
Concurrent Programming Concepts

PER BRINCH HANSEN

l~formation Science, Calzfornia Instztute of Technology, Pasadena, California 91109

This paper describes the evolution of language features for mult iprogramming
from event queues and semaphores to critical regions and monitors. I t suggests
that the choice of language concepts should be guided by two simple principles:
First , ~t should be possible to understand a concurrent program in time-
independent terms by an effort proportional to its size; secondly, i t should be
possible to state assumptions about invarmnt relationships among program
components and have these assumptmns checked automatically. The central
problems of mult iprogramming are i l lustrated by annotated algorithms wri t ten
in a weU-structured programming language.

Key words and phrases: structured multiprogramming, programming languages,
operating systems, programming errors, resource protection, compile-time
checking, correctness proofs, sequential and concurrent processes, synchronising
events, semaphores, shared data, mutual exclusion, critical regions, monitors.

CR categories: 4.22, 4.31, 4.32, 5.24

Somewhere there are decisions made that are
not rational in any sense, that are subject to
nothing more than the personal bias of the
decision maker. Logical methods, at best, re-
arrange the way in which personal bias is to
be introduced into a problem Of course, this
"at best" is rather important. Present intuitive
methods unhappily introduce personal bias in
such a way that i t makes problems impossible
to solve correctly. Our purpose must be to re-
pattern the bias, so that i t no longer interferes
in th]s destructive way with the process of
design, and no longer inhibits clarity of form
CHISTOPHER ALEXANDER, Notes on the Synthesis

o] Form

1. INTRODUCTION
This paper describes an attitude toward
multiprogramming--the programming tech-
niques used to control concurrent act]vities
by computers.* It tries to identify abstract
properties of programming languages that
facilitate the design of large, reliable multi-

* In this paper, the term multiprogramming is used
consistently to denote all programrmng techmques
used to control concurrent processes on single-
processor as well as multiprocessor systems

programming systems. The techniques used
to implement these language concepts, which
apply both to single-processor and multi-
processor systems, are described elsewhere.
[1]

When a new programming technique, such
as multiprogramming, is invented, program-
mers will imtially use it in a completely un-
restricted manner to discover its potential.
At a later stage, when experience with its
practical limitations has been gained, de-
signers begin to recognize the benefits of a
more restrictive language notation which
clarifies their own understanding of pro-
grams and enables compilers to detect seri-
ous errors.

This survey describes the evolution of lan-
guage features for multiprogramming during
the past decade. I view this development
mainly as a gradual shift from concepts that
have a strong resemblance to assembly lan-
guage features toward a notation that en-
courages hierarchical structuring of pro-
grams. Several useful proposals are not
mentioned here, and those that are included

Computing Surveys, VoL 5, No. 4, December 1973

224 • Per Brinch Hansen

CONTENTS

1 Introduction 223
2 Sequential Processes 224
3. Unrestricted Concurrency 226
4 Structured Concurrency 228
5 Disjoint Processes 230
6 Time-Dependent Errors 231
7 Timing $1gnals 233
8 Critical Regions 236
9 Conchtlonal Critical Regions 241

10 Conclusion 244
Acknowledgements 244
Blbhography 244

Copyright © 1973, Association for Computing
Machinery, Inc General permission to republish,
but not for profit, all or part of this material is
granted, provided that ACM's copyright notlce is
given and that reference is made to this publica-
tion, to its date of issue, and to the fact that re-
printing privileges were granted by permission of
the Association for Computing Machinery.

are only meant to illustrate a general att i-
tude toward the subject.

The central problems of mult iprogram-
mmg are illustrated by algorithms written
in a high-level language. I have included in-
formal assertions in the algorithms and out-
lined arguments of their correctness to show
that mul t ip rogrammmg concepts can be de-
fined as concisely as sequential program-
mmg concepts. In many ways, this survey
can be regarded as an expanded version of
an earlier paper [2]. We will begin with a
brief characterization of sequential pro-
grams.

2. SEQUENTIAL PROCESSES

Although most programmers have an intui-
tive understanding of what a sequential
process is, it may be useful to illustrate this
concept by an example. Algorithm 1 defines
a sequential process tha t inputs a fixed
number of records R1, R2, . . . , Rn from
one sequential file, updates these records,
and outputs them on another sequential file.

