Learning

DRL Deep Reinforcement Learning

MSE Mean Squared Error

MAE Mean Absolute Error

DQN Deep Q-Learning

FFN Feed-Forward Network

NN Neuronal Network

ANN Artificial Neuronal Network

s.p.d. symmetric and positive definite

sp.s.d. symmetric and positive semi-definite

Leaky ReLU Leaky Rectified Linear Unit

TDL Temporal Difference Learning

USL Unsupervised Learning

MLP Multi-Layer Perceptron

ERB Experience Replay Buffer

ER Experience Replay

TN Target Network

SARSA State–action–reward–state–action

59





L I S T O F F I G U R E S

1.1 An overview of the given environment, including a simplified illustration of the control
loop and the RTOS. The policy interacts with the RTOS based on the estimated state
and QoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 The environment consists of the control loop and the RTOS. In this figure, simplified
versions of both are illustrated. The action a is influencing the system at a given time
step k and a policy provides the best action. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 A graphical representation of a perceptron with three inputs x1, x2, x3, weights
w1, w2, w3 and bias b forming the linear regression Equation (3.14). The activation
function σ is applied to the linear combination, resulting in the output y j . . . . . . . . 11

3.3 A fully connected MLP network with input, output and two hidden layers. Weights
wl

k, j are illustrating the affine transformations between the connected neurons. These
neurons are drawn as nodes containing σ if there is an activation function used.
Nodes containing 1 are used to symbolize the bias to be added in every layer except
the input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Comparison of classification and regression problems. Dividing the data set into
classes using classification can be seen in the left figure. Fitting a line through the
data points in regression is provided in the right figure. . . . . . . . . . . . . . . . . . . 14

3.5 Interaction of the agent with the environment [SB18, p. 48]. . . . . . . . . . . . . . . . 15

5.1 An overview of the action-value approximation using a NN. The environment is
providing the states, while the NN estimates the best possible action ak. The network
is trained using gradient descent. This optimization process requires a loss function.
To simplify the picture, the QoC is considered as part of the state x̂k. . . . . . . . . . . 22

6.1 An overview of the system, the DRL approach, and the optimizations. The ERB
includes the Mini Batch, which samples random transitions from the Replay Memory.
A TN saves a copy of the weights from the NN. Optimization like Weight Initialization
and Loss Calculation are directly connected to the NN and can improve its learning
speed. Adopted from [Gre+20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 The cumulative reward of 500 time steps over 1000 epochs. The graph without the TN
suffers from catastrophic forgetting, whereas the graph with the TN rises constantly
and persist at a high cumulated reward.15. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 The cumulative reward of 500 time steps over 1000 epochs. The graph without the
ERB is reaching the highest cumulated reward at epoch 800. With the ERB the graph
reaches the reward of 900 before epoch 400.16 . . . . . . . . . . . . . . . . . . . . . . . . 29

61



LIST OF FIGURES

6.4 Corresponding losses for the three functions MSE, MAE and Huber loss with δ = 1.0
and δ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.5 Cumulated reward for 500 time steps in 100 epochs, where the He initialization
reaches a higher cumulated reward17. The zero initialized NN shows almost no
improvement whereas the Xavier network shows a small improvement. . . . . . . . . 31

6.6 Average execution time over 500 steps with standard deviation. Measured are the
experiments 1.1, 1.6 and 1.11, as given in Table D.1. . . . . . . . . . . . . . . . . . . . . 35

6.7 Average count of the QoC not obeying its minimum. This figure shows the experiments
1.1, 1.6 and 1.11, as given in Table D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.8 This figure shows the changing of the QoC over 100 time steps. The distance to the
minimum QoC increases by incrementing the QoC reward parameter q1. . . . . . . . 36

62



L I S T O F TA B L E S

6.1 An overview over the possible parameter combinations and values divided into three
categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1 Metrics and execution times for the experiment 2.3 with deterministic and non-
deterministic execution times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B.1 Temporal behavior of the control tasks [Rhe19, p. 70]. . . . . . . . . . . . . . . . . . . . 50

