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Somewhere there are decisions made that  are 
not rational in any sense, that are subject to 
nothing more than the personal bias of the 
decision maker. Logical methods, at best, re- 
arrange the way in which personal bias is to 
be introduced into a problem Of course, this 
"at best" is rather important. Present intuitive 
methods unhappily introduce personal bias in 
such a way that i t  makes problems impossible 
to solve correctly. Our purpose must be to re- 
pattern the bias, so that i t  no longer interferes 
in th]s destructive way with the process of 
design, and no longer inhibits clarity of form 
CHISTOPHER ALEXANDER, Notes on the Synthesis 

o] Form 

1. INTRODUCTION 
This paper describes an attitude toward 
multiprogramming--the programming tech- 
niques used to control concurrent act]vities 
by computers.* It  tries to identify abstract 
properties of programming languages that 
facilitate the design of large, reliable multi- 

* In this paper, the term multiprogramming is used 
consistently to denote all programrmng techmques 
used to control concurrent processes on single- 
processor as well as multiprocessor systems 

programming systems. The techniques used 
to implement these language concepts, which 
apply both to single-processor and multi- 
processor systems, are described elsewhere. 
[1] 

When a new programming technique, such 
as multiprogramming, is invented, program- 
mers will imtially use it in a completely un- 
restricted manner to discover its potential. 
At a later stage, when experience with its 
practical limitations has been gained, de- 
signers begin to recognize the benefits of a 
more restrictive language notation which 
clarifies their own understanding of pro- 
grams and enables compilers to detect seri- 
ous errors. 

This survey describes the evolution of lan- 
guage features for multiprogramming during 
the past decade. I view this development 
mainly as a gradual shift from concepts that 
have a strong resemblance to assembly lan- 
guage features toward a notation that en- 
courages hierarchical structuring of pro- 
grams. Several useful proposals are not 
mentioned here, and those that are included 
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are only meant  to illustrate a general att i-  
tude toward the subject. 

The central problems of mult iprogram- 
mmg are illustrated by algorithms written 
in a high-level language. I have included in- 
formal assertions in the algorithms and out- 
lined arguments of their correctness to show 
that  mul t ip rogrammmg concepts can be de- 
fined as concisely as sequential program- 
mmg concepts. In  many  ways, this survey 
can be regarded as an expanded version of 
an earlier paper  [2]. We will begin with a 
brief characterization of sequential pro- 
grams. 

2. SEQUENTIAL PROCESSES 

Although most programmers  have an intui- 
tive understanding of what  a sequential 
process is, it may  be useful to illustrate this 
concept by an example. Algorithm 1 defines 
a sequential process tha t  inputs a fixed 
number  of records R1, R2, . . . ,  Rn from 
one sequential file, updates these records, 
and outputs them on another sequential file. 

The language notation is borrowed from 
Pascal. [3] The files are declared as two 
variables, reader and printer, each consist- 
ing of a sequence of records of some type T 
(declared elsewhere). A record of type  T can 
be appended to or removed from a sequence 
by means of two standard procedures, put 
and get. The current record is kept  in a vari-  
able, this, of type T. The variable i counts 
the number  of records processed; it can as- 
sume integer values from 0 to n. 

Algorithm 1 Sequential file updat ing 

var reader, printer: s e q u e n c e  o f  T; 
this: T; i: 0 . .  n; 

beg in  
(1) i." = O; 
(2) w h i l e  i < n do  
(3) get (this, reader) ; 
(4) update (th~s) ; 
(5) put (thzs, printer) ; 
(6) i: --- i + 1 ; 
(7) e n d  
(8) e n d  

The program defines a sequential process 
in terms of data (represented by constants 
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and variables) and operations on data (rep- 
resented by statements).  During the execu- 
tion of the program, the operations are car- 
ried out smct ly  one at a time, and each 
operation is completed within a finite time. 
The result of an operation can be defined by 
assertions about the relationships of data 
before and after its execution. 
In Algorithm 1, we can make the following 
assertions about the state of the variables 
before and after the execution of the input 
statement in line 3: 

c o m m e n t  3 i out of n records processed 
(where O ~ i < n) ; 
get (this, reader) ; 

c o m m e n t  4 i out of n records processed 
(where 0 ~ i < n), and this = input 
record Ri  + 1 ; 

Sequential programs have two vital prop- 
erties: 

1) The effect o] a sequential program is 
independent o] its speed o] execution. All 
that  matters is that  operations are carried 
out one at a time with positive speed, and 
that  certain relationships hold before and 
after their execution. The time-independent 
behavior of sequential programs enables the 
user to ignore details over which he has no 
control (such as the scheduling policy of the 
operating system and the precise timing of 
operations carried out by processors and pe- 
ripherals). 

2) A sequential program delivers the same 
result each time zt is executed with a given 
xet of input data. The reproducible behavior 
of sequential programs under any circum- 
stances is particularly important for pro- 
gram vahdation. I t  enables one to isolate 
and correct program errors by systematic 
testing. 

These properties of sequential programs 
are so well known that  we tend to take them 
for granted But as we shall see, these prop- 
ertles can only be maintained for multipro- 
grammlng systems by a careful selectmn of 
language concepts. 

Algorithm 1 is a well-structured program 
that  can be analyzed in a step-wise manner 
as a set of nested operations. At the most 
detailed level, the program can be described 
in terms of assertions about each statement. 

The following assertions will hold be]ore 
the execution of lines 1-8, respectively. 

c o m m e n t  1 0 out o] n records processed 
(where 0 

c o m m e n t  2 i 
(where 0 

c o m m e n t  3 i 
(where 0 

n) ;  
out o] n records processed 
i ~ n ) ;  
out o] n records processed 
i < n ) ;  

c o m m e n t  4 i out of n records processed 
(where 0 ~ i < n), and this = input 
record Ri  + 1 ; 

c o m m e n t  5 z out of n records processed 
(where 0 ~ i < n),  and this = updated 
record Ri  + 1; 

c o m m e n t  6 i + 1 out o] n records proc- 
essed (where 0 ~ i < n) ; 

c o m m e n t  7 z out o] n records processed 
(where 0 < i ~ n) ; 

c o m m e n t  8 n out of n records processed 
(where 0 -~ n) ; 

Once the m&vidual statements are under- 
stood, one can define the effect of a sequence 
of statements by a single pair of assertions. 
As an example, the body of the while state- 
ment in Algorithm 1 can be defined as a 
single operation by means of the following 
assertions: 

c o m m e n t  3 i out of n records processed 
(where O ~ i < n) ; 
process next record and increment i by 
one; 

c o m m e n t  7 i out of n records processed 
(where 0 < i ~ n) ; 

The next step of simphfication is to re- 
duce the whale statement to a single opera- 
tion: 

c o m m e n t  2 i out of n records processed 
(where 0 ~ i ~ n) ; 
process the remaining n-i records; 

c o m m e n t  8 n out of n records processed 
(where 0 ~ n) ; 

Finally, the whole program can be defined 
as a single operation: 

c o m m e n t  1 0 out of n records processed 
(where 0 ~ n) ; 
process n records; 

c o m m e n t  8 n out of n records processed 
(where 0 ~ n) ; 

At this point, only what the program does as 
a whole, is relevant, but the details of how 
it is done are irrelevant. The possibility of 
replacing complex descriptions by partial 
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I~G. 1 Flowchart of Algorithm 1. 

_J 

descriptions, called abstractions, is essential 
to enable us to understand large programs. 

Figure 1 is a flowchart of Algorithm 1. It 
shows that the program consists of nested 
statements, each with a single starting point 
and a single completion point. Algorithm 1 
can be analyzed by associating an assertion 
with each statement, and gradually replac- 
ing these assertions by fewer and fewer as- 
sertions. It is most important that a program 
with a hierarchical structure can be built 
and understood in detail by an intellectual 
e]Iort proportional to its size, and that cer- 

tain functional aspects of it can be described 
in even more economical terms. This is the 
whole purpose of structured programming! 

It is also essential to use hierarchical 
structuring of programs that control concur- 
rent processes, and choose language con- 
structs for multiprogramming that can be 
understood in time-independent abstract 
terms; otherwise, we shall find ourselves 
unable to apply systematic methods of pro- 
gram analysis and verification. 

3. UNRESTRICTED CONCURRENCY 

Processes are called concurrent if their exe- 
cution overlap in time. More precisely, two 
processes are concurrent if the first opera- 
tion of one process starts before the last 
operation of the other process ends. The 
programming techniques used to control 
concurrent processes are called multipro- 
gramming. 

