Konfigurierbare Systemsoftware
(KSS)

VL 5 — Variability Management in the Large:
The VAMOS Approach

Daniel Lohmann

Lehrstuhl fiir Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

SS 14 — 2014-05-15

O http://www4.informatik.uni-erlangen.de/Lehre/SS14/V_KSS


http://www4.informatik.uni-erlangen.de/Lehre/SS14/V_KSS

About this Lecture

model level




About this Lecture

(( % Problem Space

Domain Expert

Features and Dependencies
- =

/ o[
Configuration| £, Variant
System User DN o ) actual System User
N N ”n‘L_”L‘L.L 7 A implementation 7
O DI properties \\ » O
+ +
/\ Specific Problem _Specific Solution /\

0 ©dl KSS (VL 5| SS14) 5 The VAMOS Approach 5-2




Implementation Techniques: Classification < [77]
PaN

N @o

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach 5-3



Agenda

5.1 Motivation

5.2 Variability in Linux

5.3 Configuration Consistency
5.4 Configuration Coverage
5.5 Automatic Tailoring

5.6 Summary

5.7 References

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach 5-4




optional, independent

33 features

one individual variant

for each human being



o optlonal mdependent

320 features .

. Y ‘more: varlants than ."-“-:, :
- atomss vthe unlversel



Typical Configurable Operating Systems...

1,250 fostires

‘ ERRORS ‘ MEMSET ‘ OPT\ONS‘

\ /

J STARTUP




Typical Configurable Operating Systems...

1,250 fostires

Challenges: —  VAMOS*
= How to maintain this? &3
= How to test this? <
= Why so many features anyway? E
o @
* VAriability Management in Operating Systems wnn

12,000 features



Agenda

5.2 Variability in Linux
Variability Implementation in Linux
Challenges

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.2 Variability in Linux




The Linux Configuration and Generation Process

Configuration with an
KCONFIG frontend

Compilation of a
subset of files

Selection of a
subset of cPP Blocks

loadable kernel modules

Kconfig
selection

lenﬁg

coarse-grained
variability

Build scripts

Makefile
arch/x86/init.c

arch/x86/. ..
lib/Makefile
kernel/sched.c

Linking of the kernel and

2]

arch/x86/entry32.5

.config
derives from

N N

—

derives from

fine-grained
variability

auto.conf jautoconf.h

Source files

" #ifdef CONFIG_HOTPLUG CPU

| dendif

@

drives and controls

I gcc -02 -Wall -c numa.c -o numa.o

o | m numa.o <...> -0 vmlmux

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.2 Variability in Linux




Dominancy and Hierarchy of Variability

~

(@)

S

[/oi Feature Modeling 12,000 features] =
)

(@]

[/1: Coarse-grained: KBUILD 31,000 source files] S
3

[ S

[/2: Fine-grained: cpp 89,000 #ifdef blocks] 3
.................................................................................................... S
l3: Language-level: GccC — if(CONFIG_SMP) =
.................................................................................................... 8
4: Link time: Lb 5 branches in linker scripts |~ 2

©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.2 Variability in Linux 5-10




Challenges with Implemented Variability

Configuration Implementation

< Coverage?

e (] [occ )

m  Central declaration of configurability: KCONFIG

B Distributed implementation of configurability: MAKE, CPP, GCC, LD

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.2 Variability in Linux 5-11




Agenda

5.3 Configuration Consistency
Problem Analysis
Solution Approach
Results

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-12




Problem Analysis: Configuration Consistency

Configuration Implementation

coan.g HOTPLUG CPU

?

ldepends on SMP && HOTPLUG] #ifdef CONFIG_CPU_HOTPLUG
#else
#endif

[#ifdef CONFIG_ CPU_HOTPLUG

symbols

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-13




Problem Analysis: Symbolic Inconsistency [10]

config HOTPLUG_CPU
bool "Support for hot>pluggable CPUs"
depends on SMP && HOTPLUY
---help---

static int
hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu)

A loool
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_F
70 laasl

#ifdef CONFIG_CPU_HOTPLUG
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD:

case CPU_DEAD_FROZEN: el
free_cpumask_var(cfd->cpumask) ; Fix for a
break; .
#endif critical bug

