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Chapter 5
Modification Check Values

Cryptographic hash functions
MDC, MAC
MD5, SHA-1
H-MAC, CBC-MAC
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Motivation

It is common practice in data communications to compute some kind 
of error detection code over messages, that enables the receiver to 
check if a message was accidentally altered during transmission

Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

This leads to the wish of having a similar value that allows to check, if 
a message has been intentionally modified during transmission

If somebody wants to intentionally modify a message which is protected 
with a CRC value he can re-compute the CRC value after modification or 
modify the message in a way that it leads to the same CRC value
Therefore, a modification check value will have to fulfill additional 
properties that will make it impossible for attackers to forge it

Two main categories of modification check values:
Modification Detection Code (MDC)
Message Authentication Code (MAC)
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Cryptographic Hash Functions

Definition: hash function
A hash function is a function h which has the following two properties:

Compression: h maps an input x of arbitrary finite bit length, to an 
output h(x) of fixed bit length n
Ease of computation: Given h and x it is easy to compute h(x)

Definition: cryptographic hash function
A cryptographic hash function h needs to satisfy the following properties:

Pre-image resistance: for essentially all pre-specified outputs y, it is 
computationally infeasible to find an x such that h(x) = y
2nd pre-image resistance: given x it is computationally infeasible to find 
any second input x’ with x ≠ x’ such that h(x) = h(x’)
Collision resistance: it is computationally infeasible to find any pair 
(x, x’) with x ≠ x’ such that h(x) = h(x’)

Cryptographic hash functions are used to compute modification detection 
codes (MDC)
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Message Authentication Codes (MAC)

Definition: message authentication code
A message authentication code algorithm is a family of functions hk
parameterized by a secret key k with the following properties:

Compression: hk maps an input x of arbitrary finite bitlength to an 
output hk(x) of fixed bitlength, called the MAC
Ease of computation: given k, x and a known function family hk the 
value hk(x) is easy to compute
Computation-resistance: for every fixed, allowed, but unknown value 
of k, given zero or more text-MAC pairs (xi, hk(xi)) it is computationally 
infeasible to compute a text-MAC pair (x, hk(x)) for any new input x ≠ xi

Please note that computation-resistance implies the property of key non-
recovery, that is k can not be recovered from pairs (xi, hk(xi)), but 
computation resistance can not be deduced from key non-recovery, as the 
key k need not always to be recovered to forge new MACs
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A Simple Attack Against an Insecure MAC

For illustrative purposes, consider the following MAC definition:
Input: message m = (x1, x2, ..., xn) with xi being 64-bit values, and key k
Compute Δ(m) := x1 ⊕ x2 ⊕ ... ⊕ xn with ⊕ denoting bitwise exclusive-or
Output: MAC Ck(m) := Ek(Δ(m))  with Ek(x) denoting DES encryption
The key length is 56 bit and the MAC length is 64 bit, so we would expect 
an effort of about 255 operations to obtain the key k and break the MAC 
(i.e., being able to forge messages).

Unfortunately the MAC definition is insecure:
Assume an attacker Eve who wants to forge messages exchanged 
between Alice and Bob obtains a message (m, Ck(m)) which has been 
“protected” by Alice using the secret key k shared with Bob
Eve can construct a message m’ that yields the same MAC:

Let y1, y2, ..., yn-1 be arbitrary 64-bit values
Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn-1 ⊕ Δ(m), and m’ := (y1, y2, ..., yn)
When Bob receives (m’, Ck(m)) from Eve pretending to be Alice he will 
accept it as being originated by Alice as Ck(m) is a valid MAC for m’
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Applications to Cryptographic Hash Functions and MACs

Principal application which led original design: message integrity
An MDC represents a digital fingerprint, which can be signed with a private 
key, e.g. using the RSA or ElGamal algorithm, and it is not possible to 
construct two messages with the same fingerprint so that a given signed 
fingerprint can not be re-used by an attacker
A MAC over a message m directly certifies that the sender of the message 
possesses the secret key k and the message could not have been 
modified without knowledge of that key

Other applications, which require some caution:
Confirmation of knowledge
Key derivation
Pseudo-random number generation
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Attacks Based on the Birthday Phenomenon

The Birthday Phenomenon:
How many people need to be in a room such that the possibility that there 
are at least two people with the same birthday is greater than 0.5?
For simplicity, we don’t care about February, 29, and assume that each 
birthday is equally likely