No assumptions will be made about the 
speed at which concurrent processes are exe- 
cuted (except that it be positive). We will 
benefit from this weak assumption in two 
ways: 1) It  will encourage us to try to 
understand multiprogramming systems in 
time-independent terms; and 2) It  will per- 
mit the underlying implementation to use 
a dynamic scheduling algorithm to achieve 
efficient resource sharing. 

One of the earliest ideas of multiprogram- 
ruing was to specify the start and comple- 
tion of processes by two operations which 
I will call start and complete (In the litera- 
ture, they are often called ]ork and join). 
The meaning of these operations can best be 
illustrated by an example: 

var task: response; 
begin 

start task do S1; 
$2; 
complete task; 
$3; 

end 

Initially, this program will be executed as 
a single, sequential process. The statement 
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start task do $1 

will start the execution of statement S1 as 
a new process. As soon as the new process 
starts to run, the old process continues to 
execute the next statement $2. When state- 
ment S1 has been executed, the new process 
indicates its completion by means of a vari- 
able, task, of type response. Following this, 
the new process ceases to exist. After the 
execution of statement $2, the old process 
waits until the response variable indicates 
that statement S1 has terminated. The pro- 
gram then continues to execute statement $3 
as a single, sequential process. (We will not 
be concerned with how the process and re- 
sponse concepts can be implemented.) Fig- 
ure 2 shows a flowchart of this program. 

Algorithm 2 is a concurrent version of the 
file updating program (Algorithm 1) that 
uses the start and complete statements. The 
purpose of introducing concurrent processes 
is to permit input/output operations to pro- 
ceed simultaneously with updating opera- 

SI I I $ 2  

is31 

FIG 2 Flowchar t  of p rogram to il lustrate start 
and complet,e operations.  

tions. Algorithm 2 is deliberately written in 
an unstructured manner that makes it diffi- 
cult to understand. A well-structured algo- 
rithm will be presented later. (I recommend 
that the reader not spend too much time try- 
ing to understand Algorithm 2 at this point.) 

Algorithm 2 Concurrent file updating (un- 
structured version) 

var reader, printer: sequence of T; 
reading, printing: response; next, 
this, last: T; i: 2 . .  n; 

begin 
if n I> 1 then 

get (last, reader) ; 
i f  n > /2  then 

update (last) ; 
start printing do put (last, 

printer) ; 
get (t'his, reader) ; 
i := 2; 
while i < n do 

start reading do get (next, 
reader) ; 

update (this) ; 
complete printing; 
last:= this; 
start printing do put (last, 

printer) ; 
complete reading; 
this: = next; 
i:-- i + 1; 

end 
complete printing; 
last: = this; 

end 
update (last) ; 
put (last, printer) ; 

end 
end 

The program inputs and updates the first 
record R1. It  then starts the output of the 
first record and inputs the second record 
R2 at the same time. The program now re- 
peats the execution of a cycle that, in gen- 
eral, inputs the next record Ri  + 1, updates 
this record Ri, and outputs the last record 
Ri-1 simultaneously. When all records have 
been input (i = n), the program completes 
the output of the second last record Rn-1. 
Finally, it updates and outputs the last 
record Rn. 
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In spite of this explanation, the details of 
Algorithm 2 are still hard to follow. The 
cause of this obscurity becomes clear when 
we examine the flowchart of the body of the 
while statement (Fig. 3). This flowchart 
cannot be decomposed into a set of nested 
operations. The program is highly confusing 
because a process started outside the whzle 
statement (output) may be completed either 
inside or outside the while statement (de- 
pending on whether or not n > 2). 

I t  is certainly possible to write a simpler 
program using the start and complete state- 
ments (just as it is possible to structure pro- 
grams written in assembly language). But  
the concepts of a high-level language should 
be chosen such that  they natural ly encour- 
age the programmer to write well-structured 
programs. The ~tart and complete state- 
ments clearly have the flavor of go to state- 
ments They make it very difficult to deter- 
mine from the program text where concur- 
rent processes begin and end, and which 
variables they operate on. 

4. STRUCTURED CONCURRENCY 

A well-structured representation of concur- 
rent processes m a high-level programming 
language was suggested by Dijkstra in 1965. 
[4] The concurrent statement 

cobeg in  S1; $2; . . .  ; Sn eoend  

indicates that  the statements S1, $ 2 , . . .  , Sn 
can be executed concurrently; when all of 
them are completed, the following statement 
m the program (not shown here) is executed. 

Algorithm 3 defines file updating by 
means of concurrent statements. We will 
analyze this program, statement by state- 
ment, in terms of assertions that  hold be]ore 
the execution of hnes 1-12 

The imtial assertion is the following: 
c o m m e n t  1 0 out o] n records processed 

(where 0 ~ n) ; 
I f  the input file is non-empty (n />  1), the 

program inputs the first record R1 : 
c o m m e n t  2 0 out o] n records processed 

(where 1 ~ n), and this =- input record 
R1; 

If  the input contains more than one record 
(n ~> 2), the program inputs the second 
record R2 and updates the first record R1 
simultaneously: 

c o m m e n t  3 0 out o] n records processed 
(where 2 ~ n),  next = input record R2, 
and this = updated record R1 ; 

Algorithm 3 Concurrent file updating 
(structured version) 

var  reader, printer: sequence  o] T; 
next, thzs, last: T; i: 2 . .  n; 

begin  
(1) if n / >  1 then  

get (this, reader) ; 
(2) if  n / >  2 then  

eobeg in  
get (next, reader) ; 
update (this); 

e o e n d  
(3) i.'= 2; 
(4) whi le  i < n do 

last := this; this := next; 
(5) cobeg in  

get (next, reader) ; 
update (this); 
put (last, printer) ; 

coend  
(6) i.'= i + 1; 
(7) end  
(8) put (this, printer) ; 

this : = next; 
(9) end  

(10) update (this) ; put (this, printer) ; 
(11) end  
(12) e n d  

The program now enters a mare loop that  
repeatedly inputs a record Ri  + 1, updates 
a record Ri, and outputs a record Ri  -- 1 
simultaneously. The loop is initialized by 
setting a counter z equal to 2. This leads to 
the following program state: 

c o m m e n t  4 ~ -- 2 out o] n records proc- 
cessed (where 2 ~ i ~ n) , next = input 
record Ri, and this = updated record 
R~ - 1; 

Within the loop, the program goes through 
the following sequence of states: 

c o m m e n t  5 i - 2 out o] n records proc- 
essed (where 2 ~ i < n),  this = input 
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record Ri, and last = updated record 
R i  - 1; 

c o m m e n t  6 i - 1 out of n record processed 
(where 2 ~ i < n),  next = input record 
R i  + 1, and this = updated record [ti; 

c o m m e n t  7 i - 2 out o] n records proc- 
essed (where 2 < i ~ n),  next = input 
record Ri, and this = updated record 
Ri  - 1; 

A comparison of assertions 4 and 7 shows 
that  assertion 4 is a relation that  remains 
invariant after each execution of the loop. 
When the loop terminates, assertion 4 still 
holds and i is equal to n: 

c o m m e n t  8 n - -  2 out of n records proc- 
essed (where 2 ~ n), next -- input rec- 
ord I:tn, and this = updated record 
R n  - 1; 

The program now outputs the second last 
record R n  - 1: 

c o m m e n t  9 n - 1 out of n records proc- 
essed (where 2 ~ n) ,  and this = input 
record Rn;  

The effect of the innermost i f  statement 
ment can be summarized as follows: 

c o m m e n t  2 0 out o] n records processed 
(where 1 ~ n),  and this = input record 
R1; 
process n - 1 records; 

c o m m e n t  1 0  n - 1 out o] n records proc- 
essed (where 1 ~ n),  and this = input 
record Rn;  

If  n = 1 then assertions 2 and 10 are equiv- 
alent, and if n ~ 2 then assertions 9 and 
10 are equivalent. This covers the two cases 
in which the if statement is either skipped 
or executed. 

