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Abstract
Combining high performance with low power con-

sumption is becoming one of the primary objectives of
processor designs. Instead of relying just on sleep mode
for conserving power, an increasing number of proces-
sors take advantage of the fact that reducing the clock
frequency and corresponding operating voltage of the
CPU can yield quadratic decrease in energy use. How-
ever, performance reduction can only be beneficial if it
is done transparently, without causing the software to
miss its deadlines. In this paper, we describe the imple-
mentation and performance-setting algorithms used in
Vertigo, our power management extensions for Linux.
Vertigo makes its decisions automatically, without any
application-specific involvement. We describe how a
hierarchy of performance-setting algorithms, each spe-
cialized for different workload characteristics, can be
used for controlling the processor’s performance. The
algorithms operate independently from one another
and can be dynamically configured. As a basis for com-
parison with conventional algorithms, we contrast
measurements made on a Transmeta Crusoe-based
computer using its built-in LongRun power manager
with Vertigo running on the same system. We show that
unlike conventional interval-based algorithms like Lon-
gRun, Vertigo is successful at focusing in on a small
range of performance levels that are sufficient to meet
an application’s deadlines. When playing MPEG mov-
ies, this behavior translates into a 11%-35% reduction
of mean performance level over LongRun, without any
negative impact on the framerate. The performance
reduction can in turn yield significant power savings.

1. Introduction
Power considerations are increasingly driving pro-

cessor designs from embedded computers to servers.
Perhaps the most apparent need for low-power proces-
sors is for mobile communication and PDA devices.
These devices are battery operated, have small form
factors and are increasingly taking up computational
tasks that in the past have been performed by desktop
computers. The next generation 3G mobile phones
promise always-on connections, high-bandwidth
mobile data access, voice recognition, video-on-
demand services, video conferencing and the conver-
gence of today’s multiple standalone devices—MP3

player, game machine, camera, GPS, even the wallet—
into a single device. This requires processors that are
capable of high performance and modest power con-
sumption. Moreover, to be power efficient, the proces-
sors for the next generation communicator need to take
advantage of the highly variable performance require-
ments of the applications they are likely to run. For
example an MPEG video player requires about an order
of magnitude higher performance than an MP3 audio
player but optimizing the processor to always run at the
level that accommodates the video player would be
wasteful.

Dynamic Voltage Scaling (DVS) exploits the fact
that the peak frequency of a processor implemented in
CMOS is proportional to the supply voltage, while the
amount of dynamic energy required for a given work-
load is proportional to the square of the processor’s
supply voltage [12]. Running the processor slower
means that the voltage level can also be lowered, yield-
ing a quadratic reduction in energy consumption, at the
cost of increased run time. The key to making use of
this trade-off are performance-setting algorithms that
aim to reduce the processor’s performance level (clock
frequency) only when it is not critical to meeting the
software’s deadlines. The key observation is that often
the processor is running too fast. For example, it is
pointless from a quality-of-service perspective to
decode the 30 frames of a video in half a second, when
the software is only required to display those frames
during a one second interval. Completing a task before
its deadline is an inefficient use of energy [6].

While dynamic power currently accounts for the
greatest fraction of a processor’s power consumption,
static power consumption, which results from the leak-
age current in CMOS devices, is rapidly increasing. If
left unchecked, in a 0.07 micron process, leakage
power could become comparable to the amount of
dynamic power [3]. Similarly to dynamic power, leak-
age can also be substantially reduced if the processor
does not always have to operate at its peak performance
level. One technique for accomplishing this is adaptive
reverse body biasing (ABB), which combined with
dynamic voltage scaling can yield substantial reduction
in both leakage and dynamic power consumption [11].
The pertinent point for this paper with respect to DVS
and ABB is that lowering the speed of the processor
results in better than linear energy savings. Vertigo pro-
vides the main lever for controlling both of these tech-
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niques by providing an estimate for the necessary
performance level of the processor.

Most mobile processors on the market today
already support some form of voltage scaling; Intel
calls its version of this technology SpeedStep [8]. How-
ever, due to the lack of built-in performance-setting
policies in current operating systems, the computers
based on these chips use a simple approach that is
driven not by the workload but by the usage model:
when the notebook computer is plugged in a power out-
let the processor runs at a higher speed, when running
on batteries, it is switched to a more power efficient but
slower mode. Transmeta’s Crusoe processor sidesteps
this problem by building the power management pol-
icy—called LongRun—into the processor’s firmware
to avoid the need to modify the operating system [20].
LongRun uses the historical utilization of the processor
to guide clock rate selection: it speeds up the processor
if utilization is high and decreases performance if utili-
zation is low. Unlike on more conventional processors,
the power management policy can be implemented on
the Crusoe relatively easily because it already has a
hidden software layer that performs dynamic binary
translation and optimizations. However, it is currently
an open question—one that we address in this paper—
how effectively a policy implemented at such a low
level in the software hierarchy can perform.