Define P(n, k) := Pr[at least one duplicate in k items, with each item
able to take one of n equally likely values 
between 1 and n] 

Define Q(n, k) := Pr[no duplicate in k items, each between 1 and n]
We are able to choose the first item from n possible values, the second 
item from n - 1 possible values, etc.
Hence, the number of different ways to choose k items out of n values with 
no duplicates is: N = n × (n - 1) × ... × (n - k + 1) = n! / (n - k)!
The number of different ways to choose k items out of n values, with or 
without duplicates is: nk

So, Q(n, k) = N / nk = n! / ((n - k)! × nk)
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Attacks Based on the Birthday Phenomenon

We have:

We will use the following inequality: (1 - x) ≤ e-x for all x ≥ 0
So:

In the last step, we used the equality: 1 + 2 + ... + (k - 1) = (k2 - k) / 2
Exercise: proof the above equality by induction

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −
−××⎟

⎠
⎞

⎜
⎝
⎛ −×⎟

⎠
⎞

⎜
⎝
⎛ −−=

⎥⎦
⎤

⎢⎣
⎡ +−

××
−

×
−

−=

+−××−×
−=

×−
−=−=

n
k

nn

n
kn

n
n

n
n

n
knnn
nkn

nknQknP

k

k

11...21111

1...211

)1(...)1(1

)!(
!1),(1),(

( ) ( ) ( )[ ]

n
kk

n
k

nn

n
k

nn

e

e

eeeknP

2
)1(

1...21

)1(21

1

1

...1),(

−×−

−+++−

−−−−

−=

−=

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛××⎟

⎠
⎞⎜

⎝
⎛×⎟

⎠
⎞⎜

⎝
⎛−>



[NetSec/SysSec], WS 2008/2009 5.9

Attacks Based on the Birthday Phenomenon

Let’s go back to our original question: how many people k have to be 
in one room such that there are at least two people with the same  
birthday (out of n = 365 possible) with probability ≥ 0,5?

So, we want to solve: 

For large k we can approximate k × (k - 1) by k2, and we get:

For n = 365, we get k = 22.54 which is quite close to the correct answer 23
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Attacks Based on the Birthday Phenomenon

What does this have to do with MDCs?
We have shown, that if there are n possible different values, the 
number k of values one needs to randomly choose in order to obtain at 
least one pair of identical values, is in the order of 
Now, consider the following attack [Yuv79a]:

Eve wants Alice to sign a message m1, Alice normally never would sign. 
Eve knows that Alice uses the function MDC1(m) to compute an MDC of 
m which has length r bit before she signs this MDC with her private key 
yielding her digital signature.
First, Eve produces her message m1. If she would now compute 
MDC1(m1) and then try to find a second harmless message m2 which 
leads to the same MDC her search effort in the average case would be on 
the order of 2(r - 1). 
Instead she takes any harmless message m2 and starts producing 
variations m1’ and m2’ of the two messages, e.g. by adding <space> 
<backspace> combinations or varying with semantically identical words.

n
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Attacks Based on the Birthday Phenomenon

As we learned from the birthday phenomenon, she will just have to 
produce about                 variations of each of the two messages such 
that the probability that she obtains two messages m1’ and m2’ with 
the same MDC is at least 0.5
As she has to store the messages together with their MDCs in order to 
find a match, the memory requirement of her attack is on the order of

and its computation time requirement is on the same order
After she has found m1’ and m2’ with MDC1(m1’) = MDC1(m2’) she 
asks Alice to sign m2’. Eve can then take this signature and claim that 
Alice signed m1’.
Attacks following this method are called birthday attacks
Consider now, that Alice uses RSA with keys of length 2048 bit and a 
cryptographic hash function which produces MDCs of length 96 bit.

Eves average effort to produce two messages m1’ and m2’ as described 
above is on the order of 248, which is feasible today. Breaking RSA keys of 
length 2048 bit is far out of reach with today's algorithms and technology.