+i
return NOTIFY_OK;

©d KSS (VL 5| SS14) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-14



Problem Analysis: Logic Inconsistency [10]

MEMORY_MODEL

NS

FLATMEM SPARSEMEM A <~~~

atic ... int pfn_to_mid(...)
-1 # ifdef CONFIG.NUMA
// Blocks
# else
// Blocks
# endif
#endif

L,
DISCONTIGMEM
depends ot

B Feature DISCONTIGMEM implies feature NUMA

B Inner blocks are not actually configuration-dependent

m Block, is always selected — undead . .
_ configurability defects
m Blocks is never selected — dead
~> Linux contains superfluous #ifdef Blocks! Result:

Code cleanup

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-15




Solution Approach: Consistency Validation

Problem and solution space are analyzed for configuration points:

configuration space

MEMORY_MODEL

FLATMEM SPARSEMEM

p <
DISCONTIGMEM \d—epﬁds/v

O

C = (FLATMEM — MEMORY_MODEL)
(DISCONTIGMEM — MEMORY_MODEL)
(SPARSEMEM — MEMORY_MODEL)
(NUMA — MEMORY_MODEL )

(

DISCONTIGMEM — NUMA)

B >

implementation space

ST ) #ifdef CONFIG_DISCONTIGMEM

// Blocky
static ... int pfn_to_mid(...)
- # ifdef CONFIG_NUMA
NUMA < ---ommmooe o // Blocky
# else
// Blockg
# endif
#endif
Z = (Blocky > DISCONTIGMEM)
dead?  sat(C AZ ABlocky) A (Block <+ Blocky A (NUMA)

undead? sat(C AZ A —Blocky A (Blocks ++ Blocky A —Blockp)

A parent(Blocky))

<

configuration space constraints

implementation space constraints
configurability defects P P

= and transformed into propositional formulas

O ©dl KSS (VL5 |SS14)

5 The VAMOS Approach | 5.3 Configuration Consistency 5-16



Implementation: The UNDERTAKER [10]

Job: Find (and eventually bury) dead #ifdef-code!

config HOTPLUG_CPU

bool "Support for ..."
depends on SMP & ... |
KConfig
v files

N KConfig
| v é
Linux CPP SAT
source Parser crosscheck  gpgine
#ifdef CONFIG HOTPLUG CPU ) )
#endif undertaker

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-17



Implementation: The UNDERTAKER [10]

Job: Find (and eventually bury) dead #ifdef-code!

B We have found 1776 configurability defects
in Linux v2.6.35

B Submitted 123 patches for 364 defects

B 20 are confirmed new bugs
(affecting binary code)

m  Cleaned up 5129 lines of cruft code

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-18



Implementation: The UNDERTAKER [10]

Job: Find (and eventually bury) dead #ifdef-code!

New and Fixed Configuration Defects over Linux Releases
70

Introduced Defects mmm——
60 Fixed Defects mmm—

50
40
30
20

10

Ly L L by L P P Ly L.

96‘6’ 961? 96’6’ 96‘6’ 61? eo«? 96‘6’ eec? eed’ 96‘6’ eel? eed’ 96‘6’
e, 0 7, R P 0 (¢4 %, % 6‘ S e,

e, (4 54 ©, 54 e, e,

How good is this, really?

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-18




Agenda

5.4 Configuration Coverage
Where Have All the Features Gone?
Results
Extracting Variability from KBUILD
Improvements
Implementation Space Coverage

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-19




Common Beliefs About Variability in Linux

© Most variability is expressed by boolean (or tristate) switches.

® arch-x86 is the largest and allyesconfig selects most features.

® Variability is mostly implemented with the cpp.

® The Linux kernel is highly configurable.

