
[NetSec/SysSec], WS 2008/2009 4.1

Chapter 4
Asymmetric Cryptography

Introduction
Encryption: RSA
Key Exchange: Diffie-Hellman

[NetSec/SysSec], WS 2008/2009 4.2

Asymmetric Cryptography

General idea:
Use two different keys -K and +K for encryption and decryption
Given a random ciphertext c = E(+K, m) and +K it should be infeasible to
compute m = D(-K, c) = D(-K, E(+K, m))

This implies that it should be infeasible to compute -K when given +K
The key -K is only known to one entity A and is called A’s private key -KA
The key +K can be publicly announced and is called A’s public key +KA

Applications:
Encryption: If B encrypts a message with A’s public key +KA, he can be
sure that only A can decrypt it using -KA
Signing: If A encrypts a message with his own private key -KA, everyone
can verify this signature by decrypting it with A’s public key +KA

Attention: It is crucial, that everyone can verify that he really knows A’s
public key and not the key of an adversary!

[NetSec/SysSec], WS 2008/2009 4.3

Design of Asymmetric Cryptosystems

Difficulty: Find an encryption algorithm and a key generating
method to construct two keys -K, +K such that it is not possible to
decipher E(+K, m) with the knowledge of +K

Constraints:
The key length should be “manageable”
Encrypted messages should not be arbitrarily longer than unencrypted
messages (we would tolerate a small constant factor)
Encryption and decryption should not consume too much resources
(time, memory)

Basic idea: Take a problem in the area of mathematics / computer
science, that is hard to solve when knowing only +K, but easy to solve
when knowing -K

Knapsack problems: basis of first working algorithms, which were
unfortunately almost all proven to be insecure
Factorization problem: basis of the RSA algorithm
Discrete logarithm problem: basis of Diffie-Hellman and ElGamal

[NetSec/SysSec], WS 2008/2009 4.4

RSA – Mathematical Background (Modular Arithmetic)

We say b is congruent a mod n if it
has the same remainder like a when
divided by n. So, n divides (a-b), and
we write b ≡ a mod n

E.g., 4 ≡ 11 mod 7, 25 ≡ 11 mod 7

Greatest common divisor
Let a, b ∈ Z and d = gcd(a, b). Then
there exists m, n ∈ Z such that:
d = m × a + n × b

Euler totient of n: Φ(n)
Let Φ(n) denote the number of
positive integers less than n and
relatively prime to n

Examples: Φ(4) = 2, Φ(15) = 8
If p is prime ⇒ Φ(p) = p – 1

Let n and b be positive and relatively
prime integers, i.e. gcd(n, b) = 1
⇒ bΦ(n) ≡ 1 mod n

Euclidean Algorithm
The algorithm Euclid given a, b
computes gcd(a, b)
int Euclid(int a, b) {

if (b = 0) { return(a);}
return(Euclid(b, a MOD b);

}

Extended Euclidean Algorithm
The algorithm ExtEuclid given a, b
computes d, m, n such that:
d = gcd(a, b) = m × a + n × b
struct{int d, m, n} ExtEuclid(int a, b) {

int d, d’, m, m’, n, n’;
if (b = 0) {return(a, 1, 0); }
(d’, m’, n’) = ExtEuclid(b, a MOD b);
(d, m, n) = (d’, n’, m’ - ⎣a / b⎦ × n’);
return(d, m, n);

}

For more information, please refer to undergraduate
CS classes or to the NetSec slides WS 2006/2007

[NetSec/SysSec], WS 2008/2009 4.5

RSA in a Nutshell

Invented by R. Rivest, A. Shamir and L. Adleman [RSA78]

Key generation
Select p, q p and q both prime, p ≠ q
Calculate n n = p x q
Calculate Φ(n) Φ(n) = (p - 1)(q - 1)
Select integer e gcd(Φ(n), e) = 1; 1 < e < Φ(n)
Calculate d d x e mod Φ(n) = 1 (extended Euclid)
Public key +K = {e, n}
Private key -K = {d, n}

Encryption
Plaintext M < n (what about 0 , 1, …?)
Ciphertext C = Me mod n

Decryption
Ciphertext C
Plaintext M = Cd mod n

[NetSec/SysSec], WS 2008/2009 4.6

RSA – Encryption / Decryption

Let p, q be distinct large primes and n = p × q. Assume, we have also
two integers e and d such that d × e ≡ 1 mod Φ(n)
Let M be an integer that represents the message to be encrypted, with
M positive, smaller than and relatively prime to n.

Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35
So “HELLO” would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 17142 12124

To encrypt, compute: C = Me MOD n
This can be done efficiently using the square-and-multiply algorithm

To decrypt, compute: M’ = Cd MOD n

Proof
d × e ≡ 1 mod Φ(n) ⇒ ∃ k ∈ Z: (d × e) - 1 = k × Φ(n) ⇔ (d × e) = k × Φ(n) + 1
we have: M’ ≡ Ed ≡ M(e× d) ≡ M(k × Φ(n) + 1) ≡ 1k × M ≡ M mod n

[NetSec/SysSec], WS 2008/2009 4.7

RSA – Encryption / Decryption

As (d × e) = (e × d) the operation also works in the opposite direction,
that means you can encrypt with d and decrypt with e

This property allows to use the same keys d and e for:
Receiving messages that have been encrypted with one’s public key
Sending messages that have been signed with one’s private key

[NetSec/SysSec], WS 2008/2009 4.8

RSA – Security

The security of the scheme lies in the difficulty of factoring n = p × q
as it is easy to compute Φ(n) and then d, when p and q are known

This class will not teach why it is difficult to factor large n’s, as this
would require to dive deep into mathematics

If p and q fulfill certain properties, the best known algorithms are
exponential in the number of digits of n

Please be aware that if you choose p and q in an “unfortunate” way,
there might be algorithms that can factor more efficiently and your
RSA encryption is not at all secure:

– Thus, p and q should be about the same bit length and sufficiently large
– (p - q) should not be too small
– If you want to choose a small encryption exponent, e.g. 3, there might be

additional constraints, e.g. gcd(p - 1, 3) = 1 and gcd(q - 1, 3) = 1
The security of RSA also depends on the primes generated being truly
random (like every key creation method for any algorithm)

Moral: If you are to implement RSA by yourself, ask a mathematician or
better a cryptographer to check your design

[NetSec/SysSec], WS 2008/2009 4.9

RSA – Security

Side channel attacks
Optimizations for use of RSA in embedded systems depend on the
Chinese remainder theorem (CRT)

Applications
– Smart cards (token, banking)
– Pay-per-view TV
– and many others…

Use (and storage) of p and q allows to calculate me mod p, which can
be efficiently manipulated to compute me mod n
Introducing computation errors allows to reveal the prime p
p = gcd(s’-s,n) with s’ and s being the bogus and correct signatures

Implementation using square and multiply
Most RSA implementations rely on the square-and-multiply algorithm
for the exponentiations
Timing attacks can by used to “guess” the private key

[A. G. Voyiatzis, “An Introduction to Side Channel Cryptanalysis of RSA”, ACM Crossroads, vol. 11.3, 2004]

[NetSec/SysSec], WS 2008/2009 4.10

Diffie-Hellman – Mathematical Background

Finite groups
Abelian group (S, ⊕): set S and a binary operation ⊕ with the following
properties: closure, identity, associativity, commutativity and inverse
elements
Finite group: Abelian group plus finite set of elements , i.e. |S| < ∞

Primitive root, generator
Let (S, •) be a group, g ∈ S and ga := g • g • ... • g (a times with a ∈ Z+)

Then g is called a primitive root of (S, •) :⇔ {ga | 1 ≤ a ≤ |S|} = S

Examples:

1 is a primitive root of (Zn, +n)

3 is a primitive root of (Z*
7, ×7)

(Z*
n, ×n) does have a primitive root ⇔ n ∈ {2, 4, p, 2 × pe} where p is an

odd prime and e ∈ Z+

[NetSec/SysSec], WS 2008/2009 4.11

Diffie-Hellman – Mathematical Background

Definition: discrete logarithm
Let p be prime, g be a primitive root of (Z*

p, ×p) and c be any element of
Z*

p. Then there exists z such that: gz ≡ c mod p
z is called the discrete logarithm of c modulo p to the base g
Example:

6 is the discrete logarithm of 1 modulo 7 to the base 3 as 36 ≡ 1 mod 7

The calculation of the discrete logarithm z when given g, c, and p is a
computationally difficult problem and the asymptotical runtime of the best
known algorithms for this problem is exponential in the bit length of p

For more information, please refer to undergraduate
CS classes or to the NetSec slides WS 2006/2007

[NetSec/SysSec], WS 2008/2009 4.12

Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange was first published in the landmark
paper [DH76], which also introduced the fundamental idea of
asymmetric cryptography
The DH exchange in its basic form enables two parties A and B to
agree upon a shared secret using a public channel:

Public channel means, that a potential attacker E (E stands for
eavesdropper) can read all messages exchanged between A and B

“insecure network”

