
AOSA - Betriebssystemkomponenten
und der Aspektmoderatoransatz

Wasif Gilani

wasif@informatik.uni-erlangen.de

1

Introduction

Operating system design issues

Aspect-oriented programming

Architectural issues

Aspect Moderator Framework

Aspect-oriented Framework

Summary and Conclusions

2

Operating System Design Issues

Hardware oriented

Physical Networks, Communication protocol
design

Physical clock synchronization

Storage

System components

3

Operating System Design Issues

Software-oriented

Distributed algorithms

Naming, resource allocation

Distributed operating systems

Reliability tools and languages

Real-time systems and performance
measurement

4

Problems

Separation of concerns

No universally accepted methodology

Functional decomposition

Achieved along one dimension, not able to
address complete separation of concerns

OOP suffers from cross-cutting code for
scheduling, synchronization, fault tolerance, etc.

Distributed and concurrent systems
5

Aspect-oriented programming

Aspects:

Properties of a system that do not necessarily
align with the system`s functional components but
tend to cut across group of functional components

6

Aspect-oriented programming

Not bound to OOP, aspect-oriented programming
retains the advantages of OOP and aims at
achieving a better separation of concerns.

Idea is to separate the component code from so-
called aspect code

Aspectual decomposition manages to achieve
two dimensional separation of concerns

At the implementation phase, aspects and
components are combined together to form
overall system

7

Architectural Issues

Language support
Static (automatic weaver) and dynamic

weaving (reflective technologies)

Code transformation
Level of weaving

Pre-compile

Compile-time

Open and closed implementations
8

Architectural Issues

9

Weaving

Aspect Moderator Framework

10

Proxy object controls
access to functionality
class

Aspects are created
using factory method
pattern

Proxy uses moderator
object to evaluate the
aspects for every
method of functionaliy
class

Aspect-oriented Framework

Support separation of components and aspects
from each other in different layers

Three dimension model for system design
Components – basic functionality

modules
Aspects – cross-cutting entities
Layers – components and aspects

decomposed into more
manageable sub-problems

11

Architecture of the Framework

Base framework

Application framework

12

Figure – Aspect-oriented Design Framework

Architecture of the Framework

Abstract factory isolates aspects frm
implementation classes

Bridge pattern avoids a permanent binding
between an abstraction and its implementation

Smart protection proxy controls access to the
aspects

Adapter pattern allows aspect factory to either
convert the interface of existing aspect or create
a new aspect

13

Execution Flow in Base Framework

14

Initialization phase
Proxy forward request for

aspect creation to
AspectModerator object to
find out if this aspect does
not already exists.
After verification proxy

will call Aspectfactory to
create the interface
definition and the class
definition of that aspect.
Proxy will register both

with AspectModerator

Execution Flow in Base Framework

15

Invocation phase
Proxy checks whether an

aspect that describes
method‘s constraints is
already registered with
AspectModerator object
AspectModerator will

validate the constraints of
the invocation method
AspectModerator will

activate the method of the
aspect object and return
control to the proxy.

Execution Flow in Application
Framework

16

Initialization phase
Proxy recognizes if request

is for aspect creation or
method invocation
Checks if aspect is

registered with
AspectModerator and which
aspects in lower layer are
included in the Application
layer
If aspect not registered

then call Aspectfactory to
create one and register with
AspectModerator

Execution Flow in Application
Framework

17

Invocation phase
Proxy will check register at

the AspectModerator. In
case of no reference it will
look up the lower layer.
In case requested aspect

not registered in neither
layer, error is returned
After successfull checking,

the AspectModerator will
validate the constraints of
the method that is invoked
and return control to proxy.

Framework Overview

18

Three dimensional model

Collection of aspects

Components form the main functionality of OS

Layers are divided into three levels

Lower level – OS that provides reusable primitives for
intermediate and upper levels

Intermediate level – system programming or interface
definition

Upper level – application and programming level

Advantages from Framework

19

Reusability
Upper level aspects or components using the lower

level aspects or components

Polymorphism
Avoidance of proliferation of functions
Provides generality of aspect
Makes easy to add new capabilities to an aspect
New aspect inherits from or override its super aspect

Reconfigurability
Reconfiguration to appropriate policies

Summary and Conclusion

20

Operating system should not be seen as a two
dimensional model

Complete separation of concerns

Functional components and aspects are
designed relatively separately from each other

Framework provides an adaptable model that
allows for open language

Interactions of newly added aspects is defined
by contracts

References

•Netinant P., C. A. Constantinides, T. Elrad, and M. E.
Fayad, Supporting the Design of
Adaptable Operating Systems Using Aspect-Oriented
Frameworks. Proceedings of the
International Conference of Parallel and Distributed
Processing Techniques and Applications (PDPTA),
pp.271-278, Las Vegas, NV, June 2000.

•C. A. Constantinides, T. Elrad, and M. E. Fayad, Netinant
P., Designing an aspect-oriented framework in object-
oriented environment,ACM Computing surveys, MArch
2000

21