Finally, the last record R n  is updated and 
output:  

c o m m e n t  11 n out of n records processed 
(where 1 ~ n) ; 

The whole program can be understood as 
a single operation defined as follows: 

c o m m e n t  1 0 out of n records processed 
(where 0 ~ n) ;  
process n records; 

c o m m e n t  12 n out of n records processed 
(where 0 ~ n) ;  

This concurrent program has precisely the 
same characteristics as a well-structured se- 
quential program. I t  can be analyzed in 

INPUT UPDATE OUTPUT 

I get I I Up °'e I 

los,:-... I 

I I + 
I i--i+' I 

Fla. 3 F lowcha r t  of  t he  b o d y  of the  while s t a t e -  
m e n t  m A l g o r i t h m  2 

terms of time-independent assertions by an 
effort proportional to its size, and assertions 
about simple statements can gradually be 
replaced by assertions about structured 
statements until the whole program has been 
reduced to a single statement defined by two 
assertions. This abstract description of the 
program even enables the programmer to ig- 
nore the concurrent nature of the solution. 
To see this, it is sufficient to observe tha t  
the initial and final assertions 0 and 12 for 
Algorithm 3 are identical to the assertions 
made at the beginning and end of the se- 
quential version (Algorithm 1). 

In the previous discussion, the concurrent 
statement was defined and used informally 
to give you an intuitive understanding of its 
meaning. We will now explicitly discuss the 
assumptions that  led to the simplicity of 
Algorithm 3. 

Computing Surveys, Vol. 5, No. 4, December 1973 



230 • Per Brinch Hansen 

. . . . . .  

I ,os,:--... I 

I '"'s:'" I I 
I - - - - "  ! I 

I I I  

I 
I S II 
t JI 

L I 

FIG. 4 A flowchart of the body of the while state- 
ment m Algorithm 3. 

,5. DISJOINT PROCESSES 

There is one striking difference between Al- 
gorithms 2 and 3: When concurrent state- 
ment~ are used, the program text directly 
shows where a given process begins and 
ends. This simplification is achieved by re- 
stricting the freedom of scheduling. The 
start and complete statements enable the 
programmer to initiate and terminate proc- 
esses in any order he pleases. A concurrent 
statement defines processes that are started 
and completed at the same time. Complete 
generality of programming implies complete 
absence of structure. As a compromise, one 
has to look for programming tools that are 
intellectually manageable and at the same 
time practical for most (but not necessarily 
all) applications. The concurrent statement 
is one such compromise. 

Since a concurrent statement has a single 
starting point and a single completion point, 
it is well-suited to structured programming. 
Figure 4 shows a flowchart of the body of 
the while statement in Algorithm 3. In con- 
trast to Fig. 3, the present flowchart can be 
decomposed into nested operations. This ex- 
plains why we were able to reduce assertions 
about simple statements to assertions about 

structured statements, and then reduce as- 
sertions about structured statements to as- 
sertions about the whole algorithm. 

It  may seem surprising that the use of 
concurrent statements in Algorithm 3 in no 
way complicated the formulation of asser- 
tions. The informal arguments made in ,fa- 
vor of its correctness are quite similar to the 
arguments on Algorithm 1 in Section 2. I t  
turns out that we were able to apply se- 
quential methods of program analysis to a 
concurrent program simply because the 
processes defined by the concurrent state- 
ments are completely independent o] one 
another. These processes operate on disjoint 
sets of variables: 

process variables 
get next, reader 
update this 
put last, printer 

They are called disjoint or non-interacting 
processes. The input, update, and output 
processes are carried out simultaneously 
only to utilize the computer more efficiently. 
But conceptually, these processes could just 
as well be carried out strictly sequentially 
as defined by Algorithm 1. 

Since the processes in Algorithm 3 have 
no variables in common, they can be ana- 
lyzed one at a time as unrelated sequential 
processes. Consider, for example, the con- 
current statement inside the loop. I t  can be 
analyzed as three independent operations 
defined by the following assertions: 

c o m m e n t  5 a  i - 2 out o] n records proc- 
essed (where 2 ~ i < n);  
get (next, reader) ; 

c o m m e n t  6a next = input record Ri  + 1 
(where 2 ~ i < n);  

c o m m e n t  5 b  ~ - 2 out o] n records proc- 
essed (where 2 ~ i < n) , and this = in- 
put  record Ri;  
update (this) ; 

c o m m e n t  6b this = updated record R i  
(where 2 ~ i < n);  

c o m m e n t  5 c  i - -  2 out of n records proc- 
essed (where 2 ~ i < n),  and last = 
updated record R i  - 1; 
put (last printer) ; 
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comment 6 c  i - 1 out of n records proc- 
essed (where 2 ~ i < n) ; 

Here assertions 5 and 6 have been split into 
three pairs of assertions, one for each process 
statement. Each pair of assertions defines 
our assumptions about a variable i that  re- 
mains constant during the execution of the 
concurrent statement and our assumptions 
about the variables that  are private to the 
corresponding process and may be changed 
by it. 

Since the processes are disjoint, the con- 
junction of assertions 6a, 6b, and 6c holds 
after the execution of the concurrent state- 
ment. 

In general, we can define the properties of 
a concurrent statement by the following 
rule of disjointness : The statement 

cobegin S1; $2; . . .  Sn coend 

defines statements S1, $2, . . .  , Sn that  can 
be executed concurrently as disjoint proc- 
esses. The disjointness imphes that a varia- 
ble vi changed by a statement Si cannot be 
re]erenced by another statement Sj (where 
j ~ i). In other words, a variable subject 
to change by a process must be strictly pri- 
vate to that  process; but disjoint processes 
can refer to common variables not changed 
by any of them. 

The general rule that  we intuitively fol- 
lowed in analyzing Algorithm 3 can be 
stated as follows: Suppose that  we know 
the following about statements S1, $2, . . .  , 
Sn that  operate on dlsioint variables: 

Statement $1 will terminate with a re- 
sult R1 if a precondition P1 holds before 
its execution. 

Statement $2 will terminate with a re- 
sults R2 if a precondit ion/)2 holds before 
its execution. 

Statement Sn will terminate with a re- 
sult Rn if a precondition Pn holds before 
its execution. 
Then we can conclude that  a concurrent 

execution of S1, $2, . . .  , Sn will terminate 
with the result R1 & R 2 . . .  & Rn  if the 
precondition P1 & P2 & . . .  & Pn holds be'- 
fore its execution. (It  should be added that  
the assertions Pi  and Ri  made about state- 

ment Si must only refer to variables tha t  
are accessible to Si according to the rule of 
disjointness.) 

6. TIME-DEPENDENT ERRORS 

An error in a sequential program can be lo- 
cated by repeating the execution of the pro- 
gram several times with the data tha t  re- 
vealed the error. In each of these experi- 
ments, the values of selected variables are 
recorded to determine whether or not a given 
program component works. This process of 
elimination continues until the error has 
been located. 

When a given program component has 
been found to behave correctly in one test, 
we can ignore that  component in subsequent 
tests because it will continue to behave in 
exactly the same manner each time the pro- 
gram is executed with the given data. In 
other words, our ability to test a large se- 
quential program in a step-wise manner de- 
pends ]undamentally on the reproducible 
behawor o] the program. 

A careful programmer who writes a well- 
structured concurrent program, such as Al- 
gorithm 3, and outlines an informal proof 
of its correctness can still make mistakes 
when he types the final program. And he 
may not find all these errors during a proof- 
reading of the program text. One possible 
mistake would be to type the concurrent 
statement within the loop of Algorithm 3 as 
follows: 

cobegin 
get (next, reader) ; 
update (this) ; 
put  (this, printer) ; 

coend 
In this case, the concurrent statement will 

input the next record Ri  + 1 correctly, but 
will update and output the current record 
Ri  simultaneously. So the output record will 
normally be only partially updated. In a 
multiprocessor system with a common store, 
a record occupying, say 256 machine words, 
may be output with x words updated and 
256-x words unchanged (where 0 ~ x 
256). The processing of a single record can 
therefore produce 257 different results. If  
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we update a given file of 10,000 records, the 
program can give of the order of 2571°,°°° 
different results. 

In a multiprogramming system, the execu- 
tion of concurrent statements can be inter- 
leaved and overlapped in arbitrary order. 
The system uses this freedom to multiplex 
fast computer resources (processors and 
stores) among several user computations to 
achieve short response times at a reasonable 
cost. 

The result of the erroneous version of 
Algorithm 3 depends on the relative rates at 
which updating and output of the same 
record take place. The rates will be influ- 
enced by the presence of other (unrelated) 
computations, and by the absolute speeds of 
peripheral devices and operators interacting 
w~th the computations. I t  is therefore very 
unlikely that the erroneous program will 
ever deliver the same result twice for a given 
input file. The error will be particularly 
hard to find if the updated file is not in- 
spected by humans, but just retained for 
later processing by other programs. 