The language notation is borrowed from
Pascal. [3] The files are declared as two
variables, reader and printer, each consist-
ing of a sequence of records of some type T
(declared elsewhere). A record of type T can
be appended to or removed from a sequence
by means of two standard procedures, put
and get. The current record is kept in a vari-
able, this, of type T. The variable i counts
the number of records processed; it can as-
sume integer values from 0 to n.

Algorithm 1 Sequential file updat ing

var reader, printer: s e q u e n c e o f T;
this: T; i: 0 . . n;

beg in
(1) i." = O;
(2) w h i l e i < n do
(3) get (this, reader) ;
(4) update (th~s) ;
(5) put (thzs, printer) ;
(6) i: --- i + 1 ;
(7) e n d
(8) e n d

The program defines a sequential process
in terms of data (represented by constants

Computing Surveys, Vol 5, No 4, December 1973

Concurrent Programming Concepts • 225

and variables) and operations on data (rep-
resented by statements). During the execu-
tion of the program, the operations are car-
ried out smct ly one at a time, and each
operation is completed within a finite time.
The result of an operation can be defined by
assertions about the relationships of data
before and after its execution.
In Algorithm 1, we can make the following
assertions about the state of the variables
before and after the execution of the input
statement in line 3:

c o m m e n t 3 i out of n records processed
(where O ~ i < n) ;
get (this, reader) ;

c o m m e n t 4 i out of n records processed
(where 0 ~ i < n), and this = input
record Ri + 1 ;

Sequential programs have two vital prop-
erties:

1) The effect o] a sequential program is
independent o] its speed o] execution. All
that matters is that operations are carried
out one at a time with positive speed, and
that certain relationships hold before and
after their execution. The time-independent
behavior of sequential programs enables the
user to ignore details over which he has no
control (such as the scheduling policy of the
operating system and the precise timing of
operations carried out by processors and pe-
ripherals).

2) A sequential program delivers the same
result each time zt is executed with a given
xet of input data. The reproducible behavior
of sequential programs under any circum-
stances is particularly important for pro-
gram vahdation. I t enables one to isolate
and correct program errors by systematic
testing.

These properties of sequential programs
are so well known that we tend to take them
for granted But as we shall see, these prop-
ertles can only be maintained for multipro-
grammlng systems by a careful selectmn of
language concepts.

Algorithm 1 is a well-structured program
that can be analyzed in a step-wise manner
as a set of nested operations. At the most
detailed level, the program can be described
in terms of assertions about each statement.

The following assertions will hold be]ore
the execution of lines 1-8, respectively.

c o m m e n t 1 0 out o] n records processed
(where 0

c o m m e n t 2 i
(where 0

c o m m e n t 3 i
(where 0

n) ;
out o] n records processed
i ~ n) ;
out o] n records processed
i < n) ;

c o m m e n t 4 i out of n records processed
(where 0 ~ i < n), and this = input
record Ri + 1 ;

c o m m e n t 5 z out of n records processed
(where 0 ~ i < n), and this = updated
record Ri + 1;

c o m m e n t 6 i + 1 out o] n records proc-
essed (where 0 ~ i < n) ;

c o m m e n t 7 z out o] n records processed
(where 0 < i ~ n) ;

c o m m e n t 8 n out of n records processed
(where 0 -~ n) ;

Once the m&vidual statements are under-
stood, one can define the effect of a sequence
of statements by a single pair of assertions.
As an example, the body of the while state-
ment in Algorithm 1 can be defined as a
single operation by means of the following
assertions:

c o m m e n t 3 i out of n records processed
(where O ~ i < n) ;
process next record and increment i by
one;

c o m m e n t 7 i out of n records processed
(where 0 < i ~ n) ;

The next step of simphfication is to re-
duce the whale statement to a single opera-
tion:

c o m m e n t 2 i out of n records processed
(where 0 ~ i ~ n) ;
process the remaining n-i records;

c o m m e n t 8 n out of n records processed
(where 0 ~ n) ;

Finally, the whole program can be defined
as a single operation:

c o m m e n t 1 0 out of n records processed
(where 0 ~ n) ;
process n records;

c o m m e n t 8 n out of n records processed
(where 0 ~ n) ;

At this point, only what the program does as
a whole, is relevant, but the details of how
it is done are irrelevant. The possibility of
replacing complex descriptions by partial

Computing Storeys, Vol. 5, No 4, December 1973

226 • Per Brinch Hansen

I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
I L

J i - O
I

r e i .

I I 0e, 1

I I up~o,e !

