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A B S T R A C T

General-purpose operating systems (OSes) rely on hardware-based isolation to confine user processes
to their own virtual address space. By doing so, they protect the system from malicious actors,
maintain privacy, and achieve fault tolerance. However, user applications must still be able to
communicate with each other and access the hardware for input/output (I/O). For this, OSes rely
on system calls, which allow the user applications to invoke kernel code in a controlled manner.
Every system call includes a switch from the unprivileged user mode to the privileged kernel mode.
Although these processor-mode and address-space switches are the essential isolation mechanisms
that guarantee the system’s integrity, they induce direct and indirect performance costs as they
invalidate parts of the processor state. In recent years, high-performance network and storage
hardware have made the user/kernel transition overhead the bottleneck for input/output-heavy
applications. To make matters worse, security vulnerabilities in modern processors (e.g., Meltdown)
have prompted kernel mitigations that further increase the transition overheads. To decouple system
calls from user/kernel transitions, I propose ANYCALL, which uses an in-kernel bytecode compiler to
execute safety-checked user code in kernel mode. This allows for multiple fast system calls interleaved
with error checking and processing logic, using only a single user/kernel transition. I implement
ANYCALL using the Linux kernel’s Berkeley Packet Filter (BPF) subsystem, extending it to support
system-call invocation and user memory access. Being already supported in the kernel for flexible
event handling and debugging, reusing BPF to implement system-call aggregation demonstrates that
software-isolated processes are practical for modern general-purpose OSes. To demonstrate that
porting real-world user applications to ANYCALL is both practical and straight-forward, I port two
real-world tools and document the code changes required. Finally, I evaluate ANYCALL’s performance
on systems with OS-level mitigations against transient execution vulnerabilities active or inactive,
including for example Kernel Page Table Isolation (KPTI) against Meltdown. On systems where KPTI
is inactive, I demonstrate speedups of up to 10 % in compute-bound real-world applications. On the
other hand, when KPTI is active, my evaluation demonstrates that system-call bursts are up to 98 %
faster using ANYCALL, and that real-world applications are sped up by 32 % to 40 %.
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KU R Z FA S S U N G

Betriebssysteme nutzen hardwarebasierte Isolationsmechanismen, um Benutzerprozesse auf ihren
eigenen virtuellen Adressraum zu beschränken. Auf diese Weise schützen sie das System vor böswil-
ligen Akteuren, wahren die Privatsphäre und verbessern die Fehlertoleranz. Benutzeranwendungen
müssen jedoch weiterhin in der Lage sein, miteinander zu kommunizieren sowie auf die Hardware
für Ein- und Ausgaben zuzugreifen. Um das zu ermöglichen, bieten Betriebssysteme Systemaufrufe
an. Diese ermöglichen es den Benutzeranwendungen Kernelcode kontrolliert aufzurufen. Jeder
Systemaufruf erzwingt jedoch einen Kontextwechsel vom unprivilegierten Benutzermodus in den
privilegierten Kernelmodus. Obwohl diese Wechsel des Ausführungsmodi sowie des Adressraums
zu den grundlegenden Isolationsmechanismen zur Sicherstellung der Systemintegrität gehören,
verursachen sie direkte und indirekte Leistungseinbußen, da sie Teile des Prozessorzustandes un-
gültig machen. In den letzten Jahren hat hochleistungsfähige Netzwerk- und Speicherhardware
diese Kontextwechsel zum Engpass für ein- und ausgabenintensive Anwendungen gemacht. Hinzu
kommt, dass Sicherheitslücken in modernen Prozessoren (z. B. Meltdown) Gegenmaßnahmen im
Betriebssystem-Kernel nötig machen, die die Kosten von Kontextwechseln weiter erhöhen. ANYCALL

löst dieses Problem, indem es Systemaufrufe von Kontextwechseln entkoppelt. Dazu verwendet
ANYCALL einen Kernel-internen Bytecode-Compiler, der die Ausführung von sicherheitsgeprüftem
Anwendungscode im Kernelmodus möglich macht. Dies ermöglicht schnelle, mit Fehler- und Verarbei-
tungslogik verschachtelte Systemaufrufe-Stöße, mit nur einem einzigen Kontextwechsel. ANYCALL’s
Implementierung erweitert das Berkeley Packet Filter (BPF) Subsystem des Linux Kernels um Schnitt-
stellen zur Auslösung von Systemaufrufen und für den Zugriff auf Benutzerspeicher. Da BPF bereits
im Kernel für flexible Ereignisbehandlung und Debugging benötigt wird, zeigt dessen Wiederverwen-
dung zur Implementierung von Systemaufruf-Aggregationen, dass durch Software isolierte Prozesse
für moderne Allzweck-Betriebssysteme praktikabel sind. Um zu demonstrieren, dass die Portierung
von realen Benutzeranwendungen auf ANYCALL unkompliziert machbar ist, portiere ich zwei reale
Anwendungen und dokumentiere die erforderlichen Codeänderungen. Abschließend bewerte ich
die Leistung von ANYCALL auf Systemen mit aktiven oder inaktiven Abhilfemaßnahmen gegen
Prozessorsicherheitslücken, wie zum Beispiel Kernel Page Table Isolation (KPTI) gegen Meltdown.
Auf Systemen ohne KPTI beschleunigt ANYCALL rechengebundene Anwendungen um bis zu 10 %.
Wenn KPTI hingegen aktiv ist, zeigt meine Auswertung, dass ANYCALL Systemaufruf-Stöße um bis
zu 98 % beschleunigt, sowie, dass reale Anwendungen um 32 % bis 40 % beschleunigt werden.
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1I N T R O D U C T I O N

General-purpose computing systems heavily rely on isolation of user applications to achieve fault-
tolerance and guarantee security. First, isolation is required to keep systems usable even when
individual applications experience faults. If desired, the applications can then be restarted with
little overhead to return to normal operation. Further, fault isolation is not only required between
user applications and the kernel, but also among user applications, as some provide fundamental
system services (e.g., systemd). If these fail, the overhead of restarting them is equivalent to a
system reboot. Second, isolation is required for privacy and to protect the user from malicious
actors. The latter is required if a malicious party gains access to, or is able to hijack, certain user
processes. In this case, isolation confines them to the compromised user account. It prevents them
from spying on other users and from locking other users out of the computing system (i.e., denial
of service). But even if no malicious party ever gains access to the computing system, isolation
is beneficial for privacy on single-user systems (e.g., mobile phones). For example, it prevents
social media applications (which often have a commercial incentive to collect data for personalized
advertisements) from harvesting the user’s data stored in other applications (e.g., the password
manager, photo-, or banking applications).

To summarize, computing systems rely on isolation as the most fundamental security and safety
mechanism that enables protection from malicious activities, maintains privacy, and confines faulty
programs [Aik+06; Ge+19]. The necessary counterpart to isolation is a well-defined communication
interface that provides kernel-level functionality safely to user programs. General-purpose operating
systems typically implemented this using system calls.

System calls enable controlled hardware access and interprocess communication (IPC). Hardware
accesses are, for example, required to display application data on the screen, to record audio from
the microphone, or to play it on the speakers. The system has to control such hardware accesses
to protect the user’s privacy. Based on this, some systems, for example, implement confirmation
dialogues before giving an application access to the microphone or camera. Similarly, IPC gives
applications controlled access to services provided by other applications. For example, a browser can
retrieve login credentials from a password manager, but only if the user approves the transmission
in the password manager. To summarize, without input/output (I/O) and IPC through system calls,
application’s computations would be of no use, as they could never receive inputs from, or present
results to, the user.

1.1 Motivation

The costs of system calls, in particular their execution-time overheads, have been a well-known
performance-critical system property for decades [EH13]. An example for a system-call–intensive
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1.1 Motivation

application is the Unix find tool that traverses directories and filters files by configurable criteria.
Therefore, numerous system calls are executed to read the file-system tree, but the amount of
computation in user space, in-between system calls, is often negligible. This is also the case with
other fundamental Unix tools. Experiments on a 1.8 GHz desktop computer show that 7 · 104 to
7.3·105 system calls are performed per second1 when unpacking archives, listing files, and estimating
disk usage using the GNU coreutils.

Besides fundamental Unix applications, multiple works have demonstrated that server applica-
tions suffer from severe system-call overheads. For example, the performance of database servers
like Memcached can be significantly improved by reducing system-call overheads [KS15]. Further,
file servers have been shown to benefit from a dedicated sendfile() system call [Zad+05], which
reduces invocation overheads by aggregating multiple system calls into one.

1.2 Problem Statement

System-call overheads are increasing relatively to application performance. This is caused both by an
increasing system-call rate, but also by increasing per-call overheads. System-call rate is increasing
in particular due to low-latency disks, large memories, and high-performance networking hardware.
These devices reduce the I/O latency significantly or avoid it altogether. Thereby, system-call latencies
are becoming more significant to the overall performance of the computing system.

Not only the rate at which system calls are performed is increasing, but also the overhead of
each individual system call. When performing a system call, the processor must switch from user to
kernel mode, execute the requested privileged operations, and finally switch back to user mode to
resume the application. Each system call therefore involves two user/kernel transitions. Besides the
traditional direct costs, these transactions also inflict indirect costs as the processor state must be
(partially) invalidated [SS10]. The importance of such indirect costs is expected to grow since caches
and hardware buffers are becoming increasingly performance-critical [Rup20]. With the discovery
of Meltdown [Lip+18], Spectre [Koc+19], and further processor-level timing side-channels, the
system-calls costs have increased even further, often causing a significant overhead on execution
time [Pro+18; Ren+19] and energy demand [Her+21]. The required flushes of processor-internal
buffers enforce isolation, but cause significant overheads, particularly for applications that execute
system calls at a high rate.

Multiple works have demonstrated that hardware-based isolation techniques (i.e., virtual memory,
processor protection rings) have significant overheads for applications. This includes experiments
on Singularity operating system [HL07], which primarily relies on software techniques for isolation,
thereby allowing all applications to share an address space and execute in ring 0. Here, enabling
hardware-based isolation in addition to software-based isolation increases the isolation overhead
from 4.9 % to 44.4 % for IPC-heavy applications. Recently, Li et al.[Li+21] have compared the
overheads of hardware- and language-based (i.e., software-based) isolation for IPC. They found that
even in an optimal scenario for hardware-based isolation, where the address space switch takes zero
cycles, language-based IPC is still faster. By solely relying on hardware-based isolation, operating
systems (OSes) therefore hurt application performance. This in turn complicates applications as
they have to rely on alternative optimizations to achieve acceptable performance.

1The numbers were obtained by running Debian 10’s tar xf, find, and du -s on the Linux 5.0 source tree. See Chapter 5
for details on the Intel i5-6260U evaluation setup.
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1.3 Approach

Considering that applications with high system-call rate suffer most from hardware-based isolation,
I propose ANYCALL, a system where only a single user/kernel transition is required for an arbitrary
number of system calls. To reduce the number of transitions between user and kernel space, the
control flow migrates to kernel space, calls arbitrary system calls interleaved with application-specific
logic, and eventually returns to user space. Motivated by the evaluations of software-based isolation
from [HL07] and [Li+21], isolation of the user application logic is enforced using an in-kernel
bytecode executor and static bytecode analysis. To execute the aggregation programs, ANYCALL’s
implementation reuses the existing Berkeley Packet Filter (BPF) bytecode virtual machine (VM)
included in recent versions of the Linux kernel.

1.4 Publication

This thesis contains research results from the following peer-reviewed workshop paper:

[Ger+21] Luis Gerhorst, Benedict Herzog, Stefan Reif, Wolfgang Schröder-Preikschat, and Timo
Hönig. “AnyCall: Fast and Flexible System-Call Aggregation.” In: Proceedings of the 11th
Workshop on Programming Languages and Operating Systems (PLOS’21). ACM, 2021, pp. 1–8.
DOI: 10.1145/3477113.3487267

The contributions of [Ger+21] are three-fold. First, it presents the approach of ANYCALL, which
decouples the number of user/kernel transitions from the number of system calls while maintaining
isolation using an in-kernel bytecode executor (i.e., BPF). Second, it presents ANYCALL’s imple-
mentation, extending the Linux kernel to support system calls from within BPF programs. For this,
ANYCALL enables verifiably safe accesses to user memory from inside BPF programs. This is used to
construct system-call arguments and the access system-call results. Finally, we evaluate ANYCALL by
comparing the overheads of BPF-based and traditional system calls.

This thesis extends [Ger+21] with regard to various aspects. First, it covers the contents of the
paper in greater detail, for example extending the discussions of BPF, user memory access, and
the evaluation results. Second, it covers related works using software-based isolation (e.g., SPIN,
Singularity, and RedLeaf) and compares the microkernel-approach against ANYCALL’s approach.
Third, the design and implementation are extended, discussing signal handling, ANYCALL’s trust
model, and interfaces for directory iteration. Finally, I have improved the evaluation, taking into
account feedback received at the peer-reviewed workshop. I run each benchmark on a second
hardware platform, evaluate I/O-bound workloads, and measure the performance of a directory
iteration tool that uses ANYCALL.

1.5 Overview

This thesis is structured into eight chapters. The following Chapter 2 introduces background
knowledge about system calls, their overheads, and the BPF subsystem of the Linux kernel. Chapter 3
deduces the basic design of ANYCALL, which lowers the system-call overheads for applications by
aggregating multiple system calls into one anycall(). The design chapter discusses ANYCALL’s
execution and programming model, signal handling, its trust model, and the in-kernel bytecode
executor (i.e., BPF) used for ANYCALL’s implementation. Chapter 4 presents ANYCALL’s BPF-based
implementation. In addition to showing how user applications invoke ANYCALL, and how ANYCALL
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1.5 Overview

invokes system calls, it discusses how ANYCALL can safely access user memory. This allows it to
construct system-call arguments and retrieve results. It further explores how ANYCALL-specific kernel
interfaces can overcome BPF’s limitations and improve application performance. I demonstrate this
by creating a BPF-based interface for (recursive) directory iteration. Following the implementation,
Chapter 5 evaluates ANYCALL, comparing it against traditional system calls in various micro- and
real-world-benchmarks. Each experiment is executed on multiple hardware platforms, with or
without mitigations against transient execution vulnerabilities (e.g., Meltdown) active. Chapter 6
presents related works. It discusses alternative approaches to software-based isolation (i.e., avoiding
user/kernel transitions and microkernels) and compares ANYCALL against multiple systems that
have previously used software-based isolation to enhance dependability and performance. Chapter 7
summarizes the opportunities for future work and Chapter 8 concludes this thesis.
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2B A C K G R O U N D

This chapter discusses system calls as well as recent hardware and software developments related to
their overheads. Subsequently, it gives background on the Linux kernel’s BPF technology.

2.1 System Calls

System calls enable isolated processes to communicate and perform I/O. This section discusses how
general-purpose operating systems implement system calls for hardware-isolated processes.

2.1.1 Motivation

As outlined in the introduction, general-purpose OSes must isolate processes from each other to
maintain fault isolation, protect them from malicious actors, and to ensure privacy. For this, OS
kernels program the hardware memory management unit (MMU) to create separate virtual address
spaces for all user processes. This prevents them from accessing physical memory owned by other
processes or the kernel. If an unprivileged process attempts to do so anyways, a page fault is
triggered, which redirects the control flow to the kernel for recovery. Programming the MMU and
accessing similar hardware functions, are privileged operations the central processing unit (CPU)
only permits if it runs in the privileged kernel mode. Therefore, to perform I/O (i.e., accessing the
hardware) and to communicate with other processes (e.g., by reading/writing to their memory),
applications must invoke the kernel. This is possible using system calls, through which the kernel
gives the applications controlled access to privileged operations.

2.1.2 Implementation

The generic solution to implement system calls for hardware-isolated processes involves switching
to the privileged execution mode, running the requested operation, and finally switching back to
user context. Switching the processor mode while simultaneously transferring the control flow to
the kernel is achieved using dedicated software trap instructions (e.g., int 0x80 or sysenter on
x86). Following the software trap, the kernel executes the desired operations as requested by the
system-call arguments, which the user process places in registers or on the stack prior to the software
trap. The application passes the system call to be executed to the kernel using registers, and encodes
it using a numeric identifier. After performing the desired privileged operations, the kernel returns
control to the application. For this, the kernel places the return value in a processor register from
where the application can retrieve it after the mode switch. In summary, this implementation allows
for arbitrary system calls by synchronously executing kernel code on the application’s CPU core.
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2.1.3 Discussion

This section discusses strengths and drawbacks of the system-call implementation described in the
previous section. In particular, it is (a) implementation-agnostic, (b) allows for isolation, (c) is easy
to use, (d) hides the implementation, and (e) allows for a stable application binary interface (ABI).
However, it is also (f) inflexible and (g) slow.