Such unpredictable program behavior 
makes it impossible to locate an error by 
systematic testing. I t  can only be found by 
studying the program text in detail. This can 
be very frustrating (if not impossible) when 
it consists of thousands of hnes and one has 
no clues about where to look. I] we wish to 
succeed in designing large, reliable multipro- 
gramming system~, we must use program- 
mmg tools that are so well-structured that 
most t~me-dependent errors can be caught 
at compile time. 

A closer look at the incorrect version of 
Algorithm 3 reveals a clear violation of the 
rule of disjomtness: Within the erroneous 
concurrent statement the output process re- 
fers to a varmble, this, which is changed by 
the updating process. I t  is therefore inevita- 
ble that the result of the output depends on 
the time at which updating takes place. 

To make it simple for a compiler to check 
tbe disjointness it should be possible by scan- 
nmg the program text to recogmze concur- 
rent statements and variables accessed by 
them. The compiler must be able to dis- 
tmguish between variables that can be 

changed by a statement and variables that 
can be referenced by a statement but not 
changed by it. These two kinds of variables 
are called the variable parameters and con- 
stant parameters of a statement. 

When start and complete statements are 
used, one cannot, in general, recognize con- 
current statements from the syntax alone. 
This recognition is, however, trivial when 
concurrent statements are enclosed in brack- 
ets, cobegin and coend. To make the check- 
ing of disjomtness manageable, it is neces- 
sary to restrict the use of pointer variables 
and procedure parameters far more than 
present programming languages do. 

Although the problem has not yet been 
analyzed completely, it seems certain that 
the necessity of compile-time checking of 
disjointness will have a profound influence 
on language design. An example will make 
this clear. In sequential programming lan- 
guages a pointer variable may be bound to 
other variables of a given type, for example: 

v a r  p: p o i n t e r  t o  integer; 

This declaration indicates that variable p 
is a pointer to any integer variable. The no- 
tation enables a compiler and its run-time 
system to check that p always points to a 
variable of a well-defined type (in this case, 
an integer) This kind of pointer variable is 
far better than one that can point to an 
arbitrary store location containing data of 
unknown type (or even code). But the dec- 
laration pointer to integer still does not 
enable a compiler to recognize which integer 
the variable p will point to during program 
execution So, unless the programmer is will- 
ing to make all integers private to a single 
process, this pointer concept is inadequate 
for multiprogramming. We need to bind a 
pointer p to a particular set of integers, for 
example: 

v a r  i, j, k: integer; p: p o i n t e r  t o  i o r  j; 

Some of the language requirements needed 
to make compile-time checking of disjoint- 
hess practical are discussed in more detail in 
[1]. 

The concurrent statement has not yet 
been implemented and used for practical 
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programming,  but I would expect it to be a 
convenient tool for the design of small, dedi- 
cated mul t iprogramming systems involwng 
a predictable number of processes. I have 
some reservatmns about  its usefulness in 
larger mult iprogramming systems (for ex- 
ample, operating systems) as discussed later 
in this paper. 

The rule of disjointness is introduced to 
help the programmer;  it enables him to state 
explicitly tha t  certain processes should be 
independent of one another and to depend 
on automatic  detection of violations of this 
assumption. To make mul t iprogrammmg 
intellectually manageable and reasonably 
efficient, disjoint processes should be used 
wherever possible. But, as we shall see, all 
mult iprogramming systems must  occasion- 
ally permit  concurrent processes to exchange 
data m a well-defined manner. The com- 
ponents of a concurrent s tatement  must, for 
example, be able to indicate their termina-  
tion in a common (anonymous) variable;  
otherwise, it would be Impossible to deter- 
mine when a concurrent s tatement  is termi- 
nated as a whole. The cobegin coend nota- 
tion hides this communication problem from 
the user, but it has to be solved at  some 
other level of programming (m this case by 
the code generated by a compiler). The fol- 
lowing sections describe language features 
used to control interactions among processes 

7. TIMING SIGNALS 

Concurrent processes tha t  access common 
variables are called in teract ing or c o m m u m -  
cating processes. When processes compete  
for the use of shared resources, common 
variables are necessary to keep t rack of the 
requests for service. And when processes 
cooperate on common tasks, common varia-  
bles are necessary to enable processes to ask 
one another to carry out subtasks and report  
on their results. 

We will s tudy systems in which one 
process produces and sends a sequence of 
data  items to another process that  receives  
and consumes them. I t  is an obvious con- 
straint  tha t  these data i t ems  cannot  be re- 

ce ived ]aster than t hey  are sent.  To satisfy 
this requirement it is sometimes necessary 
to delay further execution of the receiving 
process until the sending process produces 
another data  item. Synchron i za t ion  is a gen- 
eral term for timing constraints of this type 
imposed on interactions between concurrent 
processes. 

The simplest form of interaction is an ex- 
change of t iming signals between two proc- 
esses. A well-known example is the use of 
in terrupts  to signal the completion of 
asynchronous peripheral operations to a 
central processor. Another kind of timing 
signals, called events ,  was used in early 
mult iprogramming systems to synchronize 
concurrent processes. When a process de- 
cides to wa~t for an event, the execution of 
its next operation is delayed until another 
process causes the event. An event occurring 
at  a t ime when no processes are waiting for 
one has no effect. 

The following program illustrates the 
transmission of t iming signals from one 
process to another by means of a variable e 
of type event .  Both processes are assumed to 
be cyclical: 

var e :  even t ;  
cobegin 

cycle "sender"  
. . .  cause e v e n t ( e )  ; . . .  

end 
cycle "rece iver"  

. . .  awai t  e v e n t ( e )  ; . . .  
end 

coend 

A relationship of this type exists in a real- 
t ime system in which one process schedules 
concurrent tasks regularly by sending t iming 
signals to other processes tha t  carry out 
these tasks. 

In  Section 6 we recogmzed tha t  simultane- 
ous operations on the same variable can lead 
to a large number of different results. In 
that  context, the problem was caused by a 
program error. Now we have the same prob- 
lem again: The concurrent operations, awai t  
and cause, both access the same variable e. 
But  we can no longer regard this as a viola- 
tion of the rule of disjointness since our in- 
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tention is tha t  the processes should exchange 
data. So we must relax the rule o] disjoint- 
ness and permit concurrent processe~ to ac- 
cess shared variables by means o] well-de- 
fined synchronizing operations. Our next 
task is to determine under which conditions 
synchronizing operations are "well-defined". 

To analyze the effect of an interaction 
between the receiver and the sender in the 
previous program, we must consider all the 
possible ways in which the execution of 
await and cause operations can be inter- 
leaved and overlapped in time. In a continu- 
ous time scale there are infinitely many 
possibihties to consider. A drastic simplifica- 
tion is clearly needed to reduce this infinity 
to a finite (small) number of cases. The only 
practical solution is to assume that  synchro- 
nizing operations on a given variable cannot 
be executed at the same time. In other 
words, await and cause operations on a given 
event variable can be arbitrarily interleaved 
(but not overlapped) in time. If  a process 
tries to operate on an event variable while 
another process is operating on it, the system 
must delay the former process until the lat- 
ter process has completed its operation on 
the event variable. 

I f  this requirement is satisfied, there are 
only two cases to consider in the previous 
program: either an await operation is exe- 
cuted be]ore a cause operation or alter it. If  
the receiver waits before the sender causes 
the next event, an interaction between the 
two processes is defined by the following 
sequence of operations: 

c o m m e n t  recewer not waiting; 
await event(e);  
c o m m e n t  receiver waiting; 
cause event (e) ; 
c o m m e n t  receiver not wa~t~ng ; 
But, if the sender causes the event before 

the receiver waits for it, the receiver will re- 
main delayed until the next event is caused: 

c o m m e n t  receiver not waiting; 
cause event (e) ; 
c o m m e n t  receiver not waiting; 
awazt event (e) ; 
c o m m e n t  receiver waiting; 
The most important  result of this analysis 

is the general observation that  mutual ex- 
clusion o] all operatwns on a shared variable 
enables the programmer to analyze the pos- 
sible ef]ects o] a procesx ir~teraction in finite, 
sequential terms. For the special case of 
event variables, we have also discovered 
that  the net effect of await and cause opera- 
tlons depends on the order in which these 
operations are carried out. Or, to put  it more 
strongly: event operations ]orce the pro- 
grammer to be aware of the relative speeds 
o] the ~ending and receiving processes. 

