

Chapter 4 Asymmetric Cryptography

- □ Introduction
- □ Encryption: RSA
- □ Key Exchange: Diffie-Hellman

General idea:

- □ Use two different keys -K and +K for encryption and decryption
- □ Given a random ciphertext c = E(+K, m) and +K it should be infeasible to compute m = D(-K, c) = D(-K, E(+K, m))
 - This implies that it should be infeasible to compute *-K* when given *+K*
- □ The key -*K* is only known to one entity A and is called A's *private key* - K_A
- □ The key +*K* can be publicly announced and is called A's **public key** + K_A

□ Applications:

- □ *Encryption:* If B encrypts a message with A's public key $+K_A$, he can be sure that only A can decrypt it using $-K_A$
- □ **Signing:** If A encrypts a message with his own private key $-K_A$, everyone can verify this signature by decrypting it with A's public key $+K_A$
- Attention: It is crucial, that everyone can verify that he really knows A's public key and not the key of an adversary!

Design of Asymmetric Cryptosystems

- □ Difficulty: Find an *encryption algorithm* and a *key generating method* to construct two keys -K, +K such that it is not possible to decipher E(+K, m) with the knowledge of +K
 - □ Constraints:
 - The key length should be "manageable"
 - Encrypted messages should not be arbitrarily longer than unencrypted messages (we would tolerate a small constant factor)
 - Encryption and decryption should not consume too much resources (time, memory)
 - Basic idea: Take a problem in the area of mathematics / computer science, that is *hard* to solve when knowing only +K, but *easy* to solve when knowing -K
 - Knapsack problems: basis of first working algorithms, which were unfortunately almost all proven to be insecure
 - Factorization problem: basis of the RSA algorithm
 - Discrete logarithm problem: basis of *Diffie-Hellman* and ElGamal

RSA – Mathematical Background (Modular Arithmetica)

We say *b* is congruent a mod *n* if it has the same remainder like *a* when divided by *n*. So, *n* divides (*a*-*b*), and we write *b* ≡ *a* mod *n*

L E.g., $4 \equiv 11 \mod 7$, $25 \equiv 11 \mod 7$

- Greatest common divisor
 - □ Let $a, b \in Z$ and d = gcd(a, b). Then there exists $m, n \in Z$ such that: $d = m \times a + n \times b$

Euler totient of $n: \Phi(n)$

- □ Let $\Phi(n)$ denote the number of positive integers less than *n* and relatively prime to *n*
 - Examples: Φ(4) = 2, Φ(15) = 8
 - If p is prime $\Rightarrow \Phi(p) = p 1$
- □ Let *n* and *b* be positive and relatively prime integers, i.e. gcd(n, b) = 1 $\Rightarrow b^{\Phi(n)} \equiv 1 \mod n$

- Euclidean Algorithm
 - □ The algorithm *Euclid* given *a*, *b* computes gcd(*a*, *b*)
 - int Euclid(int a, b) {
 if (b = 0) { return(a);}
 return(Euclid(b, a MOD b);
 }

Extended Euclidean Algorithm

- The algorithm ExtEuclid given a, b computes d, m, n such that: d = gcd(a, b) = m × a + n × b
- □ struct{int d, m, n} ExtEuclid(int a, b) {
 int d, d', m, m', n, n';
 if (b = 0) {return(a, 1, 0); }
 (d', m', n') = ExtEuclid(b, a MOD b);
 (d, m, n) = (d', n', m' La / b ⊥ × n');
 return(d, m, n);
 }

For more information, please refer to undergraduate CS classes or to the NetSec slides WS 2006/2007

RSA in a Nutshell

Invented by R. Rivest, A. Shamir and L. Adleman [RSA78]

□ Key generation

- □ Select *p*, *q*□ Calculate *n*□ Calculate Φ(*n*)
 □ Select integer *e*□ Calculate *d*
- □ Public key
- □ Private key

Encryption

Plaintext

□ Ciphertext

Decryption

□ Ciphertext

Plaintext

 $p \text{ and } q \text{ both prime, } p \neq q$ $n = p \times q$ $\Phi(n) = (p - 1)(q - 1)$ $gcd(\Phi(n), e) = 1; 1 < e < \Phi(n)$ $d \times e \mod \Phi(n) = 1 \text{ (extended Euclid)}$ $+K = \{e, n\}$ $-K = \{d, n\}$

M < n (what about 0 , 1, ...?) C = M^e mod n

 $C \\ M = C^d \mod n$

RSA – Encryption / Decryption

- □ Let *p*, *q* be distinct large primes and $n = p \times q$. Assume, we have also two integers *e* and *d* such that $d \times e \equiv 1 \mod \Phi(n)$
- □ Let *M* be an integer that represents the message to be encrypted, with *M* positive, smaller than and relatively prime to *n*.
 - Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35
 So "HELLO" would be encoded as 1714212124.
 If necessary, break M into blocks of smaller messages: 17142 12124
- □ To encrypt, compute: $C = M^e$ MOD *n*