Implementation-agnostic The implementation outlined in the previous section is generic in that it
works for every system call regardless of the operations it performs. Inside the system call the
kernel can access the hardware for I/O and read/write arbitrary user and kernel memory while
remaining in full control. It can perform complex checks before, while, or after performing the
requested system call. If it detects invalid parameters or forbidden operations, it can return
an error code to the process at any time.

Maintain isolation Operating systems require isolation but also communication. In comparison to
other solutions, system calls still retain a high level of isolation among the system components.
Not considering alternatives such as shared memory, processes can only communicate with
each other indirectly through the OS kernel, which decouples them from each other. As
discussed in the previous paragraph, the kernel can place arbitrary limits on the allowed
privileged operations and thereby protect itself and concurrently running applications. Also,
the kernel has full control over the hardware state in which it resumes user processes. This
includes basic security measures such as clearing values from processor registers, but also
flushing processor caches to prevent information leaks through side-channels.

Subroutine-like programmming model Using system calls is straight-forward because they be-
have like subroutines. These are a well-understood basic programming tool every developer is
familiar with.

Information-hiding System calls are abstract and interface with the application only through
arguments and return values. This interface is narrow and allows for backwards-compatibility
if this is a desired system property. The system-call implementations, however, are hidden
and can be continuously optimized for non-functional properties like performance and energy
usage without rewriting or recompilation of user applications.

Inflexible The strong isolation between kernel and applications also has drawbacks. Kernel exten-
sions, for example, offer greater flexibility as they can directly access kernel-internal interfaces
and data structures, thereby being able to offer functional and non-functional features that
OS services in user space can not provide. Although system calls are composeable, doing so
involves overheads. This manifests itself in a large, increasing number of system calls offered
by modern operating systems [Lin21b].

Slow The generic system-call implementation involves two user/kernel transitions for every in-
teraction, these include switching the processor mode but also flushing hardware registers
and caches. This has been a well-known performance problem for decades [EH13], but
no alternative implementation is as generic and straight-forward to use as the synchronous
implementation involving two user/kernel transitions. For example, Xen’s multicalls, which
allow user space to call a batch of system calls using a single user/kernel transition, are
unuseable if there are data or control-flow dependencies between the system calls. vDSO
can avoid user/kernel transitions by mapping kernel data into user memory, but is limited to
read-only data for security reasons. Any system call that has to write data to kernel memory
can not use it. Finally, blocking system calls promote extensive multi-threading in applications
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thereby increasing the context-switching overhead in the computing system. Asynchronous
input/output (AIO) was created to solve this but has a programming model many developers
are not familiar with [Atl+16].

As processors achieve performance improvements through larger caches and architectural improve-
ments, the relative overhead of user/kernel transitions for applications increases. This is amplified by
high-performance I/O hardware and large memories, which cause even more frequent user/kernel
transitions. The following Sections 2.2 and 2.3 provide detailed background on these trends.

2.2 System-Call Rate

Due to low-latency disks, large main memories, and high-performance networking hardware, the
system-call frequency in modern computing systems is increasing. This amplifies the already-large
user/kernel transition overheads for applications.

2.2.1 Low-Latency Disk

Traditional hard drives with high access latencies are now superseded by low-latency media such
as NVME-SSDs and Optane storage. In particular the speed of non-volatile memory (NVM) is
approaching the speed of dynamic random-access memory (DRAM) [ERT19], also allowing for
very fast random-access I/O. As the device latency decreases, the speed of user/kernel transitions
becomes more significant for the overall performance of the computing system [ERT19; Zho+21].
For example, Honda, Lettieri, Eggert, and Santry [Hon+18] have demonstrated that with non-volatile
main memory (NVMM) the end-to-end latency in transactional storage systems (e.g., blob stores,
key-value stores, and databases) is no longer dominated by the disk latency but instead by the
software stack. Replacing a solid-state drive (SSD) with NVMM reduces the end-to-end transaction
latency by two orders of magnitude from 1320 µs to 27.17 µs. If the disk access is omitted entirely, a
transaction takes 23.32 µs, therefore the NVMM access only adds 3.85 µs to the transaction latency.
In summary, systems using low-latency media are no longer bottlenecked by the device latency, but
instead by the software stack and the user/kernel transitions the system performs.

2.2.2 Large Memories

The main memory of computing systems offers low-latency random access at the cost of volatility in
case of a power failure. On most systems, the main memory is not used entirely by applications at
all times. To make use of unused memory, OSes employ a page cache which holds file and directory
contents recently read from disk. Accessing these files thereby happens at memory speed instead of
disk speed, triggering very frequent user/kernel transitions. In summary, large memories cause the
transitions to become even more critical to the computing system’s performance.

Even though memory accesses are much faster than disk accesses, there is still potential for
further optimizations. When cached, files still live in kernel memory and have to be copied or
mapped into user space before applications can access them [Gru+19]. This in either case incurs a
loss of cache-locality, slowing down the access. Software-based isolation can resolve this by giving
applications direct access to kernel memory while still preventing them from corrupting kernel data.
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2.2.3 High-Performance Networking

Similarly to NVM disks, recent networking hardware is bottlenecked by the software stack [Rum+11].
While 10 Gbit/s Ethernet was already widespread in 2015 [Kau+16], 400 Gbit/s Ethernet is on the
horizon as of 2019 [ERT19]. However, a 40 Gbit/s network interface controller (NIC) can already
receive a packet of the size of a cache line every 12 ns while the last level cache (LLC) latency of
an Intel Sandy Bridge processor is 15 ns [MHS14; Kau+16]. A single LLC access during packet
processing is therefore not tolerable if the CPU wants to keep up with incoming packets unless other
techniques to hide the latency are used (e.g., concurrent processing, instruction-level parallelism). In
Memcached, for example, this is problematic as even with kernel-bypass, processing in the network
stack and the application consumes about half of its server processing time [Pet+14].

Kernel-bypass gives network-heavy applications direct access to the networking hardware [Bel+14;
Pet+14]. Kernel-bypass can avoid user/kernel transitions, but has the severe downside of limiting
isolation among processes. For example, the sending of arbitrary internet protocol (IP) packets can
not be prevented if the application has direct access to the NIC.

To avoid the loss of isolation incurred by kernel-bypass, alternative approaches have to apply
sophisticated but problem-specific optimizations to the operating system’s Transmission Control
Protocol (TCP) stack, demonstrating the need for a solution which reduces user/kernel transition
overheads. TCP Acceleration as an OS Service (TAS) [Kau+19], for example, separates the TCP
slow path from the fast path and execute the latter on dedicated cores. Instead of using system calls
to invoke privileged operations, they execute asynchronously on dedicated cores. Privileged and
unprivileged processes communicate using shared queues to avoid mutual cache pollution.

In summary, to not bottleneck high-performance networking hardware, the software stack must
avoid excessive transitions between user and kernel context. Existing solutions such as kernel-bypass
or TAS either compromise on isolation or are specific to the TCP stack.

2.3 User/Kernel-Transition Overheads

The hardware-induced overheads of user/kernel transitions are currently increasing due to multiple
trends in the architecture of modern computing systems. This section in particular focuses on
increasing hardware buffers and cache sizes as well as mitigations against transient-execution
attacks (e.g., Meltdown and Spectre).

The overhead of user/kernel transitions includes a direct and an indirect overhead. The direct
overhead is the time for the transition itself, which includes switching the processor mode but also
other software operations like switching of the virtual address space or the invocation of second-
level interrupt handlers [Her+18]. The indirect overhead arises because many of the performed
operations also slow down the code executing after the transition is complete. For example, a
software interrupt executes code that is usually not located close to the invoking function, thereby
triggering cache inlocality and stalling the processor pipeline. In addition to this, the change in
privilege level invalidates hardware caches that contain privileged information as the kernel must
protect these from access by unprivileged processes. Applications increasingly rely on caching to
achieve acceptable performance, the indirect overheads of user/kernel transitions increase.

This section focuses on two major contributors for increasing direct and indirect user/kernel
transition overheads: the continued reliance on hardware buffers/caches to achieve processor
speedups and the ongoing discovery of transient execution attacks requiring OS-level mitigations.
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2.3.1 Hardware Buffers and Caches

Hardware buffers and caches are increasing in size. Although advantageous to application per-
formance in general, relying on them increases the relative user/kernel transition overheads for
applications.

In particular, caches and buffers contribute to the direct switching overhead. The invalidation of
caches2 is yet another state change to be performed during the processor mode switch. Also, the
more registers a CPU has, the more registers must be saved and restored when switching to or from
a privileged execution context. Also, transferring the control flow using software interrupts disrupts
processor pipelines.

However, more importantly, the more applications rely on hardware caches for performance, the
greater the indirect user/kernel transition overhead for them. If caches are flushed during the transi-
tion, the required repopulation slows subsequent code execution. Due to the Spectre vulnerabilities,
the number of branch misses scales with the system-call rate, even on recent processors [Hil+19].
This is also confirmed by the ANYCALL microbenchmarks in Section 5.2 and Section 5.3. Also,
with Kernel Page Table Isolation (KPTI) the Translation Lookaside Buffer (TLB) is invalidated on
user/kernel transitions thereby triggering expensive page-table walks [ATW20].

2.3.2 Transient-Execution Attacks

Recently, the Meltdown [Lip+18] and Spectre [Koc+19] hardware vulnerabilities have made it
necessary to develop mitigations in hardware, firmware, and software. As these vulnerabilities can
circumvent the memory isolation between processes, mitigations at OS level have been developed.
Although these mitigations are effective in fully or at least partly preventing the exploitation of
these vulnerabilities, they come with potentially significant execution time and energy demand
overheads [Her+21; AEA19; Pro+18]. Especially Linux’ mitigations against Meltdown and attacks
bypassing kernel address space layout randomization (KASLR) [HWH13], that is KPTI, introduce
significant overheads for user/kernel transitions. The most important reason for this are additional
TLB flushes before switching to user space, which can be reduced by the use of the Process Context
Identifiers (PCIDs), but not fully avoided. Furthermore, PCIDs require specific CPU features and at
least Linux kernel version v4.14. The mitigations’ overhead for different variants of Spectre attacks
apply more selectively depending on the workload but can nevertheless be significant [Her+21].

New transient execution attacks are discovered continuously, even in recent processors [MF21;
Adv21]. Therefore, processors currently not considered vulnerable may require mitigations in the
future, increasing the user/kernel transition overhead for applications running on them.

In summary, transient execution vulnerabilites as well as large hardware buffer and cache sizes
increase the performance penalty imposed by user/kernel transitions. To avoid this overhead while
maintaining isolation, systems can use software-based isolation instead of hardware-based isolation.
In particular, software-based isolation avoids address spaces and processor mode switches, but
still maintains fault isolation. Software-based isolation is available in Linux through BPF, which
allows applications to execute small bytecode programs in the kernel’s execution context under
software-based isolation. The following Section 2.4 covers BPF in detail.

2To avoid having to invalidate caches on a mode switch, they can also be duplicated (i.e., split into separate caches,
one for privileged and one for unprivileged processes) or tagged (e.g., using Process Context Identifiers). However, both
approaches also impose microarchitectural overheads.
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2.4 Berkeley Packet Filter (BPF)

BPF allows applications to inject small code fragments as event handlers into the Linux kernel. It
thereby enables detailed but flexible configuration with relatively little overhead.

Initially, BPF was developed to filter network packets directly in the kernel without having to
perform an expensive switch to user context [MJ93]. This is achieved by allowing user processes
to submit small bytecode programs to the kernel for execution inside a VM (in kernel context).
The instruction set of the original BPF is very limited (e.g., no loops) and intentionally not Turing
complete. To improve the efficiency and expressiveness of BPF, an extended version with a redesigned
instruction set was introduced in the 3.18 Linux kernel [Cor14; Cil21a]. The new instruction set is
optimized for C interoperability and efficient compilation to native machine code (usually allowing
a one-to-one mapping of BPF instructions to machine instructions). Also, recent versions of the
kernel allow for safely bounded loops.

In this thesis, the term BPF refers to the current (extended) Berkeley Packet Filter implemen-
tation [Cor14; Cil21a] as this is common in the technical literature and Linux kernel documenta-
tion [Sta21; Zho+21; Lin21a]. In academic literature and older works, this version is sometimes also
abbreviated eBPF [Mia+18; TDS21]. If it is required to refer to the original implementation [MJ93],
this thesis does so explicitly using the term classic Berkeley Packet Filter (cBPF).

Section 2.4.1 first give a motivational example to illustrate why BPF was introduced. Sec-
tion 2.4.2 then briefly discusses the BPF bytecode instruction set. Figure 2.1 displays the architecture
of the Linux kernel’s BPF implementation and is referenced throughout the remaining sections.
Section 2.4.3 shows how BPF programs are loaded and invoked in the kernel, thereby explaining the
steps 1 to 5 of Figure 2.1. Section 4.4 section gives background on the kernel interfaces ( 6 ), and
Section 2.4.6 presents the IPC capabilities available to BPF ( 7 ). Finally, Section 2.4.7 discussing
how BPF affects security.

2.4.1 In-Kernel–VM Motivation

In today’s computing systems, some kernel events happen at such a high rate that it is not possible
to switch to a specific user process every time they occur. To still allow the processing of such events
in a user-defined manner (e.g., for tracing and configuration), BPF was developed [MJ93].

For example, system administrators frequently have to monitor and debug the network packets
sent and received by a system. On UNIX, this is possible using the tcpdump tool which prints network
traffic to standard output. To avoid generating excessive amounts of data, tcpdump allows users to
filter the output using a boolean expression supplied on the command line. However, copying all
received packets to user space only to then discard most of them according to the applied criteria
would not only be wasteful, but even impossible on systems receiving large amounts of data. Instead,
it is desirable to apply the filter as early as possible, for example, directly in interrupt context when
the OS is notified about the packet. However, executing user machine code in interrupt context
is highly unsafe as it could corrupt privileged data structures or block the entire system with an
endless loop. BPF solves this by not executing user-supplied code directly, but instead retrieving
only VM bytecode from user programs, which the kernel then checks to ensure memory safety and a
bounded execution time. The kernel achieves this by statically analyzing the bytecode. It checks
every possible path of the control-flow graph (CFG) and ensures no unsafe memory access can occur.
To execute the bytecode, the in-kernel VM either interprets it or, in recent implementations, uses
just-in-time (JIT) compilation for near-native performance.
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Figure 2.1 – Architecture of the Linux kernel’s BPF implementation. BPF programs are only
invoked asynchronously when the event to which they are attached is triggered, for example,
on interrupts (W).

In addition to packet filtering and tracing [MJ93; Mia+18], BPF today has numerous applications.
These include the tracing of arbitrary kernel events [IO 21], seccomp access-control policies [Dre12],
file system sandboxing [BR18], caching [Ghi+21], and paravirtualization [AW18].

2.4.2 Instruction Set Design

This section presents the BPF instruction set thereby illustrating the expressiveness of BPF at a
fundamental level. BPF’s instruction set by itself is generic (i.e., Turing complete) and does not
limit the expressiveness of BPF programs, limitations arise instead from the static analysis that is
performed before the program is invoked. This allows BPF to become more expressive as the static
analysis improves, without changing the instruction set.

BPF currently offers eleven 64-bit registers and 87 instructions. The bytecode uses fixed-size
64-bit encoding for the instructions, which map directly to machine instructions on the common
architectures (e.g., AMD64, ARM) allowing for efficient JIT compilation. In addition to the registers,
programs can also store arrays and variables to the BPF stack (512 Byte in size for Linux). Conditional
jumps exists and backwards jumps are possible if they are not rejected by the verifier’s implementation.
No BPF instruction allows the direct modification of the program counter [Cil21a].

The VM is a register-based VM as these can be implemented more efficiently than stack-based
VMs [MJ93]. Zandberg and Baccelli [ZB20] have shown that the BPF instruction set allows for very
memory-efficient programs. However, small program text size is sacrificed to enable fast decoding
(hence fixed-width 64-bit instruction encoding) and easier static analysis (instructions have simple
semantics, no compound instructions as in complex instruction set computer exist).