The programmer does not control the 
order in which concurrent statements are 
executed; he is therefore unable to predict 
the effect of a process interaction revolving 
events. In a real-time system, the program- 
mer has essentially lost control of process 
scheduling--he cannot define a process that  
will schedule other processes in a predictable 
manner. Event  variables are only meaning- 
ful to use when one can assume that  a 
process never is asked to carry out another 
task until it has completed its previous task. 
Although this assumption may be satisfied 
in some applications, it will still complicate 
programming tremendously if one depends 
on it. The programmer must then be aware 
of the relative speeds of processes under all 
circumstances. If  a multiprogramming sys- 
tem is so large that  no single person under- 
stands its dynamic behavior in detail, the 
individual programmer cannot make reliable 
estimates of the relative speeds of processes 
under all circumstances. In particular, it will 
be an intolerable burden to verify tha t  the 
speed assumptions are uninfluenced by 
modifications or extensions of a large sys- 
tem. 

We must therefore conclude that  event 
variables of the previous type are impracti- 
cal for system design. The effect o] an inter- 
action between two procesxes must be inde- 
pendent o] the speed at which it is carried 
out. 

A far more attractive synchronizing tool, 
the semaphore, was invented by Dijkstra  in 
1965. [4, 5] A semaphore is a variable used 
to exchange timing signals among concurrent 
processes by means of two operations, wait 
and signal (originally called P and V). All 
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operations on a semaphore exclude one 
another in time. Associated with a sema- 
phore v are two integers defining the num- 
ber of signals sent and received through v 
and a queue in which receiving processes 
can await the sending of further timing 
signals by other processes. Initially, the 
number of signals sent and received are zero 
and the queue is empty. 

Signals cannot be received faster than 
they are sent. This semaphore invariant: 

0 ~ received ~ sent 

is satisfied by using the following syncho- 
nization rules: 

1) If  a wait operation on a semaphore v 
is executed at a time when received < sent 
then received is increased by one and the 
receiving process continues; but if received 
= sent, the receiver is delayed in the queue 
associated with v. 

2) A signal operation on a semaphore v 
increases sent by one; if one or more proc- 
esses are waiting in the queue associated 
with v, one of these processes is enabled to 
continue its execution and received is in- 
creased by one. 

We assume that  all processes waiting to 
receive signals eventually will be able to 
continue their execution (provided a suffi- 
cient number of signals are sent by other 
processes). The scheduling algorithm used 
for a semaphore queue must not delay any 
process indefinitely in favor of more urgent 
processes. But, apart  from this requirement 
of ]air scheduling, no assumptions are made 
about the specific order in which waiting 
processes are allowed to continue. The weak 
assumption of finite progress (rather than 
absolute speed) for any process is a recur- 
reht theme of programming. We have made 
this assumption for sequential and disjoint 
processes, and now we make it again for 
interacting processes to achieve simplicity 
of program analysis and flexibility of imple- 
mentation. 

Algorithm 4 defines a transmission of 
timing signals from one process to another 
by means of a semaphore v. 

Algorithm ~ Exchange of timing signals 
by means of a semaphore 

v a r v :  semaphore; 
cobeg in  

cycle "sender" 
. . .  signal (v) ; . . .  

end  
cycle "receiver" 

• . .wa i t  ( v ) ; . . .  
end 

coend  

Since wait and signal operations on the 
semaphore v exclude each other in time, a 
signal can be sent either be]ore or after the 
receiver decides to walt for it. In the first 
case, we can make the following assertions 
about the sequence in which an interaction 
takes place: 

c o m m e n t  receiver not waiting and 0 
received ~ sent; 
szgnal ( v ) ; 
c o m m e n t  receiver not waiting and 0 
received < sent; 
wait (v) ; 
c o m m e n t  receiver not waiting and 0 < 
received ~ sent; 
In the second case, the wait operation 

may or may not delay the receiver (depend- 
ing on whether received = sent or received 
< sent). But, in any case, the subsequent 
signal operation will ensure that  the receiver 
continues its execution: 

c o m m e n t  receiver not waiting and 0 
received ~ sent; 
wait (v) ; 

c o m m e n t  receiver waiting and 0 ~ re- 
ceived = sent, or recezver not waiting 
and 0 < received ~ sent; 
signal (v) ; 

c o m m e n t  receiver not waiting and 0 < 
received ~ sent; 

The effect of an interaction is independ- 
ent of the order in which the wa~t and signal 
operations are carried out. The commutative 
property o] semaphore operations enables 
the programmer to ignore the precise mo- 
ment at which a timing signal is produced. 
This is certainly the most important  contri- 
bution of semaphores to program clarity. 

Other uses of semaphores will be described 
later when we have clarified the funda- 
mental role of mutual exclusion in multipro- 
gramming. 
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8. CRITICAL REGIONS 

We will now consider concurrent processes 
that  exchange data  of arbi t rary  type  (and 
not just t iming signals). As an example we 
choose a mult iprogramming system m which 
job statistics are collected by a process P 
and printed by another process Q. When a 
user job has been completed in this system, 
process P increases an integer v by one. At 
regular intervals process Q prints the value 
of v and resets it to zero. To discover the 
problems of data  sharing we will begin with 
a naive "solution": 

v a t  v :  integer; 
b e g i n  

v : =  0; 
c o b e g i n  

c y c l e  " P "  

• . . v : =  v + 1 ; . . .  

e n d  
c y c l e  "Q" 

. . . p r i n t  (v) ;  v : =  0 ; . . .  
e n d  

c o e n d  

e n d  

This program violates the rule of dlsjoint- 
ness since processes P and Q both refer to 
and change the same variable v. Although 
this violation suggests a weakness of the 
present approach to the problem we will ig- 
nore it for the time being. 

The state of the system accumulating job 
statistics can be defined by two integers 
( imtially equal to zero) : 

x the number  of jobs executed 
r the number  of jobs reported 

The variable v should represent the number 
of jobs executed but not yet  reported; that  
is, the relationship v = x - r should remain 
invariant after  each sequence of operations 
on the shared variable v. 

The example illustrates two general char- 
acteristics of mul t iprogramming systems: 

1) The correctness criterion ]or concur- 
rent operations on a shared variable is de- 
fined by an mvar iant - -a  relationship tha t  
must  be true after  initlalizatmn of the var i -  
able and continue to hold before and after  
subsequent operations on the variable. 

2) The invariant property o] a shared 

variable is defined in terms o] actual and 
~mplicit variables• An actual variable  (such 
as v) is declared m the program and repre- 
sented by a store location during its execu- 
tion. An implicit variable  (such as x or r) 
refers to a proper ty  of the system tha t  is not 
represented m the computer during program 
execution• 

The s tatements  executed by processes P 
and Q can be arbi t rar i ly  overlapped and 
interleaved in time. We will, however, only 
analyze the effects of an a rb i t ra ry  inter- 
leaving of the concurrent s tatements  tha t  
operate on the shared variable v. The in- 
crease of v by process P can occur either 
be]ore, alter, or in the middle of the print-  
ing and resetting of v by process Q. So we 
have three cases to consider: 

v.= v + 1; pmnt(v); pmnt(v); 
print(v); v:=0; v:= v + 1; 
v.=0; v:=v + 1; v:= 0, 

The correctness criterion of the possible 
interactions between processes P and Q is 
defined by an invar iant  (v = x - r )  tha t  
relates an actual var iable  v to two implicit 
variables x and r. To analyze the results of 
the three possible cases, we must  extend the 
program with implicit s tatements referring 
to x and r (even though these s ta tements  
will never be executed). Conceptually,  x is 
increased by one when v is increased, and r 
is increased by the value of v when the lat ter  
is printed. Assuming tha t  the desired in- 
var ian t  holds before an interaction takes 
place, we can make the following assertions 
about the first case: 

c o m m e n t  x - -  r -~ v ;  

v : =  v + 1; [x:= x + 1] 
c o m m e n t  x - -  r = v ;  

print (v) ;  Jr.'= r + v] 
c o m m e n t  x - -  r = 0; 
v:=- O; 
c o m m e n t  x - -  r = v ;  

The implicit s tatements are enclosed in 
square brackets to distinguish them from 
actual statements.  In  this case, the in- 
var ian t  still holds after  the process inter- 
action. 

In  the second case, the m v a r m n t  is also 
maintained by the interaction: 
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c o m m e n t  x - -  r = v ;  

print (v);  I t :=  r + v] 
c o m m e n t  x - -  r ---- 0 ;  

v : =  O; 
c o m m e n t  x - -  r ---- v~" 

v :=  v + 1; [x:= x + 1] 
c o m m e n t  x - r = v ;  

But in the third case, the " lnvar ian t"  no 
longer holds after  the process interaction: 

c o m m e n t x - -  r = v ;  

print (v) ; [ r :=  r + v] 
c o m m e n t  x - -  r = 0 ;  

v : =  v + 1; [x:= x + 1] 
c o m m e n t x - - r =  l ;  

v : = O ;  
c o m m e n t x - - r  = v  ÷ 1 ;  

Whether  or not the invar iant  is main- 
tained depends on the ordering of the con- 
current s tatements in time. This is, of 
course, unacceptable to the programmer  who 
has no control over the scheduling of con- 
current processes. 