A B

E

[NetSec/SysSec], WS 2008/2009 4.13

Key Exchange Procedure

A chooses a prime p, a primitive root g of Z*
p, and a random number q:

A and B can agree upon the values p and g prior to any communication, or
A can choose p and g and send them with his first message
A computes v = gq MOD p and sends to B: {p, g, v}

B chooses a random number r:
B computes w = gr MOD p and sends to A: {p, g, w} (or just {w})

Both sides compute the common secret:
A computes s = wq MOD p
B computes s’ = vr MOD p

As g(q × r) MOD p = g(r × q) MOD p it holds: s = s’

Remark: In practice the number g does not necessarily need to be a
primitive root of p, it is sufficient if it generates a large subgroup of Z*

p

[NetSec/SysSec], WS 2008/2009 4.14

Diffie-Hellman Key Exchange

The mathematical basis for the DH exchange is the problem of finding
discrete logarithms in finite fields

An attacker Eve (E) who is listening to the public channel can only
compute the secret s, if she is able to compute either q or r which are the
discrete logarithms of v, w modulo p to the base g

It is important, that A and B can be sure, that the attacker is not able to
alter messages, as in this case he might launch a man-in-the-middle
attack

Remark: The DH exchange is not an asymmetric encryption algorithm,
but is nevertheless introduced here as it goes well with the
mathematical flavor of this lecture... :o)

[NetSec/SysSec], WS 2008/2009 4.15

Diffie-Hellman Key Exchange – Man-in-the-middle attack

Eve generates to random numbers q’ and r’:
Eve computes v’ = gq’ MOD p and w’ = gr’ MOD p

When A sends {p, g, v} she intercepts the message
Then, E sends to B: {p, g, v’ }

When B sends {p, g, w} she intercepts the message as well
E sends to A: {p, g, w’ }

When the supposed “shared secret” is computed we get:
A computes s1 = w’q MOD p = vr’ MOD p the latter computed by E
B computes s2 = v’r MOD p = wq’ MOD p the latter computed by E
So, in fact A and E have agreed upon a shared secret s1, similarly
E and B have agreed upon a shared secret s2

E can now use the “shared secret” to intercept all the messages
encrypted by this key to forge and re-encrypt the messages without
being noticed

[NetSec/SysSec], WS 2008/2009 4.16

Diffie-Hellman Key Exchange

Two countermeasures against the man-in-the-middle attack:
The shared secret is “authenticated” after it has been agreed upon

We will treat this in the section on key management
A and B use a so-called interlock protocol after agreeing on a shared
secret:

For this they have to exchange messages that E has to relay before
she can decrypt / re-encrypt them
The content of these messages has to be checkable by A and B
This forces E to invent messages and she can be detected
One technique to prevent E from decrypting the messages is to split
them into two parts and to send the second part before the first one.

– If the encryption algorithm used inhibits certain characteristics E can not encrypt the
second part before she receives the first one.

– As A will only send the first part after he received an answer (the second part of it)
from B, E is forced to invent two messages, before she can get the first parts.

[NetSec/SysSec], WS 2008/2009 4.17

Conclusion

Asymmetric cryptography allows to use two different keys for:
Encryption / Decryption
Signing / Verifying

The most practical algorithms that are still considered to be secure are:
RSA, based on the difficulty of factoring
Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
ElGamal, like DH based on the difficulty of computing discrete logarithms

As their security is entirely based on the difficulty of certain mathematical
problems, algorithmic advances constitute their biggest threat

Practical considerations:
Asymmetric cryptographic operations are magnitudes slower than symmetric ones
Therefore, they are often not used for encrypting / signing bulk data
Symmetric techniques are used to encrypt / compute a cryptographic hash value
and asymmetric cryptography is just used to encrypt a key / hash value

[NetSec/SysSec], WS 2008/2009 4.18

Summary (what do I need to know)

Principles of asymmetric cryptography
+K, -K for encryption and signing
Mathematical problems that are hard to solve
Factorization, discrete logarithm

RSA
Key generation
Encryption / decryption (how?, why does it work?)

Diffie-Hellman key exchange
Key generation procedure
Man-in-the-middle attack

[NetSec/SysSec], WS 2008/2009 4.19

Additional References

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to

Algorithms. The MIT Press, 1990.
[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, IT-22 , pp. 644-654, 1976.
[ElG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme

based on Discrete Logarithms. IEEE Transactions on Information
Theory, Vol.31, Nr.4, pp. 469-472, July 1985.

[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer,
1987.

[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer
Academic Publishers, 1993.

[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers.
John Wiley & Sons, 4th edition, 1980.

[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Communications of the
ACM, February 1978.