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-20




Linux v3.1: Feature Distribution by Type

@ Most variability is expressed by boolean (or tristate) switches

KcONFIG features

11,691 [100 %]

93.3 % 6.7 %
Option-like Value-like
10,907 [93.3 %] 784 6.7 %]
55.2%  44.8% 11.1% 88.9%
Boolean Tristate String Integer/Hex
6,024 [51.5%)] 4,883 [41.8 %] 87 [0.7 %] 697 [6 %]

= Almost all features in Linux are option-like

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-21



Linux v3.1: Coverage of arch-x86 / allyesconfig

@ arch-x86 is the largest and allyesconfig selects most features

KCONFIG features

11,691 [100 %]

6.5 % 33.5%. ..
arch-x86 : non-arch-x86
7,776 [66.5 %] /3015 [33.5%]
79.5% 29.5% . e )
allyesconfig  non-allyesconfig ot considered
ROl | 2BMOSH | i

6,209 [53.1%]

= arch-x86/allyesconfig is not nearly a full configuration

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-22




Linux v3.1: Distribution by Granularity

® Variability is mostly implemented with the cpp

KCONFIG features

11,691 [100 %]

66.3% 16.:5% 335%
KBUILD interpreted KCONFIG only CPP interpreted
7,749 [66.3 %] 1,925 [16.5 %] 3,916 [33.5 %]
75.5% 24.5% /48.5%/ 51.5%
KBUILD only KBUILD/CPP CPP only
5,850 [50 %] 1,899 [16.2 %] 2,017 [17.3%)]

= KBUILD implements more than two thirds of all variation points

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-23




Linux v3.2: Distribution by HW/SW

® The Linux kernel is highly configurable

KCONFIG features

12,038 [100 %]

12.4% 87.6%
Software related Hardware related
1,487 [12.4 %] 10,551 [87.6 %]
35.6% 30.1% 50.5% 5.1%
net 34.3% misc drivers 24.4% sound
530 [4.4 %] 447 [3.7 %] 5,330 [44.3 %] 536 [4.5 %]
kernel+init+mm-+lib arch
510 [4.2 %] 4,685 [38.9 %]

= Software features account for
only twelve percent of all variation points

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-24




Linux Feature Growth over Time

12,000

10,000

8,000 |-

6,000 |

4,000 |

2,000 |

All features

HW features

arch/ drivers/ sound/

-
SW features (everything else)

O—

0 w =
PEEPRE SIS T ESE SRS >
© O © © © © © © © © © © © © 0N X
YLYYuyyuyyyyyyyy
KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage

(#Features, 2007-2012)

5-25



Linux Feature Growth over Time (#Features in arch, 2007-2012)

T T T T T T T T T T T T T T T T T
4,000
3,000
2,000
1,000 |-

0l e T e [ mveyp———

I I N [ I I S S O N
CEHFES S IBTESE SIS 0 o

all

arm
powerpc
mips
x86
blackfin
sh

cris
mé8k
ia64
mn10300
alpha
avr32
s390
sparc
h8300
um
m32r
frv
parisc

xtensa

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage

5-26



Results: Where Have all the Features Gone?

© Most variability is expressed by boolean (or tristate) switches v
= more than 93 percent of all features are option-like
~ it is acceptable for tools to ignore value-type features

® arch-x86 is the largest and allyesconfig selects most features b 4

= more than 53 percent are not covered by this configuration
~ other parts of Linux are probably less tested and error-prone!

® Variability is mostly implemented with the cpp b 4

m more than 66 percent of all features are handled
by the build system, only 17 percent are handled by CPP only

~~ variability extraction from KBUILD is necessary

® The Linux kernel is highly configurable b 4
m only 12 percent of all features configure software only
= variability is mostly induced by advances in hardware
~» complexity will increase further

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-27



Challenges: Variability Extraction from the Build System

Variability extraction — which file is selected by which feature?

Usual approach for variability extraction [6, 10] (KCONFIG, CPP, ...):

source parse & transform propositional formula}

Parsing does not work well for MAKE-languages
m declarative and Turing-complete languages

m special features, like shell, foreach, eval, addprefix, ...

