Chapter 4 Asymmetric Cryptography

- Introduction
- Encryption: RSA
- Key Exchange: Diffie-Hellman

Asymmetric Cryptography

- General idea:
- Use two different keys $-K$ and $+K$ for encryption and decryption
- Given a random ciphertext $c=E(+K, m)$ and $+K$ it should be infeasible to compute $m=D(-K, c)=D(-K, E(+K, m))$
- This implies that it should be infeasible to compute $-K$ when given $+K$
- The key $-K$ is only known to one entity A and is called A's private key $-K_{A}$
\square The key $+K$ can be publicly announced and is called A's public key $\boldsymbol{+} K_{A}$
- Applications:
- Encryption: If B encrypts a message with A's public key $+K_{A}$, he can be sure that only A can decrypt it using $-K_{A}$
- Signing: If A encrypts a message with his own private key $-K_{A}$, everyone can verify this signature by decrypting it with A's public key $+K_{A}$
- Attention: It is crucial, that everyone can verify that he really knows A's public key and not the key of an adversary!

Design of Asymmetric Cryptosystems

- Difficulty: Find an encryption algorithm and a key generating method to construct two keys $-K,+K$ such that it is not possible to decipher $E(+K, m)$ with the knowledge of $+K$
- Constraints:
- The key length should be "manageable"
- Encrypted messages should not be arbitrarily longer than unencrypted messages (we would tolerate a small constant factor)
- Encryption and decryption should not consume too much resources (time, memory)
- Basic idea: Take a problem in the area of mathematics / computer science, that is hard to solve when knowing only $+K$, but easy to solve when knowing $-K$
- Knapsack problems: basis of first working algorithms, which were unfortunately almost all proven to be insecure
- Factorization problem: basis of the RSA algorithm
- Discrete logarithm problem: basis of Diffie-Hellman and EIGamal

RSA - Mathematical Background (Modular Arithmetie)

- We say b is congruent a mod n if it has the same remainder like a when divided by n. So, n divides (a-b), and we write $\boldsymbol{b} \equiv \boldsymbol{a} \bmod \boldsymbol{n}$
- E.g., $4 \equiv 11 \bmod 7,25 \equiv 11 \bmod 7$
- Greatest common divisor
- Let $a, b \in Z$ and $d=\operatorname{gcd}(a, b)$. Then there exists $m, n \in Z$ such that:

$$
d=m \times a+n \times b
$$

- Euler totient of \boldsymbol{n} : $\Phi(n)$
- Let $\Phi(n)$ denote the number of positive integers less than n and relatively prime to n
- Examples: $\Phi(4)=2, \Phi(15)=8$
- If p is prime $\Rightarrow \Phi(p)=p-1$
- Let n and b be positive and relatively prime integers, i.e. $\operatorname{gcd}(n, b)=1$
$\Rightarrow \boldsymbol{b}^{\Phi(n)} \equiv 1 \bmod \boldsymbol{n}$
- Euclidean Algorithm
- The algorithm Euclid given a, b computes $\operatorname{gcd}(a, b)$
- int Euclid(int a, b) \{ if $\quad(b=0)\{$ return $(a) ;\}$ return(Euclid(b, a MOD b); \}
- Extended Euclidean Algorithm
- The algorithm ExtEuclid given a, b computes d, m, n such that:

$$
d=g c d(a, b)=m \times a+n \times b
$$

- struct\{int d, m, n\} ExtEuclid(int a, b) \{ int d, d', m, m', n, n^{\prime};
if $(b=0)\{$ return $(a, 1,0) ;\}$
($\left.d^{\prime}, m^{\prime}, n^{\prime}\right)=\operatorname{ExtEuclid}(b$, a MOD b); $(d, m, n)=\left(d^{\prime}, n^{\prime}, m^{\prime}-\lfloor a / b\rfloor \times n^{\prime}\right) ;$
return(d, m, n);
\}
For more information, please refer to undergraduate CS classes or to the NetSec slides WS 2006/2007

RSA in a Nutshell

- Invented by R. Rivest, A. Shamir and L. Adleman [RSA78]
- Key generation
- Select p, q
- Calculate n
- Calculate $\Phi(n)$
- Select integer e
- Calculate d
- Public key
- Private key
- Encryption
a Plaintext
- Ciphertext
$\mathrm{M}<n$ (what about $0,1, \ldots$?)
$\mathrm{C}=\mathrm{M}^{e} \bmod n$
- Decryption
- Ciphertext
- Plaintext
p and q both prime, $p \neq q$
$n=p \times q$
$\Phi(n)=(p-1)(q-1)$
$\operatorname{gcd}(\Phi(n), e)=1 ; 1<e<\Phi(n)$
$d \times e \bmod \Phi(n)=1($ extended Euclid)
$+\mathrm{K}=\{e, n\}$
$-K=\{d, n\}$