Research into performance-setting algorithms can
be broadly divided into two categories: ones that use
information about task deadlines in real-time kernels to
guide the performance-setting decisions of the proces-
sor [9][13][15][19][16][17], and others that seek to
derive deadlines automatically by either monitoring
past utilization of the processor (interval-based tech-
niques) [6][14][21] or based on semantic task and event
classification [4][10]. Our work falls into the latter cat-
egory. Previously, we presented a mechanism for auto-
matically classifying machine utilization into different
types of episodes [5] and automatically assigning dead-
lines to them [4]. Deadline and classification informa-
tion is derived from communication patterns between
the executing tasks based on observations in the OS
kernel. Vertigo is built on the high-level ideas that were

described in our previous papers and moves these tech-
niques out of the simulator into a hardware and soft-
ware implementation.

Our performance-setting algorithms, described in
Section 2, compare favorably to previous interval-
based algorithms. The two key differences in our
approach are that multiple performance-setting algo-
rithms are used to come up with a global prediction and
that the algorithms are implemented in the OS kernel,
which gives them access to a richer set of data for pre-
dictions. The multiple performance-setting algorithms
in the system ensure that they do not all have to be opti-
mal in all possible circumstances. This allows at least
some of the algorithms to be less concerned about the
worst case. Figure 1 illustrates the fraction of time
spent at each of the processor’s four performance levels
(300, 400, 500, and 600 Mhz) using the Crusoe’s built-
in LongRun power manager in contrast with Vertigo
during playbacks of two MPEG movies. The data for
both algorithms were collected on the same hardware,
however during the Vertigo measurements, the built-in
LongRun power manager was disabled. While the play-
back quality of the different runs were identical, the
main difference between the results is that Vertigo
spends significantly more time below peak perfor-
mance than LongRun. During the first movie, Vertigo
switches mostly between two performance levels: the
machine’s minimum 300 Mhz and 400 Mhz, while dur-
ing the second, it settles on the processor’s third perfor-
mance level at 500 Mhz. LongRun, on the other hand,
during both movies chooses the machine’s peak perfor-
mance setting for the dominant portion of execution
time.

Vertigo is implemented as a set of kernel modules
and patches that hook into the Linux kernel to monitor
program execution and to control the speed and voltage
levels of the processor (Figure 2). One of the main
design objectives of this system has been to be mini-
mally intrusive into the host operating system. Vertigo
coexists with the existing scheduler, system calls, and
power manager (which controls the sleep and awake
modes of the processor), however it needs certain
hooks within these subsystems. A unique feature of

FIGURE 1. MPEG video playback LongRun vs. Vertigo
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Vertigo is that instead of a single performance-setting
algorithm, it allows the composition of multiple algo-
rithms, all specializing in different kinds of run-time
situations. The most applicable to a given condition is
chosen at run-time. The different performance-setting
policies are coordinated by the core module, which
connects to the hooks in the kernel and provides shared
functionality to the policies. The shared functionality
includes an abstraction for setting the processor’s per-
formance level, measuring and estimating work and a
low-overhead soft-timer implementation built on times-
tamp counters that provides sub-millisecond resolution.
Implementation issues are discussed in Section 3.

Instead of estimating the potential energy savings
resulting from our techniques, we use raw performance
levels as the metric of interest in this paper. The corre-
lation between performance levels and dynamic power
consumption of processors has been clearly established
in the literature [9][12][13][17]. We believe that perfor-
mance-setting techniques are applicable more broadly
than just for controlling dynamic voltage scaling and
that they will also be useful for controlling leakage-
power reduction techniques in the near future [11].
However, process details for useful estimates of energy
are not yet available, and current predictions are likely
to be inaccurate. Evaluations of our algorithms are pre-
sented in Section 4.

The main contributions of this paper are a set of
kernel-level algorithms for performance-setting under
Linux, a technique for coordinating multiple algo-
rithms, a description of the Vertigo performance-setting
framework, an evaluation of our algorithms on a Cru-
soe-based hardware platform, and a technique for mea-
suring and contrasting our results with the processor’s
built-in power manager. While Vertigo’s perspectives-
based algorithm is a new addition, the interactive algo-
rithm has been described in our previous work and
evaluated on a simulator [4].

2. Performance-setting algorithms
Unlike previous approaches, Vertigo includes mul-

tiple performance-setting algorithms that are coordi-
nated to find the best estimate for the necessary
performance level. The various algorithms are orga-
nized into a decision hierarchy, where algorithms closer
to the top have the right to override the choices made at
lower levels. Currently we have three levels on the
stack:
• At the top: an algorithm for automatically quantify-

ing the performance requirements of interactive

applications and which ensures that the user experi-
ence does not suffer. This algorithm is based on our
previous one described in [4].

• In the middle: an application specific layer, where
DVS-aware applications can submit information
about their performance requirements.

• At the bottom: an algorithm that attempts to estimate
the future utilization of the processor based on past
information. This perspectives-based algorithm dif-
fers from previous interval-based algorithms in that
it derives a utilization estimate for each task sepa-
rately and adjusts the size of the utilization-history
window on a per-task basis. Moreover, since the
algorithm in the top layer ensures the high quality of
interactive performance, the baseline algorithm does
not have to be conservative about the size of the uti-
lization-history window, the consideration of which
has led to inefficient algorithms for even simple
workloads (e.g. MPEG playback) in the past [7].