Linux's KBUILD is built on top of (GNU) MAKE
m nevertheless, researchers have tried parsing to extract variability
- KBUILDMINER by Berger, She, Czarnecki, et al. [1]
- Nadi parser by Nadi and Holt [5]
m resulting tools are too brittle at best
- work for a (few) Linux version(s) only
- each usage of a special feature requires manual tailoring

©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-28




Linux Build Process Revisited

Kconfig Source files

selection

Root Feature

#ifdef CONFIG HOTPLUG CPU

SMP=n -
PM=y o #endif

) APM=m \ :I
R I cPp

derived from
‘ .config autoconf.h

derived from #undef CONFIG_SMP
#define CONFIG_PM 1
#undef CONFIG_APM
#define CONFIG_APM_MODULE 1

Build
scripts

auto.conf

CONFIG_SMP
) CONFIG_PM
Makefile CONFIG_APM

arch/x86/init.c
arch/x86/init.c
arch/x86/...
lib/Makefile
kernel/sched.c

WO
<

3

kbuild

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-29




Variability Extraction from KBUILD with GOLEM [2]

Basic idea: Systematic probing and inferring of implications
SPLC '12: Dietrich, et al. [2]

m  Dancing Makefiles obj-y += fork.o

obj-$(CONFIG_SMP) += spinlock.o

m |dentification of KCONFIG obj-$(CONFIG_APM) += apm.o

references

B Recursion into subdirectory = opj-$(coNFIc_PM) += power/

while considering constraints

Kernelversion found inferences

m  Robust with respect to v2.6.25 6,274
architecture and version v2.6.28.6 7,032
v2.6.33.3 9,079

= no adaptations on

or for KBUILD! v2.6.37 10,145

v3.2 11,050

(93.7%)
(93.6%)
(94.9%)
(95.1%)
(95.4%)

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage

5-30



Case Study: Configuration Consistency

config HOTPLUG CPU .
bool "Support for ..." I:I
depends on SMP && ... M
KConfig
v files

5 KConfig

N Parser
> ;

: cpp SAT
Linux Parser crosscheck Engine >
A A

source
#ifdef CONFIG_HOTPLUG_CPU T
#endif EKbuiId

xtracti
\_ X' undertakey

=N

obj -$(CONFIG_HOTPLUG_CPU) \ )

Make
files

©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage

defect
reports

5-31



Case Study: Configuration Consistency — |5-17

Configuration defects in Linux v3.2:

Without KBUILD constraints

Code defects 1835
Referential defects 415
Logical defects 83
Sum: > 2333
With KBUILD constraints
Code defects 1835
Referential defects 439
Logical defects 299
Sum: > 2573 Result: +10%

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-32



Implementation Space Coverage

Issue: Decompositional Implementation of Variability

#ifdef CONFIG_NUMA Developer has to derive at

Blocki least two configurations to
#else .

Blocks ensure that the every line of
#endif code even compiles!

Make sure that the submitted code. . .

€¢ 8. has been carefully reviewed with respect to relevant KCONFIG
combinations. This is very hard to get right with testing — brain-
power pays off here. ))

Linux kernel patch submission checklist (Documentation/SubmitChecklist)

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-33




The VAMPYR Driver for Static Checkers

B Goal: Maximize configuration coverage of existing tools

m Every configuration-conditional part should be covered at least once

m Statement coverage

= Create a set of configurations and scan each individually

config HOTPLUG_CPU KConfig
bool "Support for ..." . files
depends on SMP & ... .

\V4 !

Calculate configurations
\ PresenceCondition(bl) that maximize the
&&

. e Configuration Coverage
(B4 108 fQCONRICEXEC) PresenceCondition(b2) 9 9
&

establish N
propostional =] N
formulas — )

#elif CONFIG_ARM
<>
i undertaker

Partiatconf tions
Linux i 3 : jo—
Source Code o

obj-$ (CONFIG_HOTPLUG_CPU) = hotplug.o

| Makefiles
1 for each

Scan each configuration
with one or more of:

expand
Kconfig

Kconfig
configuration

O ©dl KSS (VL5 |SS14)

5 The VAMOS Approach | 5.4 Configuration Coverage

5-34




The VAMPYR Driver for Static Checkers

B Goal: Mavimize canfinnratinn raverane nf avictina tanle

m Ever m Cover each conditional block affected by patch: Ice
Stai
" ot $ git am bugfix.diff # Apply patch

