4 Ubungsaufgabe #4: Replikation

Die Umsetzung der Fernaufrufsemantiken Last-Of-Many und At-Most-Once in Ubungsaufgabe 3 erméglichen
es dem in der Ubung realisierten Fernaufrufsystem bisher vor allem durch das Netzwerk bedingte Fehler,
wie zum Beispiel die Verzogerung oder den Verlust von Nachrichten, zu tolerieren. Beide Semantiken sind
jedoch nicht dazu geeignet mit schwerwiegenderen Fehlersituationen, wie beispielsweise Rechnerabstiirzen oder
dauerhaften Verbindungsabbriichen, umzugehen. Im Rahmen dieser Ubungsaufgabe werden unter Zuhilfenahme
von Replikation nun auch diese Fehlerbereiche abgedeckt. Dem Nutzer des Fernaufrufsystems soll dabei soweit wie
moglich verborgen bleiben, dass er auf einen entfernten replizierten Dienst zugreift (— Replikationstransparenz).

4.1 Replikation der Server-Seite (fiir alle)

Die Replikation eines Diensts beinhaltet in erster Linie die Bereitstellung mehrerer Instanzen der Dienstimple-
mentierung (Replikate) auf verschiedenen Rechnern. Wie in der Tafeliibung erliutert, ist es fiir zustandsbehaftete
Anwendungen dariiber hinaus erforderlich, die Konsistenz der Replikatzustdnde sicherzustellen. Im Rahmen
dieser Ubungsaufgabe soll hierfiir das Konzept der aktiven Replikation umgesetzt werden, das vorsieht, dass alle
Replikate alle Anfragen in der selben Reihenfolge bearbeiten. Zur Herstellung einer iiber die Replikatgrenzen
hinweg einheitlichen Anfragenreihenfolge kommt dabei die Gruppenkommunikation JGroups zum Einsatz.

Die Implementierung eines Replikats soll in einer Klasse VSReplicaServer (analog zu VSServer) erfolgen, deren
Aufgabe es ist, Verbindungen und Anfragen entgegen zu nehmen sowie die Antworten bearbeiteter Anfragen
zur Client-Seite zuriickzusenden. Im Unterschied zu VSServer darf VSReplicaServer eine Anfrage jedoch erst
ausfithren, wenn sie von der Gruppenkommunikation als néchste Anfrage bestimmt wurde. Des weiteren ist
darauf zu achten, dass nur das Replikat eine Antwortnachricht sendet, das auch iiber eine Verbindung zum
Client verfiigt; alle anderen Replikate fithren die Anfrage nur aus, um ihren internen Zustand zu aktualisieren.

Aufgaben:

— Implementierung der Klasse VSReplicaServer
— Testen der ,,Schwarzes Brett“-Anwendung mit drei Replikaten auf verschiedenen Rechnern

Hinweise:

e Bei der Implementierung von VSReplicaServer soll soweit wie moglich auf die von VSServer bereits angebo-
tene Funktionalitéit zuriickgegriffen werden. Dies lésst sich zum Beispiel erreichen, indem VSReplicaServer
als Unterklasse von VSServer realisiert wird.

e Die einzusetzende JGroups-Bibliothek ist im Pub-Verzeichnis unter |/proj/idvs/pub/aufgabe4| bereitge-
stellt. Fiir die JGroups-Initialisierung ist die in der Tafelibung vorgestellte Konfiguration zu verwenden;
diese nutzt UDP und erwartet, dass sich alle Replikate im selben Subnetz (z. B. alle im CIP-Pool) befinden.

e Es darf angenommen werden, dass die Adressen, unter denen die einzelnen Replikate Fernaufrufe entgegen
nehmen, fiir alle Replikate konstant und auf Server-Seite (jedoch nicht den Clients!) vorab bekannt sind.

e Um Konflikte mit den Implementierungen anderer Ubungsgruppen zu vermeiden, ist als JGroups-Gruppen-
name der Name der eigenen Ubungsgruppe (gruppe<Nummer>) zu verwenden.

e Fiir den Fall, dass sich ein Client per listen() am schwarzen Brett registriert hat, erfolgt im replizierten Fall
pro Replikat ein eigener Riickruf. Um auch in dieser Situation die Replikationstransparenz zu garantieren,
wére in einem realen System dafiir zu sorgen, dass nur ein einzelnes Replikat den Riickruf tatséchlich
ausfithrt und die Ergebnisse dieses Aufrufs gegebenenfalls an die anderen Replikate weiter gibt. Die
Realisierung eines solchen Mechanismus ist nicht Bestandteil dieser Ubungsaufgabe.

4.2 Ausfallsicherung der Client-Seite (fiir alle)

Nachdem in der vorherigen Teilaufgabe die Server-Seite repliziert zur Verfiigung gestellt wurde, ist nun dafiir
zu sorgen, dass die Client-Seite im Fehlerfall auch auf verschiedene Replikate zugreifen kann. Hierzu miissen
die einzelnen Replikate dem Stub auf Client-Seite bekannt gemacht werden. Dies erfolgt mittels einer Klasse
VSRemoteGroupReference, die eine Gruppenreferenz bereitstellt und die bisherige Remote-Referenz ersetzt:

public class VSRemoteGroupReference {
private VSRemoteReference[] references;
}

Ein Fernaufruf soll, solange keine Fehler auftreten, auch im replizierten Fall weiterhin iiber jeweils eine einzelne
Verbindung abgewickelt werden. An welches der in der Gruppenreferenz enthaltenen Replikate ein Stub hierzu
die Anfrage sendet ist freigestellt.