RSA - Encryption / Decryption

- Let p, q be distinct large primes and $n=p \times q$. Assume, we have also two integers e and d such that $d \times e \equiv 1 \bmod \Phi(n)$
- Let M be an integer that represents the message to be encrypted, with M positive, smaller than and relatively prime to n.
- Example: Encode with <blank> = 99, A = 10, B = 11, $\ldots, \mathrm{Z}=35$ So "HELLO" would be encoded as 1714212124. If necessary, break M into blocks of smaller messages: 1714212124
- To encrypt, compute: $C=M^{e}$ MOD n
- This can be done efficiently using the square-and-multiply algorithm
- To decrypt, compute: $M^{\prime}=C^{d}$ MOD n
- Proof
$d \times e \equiv 1 \bmod \Phi(n) \Rightarrow \exists \mathrm{k} \in \mathrm{Z}:(d \times e)-1=\mathrm{k} \times \Phi(n) \Leftrightarrow(d \times e)=\mathrm{k} \times \Phi(n)+1$
we have: $M^{\prime} \equiv E^{d} \equiv M^{(e \times d)} \equiv M^{(k \times \Phi(n)+1)} \equiv 1^{k} \times M \equiv M \bmod n$

RSA - Encryption / Decryption

- As $(d \times e)=(e \times d)$ the operation also works in the opposite direction, that means you can encrypt with d and decrypt with e
- This property allows to use the same keys d and e for:
- Receiving messages that have been encrypted with one's public key
- Sending messages that have been signed with one's private key

RSA - Security

- The security of the scheme lies in the difficulty of factoring $n=p \times q$ as it is easy to compute $\Phi(n)$ and then d, when p and q are known
- This class will not teach why it is difficult to factor large n's, as this would require to dive deep into mathematics
- If p and q fulfill certain properties, the best known algorithms are exponential in the number of digits of n
- Please be aware that if you choose p and q in an "unfortunate" way, there might be algorithms that can factor more efficiently and your RSA encryption is not at all secure:
- Thus, p and q should be about the same bit length and sufficiently large
- $(p-q)$ should not be too small
- If you want to choose a small encryption exponent, e.g. 3, there might be additional constraints, e.g. $\operatorname{gcd}(p-1,3)=1 \operatorname{and} \operatorname{gcd}(q-1,3)=1$
- The security of RSA also depends on the primes generated being truly random (like every key creation method for any algorithm)
- Moral: If you are to implement RSA by yourself, ask a mathematician or better a cryptographer to check your design

RSA - Security

- Side channel attacks
- Optimizations for use of RSA in embedded systems depend on the Chinese remainder theorem (CRT)
- Applications
- Smart cards (token, banking)
- Pay-per-view TV
- and many others...
- Use (and storage) of p and q allows to calculate $m^{e} \bmod p$, which can be efficiently manipulated to compute $m^{e} \bmod n$
- Introducing computation errors allows to reveal the prime p $p=\operatorname{gcd}\left(s^{\prime}-s, n\right)$ with s ' and s being the bogus and correct signatures
- Implementation using square and multiply
- Most RSA implementations rely on the square-and-multiply algorithm for the exponentiations
- Timing attacks can by used to "guess" the private key
[A. G. Voyiatzis, "An Introduction to Side Channel Cryptanalysis of RSA", ACM Crossroads, vol. 11.3, 2004]

Diffie-Hellman - Mathematical Background

- Finite groups
- Abelian group (S, \oplus) : set S and a binary operation \oplus with the following properties: closure, identity, associativity, commutativity and inverse elements
- Finite group: Abelian group plus finite set of elements, i.e. \mid S $\mid<\infty$
- Primitive root, generator
- Let (S, \bullet) be a group, $g \in S$ and $g^{a}:=g \bullet g \bullet \ldots \bullet g\left(a\right.$ times with $\left.a \in Z^{+}\right)$ Then g is called a primitive root of $(S, \bullet): \Leftrightarrow\left\{g^{a}|1 \leq a \leq|S|\}=S\right.$
- Examples:
- 1 is a primitive root of $\left(Z_{n},+_{n}\right)$
- 3 is a primitive root of $\left(Z_{7}^{*}, x_{7}\right)$
- $\left(Z_{n}^{*}, \times_{n}\right)$ does have a primitive root $\Leftrightarrow n \in\left\{2,4, p, 2 \times p^{e}\right\}$ where p is an odd prime and $e \in Z^{+}$

Diffie-Hellman - Mathematical Background

- Definition: discrete logarithm
- Let p be prime, g be a primitive root of $\left(Z_{p}^{*}, \times_{p}\right)$ and c be any element of Z_{p}^{*}. Then there exists z such that: $\boldsymbol{g}^{\boldsymbol{z}} \equiv \boldsymbol{c} \bmod \boldsymbol{p}$ z is called the discrete logarithm of c modulo p to the base g
- Example:
- 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $3^{6} \equiv 1 \bmod 7$
- The calculation of the discrete logarithm z when given g, c, and p is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bit length of p