In this paper our focus is on the interactive algorithm at
the top of the stack and the perspectives-based algo-
rithm at the bottom. The application-specific layer is
currently only used for debugging: we have instru-
mented certain applications such as the X server and
our mpeg player to submit application specific informa-
tion to Vertigo (through a system call) and then this
information can be used to correlate Vertigo’s activities
with that of the applications.

2.1 Keeping track of work
The main measure used in our performance-setting

algorithms is the full-speed equivalent work done dur-
ing an interval. This measure can be used to estimate
how long a given workload would take running at the
peak performance of a processor. On the Crusoe, the
full-speed equivalent work estimate is computed by the
formula:

(EQ 1)

Where i refers to one of the n different performance
levels during a given interval with the corresponding
amount of non-idle time spent at that performance level
(ti) in seconds and frequencies (pi) specified as a frac-
tion of peak performance. On a system where the count
rate of the timestamp counter (a.k.a. cycle counter) var-
ies with the speed of the processor, the full-speed
equivalent speed would be computed differently. For
example, if the timestamp counters count at the current
rate of the processor, Workfse would simply be given as
the difference between the value of the timestamp
counter at the beginning and end of an interval. It is
implicit in the above equation that a workload’s run-
time is linearly related to the inverse of the processor’s
performance level. However, this is not always the
case, primarily due to the non-linear bus and processor
speed ratios during performance-scaling. Section 3.2
deals with this issue in more detail.

2.2 A perspectives-based algorithm
At the lowest level in the policy stack is an algo-

rithm that aims to derive a rough approximation for the

FIGURE 2. Vertigo architecture
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necessary performance level of the processor. It need
not be completely accurate, since the assumption is that
algorithms at higher positions on the policy stack will
override its decisions when necessary. We refer to this
algorithm as perspectives-based , since it computes per-
formance predictions from the perspective of each task
and uses the combined result to control the perfor-
mance-setting of the processor. This algorithm differs
from previous interval-based algorithms in that it
derives a utilization estimate for each task separately
and adjusts the size of the utilization-history window
on a per-task basis.

Our insight is that individual tasks (or groups of
tasks) often have discernible utilization periods at the
task level, which can be obscured if all tasks are
observed in the aggregate. We use each task’s observed
period for recomputing per-task exponentially decaying
averages of the work done during the period and of its
estimated deadlines. While previous interval-based per-
formance-setting techniques also use exponentially
decaying averages, they use them globally and with
fixed periods. The update period in these techniques is
usually set to between 10ms and 50ms, which often
proves to be too short and usually causes the predic-
tions to oscillate between only two performance levels.
Their problem is that since a single algorithm must
accurately set the performance level in all cases, it can-
not wait long enough to smooth out the performance
prediction without unduly impacting the interactive
performance. Our current technique uses a simple heu-
ristic for finding a task’s period: the algorithm tracks
the time from when a task starts executing, through
points when it is preempted and eventually runs out of
work (gives up time on its own), until the next time it is
rescheduled. We have experimented with more compli-
cated techniques for finding a task’s period, such as
tracking communications between them and tracking
system calls [4], however we found that this simpler
strategy works sufficiently well.

Figure 3 illustrates the execution of a hypothetical
workload on the processor. At point a task A starts exe-
cution and the per-task data structures are initialized
with four pieces of information: the current state of the
work counter, the current state of the idle time counter,
the current time, and a run bit indicating that the task
has started running. The counters are used to compute
the task’s utilization and subsequently its performance
requirements—see Section 3.2 for more information
about how these are used. When the task is preempted,
the task’s run bit is left as-is, indicating that the task
still has work left over. When task A gets scheduled
again, it runs until it gives up time willingly (runs to

completion before its schedule quantum expires or calls
a system call that yields the processor to another task)
at point b and its run bit is cleared. At point c, when
task A is rescheduled, the cleared state of the run bit
indicates that there is enough information for comput-
ing the task’s performance requirements and setting the
processor’s performance level accordingly. At point c,
Workfse is computed for the range between point a and
point c and a future work estimate is derived based on
this value (Equation 2):

(EQ 2)

A separate exponentially decaying average is main-
tained to keep track of the deadlines of each interval,
where the deadline is computed as Workfse + Idle ,
where Idle specifies the amount of idle time during the
interval between points a and c (Equation 3):

(EQ 3)

Given these two values the performance-level predic-
tion is computed as follows:

(EQ 4)

By keeping track of the work and deadline predictions
separately, the performance predictions are weighted
by the length of the interval over which the work esti-
mates were measured. Note that unlike previous
approaches, in this algorithm the performance predic-
tions are used directly to set the machine’s performance
level, not indirectly to scale the processor’s perfor-
mance level up or down by an arbitrary amount [7].
Similarly to the data presented in [14], we found that
small weight values for k work well, and used k=3 in
our measurements.