C.1 Parameter set for the evaluation of the target network. The noise covariance matrices
amount are set to H = 10−3 and Np = 10−6 respectively. . . . . . . . . . . . . . . . . . . 51

C.2 Parameter set for the evaluation of the optimization methods. The noise covariance
matrices amount are set to H = 10−3 and Np = 0 respectively. . . . . . . . . . . . . . . 52

C.3 Parameter set for the main evaluation, with cells marked in colour represent the
values to be evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

D.1 Results of the DQN policy evaluation, using different parameter combinations. std.
and avg. denote the standard deviations and sample mean, respectively. The maxi-
mum metric for every system and minimum execution times are highlighted. Every
evaluation run was executed in 1000 epochs with 2000 time steps. All times are
given in seconds. Process and measurement noise of the environment are set to 10−3

and 0, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

D.2 Results of the DQN policy evaluation, using different parameter combinations. std.
and avg. denote the standard deviations and sample mean, respectively. The maxi-
mum metric for every system and minimum execution times are highlighted. Every
evaluation run was executed in 1000 epochs with 2000 time steps. All times are
given in seconds. Process and measurement noise of the environment are set to 10−3

and 10−6, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

D.3 Results of the DQN policy evaluation, using different parameter combinations. std.
and avg. denote the standard deviations and sample mean, respectively. The maxi-
mum metric for every system and minimum execution times are highlighted. Every
evaluation run was executed in 1000 epochs with 2000 time steps. All times are
given in seconds. Process and measurement noise of the environment are set to 10−2

and 10−6, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

63



LIST OF TABLES

D.4 Evaluation metric results of the DQN policy compared to the policies evaluated in
[Rhe19, p. 74] with 200 time steps using 750 simulation runs. std. and avg. denote
the standard deviations and sample mean respectively. The 95% confidence intervals
of the sample means are symbolized by ±. All times are given in seconds. Process
and measurement noise of the environment are set to 10−3 and 10−6, respectively.
The maximum metrics for every system and minimum execution times are highlighted. 57

64



L I S T O F A L G O R I T H M S

5.1 The SARSA algorithm calculating the Q-values in each time step k, including Equa-
tion (5.1) and Equation (5.2) [SB18, p. 130]. . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 The DQN algorithm with ERB buffer and TN. Values with an apostrophe mark the
values gained from the TN, which is updated every C steps. In line 11 the transition
is stored into the replay buffer and randomly sampled from it and trained afterwards
[Mni+13, p. 5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

65





R E F E R E N C E S

[ABB12] Sander Adam, Lucian Busoniu, and Robert Babuska. “Experience Replay for Real-
Time Reinforcement Learning Control.” In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42.2 (2012), pp. 201–212. DOI: 10.
1109/TSMCC.2011.2106494.

[Alc+20] Miguel Alcon et al. “Timing of Autonomous Driving Software: Problem Analysis and
Prospects for Future Solutions.” In: IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). 2020, pp. 267–280. DOI: 10.1109/RTAS48715.
2020.000-1.

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. New York: Dover, 1964.

[ÅW90] Karl J. Åström and Björn Wittenmark. Computer-Controlled Systems: Theory and Design
(2nd Ed.) USA: Prentice-Hall, Inc., 1990. ISBN: 0131686003.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Ed. by M Jordan, J
Kleinberg, and B Schölkopf. Vol. 4. Information science and statistics 4. Springer, 2006.
Chap. Graphical, p. 738. ISBN: 9780387310732. DOI: 10.1117/1.2819119. eprint: 0-
387-31073-8. URL: http://www.library.wisc.edu/selectedtocs/bg0137.pdf.

[Bos07] Adriaan van den Bos. Parameter Estimation for Scientists and Engineers. USA: Wiley-
Interscience, 2007. ISBN: 0470147814.

[Cap+20] Maurizio Capra et al. “Hardware and Software Optimizations for Accelerating Deep
Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead.” In:
IEEE Access 8 (2020), pp. 225134–225180. DOI: 10.1109/ACCESS.2020.3039858.

[Dec86] Rina Dechter. “Learning While Searching in Constraint-Satisfaction-Problems.” In:
Jan. 1986, pp. 178–185.