2.4.3 Program Loading and Invocation

To invoke BPF programs quickly on performance-critical paths, the kernel separates program-loading
from the invocation. This section presents both operations in detail and thereby covers the operations
1 through 5 in Figure 2.1.
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Initially, the user space process passes the BPF bytecode to the kernel ( 1 ). The BPF subsystem
then first analyzes this bytecode to ensure memory safety and a bounded execution time. Both
will be discussed in greater detail in Section 2.4.4. Second, the BPF program is compiled from
the generic bytecode to native machine code. If loading is successful, the application receives a
descriptor which it can use to reference the newly created program ( 2 ). It can use this descriptor
to attach the program to events ( 3 ), which will subsequently invoke the program ( 5 ), whenever
the events occur ( 4 ). In the current version of the Linux kernel, the available events, for example
include, the arrival of network packets and tracepoints.

Compilation of the bytecode happens exclusively at load-time, therefore running the programs
is very fast. User processes are only affected by the BPF program indirectly as the execution is
always event-driven [Cil21a]. Either they are affected by the policy implemented by the program,
for example the rejection of a filtered network packet, or they retrieve results from BPF invocations
through dedicated safe IPC mechanisms called maps (see Section 2.4.6). BPF programs can receive
arguments from the kernel when they are invoked and return a result to the kernel. The kernel can
also give them direct, safe access to memory areas of a fixed size (e.g., network packet headers).
Further, interaction happens through helpers which are kernel subroutines BPF programs can invoke.
Helpers will be discussed in detail in Section 2.4.5. Each program has a type that is fixed at load-time,
this determines the possible attachment points of the program and also the helpers it is allowed to
invoke. In addition to the direct invocation by an event, BPF programs can also invoke other BPF
programs through tail calls (resembling execve() in user processes). This however can only happen
a limited number of times (currently 32 [Cil21b]) to prevent an unbounded execution time. In
summary, BPF programs run asynchronously to user processes in various kernel contexts. Invoking
them synchronously in user-thread context is not supported.

2.4.4 Bytecode Verification

Verification protects the kernel from malicious and buggy programs by statically analyzing the
loaded bytecode for memory safety and bounded runtime [HJ+18]. Programs not passing this
step are rejected. However, correct programs may still be rejected due to limits in the verifier. The
expressiveness of BPF is therefore not limited by the bytecode format, but instead the capabilities of
the verifier which can be improved continuously without making recompilation of BPF programs
necessary. Verification in this context does not mean that passing BPF programs are correct in that
they behave and provide the results as expected by their developer or user. Instead, verification
means that programs can never block or crash the kernel.

Multiple measures are required to ensure a bounded execution time. The verifier imposes a limit
on the total number of instructions in a program. It also builds and analyzes the CFG to ensure a
static upper limit on the number of iterations of each loop. Tail calls also do not allow for endless
loops as each call chain has a constant upper limit (currently 32 tail calls). This is enforced using a
check on each tail call.

BPF programs can only access allocated memory locations (i.e., their stack and fixed-size allo-
cations from helper functions) safely. Similarly to the Java Virtual Machine (JVM), each accessed
memory location has a type that is tracked by the verifier. However, in addition to the general data
types (e.g., integers or pointers), the verifier also tracks the range of possible values as it traverses
each possible path through the CFG. Tracking the range of values a variable can contain enables
safe pointer arithmetic as it can be verified that allocated areas are only dereferenced at valid offsets.
The verifier also incorporates the conditions of jump instructions (e.g., from runtime error checks)
into the analysis. These enable the verifier to limit the range of possible values in certain program
branches and therefore allow accesses that would otherwise be rejected. For example, a BPF program
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is permitted to access an array living on its stack at a user-defined offset, as long as it includes a
condition that ensures the input value is smaller than the array’s size.

2.4.5 Helper Subroutines

Helpers are safe kernel functions callable by BPF programs ( 6 in Figure 2.1). They can receive up
to six arguments in BPF registers (which directly map to machine registers on most architectures)
and return a value. The arguments as well as the return value are typed. Pointer types include the
size of the allocation, therefore helpers can implement routines for memory allocation or retrieve
pointers to memory areas from BPF programs. For example, BPF programs can use helpers for
zero-copy communication with user processes through ring buffers. First, the program allocates a
ring-buffer entry of constant size using the reserve() helper. This returns a pointer which the BPF
program can dereference directly (out-of-bounds accesses are prevented by the verifier). Finally,
ownership over the buffer entry is passed back to the kernel which makes it consumable by user
processes. Submitting the entry makes the previously retrieved memory area inaccessible to the BPF
program, similarly to ownership transfers of references in Rust [Jun+17].

2.4.6 IPC using Maps

Maps enable safe IPC between BPF programs and user processes as well as in-between BPF programs.
Synchronization is handled and enforced by the kernel. BPF programs can only access map contents
through helpers ( 6 in Figure 2.1) and user space only through system calls ( 7 ). Both refer to
the maps only using descriptors and synchronization is handled by the kernel. Not all types of
maps have dictionary semantics. For example, arrays are also supported and, as mentioned in the
previous section, ring buffers. Arrays and dictionaries offer the atomic reading/writing of entries.
To summarize, maps offer safe IPC with rich semantics to BPF programs and user processes.

2.4.7 Security and Implications

BPF’s security guarantees are based on software-based isolation through static bytecode analysis.
While enabling low overhead, this approach is not without risks. The verifier and JIT compiler are
complex software components which increase the kernel’s attack surface significantly. Also, transient
execution vulnerabilities can often be exploited from within BPF on today’s processors [McI+19].

The verifier and JIT compiler required for BPF increase the kernel’s attack surface as they can
contain bugs like any other software component. For example, CVE-2021-29154 [Kry21] allowed the
execution of arbitrary code in kernel mode and was caused by the incorrect computation of branch
displacements. The BPF subsystem of the Linux kernel has 33 k physical source lines of code (SLoC),
it is thereby the second-largest core kernel subsystem3 after trace with 47 k SLoC [Lin21b; Whe04].

BPF is based on isolation using software. On today’s processors, this technique is prone to
side-channel attacks as processor caches are shared to a high degree among the isolated components.
As of October 2021, BPF consequently does not support the execution of code from unprivileged
sources for security reasons [Cor19a]. However, there exists a kernel capability which grants
processes not running as root the ability to load and attach BPF programs. Still, several use-
cases for unprivileged BPF do exist [Cor19a; Cor21b]. Foremost, unprivileged processes can use

3By core kernel subsystem I mean any subsystem located in the kernel subdirectory of the Linux source tree. kernel is
not the largest directory of the tree, however, the other larger subdirectories either contain user space tools (i.e., tools),
hardware abstractions that are not required in every configuration (i.e., drivers, arch, sound), or modules that are also
only partially included depending on the configuration (i.e., net, fs).
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2.4 Berkeley Packet Filter (BPF)

BPF to efficiently filter network packets on sockets using the setsockopt() system call. Further,
seccomp()’s implementation, which currently uses cBPF, could be simplified and its functionality
extended by allowing it to reuse the existing BPF ecosystem. Finally, additional use-cases in other
unprivileged processes (e.g., systemd and container runtimes) exist.
[McI+19] argue that transient execution vulnerabilities can not be solved exclusively using

software. Transient execution vulnerabilities (e.g., Meltdown and Spectre) are usually exploitable
in any Turing-complete language, and can not be effectively mitigated by limiting access to timers
(e.g., reducing their accuracy or introducing jitter). Software-based isolation therefore does not
currently offer free lunch, one does not get isolation in the presence of transient execution vulner-
abilities while still having fast user/kernel transitions. BPF is still useful because it adds a new
middle-ground with very fast transitions between kernel code and user bytecode while still guaran-
teeing strong fault-isolation. In addition, the isolation guaranteed by BPF may still be enhanced
in the future, for example, using hardware support to prevent the exploitation of side-channels
between software-isolated components [Nar+20].
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3D E S I G N

This section presents the design of ANYCALL which approaches the problem of increasing user/kernel
transition overheads using programmable system-call aggregation. The approach is discussed in
Section 3.1. Section 3.2 discusses the execution models I have considered for ANYCALL and details
why I have chosen a call-oriented execution model. Tightly related to this is the programming model,
discussed in Section 3.3, as well as the handling of signals, detailed in Section 3.4. Section 3.5
discusses the trust model of ANYCALL and Section 3.6 details why ANYCALL executes user control
flow in the kernel using BPF.

The design of ANYCALL aims to retain the positive properties of traditional system calls, while
improving on the negative properties (both have been discussed in Section 2.1.3). In particular,
ANYCALL is implementation-agnostic, maintains fault-isolation, has a subroutine-like programmming
model, is information-hiding. The flexibility of the user/kernel interface is unchanged as it is orthog-
onal to ANYCALL. ANYCALL improves on the overhead of traditional system calls (i.e., ANYCALL is
fast not slow) and, on current processors, compromises on isolation from malicious actors.

3.1 Approach

ANYCALL reduces the user/kernel transition overheads for applications using programmable system-
call aggregation. Aggregation reduces the system-call rate as detailed in Section 3.1.1. Programma-
bility, discussed in Section 3.1.2, avoids switches to user context for computation, and reduces
implementation complexity for users.

3.1.1 System-Call Aggregation

Aggregation solves the problem of increasing system-call overheads in applications (compare Sec-
tion 2.2), by executing multiple kernel calls using a single user/kernel transition. This approach
reduces the system-call rate by the aggregation factor. For example, aggregating only two system
calls on average, already halves the application’s system-call rate. Therefore, users only have to
aggregate few system calls to achieve significant speedups.

Inside the aggregated section, regular system-call implementations execute without the overheads
of frequent user/kernel transitions. ANYCALL therefore is as implementation-agnostic as traditional
system calls because it supports all system calls the OS kernel offers.
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3.1 Approach

3.1.2 Programmability

In-between system calls, user applications often perform error handling or compute the inputs for
successive system calls based on the result of preceding calls. ANYCALL accounts for this using
programmability, that is, users can execute their control flow in-between the aggregated system calls.
The user control flow retrieves the results of preceding system calls and computes the arguments for
successive system calls.

In comparison to batched system-call interfaces (e.g., Xen multicall [Pan+11]), this has multiple
advantages. First, having to batch multiple system calls increases user program’s complexity. The
user can no longer check for errors directly after individual system calls, but has to delay the check
until the whole batch is complete. The delayed detection can even make it necessary to roll back
operations that were part of the batch. Second, inside a batch a user program can not compute
system-call arguments based on the results of preceding system calls. If such a computation is
required, the application can not use batching but has to perform a full switch to user context in
order to execute its control flow. ANYCALL however, can still be used in this case. By allowing for
programmable aggregation, ANYCALL therefore improves efficiency and reduces the complexity of
applications using system-call aggregation.

To implement programmability, we can not allow the application to execute user machine code
directly in kernel mode, as this would be highly unsafe. Instead, the user code still has to be isolated
from the kernel to prevent simple programming errors from crashing the whole system. For this, I am
proposing software-based isolation as it incurs a lower overhead than the hardware-based techniques
modern OSes use for user processes. Software-based isolation can, for example, be implemented
using VMs that interpret or JIT compile type-safe application (byte-)code (compare JVM) or, by
inserting runtime checks into application machine code using binary-rewriting.

Without loss of generality, the remainder of this chapter refers to the user control flow executing
in-between the aggregated system calls as VM programs. That is, because VMs usually provide the
isolation between the user code and the kernel we require for ANYCALL. However, other software-
based approaches such as binary-rewriting can also isolate the user code from the kernel. A more
general term for VM program, as used in this chapter, would be software-isolated process, or program.
The implementation of the isolated execution environment (e.g., VM) is orthogonal to the design of
ANYCALL.

3.2 Execution Model

I have considered two alternative execution models for ANYCALL, a return-oriented and a call-
oriented approach. ANYCALL uses a call-oriented approach because it offers better safety and
efficiently implements a straight-forward programming model.

3.2.1 Return-Oriented

In the return-oriented execution model, VM programs are executed in response to system calls
which are initiated by the application. With this model, the control flow is similar to return-oriented
programming [Roe+12], an exploitation technique where chunks are executed sequentially, and
the return instruction at the end of an instruction sequence leads to the execution of the following
sequence. For system-call aggregation, such sequences are either VM programs, or system calls. In
the return-oriented execution model, a VM program can perform kernel calls to request subsequent
system calls which, on termination, trigger other VM programs. It thus creates a chain of system
calls, interleaved with VM programs.
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3.2 Execution Model

The return-oriented model is very similar to the way the Linux kernel currently uses BPF. That
is, the kernel exclusively invokes BPF programs in response to events. In the case of system-call
aggregation, this is the completion of a system call. The return-oriented model for aggregation has
been recently proposed for integration into the Linux io_uring subsystem [Axb20; Cor21a]. Future
work will compare this implementation to ANYCALL.

3.2.2 Call-Oriented

In a call-oriented execution model, VM programs invoke system calls synchronously, using stubs
provided by the kernel and exposed inside the VM. This thesis refers to system calls performed in
this manner as kernel calls. Equivalently to function calls, the original VM program receives the
result upon system-call completion and resumes execution.

Figure 3.1 displays this model by example. The left side displays an application performing three
identical system calls from user space and the right side displays the same three calls executed using
ANYCALL. The system calls from user context each incur a full user/kernel transition, including a
processor mode switch from user to kernel mode. The kernel calls from within the VM, however,
have subroutine-like overheads. Therefore, the total direct user/kernel transition overheads are
reduced. Furthermore, avoiding the user/kernel transitions reduces the indirect overhead because
the VM program as well as the kernel execute with hot caches. This reduces the execution time of
the second and third kernel call as well as the runtime of the user control flow executing inside the
VM. Therefore, the total execution time t is reduced to t ′.

3.2.3 Discussion

The return-oriented and call-oriented execution models differ in multiple aspects, in particular, with
respect to safety and programmability.

For safety, the system-call aggregation needs to manage its state, but protect it from other
contexts. In the return-oriented model, the local state has to be preserved along a call chain, but
protected from concurrent call chains. In consequence, this model demands for concurrency control.
Furthermore, preserving the state correctly (including garbage collection at each end of the call
chain) is non-trivial and cannot be safely ensured by the kernel.

Regarding programmability, the call-oriented approach is straight-forward as it resembles the
way applications have interacted with the kernel traditionally, which is consequently well-understood
by many programmers. In comparison, the return-oriented approach scatters control flow over
multiple chunks and embeds control flow decisions in helper calls.

Application

VM

Kernel

User Mode ↑

Kernel Mode ↓

t t ′

syscall anycall()

kernel call

Figure 3.1 – Interaction diagram for three identical synchronous system calls from user space
(left) and using ANYCALL (right). The aggregated execution time t ′ is smaller than t as direct
and indirect transition overheads are reduced.
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3.2 Execution Model

In summary, ANYCALL implements the call-oriented execution model because it allows for efficient
state-management and straight-forward programmability.

3.3 Programming Model

ANYCALL should be straight-forward to use for system programmers. Therefore, control flow is
transferred to the kernel using subroutine calls and the VM program accesses user memory explicitly
using interfaces that resemble memcpy() and mmap() [Lin17; Lin20c].

3.3.1 Control Flow

To ease adoption, ANYCALL must implement a straight-forward programming model. Traditional
system calls are invoked as subroutines, therefore many programmers are familiar with this model.
ANYCALL consequently also implements this model.

In this subroutine-like programming model, the user application invokes the anycall() as a
subroutine, and the VM program in turn invokes the kernel calls as subroutines. This further has
the advantage that call-oriented execution models implements this programming model efficiently
and with low complexity. To summarize, the subroutine-like programming model makes ANYCALL

as straight-forward to use as traditional system calls, while still improving upon their overhead
(compare Section 2.1.3).

3.3.2 User Memory Access

Many system calls receive or return values by reference. To access or supply these values, the VM
requires a method for reading and writing user memory. This can happen either transparently or
explicitly. ANYCALL implements the latter approach because it encourages more efficient applications.

The transparent approach to user memory access completely hides the difference between VM
memory and user memory from the VM program. The VM program would then access the user
memory transparently, just like any other memory it accesses. However, behind the scenes the
VM still has to differentiate between user and VM memory, as only the latter is located inside the
kernel address space. While accessing kernel memory is natural in kernel context, accessing user
memory is an architecture- and configuration-specific operation that sometimes incurs overheads
(e.g., switching of the virtual address space, paging in memory that has been swapped to disk).
Hiding this performance-critical system property from the programmer would encourage them to
write programs that do not perform well. Consequently, ANYCALL does not implement a programming
model for transparent user memory access.