As a result of our strategy, work estimates for each
task are recomputed on a varying interval with a mean
of around 50-150ms (depending on workload), how-
ever, as a result of multiple tasks running in the system,
there is actually a refinement of the work estimate
every 5ms to 10ms. One pitfall of the perspectives-
based algorithm is that if there is a new non-interactive,
CPU-bound task that gets started on an idle system, and
that task utilizes the processor without being preempted
for a long duration of time, there might be significant
latency incurred in responding to the load. To guard
against this situation, we put a limit on the non-pre-
empted duration over which the work estimate is com-
puted. If a task does not yield the processor for 100ms,
its work estimate is recomputed. The 100ms value was
selected based on two observations: a separate algo-
rithm for interactive applications ensures that they meet
a more stringent deadline, and that the only class of
applications affected by the choice of the 100ms limit
are the computationally intensive batch jobs (such as
compilation) which are likely to run for seconds or
minutes, and where an extra tenth of a second of execu-
tion time is unlikely to be significant.

FIGURE 3. Measuring the utilization for task A
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2.3 Interactive applications
Our strategy for ensuring good interactive perfor-

mance relies on finding the periods of execution that
directly impact the user experience and ensuring that
these episodes complete without undue delay. We use a
relatively simple technique for automatically isolating
interactive episodes that relies on monitoring commu-
nication from the X server (or other control task in
charge of user interaction) and tracking the execution
of the tasks that get triggered as a result. The technique
used in Vertigo is based on our previous descriptions in
[4] and [5]. A summary follows below:

The beginning of an interactive episode is initiated
by the user and is signified by a GUI event, such as
pressing a mouse button or a key on the keyboard. As a
result of such an event, the GUI controller (X server in
our case) dispatches a message to the task that is
responsible for handling the event. By monitoring the
appropriate system calls (various versions of read,
write, and select), Vertigo can automatically detect the
beginning of an interactive episode. When the episode
starts, both the GUI controller and the task that is the
receiver of the message are marked as being in an inter-
active episode. If tasks of an interactive episode com-
municate with unmarked tasks, then the as yet
unmarked tasks are also marked. During this process,
Vertigo keeps track of how many of the marked tasks
have been preempted. The end of the episode is reached
when that number is zero.

Figure 4 illustrates the strategy for setting the per-
formance level during an interactive episode. At its
beginning, the algorithm waits for a specific amount of
time, determined by the skip threshold before transi-
tioning to the predicted performance level. We
observed that the vast majority of interactive episodes
are so short (sub millisecond) as to not warrant any spe-
cial consideration. These short episodes are the results
of echoing key presses to the window or moving the
mouse across the screen and redrawing small rectan-
gles. We found that a skip threshold of 5ms is good
value for filtering short episodes without adversely
impacting the worst case. If the episode exceeds the
skip threshold, the performance level is switched to the
interactive performance prediction. Similarly to the
perspectives-based algorithm, the prediction for the
interactive episodes is computed as the exponentially
decaying average of the correct settings of past interac-
tive episodes. To bound the worst case impact on the
user experience, if the interactive episode does not fin-
ish before reaching the panic threshold, the processor’s
performance is ramped up to its maximum. At the end
of the interactive episode, the algorithm computes what
the correct performance-setting for the episode should
have been and this value is incorporated into the expo-
nentially moving average for future predictions. An
added optimization is that if the panic threshold was
reached during an episode, the moving average is
rescaled so that the last performance level gets incorpo-
rated with a higher weight (k=1 is used instead of k=3).

The performance prediction is computed for all
episodes that are longer than the skip threshold. If the
episode was also longer than perception threshold, then

the performance requirement is set to 100%. The per-
ception threshold describes a cut-off point, under which
events appear to happen instantaneously for the user.
Thus, completing these events any faster would not
have any perceptible impact on the observer [2]. While
the exact value of the perception threshold is dependent
on the user and the type of task being accomplished, a
value of 50ms is commonly used [2][4][14]. Equation 5
is used for computing the performance requirements of
episodes that are shorter than the perception threshold.

(EQ 5)

Where the full-speed equivalent work is measured from
the beginning of the interactive episode. The algorithm
in Vertigo differs on the following points from our pre-
vious interactive algorithm:
• Finding the end of an interactive episode has been

simplified. We found that the higher accuracy inher-
ent in our previous implementations was unneces-
sary.

• The panic threshold has been statically set to 50ms.
In our previous implementations the threshold var-
ies dynamically depending on the rate that work is
getting done (i.e. the performance level during the
interactive episode). While this idea might still
prove to be useful on machines with a wider range
of performance levels, we saw no perceptible differ-
ence on our evaluation machine which has a perfor-
mance range of 300Mhz to 600Mhz.

• There is only a singe prediction for the necessary
performance level for an interactive episode in the
system. In our previous technique, we used a per-
task value depending on which task initiated the epi-
sode.

3. Implementation issues
3.1 Policy stack

The policy stack (Figure 5) is a mechanism for
supporting multiple independent performance-setting
policies in a unified manner. The primary reason for
having multiple policies is to allow the specialization of
performance-setting algorithms to specific situations
instead of having to make a single algorithm perform

FIGURE 4. Performance-setting for interactive episodes
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well under all conditions. The policy stack keeps track
of commands and performance-level requests from
each policy and uses this information to combine them
into a single global performance-level decision when
needed.