[Dek+05a] F.M. Dekking et al. A Modern Introduction to Probability and Statistics: Understanding
Why and How. Springer Texts in Statistics. Springer, 2005. ISBN: 9781852338961.
URL: https://books.google.de/books?id=XLUMIlombgQC.

[Dek+05b] Frederik Dekking et al. A modern introduction to probability and statistics. Understand-
ing why and how. Jan. 2005. ISBN: 978-1-85233-896-1. DOI: 10.1007/1-84628-
168-7.

[Don+21] Xingping Dong et al. “Dynamical Hyperparameter Optimization via Deep Reinforce-
ment Learning in Tracking.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 43.5 (2021), pp. 1515–1529. DOI: 10.1109/TPAMI.2019.2956703.

67

https://doi.org/10.1109/TSMCC.2011.2106494
https://doi.org/10.1109/TSMCC.2011.2106494
https://doi.org/10.1109/RTAS48715.2020.000-1
https://doi.org/10.1109/RTAS48715.2020.000-1
https://doi.org/10.1117/1.2819119
0-387-31073-8
0-387-31073-8
http://www.library.wisc.edu/selectedtocs/bg0137.pdf
https://doi.org/10.1109/ACCESS.2020.3039858
https://books.google.de/books?id=XLUMIlombgQC
https://doi.org/10.1007/1-84628-168-7
https://doi.org/10.1007/1-84628-168-7
https://doi.org/10.1109/TPAMI.2019.2956703


REFERENCES

[Esc21] Jonas Eschmann. “Reward Function Design in Reinforcement Learning.” In: Rein-
forcement Learning Algorithms: Analysis and Applications. Ed. by Boris Belousov et al.
Springer International Publishing, 2021, pp. 25–33. ISBN: 978-3-030-41188-6. DOI:
10.1007/978-3-030-41188-6_3. URL: https://doi.org/10.1007/978-3-030-
41188-6_3.

[FH19] Matthias Feurer and Frank Hutter. “Hyperparameter Optimization.” In: Automated
Machine Learning: Methods, Systems, Challenges. Ed. by Frank Hutter, Lars Kotthoff,
and Joaquin Vanschoren. Cham: Springer International Publishing, 2019, pp. 3–33.
ISBN: 978-3-030-05318-5. DOI: 10.1007/978-3-030-05318-5_1. URL: https:
//doi.org/10.1007/978-3-030-05318-5_1.

[FL+18] Vincent François-Lavet et al. “An Introduction to Deep Reinforcement Learning.” In:
Found. Trends Mach. Learn. 11.3–4 (Dec. 2018), 219–354. ISSN: 1935-8237. DOI:
10.1561/2200000071. URL: https://doi.org/10.1561/2200000071.

[Fre99] Robert M. French. “Catastrophic forgetting in connectionist networks.” In: Trends
in Cognitive Sciences 3.4 (1999), pp. 128–135. ISSN: 1364-6613. DOI: https://
doi.org/10.1016/S1364-6613(99)01294-2. URL: https://www.sciencedirect.
com/science/article/pii/S1364661399012942.

[Gau+18] Maximilian Gaukler et al. “A New Perspective on Quality Evaluation for Control
Systems with Stochastic Timing.” In: Proceedings of the 21st International Conference
on Hybrid Systems: Computation and Control (HSCC ’18) (Porto, Portugal). New York,
NY, USA: ACM Press, Apr. 11, 2018–Apr. 13, 2018, pp. 91–100. ISBN: 978-1-4503-
5642-8/18/04. DOI: 10.1145/3178126.3178134. URL: https://dl.acm.org/
authorize?N667444.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. Ed. by Yee Whye Teh and Mike Titterington. Chia Laguna Resort,
Sardinia, Italy, 2010. URL: http://proceedings.mlr.press/v9/glorot10a.html.

[GBB11] Xavier Glorot, Antoine Bordes, and Y. Bengio. “Deep Sparse Rectifier Neural Net-
works.” In: Proceedings of the 14th International Conference on Artificial Intelligence
and Statisitics (AISTATS) 2011 15 (Jan. 2011), pp. 315–323.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.
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