A preferable approach is to access user memory explicitly in ANYCALL. System programmers
are familiar with two interfaces that are well-suited for this, memcpy() and mmap() [Lin17; Lin20c].
First, subroutines that copy memory to or from a supplied user address efficiently access large
memory areas. In ANYCALL, this is implemented by copy_to/from_user(void *, size_t, __-
user void *) subroutines the VM program can invoke. Second, for repeated accesses to smaller
memory areas, ANYCALL should not enforce the overhead of one subroutine invocation per access
on the VM program. In this case, it is desirable to allow the VM program to map the user memory
into the kernel address space, making it directly accessible with low overhead. In ANYCALL, this is
implemented by the void *map(__user void *, size_t) and unmap(void *) subroutines.
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3.4 Signal Handling

3.4 Signal Handling

To enable user processes the timely handling of asynchronous events, OSes offer signals. A signal
invokes a user-defined handler whenever a certain event occurs. To still allow the timely handling
of events when applications call long-running, blocking system calls, signals abort blocking system
calls and cause them to return to user context with an error code. This enables timely handling
of the signal. The required restarting of the interrupted system calls can be automated using the
SA_RESTART mechanism [Lin20e].

With ANYCALL however, returning from a kernel call does not directly return to user context but
instead to the VM program. There are two approaches to handle signals in ANYCALL, one implicit,
the other explicit. With the implicit approach, an arriving signal not only aborts the kernel call, but
also the anycall(). With an explicit approach, the signal only aborts the kernel call. Return to
user context is then only performed due to explicit error handling in the VM program. ANYCALL

implements this latter approach because it is less complex to implement and handles signals with a
reasonable latency.

The implicit approach is more complex to implement because aborting the anycall() transpar-
ently requires that there is also a way to transparently resume it after the signal-handler executed
in user context. The explict approach requires the VM program to handle errors from kernel calls
and end the anycall() prematurely if a signal is detected. It therefore makes the user responsible
for timely signal handling. In a prototype, this can be ensured, therefore ANYCALL implements the
latter approach.

Future work may allow for the automatic restarting of the anycall() after it has been interrupted
by a signal-handler installed with the SA_RESTART flag [Lin20e]. Alternatively, the application can
install VM programs as signal handlers instead of user space routines. This would enable low-
overhead, user-defined signal handling with minimal latency.

3.5 Trust Model

ANYCALL enable programmable system-call aggregation. To allow for low-overhead programmability
while preventing faulty or malicious applications from crashing the entire system, ANYCALL uses
software-based isolation.

This approach is not without risks, as software-based isolation is weaker than hardware-based
isolation on today’s systems [Nar+20]. While the design of ANYCALL is orthogonal to the isolation
technique used, it still compromises on the strong isolation system calls offer (compare Section 2.1.3).
This compromise however, only concerns the isolation from malicious actors as only these may
exploit the side-channel vulnerabilities in today’s processors to retrieve confidential information.
Fault isolation in turn is completely retained by ANYCALL as VMs can guarantee that a sandboxed
program can never block or crash the enclosing software system (in ANYCALL’s case the kernel). Still,
to account for the former, ANYCALL is only made available to semi-trusted processes (e.g., using
capabilities). Semi-trusted VM programs can be made available to completely untrusted processes
through system services.

It is subject of future work to create VMs that allow ANYCALL to be used by untrusted processes,
possibly enabled by new hardware features [Nar+20]. Also, the design of ANYCALL ensures that the
VM implementation can be changed to trade isolation for expressiveness.
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3.6 In-Kernel VM

3.6 In-Kernel VM

There exist multiple VMs (or runtime environments) which achieve the software-based isolation
ANYCALL requires. These include BPF [MJ93], the LuaJIT runtime environment [KS15], the
JVM [Gol+02], WebAssembly (Wasm) [Haa+17; ZB20], and Microsoft’s Common Language Runtime
(CLR) [HL07]. By reusing an existing VM instead of developing a new VM that is solely useful for
ANYCALL, I reduce the implementation complexity and benefit from the existing development and
compiler ecosystem. ANYCALL uses BPF because it was designed for use inside the OS kernel and
because it has a predictably low memory and execution time overhead.

3.6.1 Memory

BPF achieves memory-safety with predictably low overhead in comparison to systems using garbage
collection (e.g., Wasm [ZB20]). Static analysis of the bytecode ensures that dynamic allocations are
always freed before the program terminates. This solution is preferable to running a garbage collector
inside the kernel, as collection algorithms are complex to implement and unpredictable [Emm+19].
In addition, the optimal garbage collection algorithm is application-specific. Therefore, multiple
algorithms have to be implemented in order to achieve optimal results for each application. This
further increases the complexity of the implementation, which is not acceptable if the trusted
computing base is to be kept small. ANYCALL therefore uses BPF with manual memory management
safeguarded by static analysis.

3.6.2 Execution Time

In addition to guaranteeing memory-safety, the kernel has to ensure that the VM program does
not consume excess CPU time. BPF currently achieves this by statically analyzing the bytecode for
a bounded execution time (e.g., all loops are bounded). However, support for preemption using
interrupts can be added in future work.

The runtime overhead of BPF also relates to its memory-safety solution. By avoiding the use
of garbage collection, BPF ensures that programs have a predictably low execution time overhead
and are not subject to unpredictable delays due to garbage collection. In addition, the overhead of
manual memory management is low if dynamic allocations are rare.

3.6.3 Ecosystem

BPF was created for user-defined event handling inside the kernel that is fast and flexible. By
showing that ANYCALL can reuse a VM created for this existing use-case, I keep the implementation
complexity of OS kernels low. This is crucial as the continued growth of the trusted computing base
is a widely studied problem [Tan06].

In addition to keeping the trusted computing base small, ANYCALL further immediately benefits
from the existing BPF ecosystem. BPF offers stable compilers from many programming languages and
a production-ready bytecode executor inside the kernel. In contrast, creating a new VM or porting a
VM designed for execution in user space, would be error-prone and lead to security vulnerabilities.
BPF supports multiple front-end programming language and thereby makes it possible to write the
ANYCALL code in the same programming language as the user application. BPF therefore not only
simplifies the implementation of ANYCALL, but also makes it straight-forward and convenient to use.
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4I M P L E M E N TAT I O N

This section presents my BPF-based implementation of ANYCALL for Linux. First, Section 4.1 gives
details on the ANYCALL Linux kernel patch and Section 4.2 gives an overview of its architecture.
The following sections 4.3, 4.4, and 4.5 give details on ANYCALL’s invocation, its ability to invoke
system-call implementations, and its interfaces for user memory access. Section 4.6 presents an
ANYCALL-specific alternative to the POSIX interface for directory iteration. Finally, Section 4.7
presents how I have ported three user applications to ANYCALL.

4.1 Patch Size

One of ANYCALL’s design goals is a small implementation that does not significantly increase the
size of the trusted computing base. Excluding a 375-line system-call table (mostly a copy of the x86
system-call table), my changes consist of 687 addition and 9 deletions across 19 files of the v5.11
Linux kernel. The patch size could be further reduced by removing BPF helper functions (e.g., those
for directory iteration) that are only of interest for the prototype.

ANYCALL also integrates into the libbpf user space library [Lin20a]. The library allows for easy
usage of BPF in applications by offering library routines to handle and load BPF bytecode. It is in
part generated from the Linux kernel sources. Aside from having to re-run the generation script,
only three lines of code had to be added for ANYCALL. These merely inform the library about the
new BPF program type.

The user space benchmarks and tests for ANYCALL consist of 1.7 k SLoC. This, however, also
includes duplicate boilerplate code that could be eliminated, and older benchmarks and tests that
are not covered in this thesis.

4.2 Overview

Figure 4.1 displays how ANYCALL integrates into the existing BPF ecosystem of the Linux kernel.

Loading and Invocation 1 2 3 5 ANYCALL BPF programs no longer require the event-driven
invocation regular BPF programs use. Instead, applications directly invoke the program using
the anycall() system call. The BPF program therefore executes synchronously in the context
of the user thread but still in kernel mode. Upon completion, the BPF program returns to the
invoking application thread. Section 4.3 covers loading and invocation in detail.
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4.2 Overview

Kernel Calls 4 To allow for system-call aggregation, the ANYCALL patch adds new BPF helper
functions that allow the program to invoke regular system calls as subroutines. Section 4.4
covers these helpers in detail.

User Memory Access Because many system calls retrieve or return values by reference, it is helpful
if the ANYCALL BPF program can efficiently read and write user memory. This allows the
program to access system-call results and arguments. The patch includes multiple interfaces
(resembling POSIX’ memcpy() and mmap()) for user memory access. Section 4.5 presents
these interfaces in detail.

In comparison to the existing BPF implementation (displayed in Figure 2.1), ANYCALL modifies the
invocation model and the available helper functions. The BPF verifier and JIT compiler are not
modified.

4.3 Loading and Invocation

This section presents how application threads transfer control to ANYCALL BPF programs. The
ANYCALL patch adds a new BPF program type to the Linux kernel. Programs of the ANYCALL type can
be loaded using the standard bpf() system call and therefore also integrate with existing libraries
that simplify BPF bytecode handling (e.g., libbpf [Lin20a]). Usually, BPF programs are attached to
kernel events after loading and are then invoked asynchronously. To enable ANYCALL’s synchronous
execution model, the patch adds a new system call which invokes the BPF program referenced by
a file descriptor. Attaching the program to an event is not required. The anycall() system call
returns once the BPF program has finished executing. ANYCALL BPF programs therefore execute in
the context of the application thread but in kernel mode. In this context it is possible to block the
invoking thread and access the memory of the process. Therefore, ANYCALL can reuse the regular
system-call implementations which were created under the assumption of executing in this context.
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Figure 4.1 – Architecture of ANYCALL’s Linux implementation. BPF programs of the ANYCALL

type are invoked synchronously and execute in the context of the invoking application thread.
They can invoke system calls as subroutines and access user memory using special BPF helper
functions.
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4.4 Kernel Calls

4.4 Kernel Calls

To allow for system-call aggregation, ANYCALL exposes system-call implementations to BPF programs
as helper functions called kernel calls. A similar but more limited4 approach (i.e., only supporting the
bpf() and close() system calls) was recently introduced by the kernel developers in the context
of code signing [Cor21c; Sta21]. Regarding the system calls available to BPF, ANYCALL uses a
dedicated system-call table because many platforms offer non-portable architecture-specific system
calls. BPF bytecode however should be fully portable, therefore these architecture-specific system
calls must not be used. In practice, this does not affect the expressiveness of ANYCALL BPF programs
as architecture-specific system calls are rarely used in portable real-world applications.

In BPF bytecode, helpers are identified by numbers which are replaced with the function address
during compilation to machine code. Therefore, the call-time overhead is comparable to a subroutine
call in machine code. Each kernel call is invoked using a dedicated helper function receiving up to
five arguments in BPF registers (which directly map to machine registers on most architectures).
Additional arguments can be passed by reference using an array on the BPF stack.

4.5 User Memory Access

Many system calls receive or return values by reference. The existing code-base of the Linux kernel
expects that these references point to user space. The numerous widely-scattered checks that system-
call arguments do not reference kernel memory are required for security reasons, so disabling or
bypassing them is not an option. Hence, ANYCALL requires a way to read and write user memory in
order to construct system-call arguments and process their results.

The BPF static analyzer already has the ability to track fixed-size dynamic memory allocations
from helper functions. This is used to allow BPF to allocate and write records into ring buffers
shared with user space. This can be used like malloc/free [Lin21a] in BPF programs, however, the
available helpers allocate kernel memory which is unusable for system-call arguments. Therefore, a
new mechanism is required.

I have considered three alternative solutions: one resembles memcpy(), one is based on page-
faults, and the other is based on page pinning. All three give BPF the ability to access arbitrary
user memory if it is safe, but they differ regarding their efficiency and application programming
interface (API). The C interfaces are compared in Listing 4.1. ANYCALL implements the approaches
resembling memcpy() and the one based on page pinning, because these are the most efficient. The
memcpy-approach is the most efficient if memory is only accessed once and the pinning-approach is
the most efficient if memory is accessed repeatedly.

4.5.1 Copy Helpers

The first interface is straight-forward in that it offers two helpers which copy memory to or from a
user address. This is very efficient if the user memory has to be copied anyway, or if the access only
happens once. In these cases, the interface only requires a single BPF helper call.

4The solution discussed to enable signature checks for BPF programs adds a syscall BPF program type to the kernel.
Like anycall()s, these run in the context of the invoking user process. However, unlike anycall(), they are limited to two
system calls (bpf() and close()) and do not offer special interfaces for user memory access.
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4.5 User Memory Access

1 // Copy Helpers
2 void copy_to_user(void __user *dst , void *src , size_t n);
3 void copy_from_user(void *dst , void __user *src , size_t n);
4
5 // Page -Fault Handler (not implemented)
6 handle_t *user_access_begin(void __user *addr , size_t m);
7 bool copy_to_handle(handle_t *dst , size_t o, void *src , size_t n);
8 bool copy_from_handle(void *dst , handle_t *src , size_t o, size_t n);
9 void user_access_end(handle_t *);

10
11 // Page Pinning
12 void *map(void __user *addr , size_t m);
13 void unmap(void *ptr);

Listing 4.1 – Synopsis of the ANYCALL interfaces for user memory access. For safety, the verifier
prevents arbitrary pointers from being dereferenced directly. This includes the pointers to user
memory which are marked with __user in the synopsis.

4.5.2 Page-Fault Handler

Most traditional system calls access data in user space directly, swapping-in non-present pages on
demand using the kernel’s page-fault handler. The same technique can be used in BPF programs,
However, because user memory access is architecture-specific BPF helper function calls are required
for every memory access. These read or write from the memory referenced by the opaque handle_t
pointer type at the given offset (size_t o). On x86, present user memory is accessed directly but
special operations are required on other architectures. If the access triggers a page-fault which can
not be handled, the helper functions return an error to the BPF program.

To be safe, the lifetime of the handle_t pointer returned from user_access_begin() must
be tracked by the BPF verifier. This ensures that the copy_to/from_handle() helpers are only
called before the BPF program invokes user_access_end(). If the program does not guarantee
this invariant, the verifier rejects it at load-time. The verifier also ensures that user_access_end()
is called for every handle_t pointer before the program terminates.

Discussion. This interface has the disadvantage of requiring one BPF helper call for every user
memory access. It therefore does not have any advantage over the interface resembling memcpy(),
while arguably being more complicated to use and implement. ANYCALL therefore does not use this
approach. Future work may extend the BPF JIT compiler to inline the copy_to/from_handle()
calls, thereby possibly optimizing them on architectures where user memory can be accessed directly.
This would enable efficient user memory access from BPF without pinning the pages into memory.

4.5.3 Page Pinning

To avoid a helper call for every user memory access, ANYCALL implements an alternative solution
that only requires a map() and an unmap() helper call for each memory area. map() pins the pages
into memory, thereby preventing page-faults, and maps them to kernel virtual addresses to guarantee
direct, portable access to the memory from BPF.

Listing 4.2 illustrates the use of this interface and the invariants enforced by the BPF verifier.
The BPF program passes a user address and the size of the mapping to map(). The verifier ensures
that the program only accesses the returned pointer if it has previously performed an error check
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4.5 User Memory Access

1 int *buf = map(user_addr , sizeof(int));
2 if (!buf) return -1; // Check enforced by loader
3 *buf = 4; // Valid , access within bounds
4 *(( long *) buf) = 4; // Invalid , out -of-bounds
5 unmap(buf); // unmap -call enforced by loader
6 *buf = 4; // Invalid , unmap() invalidated buf

Listing 4.2 – BPF program accessing an integer at the virtual user address user_addr using
map() and unmap(). Invalid accesses to the memory area, which must be of constant size, are
detected and prevented by the BPF verifier. Dereferencing user_addr directly is prevented by
the verifier for safety.

to ensure map() was successful. If this is the case, the program can dereference the pointer (and
thereby access the user memory backing it) at any offsets that do not exceed the static size of the
mapping. Therefore, the access in line 4 would be rejected at load-time. Finally, calling unmap()
makes any following dereferences illegal (e.g., the access on line 6 would be rejected).

Discussion. In comparison to the page-fault and copy-approaches, the pinning-approach has
a lower overhead if the program accesses the area repeatedly. The overhead is reduced because
the pinning-approach only requires two helper calls, no matter how often the memory is accessed.
However, pinning the pages into memory also has the downsides. It increases the amount of
unswappable kernel memory, therfore risking memory bottlenecks if used excessively. To prevent
the system from running low on memory, only small areas should be mapped. The map() helper can
perform a check to ensure no single process pins excessive amounts of memory to guarantee this.

4.6 Directory Iteration

This section presents an ANYCALL-specific interface for directory iteration which eliminates almost all
user/kernel transitions. I motivate the interface in Section 4.6.1, present its core idea in Section 4.6.2,
and finally its implementation in Section 4.6.3. Section 4.7.3 will present a real-world application
using this interface, which is also part of my evaluation.