□ This can be done efficiently using the square-and-multiply algorithm □ To decrypt, compute: $M' = C^d \text{ MOD } n$

Proof

 $d \times e \equiv 1 \mod \Phi(n) \Rightarrow \exists k \in Z: (d \times e) - 1 = k \times \Phi(n) \Leftrightarrow (d \times e) = k \times \Phi(n) + 1$ we have: $M' \equiv E^d \equiv M^{(e \times d)} \equiv M^{(k \times \Phi(n) + 1)} \equiv 1^k \times M \equiv M \mod n$

RSA – Encryption / Decryption

- □ As $(d \times e) = (e \times d)$ the operation also works in the opposite direction, that means you can encrypt with *d* and decrypt with *e*
- This property allows to use the same keys *d* and *e* for:
 Receiving messages that have been encrypted with one's public key
 Sending messages that have been signed with one's private key

- □ The security of the scheme lies in the difficulty of factoring $n = p \times q$ as it is easy to compute $\Phi(n)$ and then *d*, when *p* and *q* are known
- This class will not teach why it is difficult to factor large n's, as this would require to dive deep into mathematics
 - □ If *p* and *q* fulfill certain properties, the best known algorithms are exponential in the number of digits of *n*
 - Please be aware that if you choose p and q in an "unfortunate" way, there might be algorithms that can factor more efficiently and your RSA encryption is not at all secure:
 - Thus, *p* and *q* should be about the same bit length and sufficiently large
 - -(p q) should not be too small
 - If you want to choose a small encryption exponent, e.g. 3, there might be additional constraints, e.g. gcd(p 1, 3) = 1 and gcd(q 1, 3) = 1
 - The security of RSA also depends on the primes generated being truly random (like every key creation method for any algorithm)
 - Moral: If you are to implement RSA by yourself, ask a mathematician or better a cryptographer to check your design

- □ Side channel attacks
 - Optimizations for use of RSA in embedded systems depend on the Chinese remainder theorem (CRT)
 - Applications
 - Smart cards (token, banking)
 - Pay-per-view TV
 - and many others...
 - Use (and storage) of p and q allows to calculate m^e mod p, which can be efficiently manipulated to compute m^e mod n
 - Introducing computation errors allows to reveal the prime p
 p = gcd(s'-s,n) with s' and s being the bogus and correct signatures
 - □ Implementation using square and multiply
 - Most RSA implementations rely on the square-and-multiply algorithm for the exponentiations
 - Timing attacks can by used to "guess" the private key

[[]A. G. Voyiatzis, "An Introduction to Side Channel Cryptanalysis of RSA", ACM Crossroads, vol. 11.3, 2004]

Finite groups

- □ Abelian group (S, ⊕): set S and a binary operation ⊕ with the following properties: closure, identity, associativity, commutativity and inverse elements
- \square Finite group: Abelian group plus finite set of elements , i.e. $|S| < \infty$

Primitive root, generator

□ Let (S, •) be a group, $g \in S$ and $g^a := g \bullet g \bullet ... \bullet g$ (*a* times with $a \in Z^+$) Then *g* is called a *primitive root* of (S, •) :⇔ { $g^a \mid 1 \le a \le |S|$ } = S

- □ Examples:
 - 1 is a primitive root of $(Z_n, +_n)$
 - 3 is a primitive root of (Z^{*}₇, ×₇)
- □ (Z_n^*, \times_n) does have a primitive root $\Leftrightarrow n \in \{2, 4, p, 2 \times p^e\}$ where *p* is an odd prime and $e \in Z^+$

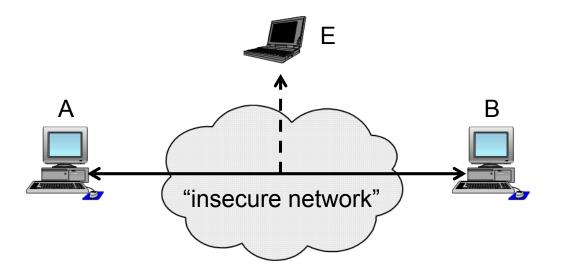
Definition: *discrete logarithm*

- □ Let *p* be prime, *g* be a primitive root of (Z_{p}^{*}, \times_{p}) and *c* be any element of Z_{p}^{*} . Then there exists *z* such that: $g^{z} \equiv c \mod p$
 - *z* is called the *discrete logarithm* of *c* modulo *p* to the base *g*
- □ Example:
 - 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $3^6 \equiv 1 \mod 7$
- □ The calculation of the discrete logarithm *z* when given *g*, *c*, and *p* is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bit length of *p*

For more information, please refer to undergraduate CS classes or to the NetSec slides WS 2006/2007

Diffie-Hellman Key Exchange

- The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- □ The DH exchange in its basic form enables two parties A and B to agree upon a *shared secret* using a public channel:
 - Public channel means, that a potential attacker E (E stands for eavesdropper) can *read* all messages exchanged between A and B