— Create $ vampyr -C gcc --commit HEAD # Examine

m Cover each conditional block on arch-arm:

$ vampyr -C gcc -b arm_worklist # nightly check———

S . Scan eacn connguration

v - H};‘ with one or more of:
Calculate configurations

> that maximize the 3

Configuration Coverage

N PresenceCondition(b1)
. N &&
S {QCONEICOXED PresenceCondition(b2)
&

#elif CONFIG_ARM establish D
R o propostional — D
sendif formulas —

undertaker

Partia_l'c tlons

Linux i expand .
Source Code o .. Kconﬁg Kconfig
obj -$(CONFIG_HOTPLUG_CPU) = hotplug.o * - nintaining ' Makefiles —— | configuration
AAAAAAAAAA ] fo.— each

O ©dl KSS (VL5 |SS14)

5 The VAMOS Approach | 5.4 Configuration Coverage 5-34




Results

with Gcc as Static Checker

USENIX 14 [7]

. GCC GcC #ifdef Result:
) allyesconf ~ VAMPYR . Overhead: #warnings #errors b blocks per . esult
Software Project ce cc increase of Gcc VAMPYR VAMPYR | reported issue increase of
N N Invocations (al1yescontig) (al1yescontig) ssues P (bpi) GCC messages
Linux/x86 78.6%  88.4% 21.5% 201 (176) 1(0) 202 110 26 (+15%)
hardware 76.8% 86.5% 21.0% 180 (155) 1(0) 181 82 26 (+17%)
software 82.7%  92.4% 22.7% 21 (21) 0(0) 21 351 0 (+0%)
Linux/arm 50.9%  84.4% 22.7% 417 (294) 02 (15) 508 46 199 (+64%)
hardware 51.2%  80.1% 23.7% 380 (262) 92 (15) 471 34 194 (+70%)
software 83.6% 96.3% 19.5% 37(32) 0 (0) 37 192 5 (+16%)
Linux/mips 54.5%  90.9% 22.0% 220 (157) 29 (1) 249 85 91 (+58%)
hardware 42.1%  88.2% 21.5% 174 (121) 17(1) 191 72 69 (+57%)
software 79.8%  96.3% 23.2% 46 (36) 12 (0) 58 128 22 (+61%)
L4/FIASCO 99.1% 99.8% see text 20 (5) 1(0) 21 see text 16 (+320%)
Busybox 74.2% 97.3% 60.3% 44 (35) 0(0) 44 72 9 (+26%)
Example: arch-arm
= Increased CC compared to allyesconfig from 60% to 84%
= 199 (+64%) additional issues reported by GCC
m 91 reported issues have to be considered as serious bugs
m 7 patches submitted — all got immediately accepted
| Just by letting the compiler see all the code! |
O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-35




Agenda

5.5 Automatic Tailoring
Idea
Results

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-36




ldea: Automated Tailoring of Linux

B Distribution kernels today come with a maximum configuration
B As side-effect, this maximizes the attack surface!

B Each use-case needs its specific, ideal configuration

— Automatically derive an ideal configuration for
a given use case.

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-37




Approach

automatically
derive

CONFIG_X86=y
CONFIG_SCSl=n
[-.]

e

Specifi )
peC|f|.c Tailored
Scenario . :
Configuration
observe
FTRACE

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-38




Approach

automatically

CONFIG_ X86=y
M derive CONFIG_SCSl=n
> [...]
Specific .
P ) Tailored
Scenario . .
Configuration
employ SAT
checker
0x8043566 — kern/sched.c:80 @
0x80452d8 — drivers/scsi.c:4302
[...5000 more locations] o
i Holistic
e establis SNIT
Identify in Variability
Source Code Model
O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-38




Evaluation

O_

Ubuntu 12.04 with Linux 3.2 kernel; two use cases

m \Web server setup with Apache, MySQL, PHP (LAMP)
= Workstation setup with NFS (Desktop)

Trace time: 15 min, running defined workload
s LAMP: Google Skipfish ~+ 5377 unique kernel functions

m Desktop: iozone, bonnie++ ~ 6933 unique kernel functions
Black and whitelist for manual tailoring
m Blacklist: conFIG_FTRACE