222
rr =

22
r
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Overview of Commonly Used MDCs and MACs

Cryptographic Hash Functions for creating MDCs:
Message Digest 5 (MD5):

Invented by R. Rivest
Successor to MD4

Secure Hash Algorithm 1 (SHA-1):
Invented by the National Security Agency (NSA)
The design was inspired by MD4

Message Authentication Codes:
DES-CBC-MAC:

Uses the Data Encryption Standard in Cipher Block Chaining mode 
In general, the CBC-MAC construction can be used with any block 
cipher

MACs constructed from MDCs:
This very common approach raises some cryptographic concern as it 
makes some implicit but unverified assumptions about the properties 
of the MDC
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Common Structure of Cryptographic Hash Functions

Like most of today’s block ciphers follow the general structure of a 
Feistel network, most cryptographic hash functions in use today follow 
a common structure:

Let y be an arbitrary message. Usually, the length of the message is 
appended to the message and it is padded to a multiple of some block 
size b. Let (y0, y1, ..., yL-1) denote the resulting message consisting of L
blocks of size b
The general structure is as depicted below:

CV is a chaining value, with CV0 := IV and MDC(y) := CVL

f is a specific compression function which compresses (n + b) bit to n bit

f
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f
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CVLCV2

n ... n
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Common Structure of Cryptographic Hash Functions

The hash function H can be summarized as follows:
CV0 = IV = initial n-bit value
CVi = f(CVi-1, yi-1) 1 ≤ i ≤ L
H(y) = CVL

It has been shown [Mer89a] that if the compression function f is 
collision resistant, then the resulting iterated hash function H is also 
collision resistant.
Cryptanalysis of cryptographic hash functions thus concentrates on 
the internal structure of the function f and finding efficient techniques to 
produce collisions for a single execution of f
Primarily motivated by birthday attacks, a common minimum 
suggestion for n, the bit length of the hash value, is 160 bit, as this 
implies an effort of order 280 to attack which is considered infeasible 
today
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The Message Digest 5

MD5 follows the common structure outlined before [Riv92a]:
The message y is padded by a “1” followed by 0 to 511 “0” bits such that 
the length of the resulting message is congruent 448 modulo 512
The length of the original message is added as a 64-bit value resulting in a 
message that has length which is an integer multiple of 512 bit
This new message is divided into blocks of length b = 512 bit
The length of the chaining value is n = 128 bit

The chaining value is “structured” as four 32-bit registers A, B, C, D
Initialization: A := 0x 01 23 45 67 B := 0x 89 AB CD EF

C := 0x FE DC BA 98 D := 0x 76 54 32 10

This initialization vector is in little-endian format
Each block of the message yi is processed with the chaining value CVi
with the function f which is internally realized by 4 rounds of 16 steps each

Each round uses a similar structure and makes use of a table T 
containing 64 constant values of 32-bit each, 
Each of the four rounds uses a specific logical function g
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+

The function g is one of four different logical functions
yi[k] denotes the kth 32-bit word of message block i
T[j] is the jth entry of table t with j incremented modulo 64 every step
CLSs denotes cyclical left shift by s bits with s following some schedule

The Message Digest 5 – Structure of One Step

A B C D

+ g

A B C D

+yi[k]

+T[j]

CLSs

+
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The Message Digest 5

The MD5-MDC over a message is the content of the chaining value 
CV after processing the final message block
Security of MD5:

Every bit of the 128-bit hash code is a function of every input bit
Between 1992 and 1996 significant progress in cryptanalyzing MD5 has 
been published:

In 1996 H. Dobbertin published an attack that allows to generate a 
collision for the function f (realized by the 64 steps described above).
While this attack has not yet been extended to a full collision for MD5 
with its initialization vector, it raises nevertheless serious concern.

In reaction to this RSA Laboratories publish in 1996 [Rob96a]:
“Existing signatures formed using MD5 are not at risk and while MD5 
is still suitable for a variety of applications (namely those which rely on 
the one-way property of MD5 and on the random appearance of the  
output) as a precaution it should not be used for future applications 
that require the hash function to be collision-resistant.”
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The Secure Hash Algorithm SHA-1

Also SHA-1 follows the common structure as described above:
SHA-1 works on 512-bit blocks and produces a 160-bit hash value
As it design was also inspired by the MD4 algorithm, its initialization is 
basically the same like that of MD5:

The data is padded, a length field is added and the resulting message 
is processed as blocks of length 512 bit
The chaining value is structured as five 32-bit registers A, B, C, D, E
Initialization: A = 0x 67 45 23 01 B = 0x EF CD AB 89

C = 0x 98 BA DC FE D = 0x 10 32 54 76 
E = 0x C3 D2 E1 F0

The values are stored in big-endian format
Each block yi of the message is processed together with CVi in a module 
realizing the compression function f in four rounds of 20 steps each.