I 0u, I

I ':-'÷' I
t

I~G. 1 Flowchart of Algorithm 1.

_J

descriptions, called abstractions, is essential
to enable us to understand large programs.

Figure 1 is a flowchart of Algorithm 1. It
shows that the program consists of nested
statements, each with a single starting point
and a single completion point. Algorithm 1
can be analyzed by associating an assertion
with each statement, and gradually replac-
ing these assertions by fewer and fewer as-
sertions. It is most important that a program
with a hierarchical structure can be built
and understood in detail by an intellectual
e]Iort proportional to its size, and that cer-

tain functional aspects of it can be described
in even more economical terms. This is the
whole purpose of structured programming!

It is also essential to use hierarchical
structuring of programs that control concur-
rent processes, and choose language con-
structs for multiprogramming that can be
understood in time-independent abstract
terms; otherwise, we shall find ourselves
unable to apply systematic methods of pro-
gram analysis and verification.

3. UNRESTRICTED CONCURRENCY

Processes are called concurrent if their exe-
cution overlap in time. More precisely, two
processes are concurrent if the first opera-
tion of one process starts before the last
operation of the other process ends. The
programming techniques used to control
concurrent processes are called multipro-
gramming.

No assumptions will be made about the
speed at which concurrent processes are exe-
cuted (except that it be positive). We will
benefit from this weak assumption in two
ways: 1) It will encourage us to try to
understand multiprogramming systems in
time-independent terms; and 2) It will per-
mit the underlying implementation to use
a dynamic scheduling algorithm to achieve
efficient resource sharing.

One of the earliest ideas of multiprogram-
ruing was to specify the start and comple-
tion of processes by two operations which
I will call start and complete (In the litera-
ture, they are often called]ork and join).
The meaning of these operations can best be
illustrated by an example:

var task: response;
begin

start task do S1;
$2;
complete task;
$3;

end

Initially, this program will be executed as
a single, sequential process. The statement

Comput ing Surveys, Vol. 5, No 4, December 1973

Concurrent Programming Concepts • 227

start task do $1

will start the execution of statement S1 as
a new process. As soon as the new process
starts to run, the old process continues to
execute the next statement $2. When state-
ment S1 has been executed, the new process
indicates its completion by means of a vari-
able, task, of type response. Following this,
the new process ceases to exist. After the
execution of statement $2, the old process
waits until the response variable indicates
that statement S1 has terminated. The pro-
gram then continues to execute statement $3
as a single, sequential process. (We will not
be concerned with how the process and re-
sponse concepts can be implemented.) Fig-
ure 2 shows a flowchart of this program.

Algorithm 2 is a concurrent version of the
file updating program (Algorithm 1) that
uses the start and complete statements. The
purpose of introducing concurrent processes
is to permit input/output operations to pro-
ceed simultaneously with updating opera-

SI I I $ 2

is31

FIG 2 Flowchar t of p rogram to il lustrate start
and complet,e operations.

tions. Algorithm 2 is deliberately written in
an unstructured manner that makes it diffi-
cult to understand. A well-structured algo-
rithm will be presented later. (I recommend
that the reader not spend too much time try-
ing to understand Algorithm 2 at this point.)

Algorithm 2 Concurrent file updating (un-
structured version)

var reader, printer: sequence of T;
reading, printing: response; next,
this, last: T; i: 2 . . n;

begin
if n I> 1 then

get (last, reader) ;
i f n > /2 then

update (last) ;
start printing do put (last,

printer) ;
get (t'his, reader) ;
i := 2;
while i < n do

start reading do get (next,
reader) ;

update (this) ;
complete printing;
last:= this;
start printing do put (last,

printer) ;
complete reading;
this: = next;
i:-- i + 1;

end
complete printing;
last: = this;

end
update (last) ;
put (last, printer) ;

end
end

The program inputs and updates the first
record R1. It then starts the output of the
first record and inputs the second record
R2 at the same time. The program now re-
peats the execution of a cycle that, in gen-
eral, inputs the next record Ri + 1, updates
this record Ri, and outputs the last record
Ri-1 simultaneously. When all records have
been input (i = n), the program completes
the output of the second last record Rn-1.
Finally, it updates and outputs the last
record Rn.