4.6.1 Motivation

For every BPF program, the verifier must prove a bounded execution time to accept it. If the
termination of the program depends on the results of kernel calls, this is not possible. For example,
the verifier can not know that the getdents system call must, at some point, return no further
directory contents. This can be solved by setting a static upper limit on the number of iterations in
the BPF program, and having user space restart the program as needed.

While this works almost always and has negligible overhead because it still aggregates many
system calls, I also wanted to explore interfaces that take advantage of BPF’s specific properties to
create more efficient kernel interfaces. The system-call implementations ANYCALL reuses are all
designed for use from user processes: they often receive or return data in large chunks in an attempt
to reduce the number of user/kernel transitions. To demonstrate how this can be achieved more
efficiently using BPF, I have created the iterdents interface which allows for user-defined directory
iteration using only a single user/kernel transition to recursively process an entire directory tree.
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4.6.2 Design

The core idea of the iterdents interface is to invoke a BPF callback program for each individual
directory entry instead of copying the entries to user memory. The BPF program receives a pointer
to the directory entry in kernel memory which it accesses directly. For this, it reuses the mechanism
that allows BPF to directly access fields in network packet headers. Thereby, it avoids copying the
directory entries to user memory. Further, by iterating over the directory contents in the kernel, the
interface avoids the need for an unbounded loop in the BPF program.

4.6.3 Implementation

Listing 4.3 compares the getdents [Lin20b] and iterdents C APIs. The getdents interface allows
user processes to read a chunk of directory entries from a directory file descriptor. The entries are
copied into the user-supplied buffer and the read offset of the directory file is advanced. Subsequent
calls return the following entries to the user process.

The ANYCALL iterdents interface also receives a directory file descriptor, but in addition also
receives a descriptor referencing a loaded BPF callback program as second argument. The kernel
iterates over the directory entries and invokes the BPF callback for every entry. When invoked, the
program receives a pointer to the bpf_dirent64 structure which contains information about the
current entry and is allocated and initialized by the kernel.

Frequently, it is helpful to invoke additional system calls inside the callback itself. For example,
to print the directory entry to standard out (using write()) or to open the entry (using openat()).
These system calls expect pointers to user memory containing the directory entry’s name. To enable
these operations, iterdents optionally receives two additional arguments: a user address (void
__user *buf) and the amount of memory writable at this address (size_t n). Before invoking the
callback, the kernel copies the entry’s name to the user address (unless it is NULL). The callback can

1 ssize_t getdents64(int fd, struct linux_dirent64 *dirp , size_t count);
2 struct linux_dirent64 {
3 ino64_t d_ino; /* Inode number */
4 off64_t d_off; /* Offset to next structure */
5 unsigned short d_reclen; /* Size of this dirent */
6 unsigned char d_type; /* File type */
7 char d_name []; /* Filename (null -terminated) */
8 }
9

10 int iterdents64(int fd, int cb_fd , void __user *buf , size_t n);
11 /* cb_fd: int bpf_callback(const struct bpf_dirent64 *) */
12 struct bpf_dirent64 {
13 const char *name; /* Filename (null -terminated kernel mem.) */
14 void *name_end; /* End of filename , for verification */
15 u32 name_len; /* Length of filename */
16 u64 ino; /* Inode number */
17 u32 type; /* File type */
18 };

Listing 4.3 – Synopsis comparing the Linux getdents and ANYCALL iterdents interfaces for
user-defined directory iteration.
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therefore use this address as an argument to system calls like write(), openat(), and fstatat().
With iterdents64(), this enables user-defined recursive directory iteration entirely in the context of
the kernel. To prevent the kernel stack from overflowing, iterdents64() can maintain a per-thread
counter to limit the depth of the recursion.

To ensure memory safety, the BPF verifier prevents the callback from writing to the bpf_-
dirent64 structure and ensures that const char *name is only ever dereferenced at offsets up to
void *name_end. The callback can therefore never corrupt kernel data even though it can directly
access the directory entry. While iterating over the directory contents, the directory’s inode is locked
thereby preventing concurrent accesses.5

The current implementation of iterdents in ANYCALL copies parts of the directory entry into
the bpf_dirent64 structure. In addition, if void __user *name is not null, iterdents also copies
each entry name to user memory. The interface is therefore not zero-copy and could be improved
further by allowing the callback to directly access the entries in the format in which they are already
be present in the page cache. Also, the number of subroutine calls can be reduced by passing an
array of entries to the callback. Finally, a more traditional approach could extend the getdents
interface to also accept BPF callbacks which determine whether certain entries should be skipped.

4.7 Porting Effort

This section presents three applications I have ported to ANYCALL. Even though ANYCALL is still a
prototype, the knowledge required to use it can be acquired quickly. To move C code to ANYCALL, the
programmer places the code in ANYCALL’s libbpf-based framework to compile it to BPF bytecode
instructions. If required at all, modifying the code is straight-forward. It includes adding calls to
access user memory areas, ensuring bounded loops, limiting the program size, and making sure
all pointer arithmetic is analyzable. In any case, the need for modifications arises from the limits
of the BPF execution environment and not from ANYCALL. As kernel developers improve BPF’s
expressiveness continuously, fewer modifications are required for ANYCALL with every kernel release.
Removing the need for manual modifications using compiler-integration is a possible subject for
future work.

This section is structured as follows. Section 4.7.1 first gives a small example which illustrates
the most common modifications in detail. The following Section 4.7.2 and Section 4.7.3 detail how
I have ported two real-world applications to ANYCALL. Chapter 5 compares the performance of the
different implementations. Finally, Section 4.7.4 summarizes the lessons learned while porting the
two tools to ANYCALL.

4.7.1 Illustrative Example

Listing 4.4 illustrates how a small C program for disk usage estimation can be ported to ANYCALL.
The program has two global variables, int fd[N] and size_t total. The first variable contains a
set of open files for which estimate_disk_usage() should store the aggregated disk usage into
size_t total. For this, the algorithm iterates over the files and invokes the fstat() system call

5Note that this may be unacceptable in some systems as it allows processes using iterdents to lock out competing
processes while iterating over the directory (which may take considerable CPU time as it can include multiple BPF callbacks
and recursive iteration over subdirectories). To solve this, the system can release the lock every M entries allowing for
concurrent accesses to the directory. It thereby would effectively replicate the guarantees provided by getdents, which also
allows concurrent accesses in-between the individual getdents calls, but prevents them in getdents while the kernel copies
the requested M entries to user memory. This approach may be extended to support nested iteration by allowing recursive
iterators to release and the re-acquire the locks held by parent iterators.
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1 #define N 256
2 int fd[N]; // Input files.
3 size_t total; // Output.
4 struct stat __user *user_addr;
5
6 void estimate_disk_usage(size_t n) {
7 struct stat s;
8 for (size_t i = 0; i < n && i < N; i++) {
9 fstat(fd[i], user_addr);

10 copy_from_user (&s, user_addr , sizeof(s));
11 total += s.st_size;
12 }
13 }

Listing 4.4 – C Program excerpt for disk usage estimation, ported to ANYCALL using the
modifications marked bold blue. Error handling is omitted for brevity. n < N , where N
is a compile-time constant.

for each descriptor. The system call stores the file’s disk usage to the user memory buffer from where
the algorithm retrieves it and adds it to the total. To port this function to ANYCALL, two changes are
required:

copy_from_user() (Lines 4, 9, and 10) When the algorithm executes in user space, the program
passes a pointer to stat structure directly to fstat(). This is not possible if the algorithm is
executed using BPF in the kernel: the stat structure is allocated on the BPF stack in kernel
memory, passing its address to fstat() would be an error as the system call expects a user
address. Instead, the program has to pass user_addr to the system call which points to a
memory buffer the invoking C program has allocated for the BPF program. The system call
stores the result to this user address and the BPF program copies it to the BPF stack using the
copy_from_user() helper.6

i < N (Line 8) The function only estimates the disk usage for the first n file descriptors. The runtime
as well as the memory safety of the code therefore depends on the input parameter. To be
memory safe, n must always be less than the array size N . The BPF verifier requires that this is
guaranteed by the BPF bytecode while user space machine code can trigger a runtime error. The
programmer can solve this by inserting a runtime check to ensure estimate_disk_usage()
never iterates past the end of the file descriptor array.

To summarize, both changes are relatively straight-forward and in the second case the BPF verifier
even helps in preventing runtime errors. The following section presents a real-world file searching
tool that uses an algorithm similar to the one discussed in this section.

4.7.2 File Searching Tool

Many file types user magic values at predefined offsets for identification. To demonstrate that
ANYCALL can speed up a real-world application, I have applied it to a tool that filters files by such

6The example uses copy_from_user() for brevity but the performance could be further improved by using the pinning-
approach for accessing user memory. For this, the BPF program maps the user address once, before starting the iteration,
and retrieves each system-call result using the pointer returned from map(). After finishing the iteration, the program calls
unmap().
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1: allocate paths[N]
2: repeat
3: for all i < N do
4: fgets() into paths[i]
5: 0-terminate path
6: end for
7: for all i < N do
8: int fd = open(paths[i], O_RDONLY, 0777)
9: lseek(fd, offset, SEEK_SET)

10: read() from fd into buffer
11: if magic value equals the value in buffer then
12: calculate path length using strlen(paths[i])
13: write() path length bytes from paths[i] to standard out
14: end if
15: end for
16: until EOF not reached

Algorithm 4.1 – Algorithm of a traditional C program which filters files by their magic value.

1: allocate paths[N]
2: allocate shared user memory
3: load ANYCALL

4: repeat
5: for all i < N do
6: fgets() into paths[i]
7: 0-terminate path
8: calculate path length, write to shared user memory
9: end for

10: anycall()
11: until EOF reached

Algorithm 4.2 – Algorithm to filter files by magic values using ANYCALL. anycall() invokes
Algorithm 4.3. Changes with regard to Algorithm 4.1 are marked bold blue.

1: map() shared user memory to shared kernel memory
2: for all i < N do
3: int fd = open(paths[i], O_RDONLY, 0777)
4: lseek(fd, offset, SEEK_SET)
5: read() from fd into shared user memory
6: if magic value equals the value in shared kernel memory then
7: read path length from shared kernel memory
8: write() path length bytes from paths[i] to standard out
9: end if

10: end for

Algorithm 4.3 – BPF program used to filter files by magic values using ANYCALL. Shared kernel
memory and shared user memory reference the same physical memory but have different virtual
addresses. Changes with regard to the lines 7–15 of Algorithm 4.1 are marked bold blue.
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magic values. For this tool, the list of files is received on standard input (e.g., generated by find
-type f [GNU21]) and each file is opened, seek-ed, read, and closed. If the contents read from the
offset match the magic value, the file path is redirected to standard out.

In total, I have implemented four variants of the tool. One implementation uses ANYCALL, the
others (libc, sys, and sys-burst) use traditional system calls. This section compares the algorithms
of the sys-burst and ANYCALL implementations. For details on the other two implementations
as well as the evaluation, refer to Section 5.4.1. Algorithm 4.1 displays the algorithm executed
by the sys-burst implementation. The ANYCALL implementation is displayed in Algorithm 4.2
and Algorithm 4.3. sys-burst and ANYCALL both read file paths from standard input in chunks
of N . They check each file path for the magic value and conditionally write the path to standard
output. The ANYCALL implementation performs the latter using a single anycall() (which executes
Algorithm 4.3) while the sys-burst implementation uses multiple traditional system calls. For
brevity, error handling is omitted in this presentation. Also, we assume that the number of file paths
read from standard input is always a multiple of N . Extending the algorithms to remove these
restrictions is straight-forward.

The ANYCALL implementation uses the map() interface to efficiently access the user memory.
First, this enables ANYCALL to retrieve parameters of the chunk from the user space algorithm
(e.g., the length of the file paths). Second, the BPF program can use the mapping to quickly access
the data read from the file. For this, it passes the user address which was mapped to the read()
system call, thereafter it can immediately access the result (i.e., the bytes to be compared against
the magic value) by reading from the kernel address of the mapping (i.e., the pointer returned from
map()).

Iterating over the contents of zero-terminated C strings is a possibly-unbounded operation which
must be avoided in BPF programs. Still, the BPF program requires the length of each file path in
order to write it to standard output. Therefore, the length of all file paths is calculated in user
space and stored to the shared memory buffer from where the BPF program reads them (line 7 in
Algorithm 4.3).

4.7.3 Disk Usage Estimation Tool

This section presents the port of a real-world disk usage estimation tool to ANYCALL. It is thereby
similar to the example presented in Section 4.7.1, but also includes the algorithms to find and open
the files in the first place. For this, it uses the ANYCALL-specific iterdents interface to recursively
iterate over the directory tree entirely inside the kernel.

Algorithm 4.5 displays the BPF program used to recursively estimate the disk usage for a directory
tree. The iteration happens recursively using a single anycall() from user space. For this, the
callback itself invokes openat() to open each directory entry and then iterates over the contents
of any subdirectories recursively using iterdents. In comparison, Algorithm 4.4, which shows
the equivalent user space program, has to allocate a buffer into which it lets getdents copy the
directory entries in chunks of M . A second, minor difference, between the two algorithms is the use
of copy_from_user() after fstatat() in the BPF program. In summary, the two algorithms are
very similar, therefore porting the user application to use ANYCALL is straight-forward.

Regarding performance, there is still potential for optimizations. The iterdents interface
does not avoid copying each entry’s name as openat() still requires a user address. Also, meta
information about each entry (e.g., its inode number) is copied to the bpf_dirent64 structure.
Future work may develop interfaces that eliminate these copy operations.
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1: size_t total = 0
2: procedure ESTIMATE_DISK_USAGE(int parent_fd, struct linux_dirent64 *entry)
3: if entry is a regular file then
4: allocate struct stat statbuf
5: fstatat(parent_fd, entry->d_name, &statbuf)
6: total += statbuf.st_size
7: else if entry is a directory other than "." or ".." then
8: int fd = openat(parent_fd, entry->d_name)
9: allocate buf[M]

10: repeat
11: getdents64(fd, buf, M)
12: for struct linux_dirent64 child in buf do
13: ESTIMATE_DISK_USAGE(fd, &child)
14: end for
15: until EOF reached
16: close(fd)
17: end if
18: end procedure

Algorithm 4.4 – Recursive user space algorithm to estimate the disk usage for a directory tree.
The recursion is initiated by passing AT_FDCWD (which references the current working directory)
as parent_fd, and a dummy directory entry with the name of the subdirectory to be traversed
as entry. The output is written to total.

1: size_t total = 0
2: int parent_fd = AT_FDCWD
3: procedure CALLBACK(struct bpf_dirent64 *entry)
4: if entry is a regular file then
5: allocate struct stat statbuf
6: fstatat(parent_fd, u_name, u_statbuf)
7: copy_from_user(&statbuf, u_statbuf, sizeof(struct stat))
8: total += statbuf.st_size
9: else if entry is a directory other than "." or ".." then

10: int fd = openat(parent_fd, u_name)
11: save parent_fd and set it to fd
12: iterents64(parent_fd, callback_fd, u_name, NAME_MAX)
13: restore parent_fd
14: close(fd)
15: end if
16: end procedure

Algorithm 4.5 – Recursive BPF program to estimate the disk usage for a directory tree. When
invoked, the procedure writes the total disk usage to total, from where the user program can
retrieve it. Pointer variables prefixed with u_ are allocated by the user program. callback_fd
references the BPF program itself. Changes with regard to Algorithm 4.4 are marked bold blue.
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4.7.4 Lessons Learned

This section summarizes the lessons learned while porting the file searching and disk usage estimation
tools to ANYCALL. In general, simple programs can be ported quickly using to the transparent libc-
like system-call stubs my framework provides. Further, BPF’s static analysis supports the programmer
in writing reliable programs. In multiple instances, it prevented bugs in my implementations by
catching missing error handling and edge case in the control flow. On the other hand, modifying
null-terminated C strings is often best performed in user space. That is, because iterating over their
contents requires an upper limit anyways to satisfy the BPF verifier, therefore, a fall-back slow path
in user space has to be implemented if this can not be guaranteed. However, BPF can still pass the C
strings around (e.g., as system-call arguments) as long as it treats them as opaque pointers. For this,
user space must only prepare them in the required format (e.g., stripping newlines from file paths)
before passing control to the BPF program.