Notice that  in the first two cases, in which 
the invariant  continues to be satisfied, the 
two processes have exclusive access to the 
variable v while they are operating on it: 

P v: = v ~ 1 ;  Q print (v); 

print v: = 0; 

, 7 i ;  
The conflict in the third case is caused by 
mixing the sequence of operations of process 
Q on variable v with an operation of process 
P on the same variable:  

pmn! (v ) ;  

i 1;, 
Q 

P 

Q 

Process Q performs a sequence of opera- 
tions on the shared variable v. I t  is assumed 
that  the i nvanan t  holds before and after 
this sequence of operations. But  while the 
operations are carried out, the variable v 
may  be in various intermediate states in 
which the mvar ian t  is not satisfied. I f  other 
concurrent statements are carried out on the 

same variable in one of its intermediate 
states, the result will normal ly  be incorrect. 
In  the previous example, process P starts to 
operate on variable v a t  a t ime when x - 
r = 0 (instead of x - r = v) ; this leads to 
a final state in which x - r = v + 1 (instead 
of  x - r = v ) .  

In  Section 7 we found tha t  the effect of 
synchronizing operations on event variables 
and semaphores can be predicted only if 
they exclude one another in time. The pres- 
ent example shows tha t  one must  also be 
able to achieve mutual  exclusion of arbi- 
t r a ry  concurrent statements referring to a 
shared variable of an arbi t rary  type. 

Concurrent s tatements tha t  refer to the 
same shared variable are called cmt~cal 
regions. The previous program contains two 
critical regions : 

and 

v : =  v + 1 

print (v) 
V : ~  0 

Critical regions referring to the same var i -  
able exclude one another m time. They  can, 
however, be arbi t rar i ly  interleaved in time. 
We make three assumptions about critical 
regions tha t  operate on the same shared 
variable:  

Mutual  exclusion: At most, one process 
at  a t ime can be inside a critical region. 
Termination: A process will always com- 
plete a critical region within a fimte time. 
Fair scheduling: A process can always 
enter a critical region within a finite time. 
Dekker  has shown tha t  mutual  exclusion 

of arbi t rary  statements can be implemented 
by means of load and store operations only 
(provided that  load and store operations on 
a given variable exclude one another in 
t ime).  His solution is far too complicated 
and inefficient to be of practical value [4], 
but it does illustrate the subtlety of the mu- 
tual exclusion problem. 

The inadequacy of the load-and-store ap- 
proach to mutual  exclusion inspired Di jk-  
stra and Scholten to invent semaphores. 
Algorithm 5 defines an implementat ion of 
critical regions by means of a semaphore 
mutex. 
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Algorithm 5 Critical regions implemented 
by means of a semaphore 

var  v: integer; mutex : semaphore(I);  
begin 

v : = 0 ;  
cobegin 

cycle "P" 
• • •wai t  (mutex);  v : =  v ÷ 1; 

s~gnal (mutex) ; . . .  
end 
cycle "Q" 

• . .  wa~t (mutex) ; print (v) ; 
v : =  0; siqnol (mutex) ; . . . 

end 
cocnd 

end 

The declaration of a semaphore mutex 
has been extended with an integer constant 
defining the initial number of available sig- 
nals: 

var  mutex: semaphore (initial) 

A semaphore is now characterized by three 
integer components: 
initial the number of signals initially 

available 
sent the number o~ signal operations 

completed 
received the number of wait operations 

completed 
The semaphore invariant  must therefore be 
revised slightly: 

0 ~ received ~ sent ÷ initial 

For the semaphores used in Section 7, initial 
is zero. In Algorithm 5, initial is equal to 
one. 

To make a sequence of statements S1, $2, 
. . . ,  Sn a critical region, we enclose it by a 
pair of wait and signal operations on a 
semaphore mutex initialized to one: 

var  mutex: semaphore( l ) ;  

• . .wa i t  (mutex);  S1; S 2 ; . . . S n ;  
signal (mutex) ; . . .  

The initial signal allows precisely one proc- 
ess to enter its critical region. Once a proc- 
ess has consumed the available signal and 
entered its critical region, no other process 
can enter a critical region associated with 
the same semaphore until the former proc- 

ess leaves its critical region and produces 
another signal. 

A more rigorous proof of the mutual ex- 
clusion depends on the following observa- 
tions: 

1) Independent of how wait and signal 
operations are used they maintain the sem- 
aphore invariant : 

0 ~ recewed ~ sent + 1 

2) When a semaphore is used to achieve 
mutual exclusion, a process always executes 
a wait operation followed by a signal opera- 
tion. At any given time, some processes may 
have executed a wait operation, but not ye t  
the corresponding signal operation• So the 
structure of the program shows that  the in- 
variant :  

0 ~ sent ~ received 

is also maintained. 
3) Finally, it is clear that  the number of 

processes tha t  are inside their critical re- 
gions at any given time are those processes 
that  have completed a wait operation but 
not yet  the following signal operation, tha t  
is: 

inside --- received - sent 

By combining these three invariants, we 
find that  the first assumption about critical 
regions is satisfied: 

0 ~ inside ~ 1 

At most, one process at a time can be inside 
a critical region. 

Assuming that  processes are scheduled 
fairly when they are inside their critical re- 
gions, we can also conclude that  the state- 
ments executed within the critical regions of 
Algorithm 5 will terminate within a finite 
time. And if the scheduling of processes 
waiting for timing signals in the semaphore 
queue is also fair, then a process can only be 
delayed a finite number of times while 
other processes enter critical regions ahead 
of it; so a process will always be able even- 
tually to enter its critical region. The im- 
plementation of critical regions in Algo- 
ri thm 5 is therefore correct. Notice that  the 
analysis of this concurrent program is stated 
in terms of the implicit variables, received, 
sent, and inside. 
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A semaphore is an elegant synchronizing 
tool for an ideal programmer who never 
makes mistakes. But  unfortunately the con- 
sequences of using semaphores incorrectly 
can be quite serious. A programmer might 
by mistake write the wait and signal opera- 
tions in reverse order for a particular criti- 
cal region: 

signal (mutex) ; . . .  wait (mutex) ; 

In that  case, the system will sometimes per- 
mit three processes to be inside their "criti- 
cal regions" at the same time. This is a 
time-dependent error that  only reveals itself 
if other processes enter critical regions while 
the erroneous critical region is being exe- 
cuted. 

Another serious error would be the fol- 
lowing: 

wait (mutex) ; . . .  wait (mutex) ; 

This one causes the process executing the 
critical region to wait forever at the end of 
it for a timing signal that  will never be pro- 
duced. Since the incorrect process is unable 
to leave its critical region, other processes 
trying to enter their critical regions will 
also be delayed forever. Notice, that  the be- 
havior of the other processes is only in- 
fluenced by the erroneous process after the 
latter has entered its incorrect region. So the 
error is clearly time-dependent. Such a sit- 
uation in which two or more processes are 
waiting indefinitely for synchronizing con- 
ditmns that  will never be satisfied is called 
a deadlock. 

These examples show how easy it is to 
cause a time-dependent error by means of a 
semaphore. Even if a semaphore is used 
correctly it still does not provide us with a 
satisfactory notation to indicate that  the 
violation of the rule of disjomtness with 
respect to the variable v in Algorithm 5 is 
dehberate. 

A semaphore is a general programming 
tool that  can be used to solve arbi t rary syn- 
chronizing problems Hence a compiler can- 
not always assume that  a pair of wait and 
signal operations on a semaphore initialized 
to one delimits a critical region. In particu- 
lar, a compiler cannot recognize the fol- 

lowing errors: if a pair of wait and signal 
operations are exchanged, if one or both of 
them are missing, or if a semaphore is ini- 
tialized incorrectly. A compiler is also un- 
aware of the correspondence between a 
shared variable v and the semaphore mutex 
used to gain exclusive access to v. Conse- 
quently, the compiler cannot protest if a 
critical region implemented by a semaphore 
mutex by mistake refers to another shared 
variable w (instead of v).  Indeed, a com- 
piler cannot give the programmer any assis- 
tance whatsoever in establishing critical re- 
gions correctly by means o] semaphores. 