- A chooses a prime *p*, a primitive root *g* of Z^{*}_p, and a random number *q*.
 A and B can agree upon the values *p* and *g* prior to any communication, or A can choose *p* and *g* and send them with his first message
 - □ A computes $v = g^q$ MOD p and sends to B: {p, g, v}
- B chooses a random number *r*:
 - □ B computes $w = g^r \text{ MOD } p$ and sends to A: {p, g, w} (or just {w})
- □ Both sides compute the common secret:
 - $\Box A computes s = w^q MOD p$
 - $\Box \text{ B computes } s' = v^r \text{ MOD } p$
- □ As $g^{(q \times r)}$ MOD $p = g^{(r \times q)}$ MOD p it holds: s = s'
- Remark: In practice the number g does not necessarily need to be a primitive root of p, it is sufficient if it generates a large subgroup of Z^{*}_p

Diffie-Hellman Key Exchange

- □ The mathematical basis for the DH exchange is the problem of finding *discrete logarithms in finite fields*
 - An attacker Eve (E) who is listening to the public channel can only compute the secret s, if she is able to compute either q or r which are the discrete logarithms of v, w modulo p to the base g
- It is important, that A and B can be sure, that the attacker is not able to alter messages, as in this case he might launch a man-in-the-middle attack
- Remark: The DH exchange is *not* an asymmetric encryption algorithm, but is nevertheless introduced here as it goes well with the mathematical flavor of this lecture... :o)

Diffie-Hellman Key Exchange – Man-in-the-middle attack

- Eve generates to random numbers q' and r':
 Eve computes v' = g^{q'} MOD p and w' = g^{r'} MOD p
 When A sends {p, g, v} she intercepts the message
 Then, E sends to B: {p, g, v'}
- When B sends {*p*, *g*, *w*} she intercepts the message as well
 E sends to A: {*p*, *g*, *w*'}
- □ When the supposed "shared secret" is computed we get:
 - □ A computes $s_1 = w'^q \text{ MOD } p = v^{r'} \text{ MOD } p$ the latter computed by E
 - □ B computes $s_2 = v'' MOD p = w^{q'} MOD p$ the latter computed by E
 - □ So, in fact A and E have agreed upon a shared secret s_1 , similarly E and B have agreed upon a shared secret s_2
- E can now use the "shared secret" to intercept all the messages encrypted by this key to forge and re-encrypt the messages without being noticed

- □ Two countermeasures against the man-in-the-middle attack:
 - □ The shared secret is *"authenticated"* after it has been agreed upon
 - We will treat this in the section on key management
 - A and B use a so-called *interlock protocol* after agreeing on a shared secret:
 - For this they have to exchange messages that E has to relay before she can decrypt / re-encrypt them
 - The content of these messages has to be checkable by A and B
 - This forces E to invent messages and she can be detected
 - One technique to prevent E from decrypting the messages is to split them into two parts and to send the second part before the first one.
 - If the encryption algorithm used inhibits certain characteristics E can not encrypt the second part before she receives the first one.
 - As A will only send the first part after he received an answer (the second part of it) from B, E is forced to invent two messages, before she can get the first parts.

Conclusion

- Asymmetric cryptography allows to use two different keys for:
 - Encryption / Decryption
 - □ Signing / Verifying
- □ The most practical algorithms that are still considered to be secure are:
 - □ RSA, based on the difficulty of factoring
 - Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
 - □ ElGamal, like DH based on the difficulty of computing discrete logarithms
- As their security is entirely based on the difficulty of certain mathematical problems, algorithmic advances constitute their biggest threat
- Practical considerations:
 - □ Asymmetric cryptographic operations are magnitudes slower than symmetric ones
 - □ Therefore, they are often not used for encrypting / signing bulk data
 - Symmetric techniques are used to encrypt / compute a cryptographic hash value and asymmetric cryptography is just used to encrypt a key / hash value

Summary (what do I need to know)

- Principles of asymmetric cryptography
 - □ +K, -K for encryption and signing
 - Mathematical problems that are hard to solve
 - □ Factorization, discrete logarithm

□ RSA

- □ Key generation
- □ Encryption / decryption (how?, why does it work?)
- Diffie-Hellman key exchange
 - □ Key generation procedure
 - □ Man-in-the-middle attack

- [Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
- [Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. *Introduction to Algorithms.* The MIT Press, 1990.
- [DH76] W. Diffie, M. E. Hellman. *New Directions in Cryptography.* IEEE Transactions on Information Theory, IT-22, pp. 644-654, 1976.
- [EIG85a] T. EIGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July 1985.
- [Kob87a] N. Koblitz. *A Course in Number Theory and Cryptography.* Springer, 1987.
- [Men93a] A. J. Menezes. *Elliptic Curve Public Key Cryptosystems.* Kluwer Academic Publishers, 1993.
- [Niv80a] I. Niven, H. Zuckerman. *An Introduction to the Theory of Numbers.* John Wiley & Sons, 4th edition, 1980.
- [RSA78] R. Rivest, A. Shamir und L. Adleman. *A Method for Obtaining Digital Signatures and Public Key Cryptosystems.* Communications of the ACM, February 1978.