Porting the file searching tool to ANYCALL has shown that one of the main challenges in writing
ANYCALL programs arises from the required handling of both user and kernel addresses. Future
work may address this using hybrid pointers (i.e., structures that contain both a user address and
a kernel address to which the memory is mapped). The appropriate way to access the area could
then be chosen automatically based on the context. In addition, mapping the user memory into
the kernel can be performed lazily on demand. Another approach is to eliminate the need for user
addresses in BPF entirely by changing the system calls to also accept references to kernel memory.

In conclusion, porting modern, system-call intensive C code to ANYCALL can be accomplished
quickly by experienced systems programmers. In contrast, tasks that make heavy use of pointer
arithmetic, or that are computation-intensive, are better performed in user space.
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This section presents ANYCALL’s evaluation. It is designed to answers the following research questions:

Q1 How many system calls are required to amortize for the overhead of JIT compiling and verifying
the BPF programs required for using ANYCALL?

Q2 How does the type and number of kernel calls the anycall() performs, influence the amortiza-
tion time?

Q3 To which extent does the processor architecture influence the amortization time?

Q4 How is the performance influenced by the system’s software configuration? For this, I consider
mitigations against transient execution vulnerabilities (e.g., Meltdown) and the configured
processor frequency.

Q5 Are the system-call rates in real-world applications high enough to benefit from ANYCALL?

Q6 Which types of real-world applications benefit most from ANYCALL? Are these CPU-, memory-,
or I/O-bound?

To answer these questions, I have implemented multiple micro- and real-world benchmarks. Using
the microbenchmarks, I compare ANYCALL to the equivalent implementation performing traditional
system calls from user space. My real world benchmarks are the applications presented in the
sections 4.7.2 and 4.7.3, which, respectively, search files by magic values and estimate disk usage.
Every experiment is executed on multiple systems in different software configurations to determine
the influence of the execution environment.

This chapter is structured as follows. Section 5.1 describes the evaluation hardware and the
software configuration. Section 5.2 and Section 5.3 cover the microbenchmarks while Section 5.4
presents the results from the real-world benchmark. Section 5.5 summarizes the answers to the
research questions Q1 through Q6.

5.1 Setup

To enable reproducibility, this section describes the evaluation systems and their configuration.
Section 5.1.1 describes the hardware and software used, with Section 5.1.2 focusing on the processor
vulnerability mitigations active in my experiments. Section 5.1.3 describes my measurement routine
in detail.

33



5.1 Setup

5.1.1 Hardware and Software

The evaluation machines run version 5.11 of the Linux kernel [Lin21b] with the ANYCALL patch and
Debian GNU/Linux 10.2.1 (Buster). The disks use the ext4 file system and the system configuration
is left to the default except for the processor frequency and the active vulnerability mitigations. The
processors are run at their fixed base frequency instead of using dynamic voltage and frequency
scaling (DVFS), for two reasons. First, disabling DVFS aids reproducibility as the maximum fre-
quency depends on the system’s environment (e.g., the temperature). Second, the ANYCALL and
sys-burst implementations evaluated in Section 5.4.1 trigger higher CPU frequencies than the
other implementations if the default Linux frequency governor is used. Therefore, disabling DVFS
ensures fairness. To summarize, both processors run at their constant base frequency. I have also
evaluated the benchmarks with the frequency pinned to the maximum and with DVFS enabled, but
neither had an effect on the conclusions drawn from the evaluation results.

Table 5.1 compares the two machines used in the evaluation. The AMD machine runs at a
higher frequency7 and uses a faster SSD than the Intel machine. Most notably, the AMD 3950X was
released after Meltdown and Spectre had been disclosed, while the Intel i5-6260U had been released
before. Consequently, the AMD machine mitigates against most transient execution vulnerabilities
in hardware while the Intel machine requires OS-level mitigations. The following Section 5.1.2
discusses this difference in detail.

5.1.2 Processor Vulnerability Mitigations

I execute my tests in various system configurations to analyze the effect on the results. As expected,
enabling or disabling software mitigations for transient execution vulnerabilities has a measurable
effect. The mitigations are activated/deactivated using the standard mitigations kernel parameter
supplied at boot-time. Parameters to enable or disable specific mitigations are not used. For
reference, Table 5.2 lists the transient execution vulnerabilities mitigated on each system in the
different configurations. The mitigations used against these vulnerabilities are listed in Table 5.3.8

The Intel i5-6260U is vulnerable to Meltdown, therefore Linux enables KPTI by default. This is
not the case for recent processors (including the AMD 3950X), but I still believe the results obtained
on the machine with KPTI active are relevant. That is for two reasons. First, I expect that there is
still a significant number of processors vulnerable to Meltdown deployed, simply because of the
large number of devices affected when the vulnerability was disclosed. Second, as the discovery of

7Note that the AMD machine is pinned to 2.8 GHz even though the advertised base frequency is 3.5 GHz. That is due
to limitations in the Linux DVFS driver for recent AMD processors. On these processors, pinning the frequency to the base
frequency also enables automatic frequency scaling up to the maximum frequency (in my case up to 4.7 GHz depending on
the environment and used CPU core [Rei+20]). This makes the frequency at which the experiments execute unpredictable
and hinders reproducibility. To solve this without installing a custom DVFS driver which would also hinder reproducibility, I
pin the processor to 2.8 GHz as it is the highest frequency below the base frequency to which the processor can be fixed.

8Obtained by reading from /sys/devices/system/cpu/vulnerabilities.

Table 5.1 – Overview over the evaluation hardware. The Intel machine uses the Transcend
MTS800 (TS128GMTS800) [Tra21] SSD, while the AMD machine uses the Samsung PM961
(MZVLW128HEGR-00000) SSD. Meltdown was disclosed in 2018.

Processor Release CPU Freq. RAM Disk Seq. Read Disk Random 4 kByte Read

Intel i5-6260U 2015 1.8 GHz 16 GB 560 MB/s 70 k IOPS
AMD 3950X 2019 2.8 GHz 32 GB 2800 MB/s 140 k IOPS
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Table 5.2 – Comparison of active mitigations in the different evaluation setups.
mitigations=on/off refers to the kernel boot parameter to disable mitigations against transient
execution vulnerabilities. Refer to Table 5.3 for details on the respective OS-level mitigations.

Mitigated Vulnerabilities
Processor mitigations=on mitigations=off

Intel i5-6260U Meltdown, Spectre, SSB, L1TF, MDS L1TF
AMD 3950X Spectre, SSB -

Table 5.3 – List of transient execution vulnerabilities and their mitigations in Linux. Indirect
branch prediction barrier (IBPB) and single threaded indirect branch prediction (STIBP) are
conditional in that they are only active for SECCOMP or indirect branch restricted tasks.

Vulnerability Mitigation

Meltdown Kernel Page Table Isolation (KPTI)
Spectre v1 usercopy/swapgs barriers; __user pointer sanitiza-

tion
Spectre v2 full generic/AMD retpoline; conditional IBPB; con-

ditional STIBP; IBRS_FW (Intel-only); RSB filling
Speculative Store Bypass (SSB) disabled via prctl and seccomp

L1 Terminal Fault (L1TF) page table entry (PTE) inversion
Microarchitectural Data Sampling (MDS) clear CPU buffers

new Meltdown-type attacks and development of respective mitigations is an ongoing process [MF21;
HWH13; KPK12], it is likely that the latency of user/kernel transitions increases further. This is in
line with the general development of an increasing latency of core OS functionalities (e.g., system
calls) [Ren+19].

5.1.3 Measurement Routine

The measurements presented in this evaluation are structured as follows. A test executes a certain
benchmark program in a specific system configuration. Each test is possibly executed multiple times
in a row to determine the influence of the caches, I call this a test burst. To analyze the run-to-run
variance, each test burst can in addition be repeated multiple times with arbitrary other tests and
even reboots in-between the burst’s repetitions.

To prepare a system for a test, it is booted with the desired kernel parameter and the processor
frequency is pinned to the base frequency. Thereafter, test bursts for different benchmark programs
execute without reboots. To still make the results reproducible, I use the following measurement
routine. Immediately before executing the first test in a burst, the system runs sync, drops the page
caches9, and then stays idle for one second. Thereafter, a bash loop executes the test burst. Therefore,
in the first iteration, the caches are cold while the other iterations execute with warm caches. During
the burst, the performance measurements are stored to the local disk and only transmitted to the
control system after the burst. The order in which test bursts for different configurations/programs
execute is randomized in each repetition. Therefore, the machine state in which tests execute is as
diverse as possible. To record performance metrics (e.g., execution time, CPU time, and hardware
performance counters) I use the Linux kernel’s perf stat tool. I record at most as many hardware

9I drop the page caches by writing to /proc/sys/vm/drop_caches.
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performance counters (i.e., events) as supported by the processor, therefore perf’s scaling feature is
not used.

5.2 Microbenchmark

This section presents the performance of getpid() executed using ANYCALL or traditional system
calls. This experiment contributes to answering the research questions Q1 through Q4.

5.2.1 Number of anycall()s

To analyze the degree to which ANYCALL reduces direct user/kernel transition overheads, I measure
the execution time of getpid() performed with ANYCALL and in user space. I refer to the user-space
implementation as sys. The execution time of the ANYCALL implementation includes the time
for loading the BPF program into the kernel. The motivating experiment in the introduction has
demonstrated that it is not uncommon for real-world applications to perform 6.97 · 104 to 7.26 · 105

system calls per second. Therefore, my first experiment, displayed in Figure 5.1, executes between
0 and 2 · 105 getpid() calls in user space or using ANYCALL (anycall()s with 200 kernel calls are
invoked 0 to 1,000 times).

In this experiment as well as the one described in the following Section 5.3, the burst length
is set to two and each burst is only repeated once. Therefore, every test is executed twice, once
with cold and once with warm caches. Both runs are shown in Figure 5.1. As the workload is CPU-
and memory-bound, I report the CPU time instead of the wall time to normalize for page faults and
background tasks.

As expected, the time required for static analysis and to-native compilation of the bytecode
causes the user-space implementation to be faster if few system calls are performed. However,
if ANYCALL performs the equivalent of 2.15 · 104 to 1.90 · 105 traditional system calls, it is faster
than the sys implementation. The specific number of system calls required for amortization of the
loading-overhead depends on the processor and OS configuration. All benchmarks show a linear
relation between the executed work and the execution time.

I have further analyzed the CPU time using linear models displayed in Table 5.4. ANYCALL has
the most benefit on the Intel i5-6260U with mitigations active. Here, the initial overhead of ANYCALL

is 19.2 ms to prepare and load the BPF program into the kernel. Thereafter, the implementation
using traditional system calls requires 176.2 µs for 200 getpid() calls, while ANYCALL uses 3.5 µs,
it is therefore 98 % faster. In the system configurations without KPTI, ANYCALL is 91.8 % to 92.6 %
faster.

To analyze how the reduced system-call rate affects the execution time, I have recorded the
values of hardware performance counters. The number of instructions per kernel call (i.e., system
calls for sys) is reduced significantly by ANYCALL (i.e., by 90.4 % to 90.7 %). I therefore conclude
that the speedup in systems without KPTI is mostly due to a reduced number of instructions. On the
system with KPTI active (i.e., Intel i5-6260U booted with mitigations=on), measuring the number
of instruction and data address TLB misses reveals that each traditional system call triggers at least
one miss while kernel calls in the anycall() trigger none. This is not the case in the other system
configurations, therefore I conclude that the additional speedup on this system is a result of the
reduced TLB misses.

Using the wall time in the analysis (i.e., perf’s duration_time) leads to the same conclusions
but increase the variance when the caches are cold. As mentioned in Section 5.1, the processor
frequency is fixed to the base frequency. I have also executed this microbenchmark with DVFS
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Figure 5.1 – CPU time for a program invoking an anycall() 0 to 1,000 times. Each anycall()
aggregates 200 getpid() kernel calls. The sys implementation executes the equivalent number
of traditional system calls from user space. Note the different y axis scales between the facet
rows.

Table 5.4 – Linear models fitting the getpid() benchmark data (displayed in Figure 5.1) using
the method of least squares. The parameter x is the number of anycall()s performed (or
equivalent number of traditional system calls for sys). f gives the predicted CPU time and x∗

the number of anycall()s after which the loading overhead is amortized (multiplying it by
200 gives the number of system calls after which loading is amortized). The difference in slope
is given by ∆max .

Processor mitigations fANYCALL(x) fsys(x) x∗ ∆max

AMD 3950X
off 19.6 ms+ x · 1.63µs 301µs+ x · 21.9µs 951 92.6 %
on 19.5 ms+ x · 1.77µs 283µs+ x · 22.7µs 919 92.2 %

Intel i5-6260U
off 18.9 ms+ x · 2.64µs 571µs+ x · 32.2µs 622 91.8 %
on 19.2 ms+ x · 3.53µs 577µs+ x · 176µs 108 98.0 %
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enabled or the processor pinned to its maximum and minimum frequency, however, the conclusions
of this section are not affected by this change.

5.2.2 Number of Kernel Calls per anycall()

The previous experiment varied the number of anycall()s and always performed the same number
of kernel calls in every anycall(). The complementary experiment, that is, vary the number of
kernel calls performed per anycall(), shows almost identical results. Therefore, a plot is omitted in
this thesis as the results for the Intel i5-6260U with mitigations=on can also be found in [Ger+21].

5.3 Vector anycall()s

This section presents the performance of anycall()s more complex than the getpid() anycall().
It contributes to answering Q1, Q3, and Q4. By comparing the results from this experiment to the
getpid() microbenchmark, Q2 is answered.

5.3.1 Motivation

In real-world applications, it is common to execute the same system call repeatedly on different
data [Lin20d]. Using ANYCALL, one can easily create such vector versions for arbitrary system calls,
even incorporating user-defined error handling. To demonstrate this, I have created vector versions
of the open() and close() system calls. The vector open() anycall() creates a requested number
of unnamed temporary files and stores the file descriptors into an array (Opening named files is
also possible by passing an array of strings to the anycall()). The vector close() anycall()
receives an array of file descriptors and executes close() for each. In comparison to the getpid()
experiment, more memory is accessed in kernel and user space.

In this benchmark, the program therefore loads two anycall()s and invokes each anycall() 0
to 1,000 times (each invocation performs 200 kernel calls). Each test program therefore executes
twice as many anycall()s as in the previous experiment, however, the number of times each loaded
BPF program is reused is the same.

5.3.2 Results

Figure 5.2 displays the aggregated execution time of the vector open() and close() anycall()s
and compares it to the equivalent implementation using traditional system calls. I analyze the data
using linear models which are displayed in Table 5.5. Depending on the system configuration, the
initial overhead to load the two BPF programs is 25.0 ms to 30.0 ms.

On the Intel i5-6260U with mitigations=on, the execution time for the two anycall()s
increases by 0.74 ms with each processed file while the runtime of the variant doing traditional
system calls increases by 1.16 ms with each file. In the system with KPTI active, the two anycall()s
are therefore 36.4 % faster. On the systems without KPTI, the speed up is still significant as the
CPU time per file is reduced by 12.6 % to 15.4 %. In comparison to my getpid() experiment the
CPU-time difference is smaller, as the user/kernel transition overhead dominates the getpid()
execution time. However, the number of calls required to compensate for the loading overhead
is reduced because more time is saved per system call. Depending on the system configuration,
1.30 · 104 to 6.61 · 104 system calls suffice to justify the use of ANYCALL.
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Figure 5.2 – CPU time for two anycall()s that are each invoked 0 to 1,000 times. Each
anycall() aggregates 200 kernel calls which either open or close temporary files. The sys
implementation opens and closes the equivalent number of temporary files from user space.
Note that the x axis in this benchmark gives the number of anycall()s or kernel calls per
loaded anycall(), therefore the total numbers of anycall()s or kernel calls are twice as high.

Table 5.5 – Linear models fitting the vector benchmark data (displayed in Figure 5.2). The
parameter x is the number of files processed (or equivalent number of traditional open() and
close() calls for sys). f gives the predicted CPU time and x∗ the number of anycall()s
required to amortize for loading each BPF programs. ∆max gives the maximum amount by which
ANYCALL if faster if x is large.