Since semaphores alone do not enable a 
programmer to indicate whether a variable 
v should be private to a single process or 
shared by several processes, a compiler must 
either forbid or permit any process inter- 
action revolving that  variable. To forbid 
process interaction is unrealistic (since it 
prevents us from building interactive multi- 
programming systems consisting of co- 
operating processes); to permit arbi t rary 
process interaction is disastrous (because 
of the danger of irreproducible program- 
ming errors). We must therefore conclude 
that  semaphores do not enable a compiler 
to give a programmer the effective assist- 
ance in error detection that  he should ex- 
pect from an implementation of a high-level 
language. 

To improve this situation, I have sug- 
gested a structured notation for shared vari- 
ables and erotical regions [2]. A shared vari- 
able v of type T is declared as follows: 

var v :  shared  T 

Concurrent processes can only refer to and 
change a shared variable v inside a struc- 
tured statement of the form: 

r e g i o n  v do  S1; $2 . . .  Sn end  

This notation indicates that  the sequence of 
statements S1, $ 2 , . . . ,  Sn should have ex- 
clusive access to the shared variable v. By 
explicitly associating a critical region with 
the shared variable on which it operates the 
programmer tells the compiler that  the shar- 
ing of this variable among concurrent proc- 
esses is a deliberate exception to the rule of 
disjointness; at the same time, the compiler 
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can check that a shared variable is used 
only inside critical regions and can generate 
code that implements mutual exclusion cor- 
rectly. I t  is perfectly reasonably to use sem- 
aphores m the underlying implementation 
of this language feature, but at higher levels 
of programming the explicit use of sema- 
phores to achieve mutual exclusion is de- 
batable. A similar notation for critical re- 
gions was developed independently by 
Hoare [6]. 

Algorithm 6 shows the use of a shared 
integer v and two critical regions to solve 
the previous problem (See also Algorithm 
5 ) .  

Algorithm 6 Critical regions represented 
by a structured notation 

var v :  shared integer; 
begin 

v :=  0; 
cobegin 

cycle "P" 
• . . r e g i o n v d o v : = v + l e n d . . .  

end 
cycle "Q" 

. . . r e g i o n  v do print(v);  v : =  0 
e n d  . . . 

end 
coend 

end 

It  has been our persistent goal to look for 
multiprogramming features that can be un- 
derstood in time-independent terms. Since 
the precise ordering of critical regions in 
time is unknown, a time-independent as- 
sertion of their net effect can only be an as- 
sertion about a propertly of the associated 
shared variable that remains constant--in 
short, an invariant I that must be true after 
initialization of the variable and before and 
after each critical region operating it. 

A relationship I that remains true at all 
times must in some way reflect the entire 
history of the processes referring to the 
shared variable. So we find that the in- 
variant for Algorithms 5 and 6 is expressed 
in terms of the total number of jobs exe- 
cuted and reported throughout the existence 
of the multiprogramming system. However, 
since the range of such implicit variables is 

unbounded, they cannot be represented in a 
computer with a finite word length. On the 
other hand, actual variables being bound to 
a finite range can only represent the most 
recent past of a system's history. We must 
therefore find a function J(x, r) of the im- 
plicit variables x and r with a finite range 
that can be represented by an actual vari- 
able v. In Algorithms 5 and 6 the function is 

f ( x , r )  = x -  r = v 

For a semaphore, the invanant is a rela- 
tionship among the implicit variables rep- 
resenting all signals sent and received 
throughout the lifetime of a semaphore: 

0 <~ received <~ sent + initial 

In a computer, these implicit variables can 
be represented by a single integer (equal to 
sent + ~nitial - received) that must remain 
non-negative. 

People with a strong interest in correct- 
ness proofs may well find it helpful to de- 
clare implicit variables and implicit state- 
ments referring to them expliclty in the 
program text Implicit quantities have no 
effect on the execution of a program; their 
sole function is to facilitate program veri- 
fication by making assumptions about the 
system's history explicit. 

Implicit variables and statements should 
be subject to the following restrictions: 

1) Assertions about a program may refer 
to actual as well as implicit variables. 

2) Expressions involving actual and im- 
plicit variables may formally be "evalu- 
ated" and "assigned" to implicit variables. 

3) Expressions evaluated and assigned to 
actual variables mawr only refer to actual 
variables. 

Critical regions referring to different 
shared variables can be executed simulta- 
neously. The use of nested critzcal regions 
can, however, lead to a deadlock, unless 
precautions are taken. Consider, for exam- 
ple, the following program with two shared 
variables v and w of types T and T': 

var v :  shared T;  w:  shared T' ; 
cobegin 

"P" region v do region w d o . . .  end 
end 
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"Q" r e g i o n  w do r e g i o n  v d o . . .  end  
e n d  

e o e n d  

Process P can enter its region v at the same 
time that  process Q enters its region w. 
When process P tries to enter its region w, 
it will be delayed because Q is already 
inside its region w. And process Q will be 
delayed trying to enter its region v because 
P is already inside its region v. 

The deadlock occurs because the two 
processes enter their critical regions in op- 
pos]te order and create a situation m which 
each process is waiting indefinitely for the 
completion of a region within the other 
process. I t  can be proved that  a deadlock 
cannot occur if all processes enter nested 
regions in the same (hierarchical) order 
[1] A compiler might prevent such dead- 
locks simply by checking that  nested critical 
regions refer to shared variables in the (lin- 
ear) order in which these variables are de- 
clared in the program. 

It  is an amusing paradox of critical re- 
gions that  to implement one, we must ap- 
peal to the existence of simpler critical 
regions (called wait and szgnal). The im- 
plementation of wait and signal operations, 
in turn, reqmres the use of an arbiter--a 
hardware lmplementatmn of still simpler 
critical regions that  guarantee exclusive 
access to a semaphore by a single processor 
in a multiprocessor system. This use of 
nested critical regions continues at all levels 
of machine design until we reach the atomic 
level, at which nuclear states are known to 
be discrete and mutually exclusive. 

The main conclusion of this section must 
be that  it is impossible to make useful as- 
sertions about the effect of concurrent state- 
ments unless operations on shared variables 
exclude one another in time. Mutual  exclu- 
sion is necessary to reduce a virtual infinity 
of possible time-dependent results to a 
small number of possibilities. The use of 
mvariant relationships simplifies the pro- 
gram analysis further. Together, these men- 
tal tools enable us to study concurrent pro- 
grams in time-independent terms by an 
effort proportional to the number of critical 
regions used. So in the end, our understand- 

ing of concurrent processes is based on our 
ability to execute their interactions strictly 
sequentially; Only disjoint processes can 
proceed truly s,multaneously. 

9. CONDITIONAL CRITICAL REGIONS 

We will now consider multiprogramming 
systems in which processes can wait until 
certain conditions are satisfied by other 
processes. The classic example is the ex- 
change of messages between two processes 
by means of a buffer of finite capacity as 
defined by Algorithm 7. Here the sender 
must be able to wait while the buffer is full, 
and the receiver must able to wait while the 
buffer is empty. 

The message buffer v is declared as a 
shared record consmting of two components: 
a sequence s of messages of some type T, 
and an integer full defining the number of 
messages currently stored in the sequence. 

Initially, the buffer is empty (full = 0). 
Since the buffer has a fimte capacity, the 
operations used to send and receive a rues- 
sage must maintain the following buffer in- 
vamant : 

0 ~ full ~ capacity 

Algorithm 7 Message buffer 

var v:  shared  r e c o r d  
s." s e q u e n c e  o f  T; 
full." integer; 

e n d  
m, n: T; 

c o m m e n t  send message m; 
reg ion  v w h e n  full < capacity do  

put(m,  s) ; 
ful l:= full + 1; 

e n d  

c o m m e n t  receive message n; 
r e g i o n  v w h e n  full > 0 do  

get (n, s) ; 
ful l:= full - 1 ; 

end 

To indicate that  the sending of a message 
must be postponed until full < capacity, we 
will use the conditional critical region pro- 
posed by Hoare [6]: 
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r e g i o n  v w h e n  lull < capacity d o . . .  e n d  

When the sender enters this conditional 
critical region, the Boolean expression lull 
< capacity is evaluated. I f  the expression is 
true, the sender completes the execution of 
the critical region by putting a message m 
of type T into the sequence s and increasing 
lull by one. But  if the expression is false, the 
sender leaves the critical regmn temporar-  
fly and enters an anonymous queue associ- 
ated with the shared variable v. The sender 
will be allowed to reenter and complete the 
critical region as soon as the receiver has 
removed a message from the buffer (thus 
making lull < capacity). 