The different policies are not aware of their posi-
tions in the hierarchy and can base their performance
decisions on any event in the system. When a policy re
quests a performance level it submits a command along
with its desired performance to the policy stack. The
command specifies how the requested performance
should be combined with requests from lower levels on
the stack: it can specify to ignore (IGNORE) the request
at the current level, to force (SET) a performance level
without regard to any requests from below, or to only
set a performance level if the request is greater than
anything below (SET_IFGT). When a new performance
level request arrives, then the commands on the stack
are evaluated bottom up to compute the new global per-
formance level. Using this system, performance
requests can be submitted any time and a new result
computed without explicitly having to invoke all the
performance-setting policies.

While policies can be triggered by any event in the
system and they may submit a new performance
request at any time, there are a set of common events
that all policies tend to be interested in. On these
events, instead of recomputing the global performance
level each time a policy modifies its request, the perfor-
mance level is computed only once after all interested
policies’ event handlers have been invoked. Currently
the set of common events are: reset, task switch, task
create, and performance change. The performance
change event is a notification which is sent to each pol-
icy and does not usually cause any changes to the per-
formance requests on the stack.

3.2 Work tracking
Our algorithms use the processor’s utilization his-

tory over a given interval to estimate the necessary
speed of the processor in the future. The idea is to max-
imize the busy time of the processor by slowing it down
to the appropriate performance level. To aid this, Ver-
tigo provides an abstraction for tracking the work done
during a given time interval which takes performance
changes and idle time into account regardless of the
specific hardware counter implementations. To get a
work measurement over an interval, a policy needs to
allocate a vertigo_work struct and call the

vertigo_work_start function at the beginning, and
the vertigo_work_stop function at the end of the
interval. During the measurement, the contents of the
structs are updated automatically to reflect the amount
of idle time and the utilized time weighted by the corre-
sponding performance levels of the processor. This
information can then be used to compute the result of
Equation 1, which then can be used for performance-
level prediction.

Aside from the convenience that this abstraction
provides for policy writers, it is also designed to sim-
plify porting of Vertigo (and associated policies) to dif-
ferent hardware architectures. One major difference
between platforms is how time is measured. Many
architectures provide a low overhead way of counting
cycles through timestamp counters, others may only
provide externally programmable timer interrupts for
the user. Moreover, even when timestamp counters are
provided, they do not always measure the same things.
On current Intel Pentium and ARM processors the
timestamp counters count cycles—the rate varies
depending on the speed of the processor—and the
counter stops counting when the processor transitions
into sleep mode. The Crusoe’s implementation of the
timestamp counter measures time: it always counts the
cycles at the peak rate of the processor and continues to
do so even when the processor is asleep. Ideally a sys-
tem would include both types of counters, however,
Vertigo can be made to work with either approach.

One aspect of systems the work estimate does not
yet take into account is that a workload running at half
of peak performance does not necessarily run twice as
long as the original. One reason for this is that as the
core is slowed down, the memory system is not, thus
the core to memory performance ratio improves in
memory’s favor [7]. Table 1 shows our measurements
which show the difference between the expected and
measured lengths of the workloads based on runs at
300, 400, and 500 Mhz settings of the processor. On the
CPU bound loop, the difference between the predic-
tions and actual measurements are in the noise, while
on the MPEG workload, there is about a 6%-7% inac-
curacy increase per 100 Mhz step. While the maximum
inaccuracy on these workloads is less than 20%, as the
range of minimum to maximum performance increases,
along with a reduction in the range of each performance
step, a more accurate work estimator might be neces-
sary. A possible solution could be to take the instruc-
tion mix of the workload into account by the use of
performance monitoring counters that keep track of sig-
nificant events such as external memory accesses.

3.3 Monitoring, timers and tracing
One design goal of Vertigo has been to make it as

autonomous from other units in the kernel as possible.
Another design goal emerged as we selected the plat-
form for our experiments. The Transmeta Crusoe pro-
cessor includes its own performance-setting algorithm
and we wished to compare the two approaches. The
first requirement has already yielded a relatively unob-
trusive design, the second focused us on turning the
existing functionality into a passive observation plat-
form.
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An example of how Vertigo has been made unob-
trusive is the way timers are handled. Vertigo provides
a sub-millisecond resolution timer, without changing
the way Linux’s built-in 10ms resolution timer works.
This is accomplished by piggybacking the timer dis-
patch routine, which checks for timer events onto often-
executed parts of the kernel, such as the scheduler and
system calls. Since Vertigo already intercepts certain
system calls to find interactive episodes and is also
invoked on every task switch, it was straight-forward to
add a few instructions to these hooks to manage timer
dispatches. Each hook is augmented with a read of the
timestamp counter, a comparison against the next timer
event’s time stamp and a branch to the timer dispatch
routine upon success. In practice we found that this
strategy yields a timer with sub-millisecond accuracy,
while its worst case resolution is bound by the sched-
uler’s time quantum, which is 10ms (see Table 2).
However, since the events that Vertigo is interested in
measuring usually occur close to the timer triggers, this
technique has adequate resolution. Another advantage
is that since the soft-timers stop ticking when the pro-
cessor is in sleep mode, the timer interrupts do not
change the sleep characteristics of the running OS and
applications. Our technique is similar to soft-timers [1],
where based on similar requirements to ours, high reso-
lution and low overhead timers are applied to network
processing.