= Whitelist: CONFIG_UNIX, CONFIG_PACKET, CONFIG_DEVTMPFS,

CONFIG_DEVTMPFS_MOUNT, CONFIG_ATA_PIIX, CONFIG_SATA_AHCI,
CONFIG_ATA_GENERIC, CONFIG_DRM_I915_KMS, CONFIG_BLK_DEV_INITRD

Tailored Tailored

Baseline LAMP  Workstation/NFS

Kernel size in Bytes 9,933,860 | 4,228,235 (44%) 4,792,508 (48%)
LKM total size in Bytes | 62,987,539 | 2,130,642 ( 3%) 2,648,034 ( 4%)
Options set to 'y’ 1,537 452 (29%) 492 (32%)
Options set to 'm’ 3,142 43 ( 1%) 63 (2%)
Compiled source files 8,670 1,121 (13%) 1,423 (16%)

©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-39



Evaluation: Reduction for LAMP
0 1000 2000 3000 4000 5000 6000

arch [l 33%
block |15%
crypto 071%
drivers I 95%

fs [N 86%
ipc | 38%
kemel W 34%
lib W 25% ® removed files from tailored
kemel compared to Ubuntu
mm 8% standard

net N 87%
sound [ 100%
others M 62%

m source files in both kemels

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-40



Evaluation: Reduction for LAMP

0 1000 2000 3000 4000 5000 6000
arch |l 33%
block |15%
Cl'yptO I‘I'ID/
drivers = 90% less executable code
fs ) ) -
. m 10% less functions with known vulnerabilities
pc | (with published CVE issues)
kemel : : : :
ib W 25% m removed files from tailored
kemel compared to Ubuntu
mm [ 8% standard

net N 87%
sound [ 100%
others M 62%

m source files in both kemels

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-40



Evaluation: Performance Impact for LAMP

45
40
35
30
25
20
15
10

replies per second

= Debian = tailored

0 100 200 300 400 500 600 700 800 900 1000

requests per second

No observable performance impact

©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-41



Results: Automatic Tailoring [8]

HotDep '12: Tartler, Kurmus, Ruprecht, Heinloth, Rothberg et al. [8]

TCB is significantly smaller
Easy to use: process is fully automated

If necessary, the tailoring can guided with whitelists and blacklists

Going further: Dynamic ASR [4]
m Even if present: Who is allowed to call what ~ CFG analysis

= At runtime: Block illegal invocations.

©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5-42



Summary

B Real-world system software offers thousands of features
m eCos: 1,250 features
m Linux: 12,000 features
= central declaration (ecosConfig, KCONFIG)

} mostly induced by hardware!

m distributed, multi-paradigm implementation (MAKE, CPP, GCC, ...)

B This imposes great challenges for management and maintenance
= how to ensure configurability consistency?
= how to ensure configuration coverage?

= how to keep pace with the constant feature increase?

B A strong call for adequate tool support — VAMOS
m already found thousands and fixed hundreds of defects and bugs

= more to come!

O ©dl KSS (VL 5 | SS14) 5 The VAMOS Approach | 5.6 Summary 5-43




Referenzen

(1]

(2]

(3]

(4]

Thorsten Berger, Steven She, Krzysztof Czarnecki, et al. Feature-to-Code
Mapping in Two Large Product Lines. Tech. rep. University of Leipzig (Germany),
University of Waterloo (Canada), IT University of Copenhagen (Denmark), 2010.

Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikschat, et al. “A
Robust Approach for Variability Extraction from the Linux Build System”. In:
Proceedings of the 16th Software Product Line Conference (SPLC '12).
(Salvador, Brazil, Sept. 2—7, 2012). Ed. by Eduardo Santana de Almeida,
Christa Schwanninger, and David Benavides. New York, NY, USA: ACM Press,
2012, pp. 21-30. ISBN: 978-1-4503-1094-9. DOI: 10.1145/2362536.2362544.

Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikschat, et al.
“Understanding Linux Feature Distribution”. In: Proceedings of the 2nd AOSD
Workshop on Modularity in Systems Software (AOSD-MISS '12). (Potsdam,
Germany, Mar. 27, 2012). Ed. by Christoph Borchert, Michael Haupt, and
Daniel Lohmann. New York, NY, USA: ACM Press, 2012. ISBN:
978-1-4503-1217-2. DOI: 10.1145/2162024.2162030.

Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, et al. “Attack Surface Metrics
and Automated Compile-Time OS Kernel Tailoring”. In: Proceedings of the 20th
Network and Distributed Systems Security Symposium. (San Diego, CA, USA,
Feb. 24-27, 2013). The Internet Society, 2013. URL:
http://www.internetsociety.org/sites/default/files/03_2_0.pdf.

O ©dl

KSS (VL 5| SS14) 5 The VAMOS Approach | 5.7 References 5-44



http://dx.doi.org/10.1145/2362536.2362544
http://dx.doi.org/10.1145/2162024.2162030
http://www.internetsociety.org/sites/default/files/03_2_0.pdf

Referenzen (conrq)

(5]

(6]

(7]

(8]

Sarah Nadi and Richard C. Holt. “Mining Kbuild to Detect Variability Anomalies
in Linux". In: Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR '12). (Szeged, Hungary, Mar. 27-30,
2012). Ed. by Tom Mens, Yiannis Kanellopoulos, and Andreas Winter.
Washington, DC, USA: IEEE Computer Society Press, 2012. ISBN:
978-1-4673-0984-4. DOI: 10.1109/CSMR.2012.21.

Julio Sincero, Reinhard Tartler, Daniel Lohmann, et al. “Efficient Extraction and
Analysis of Preprocessor-Based Variability”. In: Proceedings of the 9th
International Conference on Generative Programming and Component
Engineering (GPCE '10). (Eindhoven, The Netherlands). Ed. by Eelco Visser and
Jaakko Jarvi. New York, NY, USA: ACM Press, 2010, pp. 33-42. ISBN:
978-1-4503-0154-1. DOI: 10.1145/1868294.1868300.

Reinhard Tartler, Christian Dietrich, Julio Sincero, et al. “Static Analysis of
Variability in System Software: The 90,000 #ifdefs Issue”. In: Proceedings of the
2014 USENIX Annual Technical Conference (USENIX '14). To appear.
Philadelphia, PA, USA: USENIX Association, 2014.

Reinhard Tartler, Anil Kurmus, Bernard Heinloth, et al. “Automatic OS Kernel
TCB Reduction by Leveraging Compile-Time Configurability”. In: Proceedings of
the 8th International Workshop on Hot Topics in System Dependability (HotDep
'12). (Los Angeles, CA, USA). Berkeley, CA, USA: USENIX Association, 2012,
pp. 1-6.

O ©dl

KSS (VL 5| SS14) 5 The VAMOS Approach | 5.7 References 5-45


http://dx.doi.org/10.1109/CSMR.2012.21
http://dx.doi.org/10.1145/1868294.1868300

Referenzen (conrq)

[9] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, et al. “Configuration
Coverage in the Analysis of Large-Scale System Software”. In: ACM SIGOPS
Operating Systems Review 45.3 (Jan. 2012), pp. 10-14. ISSN: 0163-5980. DOI:
10.1145/2094091.2094095.

[10] Reinhard Tartler, Daniel Lohmann, Julio Sincero, et al. “Feature Consistency in
Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature
Problem”. In: Proceedings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems 2011 (EuroSys '11). (Salzburg, Austria). Ed. by
Christoph M. Kirsch and Gernot Heiser. New York, NY, USA: ACM Press, Apr.
2011, pp. 47-60. ISBN: 978-1-4503-0634-8. DOI: 10.1145/1966445.1966451.

O ©dl KSS (VL 5| SS14) 5 The VAMOS Approach | 5.7 References 5-46



http://dx.doi.org/10.1145/2094091.2094095
http://dx.doi.org/10.1145/1966445.1966451

	5 The VAMOS Approach
	5.1 Motivation
	5.2 Variability in Linux
	5.3 Configuration Consistency
	5.4 Configuration Coverage
	5.5 Automatic Tailoring
	5.6 Summary
	5.7 References