Another conditional critical region is used 
to postpone the receiving of a message until 
lull > 0. I f  full = 0, the receiver leaves the 
critical region temporari ly and joins the 
anonymous queue. In that  case, the critical 
region will be continued when the sender has 
put another message into the buffer and 
made lull > 0. At this point, the receiver 
will take a message n of type T from the 
sequence s and decrease full by one. 

In general, a conditional critical region 

r e g i o n  v w h e n  B d o  S1 ; $2 ; . . .  ; Sn e n d  

is used to delay the completion of a critical 
region until a shared variable v satisfies a 
a specific condition B (in addition to an in- 
variant  I ) .  

When a process enters a conditional criti- 
cal region, a Boolean expression B is evalu- 
ated. I f  B is true, the critical region is com- 
pleted by executing the statements S1, $2, 
. . . ,  Sn; otherwise, the process leaves its 
critical region temporari ly and enters a 
queue associated with the shared variable v. 

All processes waiting for one condition or 
another on the variable v enter the same 
queue. When a process completes a critical 
region on v, the synchronizing conditions of 
the waiting processes are reevaluated. I f  
one of these conditions is satisfied, the cor- 
responding process is allowed to reenter and 
complete its critical region. 

The scheduling of waiting processes must 
be fair in the following sense: If  a process 
is waiting for a condition B that  is repeat- 
edly made true by one or more "producers" 

and false by one or more "consumers," the 
completion of the given critical region can 
only be delayed a finite number of times by 
other critical regions. 

We will use conditional critical regions to 
solve the following problem [8]: A stream 
of data elements of type T produced by a 
process P0 passes through a sequence of 
processes P1, P 2 , . . . ,  Pn tha t  operate on 
the data elements in tha t  order: 

PO --> P1 ~ P2 • • • ---> Pn 

Each pair of processes (Pi-1 and Pi, 
where 1 ~ i ~ n) is connected by a sequence 
s (i) tha t  can hold one or more data  elements 
of type T. The sequences s ( 1 ) , . . . ,  s(n) 
are kept in a common store with a finite 
capacity. Algorithm 8 gives an overview of 
this pipeline system. 

The common store is declared as a vari-  
able v of type pipeline (to be defined later).  
A process Pi receives a message ti of type T 
from its predecessor and sends an updated 
message to its successor by means of two 
procedures 

receive (ti, v, i) send(ti, v, i+ 1) 

Algorithm 9 defines the data type pipe- 
line and the procedures send and receive. A 
pipeline is a shared record consisting of 
four components: an array of sequences s; 
an array of integers defining the number of 
lull locations ("messages) in each sequence; 
an array of integers defining the minimum 
number of store locations reserved perma- 
nently for transmission of messages through 
each sequence; and an integer defining the 
number of store locations that  are generally 
available for transmission of messages 
through all sequences (when they have used 
up their reserved locations). 

Initially, all sequences are empty and the 
p~peline has been divided into reserved and 
generally available storage. A sequence s (i) 
can always hold at least reserved(i) mes- 
sages. When this amount has been used, the 
sequence must compete with other sequences 
for use of the rest of the available store. So 
the condition for sending a message through 
sequence s(i) is 

lull(i) < received(i) o r  available > 0 
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Algori thm 8 Pipeline system 
v a t  v:  pipeline; tO, t l ,  . . . , tn: T;  
begin  

ir~itialize ( v ) ; 
e o b e g i n  

cycle  "PO" 
produce (tO) ; 
send(tO, v, I ) ; 

e n d  

cycle  "Pi"  
receive ( ti, v, i) ; 
update (ti) ; 
send(ti ,  v, i + 1 ) ; 

e n d  

cyc le  "Pn"  
receive (tn, v, n) ; 
consume ( tn ) ; 

e n d  
e o e n d  

e n d  

Algori thm 9 Pipeline system (cont.) 

type  pipehne = shared  record  
s: array 1 . .  n o f  

s e q u e n c e  o f  T ; 
full, reserved." 

array 1. .  n of integer; 
available: integer; 

e n d  
p r o c e d u r e  send(t:  T; var v: pipeline; i: 

1 . . n ) ;  
r e g i o n  v 

w h e n  full(~) < reserved(i) or  avadable 
> O d o  

put ( t ,  s(i)  ) ; 
]ull(i) := ful l ( i )  + 1; 
i f  full (i) > reserved (i) t h e n  

available:= available - 1; 
e n d  

e n d  
p r o c e d u r e  receive (var t: T; var v: pipe- 

line; i: 1 . .  n) ; 
r e g i o n  v 

w h e n  full (i) > 0 do  
g e t ( t , s ( i ) ) ;  
if ful l( i)  > reserved(i) t h e n  

available:= available + 1; 
e n d  
ful l( i)  := full(~) -- 1; 

e n d  

The condition for receiving a message 
through sequence s (i) is 

ful l ( i )  > 0 

A sequence s (i) may temporarily contain 
more than reserved(i) messages. But the 
total number of messages stored in all se- 
quences cannot exceed the capacity of the 
pipeline. So the system must maintain the 
following mvariant  : 

full( i)  >i 0 for 0 <~ ~ n 

available + ~ max( fu l l ( t ) ,  reserved(i))  

-= capacity 

It can be shown formally that Algorithm 9 
maintains this invariant, but the proof is 
tedious and adds nothing to one's informal 
understanding of the pipeline. 

In Hoare's conditional critical regions, 
processes can only be delayed at the begin- 
ning of a critical region. In practice, one 
must be able to place synchronizing condi- 
tions anywhere withm critical regions as 
shown in [2]. 

The conditional critical region is an im- 
portant description tool for multiprogram- 
ruing systems. It  remains to be seen whether 
it also is a practical programming tool. The 
main difficulty of achieving an efficmnt im- 
plementation is the reevaluation of syn- 
chronizing eonditmns each time a critical 
region is completed. 

In simple cases, the reevaluation can be 
reduced (but seldom eliminated) by the use 
of semaphores. To do this, one must asso- 
ciate a semaphore with each synchronizing 
condition When a process makes a condi- 
tion B true, the process must eheek whether 
other processes are waiting for that condi- 
tion, and, if so, produce a signal that will 
enable one (and only one!) of them to con- 
tinue. As I have pointed out elsewhere, [7] 
the efficiency of this scheme is bought at the 
expense of increased program complexity. 

Concurrent statements and critical re- 
gions seem well-suited to the design of 
small multiprogramming systems dedicated 
to user applications (but remember that 
they have not yet been implemented and 
used in practice). Although these concepts 
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are simple and well-structured,  they  do not  
seem to be adequate  for the design of large 
mul t lp rogramming  systems (such as oper-  
at ing systems) .  The  main  problem is t ha t  
the use of  critical regions scat tered th rough-  
out  a p rogram makes xt difficult to  keep 
t r ack  of how a shared var iable  is used by  
concurrent  processes. I t  has therefore re- 
cent ly  been suggested tha t  one should com- 
bine a shared var iable  and the possible 
operat ions  on it in a single, syntac t ic  con- 
s truct  called a monitor [1, 10, 11]. I t  is, 
however,  too ear ly  to speculate about  wha t  
this approach  m a y  lead to. 

10. CONCLUSION 

I have tr ied to show tha t  the design of reli- 
able mul t ip rogramming  systems should be 
guided by two simple principles t h a t  are 
equal ly  val id for sequential  p rogramming :  

1) I t  should be possible to unders tand  a 
p rogram in t ime- independent  terms by an 
effort propor t ional  to its size. 

2) I t  should be possible to state assump-  
t ions about  invar ian t  relat ionships among 
p rogram components ,  and have them 
checked automat ica l ly .  

I have  also discussed some specific lan- 
guage features for mul t iprogramming.  To  
avoid misunders tanding,  I ask you  to re- 
gard these not  as definite proposals  but  
merely  as i l lustrations of a common theme. 
Bet ter  language concepts for mul t ip rogram-  
ming will undoub ted ly  be proposed by  
others. Bu t  I would expect any  realistic 
proposal  to :  

1) distinguish clearly between disjoint  
and interact ing processes; 

2) associate shared da ta  explicitly with 
operat ions defined on them;  

3) ensure mutua l  exclusion of these op- 
erations in t ime;  and 

4) include synchronizing primit ives t h a t  
permit  par t ia l  or complete p rog rammer  con- 
trol of process scheduling. 
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