The rounds have a similar structure but each round uses a different 
primitive logical function f1, f2, f3, f4
Each step makes use of a fixed additive constant Kt, which remains 
unchanged during one round
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The Secure Hash Algorithm SHA-1 – One Step

t∈{0, ..., 15} ⇒ Wt := yi[t]   
t∈{16, ..., 79} ⇒ Wt := CLS1(Wt-16 ⊕ Wt-14 ⊕ Wt-8 ⊕ Wt-3)
After step 79 each register A, B, C, D, E is added modulo 232 with the 
value of the corresponding register before step 0 to compute CVi+1

f(t DIV 20)
yi[k]

CLS5 +
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+

+
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K(t DIV 20)

A B C D E

CLS30
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The Secure Hash Algorithm SHA-1

The SHA-1-MDC over a message is the content of the chaining value 
CV after processing the final message block
Security of SHA-1:

As SHA-1 produces MDCs of length 160 bit, it offers better security 
against brute-force and birthday attacks than MD5
Up to now, no cryptanalytic results against the compression function of 
SHA-1 have been published

However, it has to be stated, that the design criteria of SHA-1 are not 
known, which makes cryptanalysis more difficult

Further comparison between SHA-1 and MD5:
Speed: SHA-1 is about 25% slower than MD5 (CV is about 25% bigger)
Simplicity and compactness: both algorithms are simple to describe and 
implement and do not require large programs or substitution tables
Little-endian vs. big-endian architecture: no advantage of either approach
RSA Laboratories (who invented MD5) recommend SHA-1 or RipeMD-160 
for applications that require collision resistance [Rob96a]
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Constructing a MAC from a MDC

Reasons for constructing MACs from MDCs:
Cryptographic hash functions generally execute faster than symmetric 
block ciphers 
There were no export restrictions to cryptographic hash functions

Basic idea: “mix” a secret key K with the input and compute an MDC
The assumption that an attacker needs to know K to produce a valid MAC 
nevertheless raises some cryptographic concern:

The construction H(K, m) is not secure (see note 9.64 in [Men97a])
The construction H(m, K) is not secure (see note 9.65 in [Men97a])
The construction H(K, p, m, K) with p denoting an additional padding 
field does not offer sufficient security (see note 9.66 in [Men97a])

The most used construction is: H(K, p1, H(K, p2, m))
Two different padding patterns p1 and p2 are used to fill up the key to 
one input block of the cryptographic hash function
This scheme seems to be secure (see note 9.67 in [Men97a])
It has been standardized in RFC 2104 [Kra97a] and is called HMAC
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Cipher Block Chaining Message Authentication Codes

A CBC-MAC is computed by encrypting a message in CBC Mode and 
taking the last ciphertext block or a part of it as the MAC:

This MAC needs not to be signed any further, as it has already been 
produced using a shared secret K

However, it is not possible to say who exactly has created a MAC, as 
everybody (sender, receiver) who knows the secret key K can do so

This scheme works with any block cipher (DES, IDEA, ...)
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Cipher Block Chaining Message Authentication Codes

Security of CBC-MAC:
As an attacker does not know K, a birthday attack is much more difficult to 
launch (if not impossible)
Attacking a CBC-MAC requires known (message, MAC) pairs
This allows for shorter MACs
A CBC-MAC can optionally be strengthened by agreeing upon a second 
key K’ ≠ K and performing a triple encryption on the last block:

MAC = E(K, D(K’, E(K, Cn-1)))
This doubles the key space while adding only little computing effort

There have also been some proposals to create MDCs from 
symmetric block ciphers with setting the key to a fixed (known) value:

Because of the relatively small block size of 64 bit of most common block 
ciphers, these schemes offer insufficient security against birthday attacks
As symmetric block ciphers require more computing effort than dedicated 
cryptographic hash functions, these schemes are relatively slow
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Summary (what do I need to know)

Principles of cryptographic hash functions
Modification detection code (MDC)
Message authentication code (MAC)

MD5
Operation principles
Security

MAC
H-MAC – using a cryptographic hash function
CBC-MAC – using a symmetric block cipher in CBC mode
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