Processor mitigations fANYCALL(x) fsys(x) x∗ ∆max

AMD 3950X
off 25.9 ms+ x · 432µs 1.64 ms+ x · 511µs 309 15.4 %
on 25.0 ms+ x · 460µs 1.56 ms+ x · 531µs 331 13.4 %

Intel i5-6260U
off 30.0 ms+ x · 692µs 1.85 ms+ x · 792µs 282 12.6 %
on 29.0 ms+ x · 737µs 1.59ms+ x · 1.16 ms 65 36.4 %
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Again, I have recorded the values of hardware performance counters for each test run to analyze
how the system-call rate affects the performance. In contrast to the getpid() benchmark, ANYCALL

does not significantly affect the number of instructions for vector anycall()s. They are only reduced
by 9.5 % to 15.1 %, which is expected as more code executes between the user/kernel transitions.
Still, this explains a significant portion of the CPU-time reductions achieved on all systems. Another
reason is possibly the reduction in L1 instruction cache load misses (but not L1 data cache load
misses). On the KPTI-system, I expect the additional performance gains to be a result of the significant
reduction in TLB misses (by 92.1 % to 99.8 %).

5.4 Real-World Benchmarks

This section presents two real-world applications I have sped up using ANYCALL. Section 5.4.1
presents a tool that searches files by their magic values and Section 5.4.2 presents the evaluation of
a tool for estimating disk usage. This section addresses the research questions Q5 and Q6.

5.4.1 File Searching

Many file types use magic values at predefined offsets for identification. To demonstrate that ANYCALL

can speed up a real-world application, I have applied it to a tool that filters files by such magic
values. For this tool, the list of files is received on standard input (generated by find -type f) and
each file is opened, seek-ed, read, and closed. If the contents read from the offset match the magic
value, the file path is written to standard output. In total, I have implemented four variants. One
uses anycall()s and three use traditional system calls:

libc checks the file contents using buffered I/O based on C-library FILE pointers.

sys checks the file contents using raw traditional system calls. Like libc, it processes one file path
at a time.

ANYCALL To allow for a larger BPF program it is beneficial to read in a chunk of file paths and
prepare an array of zero-terminated strings to be passed to the BPF program. The BPF program
checks each path in the chunk using open(), lseek(), read(), and close(). The ANYCALL

BPF program conditionally calls write() to print matches.

sys-burst executes the same algorithm as the ANYCALL implementation but uses repeated tradi-
tional system calls.

The algorithms executed by the ANYCALL and sys-burst implementations are covered in greater
detail in Section 4.7.2.

To evaluate these implementations I run them in bursts of 10 and repeat each test burst 10 times
to analyze the run-to-run variance. From every burst, I only analyze the first and last iteration which
execute with cold and hot caches respectively. In contrast to the microbenchmarks from the previous
section, this benchmark involves I/O and may use multiple threads. Therefore, I report the wall
time, not the CPU time. (An evaluation of the CPU time for the Intel i5-6260U with hot caches
and KPTI active is found in [Ger+21].) The directory traversal by find and the processing of the
input is always performed in user space and included in the execution time. The best chunk sizes
for ANYCALL and sys-burst were empirically determined to be 512 and 1024. Chunk sizes above
512 were not possible for ANYCALL, because the BPF program became too large for static analysis.
However, with hot caches and KPTI active, sys-burst is already outperformed if the chunk size is
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set to 4. This translates to only 24 kernel calls per anycall() [Ger+21]. In the following I always
compare ANYCALL to the fastest traditional implementation (i.e., sys) using the median, because I
assume outliers are a result of system noise.

Figure 5.3 displays the runtime when the Linux v5.0 sources are checked for files with the
/bin/sh shebang using the different implementations. Even though the ANYCALL implementation
issues only a single anycall(), it outperforms the fastest traditional implementation by 31.8 %
on the Intel i5-6260U with hot caches and KPTI active. However, in the other configurations the
ANYCALL implementation is not able to amortize for the loading overhead, causing the median to be
0.2 % to 12.8 % higher. (The AMD 3950X with cold caches and mitigations=off is the only other
exception, here ANYCALL is insignificantly faster by 0.8 % / 48.2 ms).

Notably, ANYCALL is slower than sys on the system with KPTI active if the caches are cold. I
assume that this is caused by the frequent I/O operations which causes the CPU to enter sleep
modes frequently, thereby flushing its caches. These flushes void the improved cache usage ANYCALL
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Figure 5.3 – Execution time to search files with the /bin/sh shebang in the Linux source tree.
The implementation using ANYCALL outperforms the other implementations on the Intel i5-
6260U if the caches are hot and KPTI is active.
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enables. In detail, blocking I/O operations suspend the calling thread when it performs the kernel
call, therefore flushing the caches similarly to processor mode switches. This causes ANYCALL to
perform worse if the caches are cold. However, I observe that this effect is larger on the Intel machine
which also uses a slower SSD. I therefore assume that faster I/O devices yield better performance
for ANYCALL, as it is the case on the AMD machine.

In addition, I expect that the I/O access patterns ANYCALL and sys-burst use are not optimal,
thereby explaining why they often perform worse than sys (especially on the Intel machine with
cold caches where they are slower by up to 590.9 ms). In detail, the sys implementation may be
able to hide a part of the I/O latency by alternating reads from standard input, file-system accesses,
and writes to standard output. sys-burst and ANYCALL however, perform both operations in bursts
of 512 to 1024 paths. This thesis is supported by the fact that sys-burst consistently performs
better than sys if they are compared by CPU time instead of wall time.

5.4.2 Disk Usage Estimation

When systems run low on available disk space, it is common for administrators to estimate the disk
usage of certain directory trees in order to decide whether they need cleanup. I have implemented
two versions of such a tool, one using traditional system calls, the other using anycall()s. In
addition, I compare both to the standard GNU implementation of POSIX’s du -s. I run these tools on
a part of the Poky Linux distribution build tree containing 1.09 · 106 files in 4.62 · 105 directories.10

The burst size and the number of repetitions for each test is the same as in the previous section (10
repetitions; a burst size of 10; only the first and last run from each burst are analyzed). The first
run executes with cold caches and is therefore I/O-bound. The last run is CPU- and memory-bound
as both evaluation systems have enough random-access memory (RAM) to fit the entire directory
structure. I compare ANYCALL to the fastest traditional implementation (here sys) using the median,
because I expect that variation is caused by system noise.

Section 5.4.2 displays the execution time for each implementation in the different system config-
urations. ANYCALL outperforms the fastest user space implementation (i.e., sys) in all configurations
but one (that is, the Intel machine with cold caches). Again, I expect that this is due to the frequent
idle periods the slower SSD triggers. The GNU implementation always performs worse than the
smaller sys and ANYCALL implementations. As in the previous experiment, the most notable speedup
is achieved on the Intel machine with hot caches and KPTI active. Here ANYCALL is 40 % faster. In
the other configurations the speedup is more moderate, being 0.7 % to 10.1 %. In all configurations
but the one with KPTI and hot caches, the difference between having mitigations active and inactive
is small (e.g., for sys only 3.3 % to 5.0 %).

5.5 Summary

This section summarizes the results of this evaluation, explicitly answering the research questions:

Q1 Section 5.2 and Section 5.3 answer this question for two different workloads: To be faster than
the equivalent implementation using traditional system calls (i.e., to amortize for the overhead
of loading and verifying the BPF program), ANYCALL has to perform 1.30 · 104 to 1.90 · 105

kernel calls per loaded BPF program on the systems used in this evaluation.

10To prevent excessive benchmarking overhead, I do not transfer a full copy of the directory tree to the evaluation systems,
but instead a shallow copy (i.e., the files are all empty). This does not affect the benchmark as the du -s implementations
still have to check each individual file. Specifically, I transfer all files or directories that either match find . -maxdepth 15
-type d or find . -maxdepth 15 -type f -links 1 in Poky honister’s build/tmp/work directory.
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Figure 5.4 – Execution time to estimate the disk usage of the Poky Linux distribution build tree
using different implementations. ANYCALL outperforms the other implementations in all system
configurations expect the Intel machine with cold caches.

Q2 By comparing the results from Section 5.2 and Section 5.3, I conclude that the absolute amount
of time saved per anycall() increases as more data is accessed inside and around the kernel
calls. Therefore, the amortization time decreases if the amount of data accessed by the kernel
or the user increases. This can be explained by the fact that ANYCALL has a greater potential
for reducing the number of cache misses if more data is accessed between the user/kernel
transitions. In contrast, the relative performance improvement is larger, if little code executes
in and around the kernel calls, because then, the runtime is dominated by the user/kernel
transitions.

Q3 The processor architectures used in my evaluation (these are Intel 6th generation Skylake and
AMD Zen 2) do not significantly influence the number of kernel calls required to amortize for
the overhead of loading ANYCALL BPF programs.
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Q4 I have analyzed how the system configuration influences the performance improvements ANY-
CALL achieves. First, systems with KPTI active benefit from ANYCALL significantly in both
microbenchmarks (up to 98 % faster) and real-world benchmarks (31.8 % to 40 % faster).
Aside from this, the processor architecture and generation, as well as the processor frequency
do not significantly impact ANYCALL’s performance characteristics in my benchmarks.

Q5 I have demonstrated that real-world applications frequently perform system calls at high rates,
enough to justify the use of ANYCALL.

Q6 CPU- and memory-bound benchmarks benefit most from ANYCALL in my evaluation. I/O-bound
workloads also benefit if the accessed device is fast (e.g., the SSD of the AMD machine).
Systems with slower I/O devices (e.g., the SSD of the Intel machine) do not benefit from
ANYCALL in my benchmarks, likely because the frequent transitions to processor C-states flush
the caches.

To summarize, ANYCALL achieves significant speedups across a diverse set of system configurations
and benchmarks.
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6R E L AT E D W O R K

This section presents ANYCALL’s related work. These use three different approaches to solving
the problem of slow user/kernel transitions. First, Section 6.1 covers approaches that avoid the
transitions in the first place, for example using shared memory and multicall interfaces. Second,
Section 6.2 covers microkernels, which still perform frequent user/kernel transitions under hardware
isolation, but attempt to make the transitions as cheap as possible. Finally, I cover systems using
software-based isolation to allow for cheap user/kernel transitions. This also includes ANYCALL,
which Section 6.3 compares against SPIN, Singularity, Cosy, [KS15], RedLeaf, and BPF-controlled
io_uring.

6.1 User/Kernel-Transition Avoidance

In special cases, AIO APIs, multicall interfaces, or vDSO can be used to avoid user/kernel transitions.
This section presents them in the subsections 6.1.1, 6.1.2, and 6.1.3.

6.1.1 io_uring

io_uring submits tasks to (and receives results from) the kernel asynchronously using shared memory
queues [SS10; Cor19b; Axb19]. By handling these submissions concurrently on another core, the
system can completely avoid user/kernel transitions on the application core. Still, if there are many
control flow or data dependencies between the system calls, this approach becomes impractical as
the user and kernel core have to communicate and wait for each other frequently. This is problematic
as even a minimal cross-core call and reply can require four cache-line transactions, taking 448
to 1988 cycles (depending on wether the cores are on the same or different sockets) [Nar+19].
ANYCALL solves this by allowing for low-overhead communication between user and kernel code
on a single CPU core. My evaluation has demonstrated that this is efficient even if there are many
data-dependencies between the system calls (in particular, Section 5.4.2).

Further, using io_uring efficiently requires a programming model many developers are not
familiar with [Atl+16]. Recent projects to integrate io_uring into modern programming languages
are promising [Ler+21], but even if successful they still require rewriting the application code to
use async/await. ANYCALL, in contrast, has the potential of being completely transparent to the
user if it is integrated into the compiler.

Finally, to support a specific system call in io_uring, the system call’s implementation first has to
be modified to support asynchronous invocation. As a consequence, io_uring currently only supports
a subset of the available Linux system calls. ANYCALL, in contrast, supports every hardware-unspecific
system call without having its implementation modified.
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6.1.2 Xen Multicall

Multicall interfaces as implemented by the Xen hypervisor are an alternative to AIO that are easier
to implement but also limited. Consequently, they suffer from the same constraints as io_uring in
that they are inefficient if there are tight data and control flow dependencies between the system
calls. In practice, they are therefore limited to batched page-table updates and networking hardware
control [Pan+11]. ANYCALL, in contrast, can still be used even if there are data and control-flow
dependencies between the aggregated system calls.

6.1.3 Virtual Dynamically-linked Shared Object (vDSO)

In Linux, some system calls only read a small amount of information. They can be implemented
using vDSO [Lin21c], where the data is mapped into user space, making it directly readable without
a processor mode switch. However, vDSO is limited to read-only data for security reasons. ANYCALL

in contrast is not limited in this way. It can be used with arbitrary system calls, including those that
write to kernel memory.

6.2 Microkernels

An alternative to avoiding user/kernel transitions is to make them as cheap as possible while still
using hardware for isolation. Many microkernels, in particular seL4 [EH13], take this approach as
IPC is naturally more performance critical to them than for monolithic systems. As microkernels
implement many systems services as user processes, invoking them not only requires switching to
the kernel but also to another user process. This in turn allows the OS to be kept as minimal as
possible (e.g., kernel extensions should never be required as the OS does not implement any policies).
Minimality as a main driver of microkernel design also helps in reducing the IPC overheads, however,
it is ultimately still limited by the hardware. In 2013 seL4 was achieving one-way IPC between
two processes in 188 to 316 cycles while entering and leaving the kernel today (without switching
the process) still takes 96 to 140 cycles on modern x86 hardware. And even in a hypothetical
scenario, where the address space switch consumes no cycles at all, hardware-based isolation is
still outperformed by software-based isolation which can reduce the overhead to a subroutine
call [Li+21].

6.3 Software-Based Isolation

Most operating systems isolate processes using hardware mechanisms, for example, using the MMU
to run them in different address spaces. However, recent advances in compilers and verification
make it feasible to reconsider this approach [Nar+20]. This section compares ANYCALL against other
systems using specification and verification in software to isolate applications sharing an address
space.

An overview similar to this one can also be found in [Nar+20]. This section contributes a
discussion of Cosy, [KS15], and BPF-controlled io_uring. Further, each system is compared against
ANYCALL. [Nar+20] in comparison adds a discussion of J-Kernel [Eic+99] and KaffeOS [BH05].

Table 6.1 gives an overview over the systems covered by this section. Section 6.3.1 covers
SPIN [Ber+95], Section 6.3.2 covers the Singularity [HL07] project, and Section 6.3.3 covers
Cosy [Zad+05] as well as a LuaJIT-based system [KS15] by Koomsin and Shinjo. Section 6.3.4 com-
pares ANYCALL to RedLeaf [Nar+20] which is a recent system employing Rust. Finally, Section 6.3.5
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compares ANYCALL and BPF-controlled io_uring [Beg21], the latter being currently integrated into
the upstream Linux kernel.

6.3.1 SPIN

SPIN [Ber+95] is an extensible OS which allows applications to change the OS interface and
implementation by loading extensions at runtime. Both the kernel and the untrusted extensions are
written in type-safe Modula 3 and compiled by a trusted compiler (e.g., to prevent the extensions
from using Modula 3’s UNSAFE and LOOPHOLE directives to escape from their isolation module). As a
consequence, isolation is guaranteed at compile-time but not at load-time. The execution time of the
extensions is limited using interrupt-driven preemption. Memory safety is achieved using types and
garbage collection. SPIN does not offer fault isolation as the state of one extension can be passed to,
and directly accessed by, other extensions using shared pointers. If one extension crashes, its shared
data may therefore be left in an inconsistent state allowing the fault to propagate [Nar+20].

Comparing SPIN to ANYCALL, the most notable difference is that SPIN’s extensions execute
completely under software-isolation while ANYCALL only executes (in itself Turing-incomplete)
subroutines of each application using software-based isolation. Further, ANYCALL offers fault isolation
and supports multiple programming languages (through LLVM [Sta14]) without requiring a trusted
compilation environment while SPIN does not isolate faults and requires trusted compilation by a
Modula 3 compiler. Regarding memory safety, SPIN uses garbage collection while ANYCALL relies on
static analysis to guarantee memory reclaim.

6.3.2 Singularity

Singularity [HL07; Nig+09] was started in 2003 with the primary goal of improving systems
dependability. Better performance was only a secondary goal. To achieve this, Singularity executes
programs compiled to type-safe (possibly virtual) instruction sets (e.g., Microsoft’s CLR bytecode,
typed assembly language was also considered but not implemented) in VMs. Singularity’s processes
are thereby isolated using verification and specification in software, instead of using hardware
checks at runtime. For example, they can share an address space with each other or even with
the kernel, without interfering with each other. Singularity therefore calls them software-isolated
processes (SIPs).

Allowing SIPs to share an address space enables very fast IPC. To still isolate them from each
other, their code is verified and JIT compiled (the latter helps in preventing hardware exceptions

Table 6.1 – Comparison of systems using software-based isolation for fast user/kernel transitions.
They differ with regard to the runtime they build on (foundation), the mechanisms used for
memory safety, fault isolation, and whether they require a trusted compilation environment.
Cosy is excluded from the table, because the paper does not clearly state whether memory safety
or fault isolation are guaranteed, or only supported.