Ubungen zu Verteilte Systeme 2011 Friedrich-Alexander-Universitdt Erlangen-Niirnberg
Institut fiir Informatik, Lehrstuhl fiir Informatik 4

/proj/i4vs/pub/aufgabe4

Ist das gewéhlte Replikat jedoch nicht erreichbar bzw. bricht eine bereits bestehende Verbindung ab bevor eine
Antwortnachricht empfangen wurde, muss der Stub ein anderes Replikat kontaktieren und die Anfrage erneut
senden (,,Failover”). Fiir den Fall, dass die gesamte Replikatgruppe unerreichbar ist, soll der Stub den Fernaufruf
abbrechen und dem Aufrufer dies mittels einer RemoteException signalisieren.

Aufgaben:

— Anpassung der Klasse VSRemoteObjectManager, so dass beim Exportieren von Objekten in den dynami-
schen Proxies Gruppenreferenzen statt einfacher Referenzen zum Einsatz kommen

— FErweiterung der Klasse VSInvocationHandler um die Nutzung von Gruppenreferenzen

— Testen der Implementierung durch manuelles Beenden einzelner bzw. mehrerer Replikate

4.3 Neustart nach Replikatausfall (optional fiir 5,0 ECTS)

Der interne Zustand der Testanwendung ,Schwarzes Brett“ (Botschaften, registrierte Clients) wird mittels
VSBoardImpl vollstdndig im Hauptspeicher verwaltet. Dies hat zur Folge, dass durch den Absturz eines Replikats
samtliche dieser Daten verloren gehen. Um den Datenverlust zu kompensieren wird in dieser Teilaufgabe
dafiir gesorgt, dass sich ein neu gestartetes Replikat beim Wiedereintritt in die Replikatgruppe den aktuellen
Anwendungszustand von einem der anderen Replikate holt. Die Umsetzung dieses Mechanismus erfolgt dabei
mittels der von JGroups angebotenen Unterstiitzung von Zustandstransfers, die nicht nur fiir die Ubermittlung
der Daten sorgt, sondern auch sicherstellt, dass der Zustand konsistent ins neue Replikat iibernommen wird.

Das Auslesen bzw. Setzen des Zustands ist iiber eine einheitliche Schnittstelle VSRemoteObjectStateHandler
abzuwickeln, von der angenommen werden kann, dass jedes auf Server-Seite im VSRemoteObjectManager
exportierte Remote-Objekt (z. B. VSBoardImpl) sie implementiert:

public interface VSRemoteObjectStateHandler {
public bytel[] getState();
public void setState(bytel[] state);

}

public class VSBoardImpl implements VSBoard, VSRemoteObjectStateHandler {
[...]
}

Ein Aufruf von getState() liefert den kompletten Anwendungszustand des Remote-Objekts zum Zeitpunkt
des Aufrufs in serialisierter Form. Mit Hilfe der Methode setState() ldsst sich der Anwendungszustand auf
Grundlage dieser Daten einem Remote-Objekt (auf einem anderen Replikat) zuweisen.

public class VSRemoteObjectManager {
public byte[] getRemoteObjectStates();
public void setRemoteObjectStates(byte[] states);

}

Analog zu getState () und setState() soll die Klasse VSRemoteObjectManager fiir die Zustandsiibertragung
zwei Methoden getRemoteObjectStates() und setRemoteObjectStates() zur Verfiigung stellen, die es
ermoglichen, die Zustédnde aller exportierten Remote-Objekte gebiindelt auszulesen bzw. zu setzen.

Aufgaben:

— Erweiterung der Klasse VSBoardImpl zum Auslesen und Setzen des Objektzustands
— Erweiterung der Klasse VSRemoteObjectManager um den Zustandstransfer fiir mehrere Remote-Objekte

— Testen der Implementierung durch manuelles Beenden und Neustarten einzelner bzw. mehrerer Replikate

Hinweise:

e Es darf angenommen werden, dass zu jeder Zeit mindestens ein Replikat aktiv ist und korrekt funktioniert.

e Der zu sichernde Zustand eines VSBoardImpl-Objekts umfasst nicht nur alle seit Anwendungsstart verfassten
Botschaften, sondern auch alle am schwarzen Brett registrierten VSBoardListener.

Abgabe: am 8.7.2011 in der Rechneriibung

Die fiir diese Ubungsaufgabe erstellten Klassen sind in einem Subpackage vsue.replica zusammenzufassen.

Ubungen zu Verteilte Systeme 2011 Friedrich-Alexander-Universitdt Erlangen-Niirnberg
Institut fiir Informatik, Lehrstuhl fiir Informatik 4

	Übungsaufgabe #4: Replikation
	Replikation der Server-Seite (für alle)
	Ausfallsicherung der Client-Seite (für alle)
	Neustart nach Replikatausfall (optional für 5,0 ECTS)