All these features allowed us to develop, in addi-
tion to the active mode where Vertigo is in control, a
passive mode, where the built-in LongRun power man-
ager is in charge of performance-setting and Vertigo is
simply an observer of the execution and performance
changes. Monitoring the performance changes caused
by LongRun is accomplished similarly to the timer dis-
patch routine. Vertigo periodically reads the perfor-
mance level of the processor through a machine
specific register (msr) and compares the result to its
previous value. If they are different, then the change is
logged in a buffer. Vertigo includes a tracing mecha-
nism that retains a log of significant events in a kernel
buffer that is exposed through the proc file system. This
log includes performance-level requests from the dif-
ferent policies, task preemptions, task ids, and the per-
formance levels of the processor. Another feature of
this technique is that it allows us to compare LongRun
and Vertigo during the same run: LongRun is in control
of performance-setting while Vertigo outputs the deci-
sions that it would have made on the same workload.
We use this technique to contrast the differences
between unrepeatable runs of interactive benchmarks
between the two policies (see Section 4.2).

To get a better feel for the overhead of using our
measurement and performance-setting techniques, Ver-
tigo was instrumented with markers that keep track of
the time spent in Vertigo code at run-time. While the
run-time overhead on a Pentium II is less than 0.1% to
0.5%, on the Transmeta Crusoe it is between 1% and
4%. Further measurements in virtual machines such as
VMWare and user-mode-linux (UML) confirmed that
the overhead can be significantly higher in virtual
machines than on traditional processor architectures.
We believe that Vertigo’s overhead could be reduced
further since we as yet use unoptimized algorithms.

4. Evaluation
Our measurements were performed on a Sony Vaio

PCG-C1VN notebook computer using the Transmeta
Crusoe 5600 processor running at 300Mhz to 600Mhz
with 100Mhz steps. The operating system used is Man-
drake 7.2 with a modified version of the Linux 2.4.4-
ac18 kernel. The workloads used in the evaluation are
the following: Plaympeg SDL MPEG player library
[18], Acrobat Reader for rendering PDF files, Emacs
for text editing, Netscape Mail and News 4.7 for news
reading, Konqueror 1.9.8 for web browsing, and Xwell-
tris 1.0.0 as a 3D tetris-like game. The interactive shell
commands benchmark is a record of a user doing mis-
cellaneous shell operations during a span of about 30
minutes. To avoid variability due to the Crusoe’s
dynamic translation engine, most benchmarks were run
at least twice to warm up the dynamic translation cache,
and data was used from the last run.

4.1 Multimedia
MPEG video playback poses a difficult challenge

for performance-setting algorithms. While the algo-
rithm puts a periodic load on the system, the perfor-
mance requirements can vary depending on the frame’s
type. Thus, if a performance-setting algorithm looks at
too-long of a past history for predicting future require-
ments, it can miss the deadlines for more computation-
ally intensive frames. On the other hand, if the
algorithm looks at only a short interval, then it will not
settle on a single performance value but oscillate
between multiple settings. This issue is exposed in [7],
where the authors show that no heuristic algorithm they
looked at could successfully settle on the single perfor-
mance level that would have been adequate for the
entire workload. Our observations of LongRun confirm
this behaviour.

Vertigo deals with this problem by relying on the
interactive performance-setting algorithm at the top of
the hierarchy to bound worst-case responsiveness (in

TABLE 1. Scaling error of work predictions

CPU bound loop MPEG video

400 Mhz 500 Mhz 600 Mhz 400 Mhz 500 Mhz 600 Mhz

300 Mhz -0.3% -0.4% -0.3% 7.1% 13.5% 19.4%

400 Mhz -0.1% 0.0% 6.9% 13.3%

500 Mhz 0.1% 6.8%

TABLE 2. Timer statistics

Cost of an access to a timestamp counter 30-40 cycles

Mean delta between timer checks ~0.1 ms

Timer accuracy ~1 ms

Avg. timer check and dispatch duration
(incl. possible execution of an event handler)

100-150 cycles



this case frame rate) and allowing the more conven-
tional interval-based algorithm at the bottom of the
hierarchy to take a longer-term view. Table 3 shows
measurements for the plaympeg video player [18] play-
ing a variety of MPEG videos. Some of the internal
variables of the video player have been exposed to pro-
vide information about how the player is affected as the
result of changing the processor’s performance levels
during execution. These figures are shown in the
MPEG decode column of the table. The Ahead variable
measures how close the end of each frame’s decoding
is to its deadline. It is expressed as cumulative seconds
during the playback of each video. For power effi-
ciency, this number should be as close to zero as possi-
ble, although the slowest performance level of the
processor puts a limit on how much its value can be

reduced. The Exactly on time field specifies the number
of frames that met their deadlines exactly. The more
frames are on time, the closer the performance-setting
algorithm is to the theoretical optimum. The data in the
Execution Statistics column is collected by Vertigo’s
monitoring subsystem. To collect information about
LongRun, Vertigo was used in passive mode to gather a
trace of performance changes without controlling the
processor’s performance level. The difference between
the Idle and Sleep fields are that the first corresponds to
the fraction of time spent in the kernel’s idle loop—
possibly doing housekeeping chores or just spinning—
while the latter shows the fraction of time the processor
actually spends in a low-power sleep mode.