System Foundation Memory Safety Fault Isolation Untrusted Compilation

SPIN Modula 3 garbage collection ✗ ✗
Singularity CLR garbage collection ✓ ✓
[KS15] LuaJIT garbage collection ✓ ✓
RedLeaf Rust static analysis ✓ ✗
ANYCALL BPF static analysis ✓ ✓
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by inserting checks into the machine code). Communication exclusively happens through typed
channels that are synchronized by the OS. This allows Singularity to guarantee fault isolation using
statically enforced ownership semantics [Nar+20].

The design of Singularity allows for multiple user-process runtimes to co-exist in one system.
The standard runtime would be Turing-complete and run bytecode in a VM that uses garbage
collection to reclaim dynamic allocations (i.e., Microsoft’s CLR). In addition, the design considers
more constrained domain-specific execution environments that allow for less complex and hence
more efficient memory management mechanisms, avoiding the overhead of garbage collection. In
retrospective, an example for such a runtime could have been BPF although the paper does not
discuss this. A third option considered (but also not implemented) was to fall back to hardware-based
isolation if code not written in a type-safe language must run on Singularity. This would allow
running legacy applications (e.g., written in C/C++) in their own address space under hardware
isolation. To summarize, Singularity’s design allows for a diverse set of execution environments,
each optimal for different kinds of applications.

In comparison to ANYCALL, Singularity offers Turing-completeness while ANYCALL intentionally
does not. I argue that this is not a problem for ANYCALL, as my evaluation has shown that complex
applications can still be implemented using it. As second major difference is the reliance on garbage
collection in Singularity [Emm+19].

6.3.3 System-Call Aggregation

This section presents two approaches, Cosy [Zad+05] and a LuaJIT-based system [KS15]. Both focus
on system-call aggregation similarly to ANYCALL.

Cosy [Zad+05] was created with the goal of allowing for the efficient and safe execution of
user-level code in the kernel, thereby reducing the isolation-overhead. They use their system to
create both more efficient, composed, system calls but also to run sections of an application in the
kernel. While ANYCALL uses BPF, they use a custom runtime environment called Cosy. Cosy uses
in-kernel preemption to limit the user’s CPU time while executing in the kernel. ANYCALL primarily
uses static analysis to limit the runtime of the BPF program, but in addition also uses interrupt-driven,
in-kernel preemption if the respective Linux configuration option is active. Cosy uses x86 segments
for memory safety which is no longer available on x86-64. It therefore remains unclear if Cosy could
be ported to modern hardware. ANYCALL in contrast supports modern hardware, works with KASLR
(which is not clear for Cosy), and reuses an existing execution environment that has already been
integrated into Linux.

The system created by Koomsin and Shinjo in 2015 reuses the LuaJIT runtime to execute system-
call scripts in the kernel (these scripts effectively aggregate multiple system calls). It therefore ports
a runtime for user application extensions into the OS kernel. ANYCALL in contrast uses a bytecode
executor created from scratch for use by the kernel. Due to the existing LLVM backend [Sta14],
ANYCALL supports various programming languages while [KS15] only supports Lua. To access user
memory, Koomsin and Shinjo use subroutines similar to the copy helpers described in Section 4.5.1.
ANYCALL contributes the page-fault and pinning-based access methods to the discussion. While
ANYCALL supports more programming languages, [KS15]’s scripts may in some cases be easier to use
as the code must not be statically analyzed but can rely on garbage collection and runtime checks
for safety. [KS15] also supports ANYCALL as they evaluate their approach using Memcached and
thereby show how system-call aggregation can speed up database server workloads. This suggests,
that evaluating ANYCALL using Memcached is a promising subject for future work.
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6.3.4 RedLeaf

SPIN, Singularity, and [KS15] all use garbage collection to safely reclaim dynamic allocation.
RedLeaf [Nar+20] in contrast offers memory safety without relying on garbage collection, but
instead uses the ownership model of the Rust programming language. The compiler checks the
model statically at compile-time, therefore it has no direct runtime-overheads. RedLeaf further uses
mechanisms similar to Singularity’s typed channels to guarantee strong fault isolation. Among SPIN,
Singularity, Cosy, and [KS15], it is the only system that was published after the Meltdown and Spectre
vulnerabilities had been published. Like ANYCALL, RedLeaf considers solving this to be a subject of
future work. Using Rust’s ownership model to ensure memory safety is conceptually similar to the
static analysis by the BPF verifier on which ANYCALL relies. Like SPIN, RedLeaf’s implementation
requires a trusted compilation environment, ANYCALL however does not. RedLeaf could resolve this
by adding support for typed assembly language or proof-carrying code (PCC) to Rust, however, I
argue that it is unclear whether this is possible. While BPF bytecode was designed to be quickly
analyzable by a low-complexity verifier, Rust’s ownership model was created with the assumption
that it will be checked by regular compilers. For these, having a small implementation and low
latency is not critical, because the compiler usually executes in user space on good-performing
desktop workstations and build-servers.

6.3.5 BPF-Controlled io_uring

BPF-controlled io_uring [Beg21; TDS21] was developed in parallel to ANYCALL by the Linux io_-
uring maintainers. ANYCALL’s design is aware of it, aiming to contribute and evaluate alternative
approaches instead of replicating features that are already being integrated into the upstream Linux
kernel. In particular, Section 3.2 and Section 4.5 are motivated by this. Like ANYCALL, BPF-controlled
io_uring executes user code in the kernel using BPF. However, instead of calling regular system-
call implementations from within the BPF program, the BPF programs execute in response to the
completion of asynchronous io_uring system calls. When invoked, the BPF handler program can
then request subsequent asynchronous system calls using dedicated BPF helper functions.

Comparing ANYCALL to BPF-controlled io_uring, ANYCALL uses a call-oriented execution model
while BPF-controlled io_uring’s execution model is return-oriented. ANYCALL does not require
familiarity with AIO, which has shown low adoption rates in the past [Atl+16]. In addition, ANYCALL

supports any Linux system call while BPF-controlled io_uring is limited to the operations supported
by io_uring. Summarizing these aspects, ANYCALL focuses on straight-forward usability while
BPF-controlled io_uring focuses on high-performance computing.

Regarding performance, ANYCALL uses synchronous I/O while BPF-controlled io_uring is based on
asynchronous I/O. The latter may be beneficial if used properly as previous work has demonstrated
that io_uring can achieve remarkable performance improvements, even without BPF-control. How-
ever, being return-oriented, BPF-controlled io_uring scatters the control-flow and state-management
of a call chain across multiple BPF programs. This not only complicates development, but may also
hurt performance as the state has to be communicated using IPC instead of being directly accessible
on the BPF stack. Invoking a new BPF program may also be slower than returning from a subroutine
in an already-running BPF context (i.e., as it happens after kernel calls in ANYCALL).

Having one BPF program instead of multiple is also related to the interfaces for user memory
access BPF-controlled io_uring and ANYCALL offer. Both offer an interface based on copy-helpers
(Section 4.5.1), but ANYCALL in addition offers pinning and page-fault-based interfaces (although
the latter is not implemented, see Section 4.5.2 and Section 4.5.3). It is unclear whether these two
can be supported in BPF-controlled io_uring as the completion of a system call starts a new BPF
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program instead of returning to an existing context. To safely reuse mappings across system calls,
the verifier would have to prove that the mappings are cleaned up by other programs. If possible at
all, this is significantly more complex than the checks required for ANYCALL as passing the mappings
between the programs involves IPC.

To summarize, BPF-controlled io_uring is based on AIO while ANYCALL retains the synchronous
programming model many developers are familiar with. While the latter is easier to use and supports
all Linux system calls, io_uring offers additional performance benefits but also overheads as multiple
BPF programs have to share state and communicate. Comparing the two is therefore a major subject
of future work. This work may also evaluate the potential for using io_uring (without BPF-control)
from within ANYCALL (e.g., submitting AIO requests from within the ANYCALL BPF program running
in processor kernel mode).
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Throughout this thesis I have identified numerous opportunities for future work. These include
implementing mechanisms to speed up the loading and verification of anycall()s, and to make them
accessible to untrusted processes. As hardware characteristics change, the implementation of the BPF
bytecode executor can be optimized without changing ANYCALL’s ABI. To further reduce system-call
overheads, ANYCALL can be extended to avoid copies between user and kernel memory. Finally,
related work motivates evaluating ANYCALL using server and database workloads (e.g., Memcached)
and comparing it against BPF-controlled io_uring.

Chapter 5 has demonstrated that the main overhead associated with using ANYCALL is the time
and energy spent verifying and JIT-compiling the BPF bytecode. To avoid this overhead when a
program is loaded repeatedly (e.g., by different processes executing the same binary), the kernel can
cache the hashes of BPF programs passing verification [Hei21]. When the same program is loaded
a second time, the kernel then is able to skip verification. If remembering the hashes for verified
programs is considered too memory-intensive, the kernel could alternatively hand out cryptographic
signatures upon having verified a program.

BPF programs can currently only be loaded by privileged processes, as current processors do
not prevent side-channel attacks on the kernel from within the BPF VM. To still make ANYCALL

usable to untrusted processes, a privileged systems service can load common library anycall()s
(e.g., sendfile()) and share descriptors with untrusted applications upon request [Cor21b; Zad+05].
It may even be possible to verify that certain BPF programs (e.g., those having a simple structure,
only aggregating a fixed number of system calls into a multicall) can never be used for side-channel
attacks on the kernel. If this is the case, a systems service can load dynamically generated BPF
library programs for unprivileged applications on demand.

ANYCALL’s design is orthogonal to the in-kernel VM implementation used to execute the aggrega-
tion code under software-based isolation. Adopting it to new hardware characteristics is therefore
possible without changing the ABI. If switching the processor to user mode is possible with little
overhead on an architecture, BPF can be changed to relax the static analysis and instead rely on
hardware-based isolation on these systems. Similarly, if future architectures offer a processor mode
protecting against side-channel attacks that has smaller overheads than today’s user mode, BPF can
run unprivileged programs in this mode. This would allow unprivileged processes to safely load BPF
programs without putting the system at risk.

ANYCALL eliminates frequent user/kernel transitions from user applications, however, data
is still frequently copied between user and kernel memory areas. To further improve ANYCALL’s
performance [KA21], a mechanism can eliminate these copy operations by taking advantage of the
guarantees from static analysis. All system calls include checks to verify that supplied pointers refer
user memory (which can only be accessed directly by the kernel in special cases), therefore changing
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those widely scattered checks would be impractical. However, most system calls reuse the same
kernel-internal libraries to perform the security checks, therefore changing them may be possible
using only few modifications to the kernel.

Finally, related work has demonstrated that ANYCALL may also speed up server and database
workloads. For example, Koomsin and Shinjo [KS15] have found that a similar system speeds
up Memcached significantly. Future work will therefore evaluate ANYCALL using Memcached (or
another database server) and also compare it to BPF-controlled io_uring to better understand the
trade-offs between the two designs.
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General-purpose operating systems (OSes) must isolate user processes for fault tolerance, to confine
malicious actors, and to maintain privacy. For this, they typically rely on hardware-based isolation
to run user applications in an unprivileged processor mode, and to confine them to their own
virtual address spaces. To still allow the processes to communicate with each other and perform
input/output (I/O), OSes offer system calls. Recently, system-call overheads have been increasing
due to multiple factors. Caused by high-performance I/O hardware and large memories, system-call
rates in applications are increasing. At the same time, the per-call overheads are increasing because
of larger hardware buffers and caches, as well as the continued discovery of transient execution
vulnerabilities in modern processors (e.g., Meltdown).

To reduce system-call overheads in real-world applications, I propose ANYCALL, which leverages
software-based isolation to reduce the per-call overheads significantly. For this, ANYCALL aggregates
system calls and application-specific control logic, and executes as Berkeley Packet Filter (BPF)
bytecode in the Linux kernel. By reusing the existing BPF virtual machine (VM), the patch size is
kept small as the kernel already includes it for flexible event handling, debugging, and configuration.
Further, ANYCALL maintains isolation while decoupling the number of user/kernel transitions from
the number of system calls. My implementation provides helper functions to access system calls
from within BPF, as well as memory management. To determine whether my approach is practical,
I port multiple real-world applications to ANYCALL and document the required changes. Further, to
evaluate its performance, I use compute- and I/O-bound real-world- and microbenchmarks. Each
benchmark is executed on two systems using different processor architectures and I/O devices. Using
ANYCALL, I speed up a real-world disk usage estimation tool on systems without Kernel Page Table
Isolation (KPTI) active, if they have fast I/O devices. Here, I demonstrate speedups by 1 % to 10 %.
ANYCALL is the most beneficial to compute-bound workloads on systems with KPTI active. Using a
getpid() microbenchmark, I demonstrate that kernel calls inside the ANYCALL environment are up
to 98 % faster than system calls in user space. I measure that vector anycall()s on systems with
KPTI active are 36 % faster than the user-space equivalent, and finally, speed up a real-world file
searching tool by 32 % and a real-world disk usage estimation tool by 40 %. In conclusion, ANYCALL

demonstrates that BPF-based system-call aggregation is both an efficient but also practical approach
to reduce system-call overheads for real-world user applications.
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G L O S S A RY

VM program In this thesis: A software-isolated program executing in the kernel’s hardware context,
but with user privileges. On Linux, for example, such programs are BPF programs.

hardware-based isolation A technique where OS processes are isolated from each other using the
memory management unit (MMU) and processor’s execution mode.

hardware-isolated process Process isolated from other processes and the kernel using hardware-
based techniques. On Linux for example, this includes the processor ring (or execution mode)
and the MMU.

implementation-agnostic Synchronous system calls implemented using two user/kernel transitions
allow for arbitrary operations in the kernel.

inflexible System calls are inflexible as they can only be composed with overheads.

information-hiding System calls are information-hiding in that the implementation can be changed
without changing their interface.

kernel call Invocation of kernel code from within a hardware- or software-isolated user process.
Kernel calls are also referred to as system calls when they are performed by hardware-isolated
user processes.

kernel context Hardware and software state in which system calls and other kernel routines execute.

kernel space Virtual memory only accessible to the OS kernel.

maintain isolation System calls maintain isolation between user processes.

slow System calls are slow if used frequently, because they involve transitions between user and
kernel context.

software-based isolation A technique where OS processes are isolated from each other using
specification and verification in software.

software-isolated process Process isolated from other processes and the kernel using software-
based techniques. For example, by executing its code in a VM.

subroutine-like programmming model System calls are straight-forward to use, because they
have a subroutine-like programming model.
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system call Kernel call from within a hardware-isolated user process.

transition overhead Overhead of transitions between user and kernel context in hardware- or
software-isolated software components.

user context Hardware and software state in which user applications execute.

user space Virtual memory accessible to user processes.

user/kernel transition Transition between user and kernel context, for example, as part of a
traditional system call. Usually includes switching the processor mode and the virtual address
space.
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L I S T O F A C R O N Y M S

ABI Application Binary Interface

AIO Asynchronous Input/Output

API Application Programming Interface

BPF Berkeley Packet Filter (extended implementation, also abbreviated eBPF)

cBPF classic Berkeley Packet Filter (original implementation)

CFG Control-Flow Graph

CISC Complex Instruction Set Computer

CLR Common Language Runtime

CPU Central Processing Unit

DRAM Dynamic Random-Access Memory

DVFS Dynamic Voltage and Frequency Scaling

I/O Input/Output

IBPB Indirect Branch Prediction Barrier

IBRS_FW Indirect Branch Restricted Speculation when Calling Firmware

IP Internet Protocol

IPC Interprocess Communication

JIT Just-in-Time

JVM Java Virtual Machine

KASLR Kernel Address Space Layout Randomization

KPTI Kernel Page Table Isolation

LLC Last Level Cache

MMU Memory Management Unit

NIC Network Interface Controller
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LIST OF ACRONYMS

NVM Non-Volatile Memory

NVMM Non-Volatile Main Memory

OS Operating System

PCC Proof-Carrying Code

PCID Process Context Identifier

POSIX Portable Operating System Interface

PTE Page Table Entry

RAM Random-Access Memory

RSB Return Stack Buffer

SIP Software-Isolated Process

SLoC Physical Source Lines of Code

SSD Solid-State Drive

STIBP Single Threaded Indirect Branch Prediction

TAS TCP Acceleration as an OS Service

TCP Transmission Control Protocol

TLB Translation Lookaside Buffer

vDSO virtual Dynamically-linked Shared Object

VM Virtual Machine

Wasm WebAssembly
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