Diffie-Hellman Key Exchange

- The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- The DH exchange in its basic form enables two parties A and B to agree upon a shared secret using a public channel:
- Public channel means, that a potential attacker E (E stands for eavesdropper) can read all messages exchanged between A and B

Key Exchange Procedure

- A chooses a prime p, a primitive root g of Z_{p}^{*}, and a random number q :
- A and B can agree upon the values p and g prior to any communication, or A can choose p and g and send them with his first message
- A computes $v=g^{q}$ MOD p and sends to $\mathrm{B}:\{p, g, v\}$
- B chooses a random number r :
- B computes $w=g^{r}$ MOD p and sends to $\mathrm{A}:\{p, g, w\}$ (or just $\{w\}$)
- Both sides compute the common secret:
- A computes $s=w^{q}$ MOD p
- B computes $s^{\prime}=v^{r}$ MOD p
- As $g^{(q \times r)}$ MOD $p=g^{(r \times q)}$ MOD p it holds: $s=s^{\prime}$
- Remark: In practice the number g does not necessarily need to be a primitive root of p, it is sufficient if it generates a large subgroup of Z_{p}^{*}

Diffie-Hellman Key Exchange

- The mathematical basis for the DH exchange is the problem of finding discrete logarithms in finite fields
- An attacker Eve (E) who is listening to the public channel can only compute the secret s, if she is able to compute either q or r which are the discrete logarithms of v, w modulo p to the base g
- It is important, that A and B can be sure, that the attacker is not able to alter messages, as in this case he might launch a man-in-the-middle attack
- Remark: The DH exchange is not an asymmetric encryption algorithm, but is nevertheless introduced here as it goes well with the mathematical flavor of this lecture... :o)

Diffie-Hellman Key Exchange - Man-in-the-middle attack

- Eve generates to random numbers q^{\prime} and r^{\prime} :
- Eve computes $v^{\prime}=g^{q^{\prime}}$ MOD p and $w^{\prime}=g^{r^{\prime}}$ MOD p
- When A sends $\{p, g, v\}$ she intercepts the message
\square Then, E sends to $\mathrm{B}:\left\{p, g, v^{\prime}\right\}$
- When B sends $\{p, g, w\}$ she intercepts the message as well
- E sends to A: $\left\{p, g, w^{\prime}\right\}$
- When the supposed "shared secret" is computed we get:
- A computes $s_{1}=w^{\prime} q$ MOD $p=v^{r}$ MOD p the latter computed by E
- B computes $s_{2}=v^{\prime} r$ MOD $p=w^{q^{\prime}} \mathrm{MOD} p$ the latter computed by E
- So, in fact A and E have agreed upon a shared secret s_{1}, similarly E and B have agreed upon a shared secret s_{2}
- E can now use the "shared secret" to intercept all the messages encrypted by this key to forge and re-encrypt the messages without being noticed

Diffie-Hellman Key Exchange

- Two countermeasures against the man-in-the-middle attack:
- The shared secret is "authenticated" after it has been agreed upon
- We will treat this in the section on key management
- A and B use a so-called interlock protocol after agreeing on a shared secret:
- For this they have to exchange messages that E has to relay before she can decrypt / re-encrypt them
- The content of these messages has to be checkable by A and B
- This forces E to invent messages and she can be detected
- One technique to prevent E from decrypting the messages is to split them into two parts and to send the second part before the first one.
- If the encryption algorithm used inhibits certain characteristics E can not encrypt the second part before she receives the first one.
- As A will only send the first part after he received an answer (the second part of it) from B, E is forced to invent two messages, before she can get the first parts.

Conclusion

- Asymmetric cryptography allows to use two different keys for:
- Encryption / Decryption
- Signing / Verifying
- The most practical algorithms that are still considered to be secure are:
- RSA, based on the difficulty of factoring
- Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
- EIGamal, like DH based on the difficulty of computing discrete logarithms
- As their security is entirely based on the difficulty of certain mathematical problems, algorithmic advances constitute their biggest threat
- Practical considerations:
- Asymmetric cryptographic operations are magnitudes slower than symmetric ones
- Therefore, they are often not used for encrypting / signing bulk data
- Symmetric techniques are used to encrypt / compute a cryptographic hash value and asymmetric cryptography is just used to encrypt a key / hash value

Summary (what do I need to know)

- Principles of asymmetric cryptography
- +K, -K for encryption and signing
- Mathematical problems that are hard to solve
- Factorization, discrete logarithm
- RSA
- Key generation
- Encryption / decryption (how?, why does it work?)
- Diffie-Hellman key exchange
- Key generation procedure
- Man-in-the-middle attack

Additional References

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT Press, 1990.
[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, IT-22, pp. 644-654, 1976.
[EIG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July 1985.
[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.
[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley \& Sons, $4^{\text {th }}$ edition, 1980.
[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of the ACM, February 1978.