Table 4 provides statistics about the processor’s
performance levels during the runs of each workload.

TABLE 3. Application-level statistics about the plaympeg benchmark playing various movies

Execution statistics MPEG decode

Length (s) Idle Sleep Ahead (s) Exactly
on time

Danse De Cable LongRun
247.1

54% 23% 148.10 6

320x160 +audio Vertigo 27% 4% 68.74 1012

Legendary LongRun
19.4

33% 13% 7.20 19

352x240 +audio Vertigo 24% 7% 4.79 65

Red’s Nightmare LongRun
49.1

48% 36% 26.31 5

320x240 Vertigo 32% 13% 16.53 74

Red’s Nightmare LongRun
49.3

22% 15% 12.48 87

480x360 Vertigo 18% 11% 8.17 139

Roadkill Turtle LongRun
121.3

46% 19% 64.93 5

304x240 +audio Vertigo 25% 4% 33.34 237

Sentinel LongRun
35.6

28% 10% 11.05 80

320x240 +audio Vertigo 19% 5% 6.32 231

SpecialOps LongRun
60.8

30% 11% 19.01 129

320x240 +audio Vertigo 20% 5% 12.67 305

TABLE 4. Performance levels during movie playback

LongRun Vertigo
Mean 

performance 
reduction over 

LongRun

Fraction of time at each
performance level (Mhz) Mean perf 

level

Fraction of time at each
performance level (Mhz) Mean perf 

level
300 400 500 600 300 400 500 600

Danse De Cable 6% 19% 33% 54% 89% 51% 48% 0% 0% 59% 34%

Legendary 0% 3% 17% 79% 96% 0% 8% 88% 4% 82% 15%

Red’s
Nightmare small

11% 35% 35% 19% 80% 95% 2% 0% 3% 52% 35%

Red’s
Nightmare

big
0% 5% 21% 74% 95% 0% 0% 90% 10% 85% 11%

Roadkill Turtle 3% 10% 23% 64% 92% 1% 97% 1% 0% 66% 28%

Sentinel 0% 0% 14% 86% 97% 0% 0% 93% 7% 84% 13%

SpecialOps 1% 2% 14% 83% 96% 0% 2% 93% 4% 83% 14%



The fraction of time at each performance level is com-
puted as a proportion of total non-idle time during the
run of the workload. The Mean perf level column spec-
ifies the average performance levels (as the percentage
of peak performance) during the execution of each
workload. Since, in all cases, the mean performance
level for each workload was lower using Vertigo, the
last column specifies the amount of reduction. The
playback quality for each pair of workloads was the
same: same frame rate and no dropped frames. Our
results show that Vertigo is more accurately able to pre-
dict the necessary performance level than LongRun.
The increased accuracy results in a 11% to 35% reduc-
tion of the average performance levels of the processor
during the benchmarks’ execution. Since the amount of
work between runs of a workload stays the same, the
lower average performance level implies reduced idle
and sleep times when Vertigo is enabled. This expecta-
tion is affirmed by our results. Similarly, the number of
frames that exactly meet their deadlines increases when
Vertigo is enabled and the cumulative amount of time
when decode is ahead of its deadline is reduced. The
median performance level (highlighted with bold in
each column) also shows significant reductions. While
on most benchmarks Vertigo settles on a single perfor-
mance level below peak for the greatest fraction of exe-

cution time (>88%), LongRun usually chooses to run
the processor at full throttle. The exception to this is the
Danse De Cable workload, where Vertigo settles on the
lowest two performance levels and switches between
the two continuously. The reason for this behavior is
due to the specific performance levels on the Crusoe
processor; Vertigo would have wanted to select a per-
formance level which is only slightly higher than 300
Mhz and as the prediction fluctuates below and above
that value, it is quantized to the closest two perfor-
mance levels.

The biggest single difference between LongRun
and Vertigo is that LongRun appears to be overcau-
tious: it ramps up the performance level very quickly
when it detects significant amounts of processor activ-
ity. Over all workloads, the average performance level
with LongRun never gets below 80%, while Vertigo
goes down as low as 52%. Vertigo is less cautious but
responds quickly when the quality of service appears to
have been compromised. Since LongRun does not have
any information about the interactive performance, it is
forced to act conservatively on a shorter time frame,
which leads to inefficiencies. Figure 6 provides qualita-
tive insight into the characteristics of the two different
performance-setting policies. LongRun keeps on ramp-

FIGURE 6. Performance-setting during MPEG playback of Red’s Nightmare 320x240
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ing the performance level up and down in fast succes-
sion, while Vertigo stays close to a target performance
level. The top row shows the processor’s performance
levels during a benchmark run with LongRun enabled
and the bottom two rows show the same benchmark for
Vertigo. The middle row shows the actual performance
levels during execution, while the bottom row reflects
the performance level that Vertigo would request on a
processor that could run at arbitrary performance levels
(given the same max. performance). Note that in some
cases, Vertigo’s desired performance levels are actually
below the minimum that’s achievable on the processor.

4.2 Interactive workloads
Due to the difficulty in making interactive bench-

mark runs repeatable, interactive workloads are signifi-
cantly harder to evaluate than the multimedia
benchmarks. To get around this problem, we combined
empirical measurements with a simple simulation tech-
nique. The idea is to run our benchmarks under the con-
trol of the native LongRun power manager and only
engage Vertigo in passive mode, where it merely
records the performance-setting decisions that it would
have made but does not actually change the processor’s
performance levels. Figure 7 shows the performance
data that was collected during a run of our measure-
ments. The LongRun graph corresponds to the actual
performance levels of the processor during the mea-
surement, while the Vertigo graphs show the quantized
performance levels that it would have used had it been
in control. Note that if Vertigo were in control, its per-
formance-setting decisions would have had a different
run-time impact from LongRun, thus the time axis on
the Vertigo graph are only approximations.

To get around the time-skew problem in our statis-
tics, the passive Vertigo performance-level traces were
postprocessed to take the impact of the increased exe-

cution times that would have resulted from the use of
Vertigo instead of LongRun. Instead of looking at the
entire performance-level trace, we chose to focus only
on the interesting parts: the interactive episodes. As
part of the interactive performance-setting algorithm in
Vertigo, it includes a technique for finding durations of
execution that have a direct impact on the user. This
technique gives valid readings regardless of which
algorithm is in control and is used to focus our mea-
surements. Once the execution range for an interactive
episode has been isolated, the full-speed equivalent
work done during the episode is computed for both
LongRun and Vertigo. Since during the measurement
LongRun is in control of the CPU speed and it runs
faster than Vertigo, the latter’s episode duration must
be lengthened. First, the remaining work is computed
for Vertigo (Equation 6). Then, the algorithm computes
how much the length of the interactive episode needs to
be stretched—assuming that Vertigo continues to run at
its predicted speed until reaching the panic threshold, at
full-speed after that—and the statistics are adjusted
accordingly.

(EQ 6)

We found that the results using this technique are close
to what we observed on similar workloads (same
benchmark but with slightly different interactive load)
running with Vertigo active. However, when Vertigo is
in control, the number of performance-setting decisions
are reduced and are more accurate.

Figure 8 shows the statistics gathered using the
above technique. Each graph contains two stacked col-
umns, corresponding to the fraction of time spent in
interactive episodes at each of the four performance
levels supported in our computer. These performance
levels—from bottom up—are from 300 Mhz to 600
Mhz at 100 Mhz increments. Even from a high level, it
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FIGURE 7. Performance-setting decisions during the Konqueror benchmark
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is apparent that Vertigo spends more time at lower per-
formance levels than LongRun. On some benchmarks
such as Emacs, there is hardly ever a need to go fast and
the interactive deadlines are met while the machine
stays at its lowest possible performance level. On the
other end of the spectrum is Acrobat Reader, which
exhibits bimodal behaviour: the processor either runs at
its peak level or at its minimum. Even on this bench-
mark many of the interactive episodes can complete in
time at the machine’s minimum performance level,
however when it comes to rendering the pages, the peak
performance level of the processor is not sufficient to
complete its deadlines under the user’s perception
threshold. Thus, upon encountering a sufficiently long
interactive episode, Vertigo switches the machine’s
performance level to its peak. On the other hand, during
the run of the Konqueror benchmark, Vertigo can take
advantage of all four performance levels that are avail-

able on the machine. This is in contrast with LongRun’s
strategy which causes the processor to spend most of its
time at the peak level.

5. Conclusions and future work
We have shown how two performance-setting poli-

cies implemented at different levels in the software
hierarchy behave on a variety of multimedia and inter-
active workloads. We found that Transmeta’s LongRun
power manager, which is implemented in the proces-
sor’s firmware, makes more conservative choices than
our Vertigo algorithms, which are implemented in the
Linux kernel. On a set of multimedia benchmarks, the
different design decisions result in a 11%-35% average
performance level reduction by Vertigo over LongRun.
Being higher on the software stack allows Vertigo to
make decisions based on a richer set of run-time infor-
mation, which translates into increased accuracy. While
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the firmware approach was shown to be less accurate
than an algorithm in the kernel, it does not diminish its
usefulness. LongRun has the crucial advantage of being
operating system agnostic. Perhaps one way to bridge
the gap between low and high level implementations is
to provide a baseline algorithm in firmware and expose
an interface to the operating system to optionally refine
performance-setting decisions. The policy stack in Ver-
tigo can be viewed as the beginnings of a mechanism to
support such design, where the bottom-most policy on
the stack could actually be implemented in the proces-
sor’s firmware.

We believe that aside from dynamic voltage scal-
ing, performance-setting algorithms will be useful for
controlling other power reduction techniques, such as
adaptive body biasing. These circuit techniques cut
down on the processor’s leakage power consumption,
which is an increasing fraction of total power as the
feature sizes of transistors are reduced. While the
power consumption of the processor is a significant
concern, it only accounts for a fraction of the system’s
total power consumption. Future work will extend our
technique to managing the power of all the devices in
an integrated system.
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