Computing Surveys, Vol. 5, No. 4, December 1973

228 • Per Brinch Hansen

In spite of this explanation, the details of
Algorithm 2 are still hard to follow. The
cause of this obscurity becomes clear when
we examine the flowchart of the body of the
while statement (Fig. 3). This flowchart
cannot be decomposed into a set of nested
operations. The program is highly confusing
because a process started outside the whzle
statement (output) may be completed either
inside or outside the while statement (de-
pending on whether or not n > 2).

I t is certainly possible to write a simpler
program using the start and complete state-
ments (just as it is possible to structure pro-
grams written in assembly language). But
the concepts of a high-level language should
be chosen such that they natural ly encour-
age the programmer to write well-structured
programs. The ~tart and complete state-
ments clearly have the flavor of go to state-
ments They make it very difficult to deter-
mine from the program text where concur-
rent processes begin and end, and which
variables they operate on.

4. STRUCTURED CONCURRENCY

A well-structured representation of concur-
rent processes m a high-level programming
language was suggested by Dijkstra in 1965.
[4] The concurrent statement

cobeg in S1; $2; . . . ; Sn eoend

indicates that the statements S1, $ 2 , . . . , Sn
can be executed concurrently; when all of
them are completed, the following statement
m the program (not shown here) is executed.

Algorithm 3 defines file updating by
means of concurrent statements. We will
analyze this program, statement by state-
ment, in terms of assertions that hold be]ore
the execution of hnes 1-12

The imtial assertion is the following:
c o m m e n t 1 0 out o] n records processed

(where 0 ~ n) ;
I f the input file is non-empty (n /> 1), the

program inputs the first record R1 :
c o m m e n t 2 0 out o] n records processed

(where 1 ~ n), and this =- input record
R1;

If the input contains more than one record
(n ~> 2), the program inputs the second
record R2 and updates the first record R1
simultaneously:

c o m m e n t 3 0 out o] n records processed
(where 2 ~ n), next = input record R2,
and this = updated record R1 ;

Algorithm 3 Concurrent file updating
(structured version)

var reader, printer: sequence o] T;
next, thzs, last: T; i: 2 . . n;

begin
(1) if n / > 1 then

get (this, reader) ;
(2) if n / > 2 then

eobeg in
get (next, reader) ;
update (this);

e o e n d
(3) i.'= 2;
(4) whi le i < n do

last := this; this := next;
(5) cobeg in

get (next, reader) ;
update (this);
put (last, printer) ;

coend
(6) i.'= i + 1;
(7) end
(8) put (this, printer) ;

this : = next;
(9) end

(10) update (this) ; put (this, printer) ;
(11) end
(12) e n d

The program now enters a mare loop that
repeatedly inputs a record Ri + 1, updates
a record Ri, and outputs a record Ri -- 1
simultaneously. The loop is initialized by
setting a counter z equal to 2. This leads to
the following program state:

c o m m e n t 4 ~ -- 2 out o] n records proc-
cessed (where 2 ~ i ~ n) , next = input
record Ri, and this = updated record
R~ - 1;

Within the loop, the program goes through
the following sequence of states:

c o m m e n t 5 i - 2 out o] n records proc-
essed (where 2 ~ i < n), this = input

Computing Surveys, Vol 5, No 4, December 1973

Concurrent Programming Concepts • 229

record Ri, and last = updated record
R i - 1;

c o m m e n t 6 i - 1 out of n record processed
(where 2 ~ i < n), next = input record
R i + 1, and this = updated record [ti;

c o m m e n t 7 i - 2 out o] n records proc-
essed (where 2 < i ~ n), next = input
record Ri, and this = updated record
Ri - 1;

A comparison of assertions 4 and 7 shows
that assertion 4 is a relation that remains
invariant after each execution of the loop.
When the loop terminates, assertion 4 still
holds and i is equal to n:

c o m m e n t 8 n - - 2 out of n records proc-
essed (where 2 ~ n), next -- input rec-
ord I:tn, and this = updated record
R n - 1;

The program now outputs the second last
record R n - 1:

c o m m e n t 9 n - 1 out of n records proc-
essed (where 2 ~ n) , and this = input
record Rn;

The effect of the innermost i f statement
ment can be summarized as follows:

c o m m e n t 2 0 out o] n records processed
(where 1 ~ n), and this = input record
R1;
process n - 1 records;

c o m m e n t 1 0 n - 1 out o] n records proc-
essed (where 1 ~ n), and this = input
record Rn;

If n = 1 then assertions 2 and 10 are equiv-
alent, and if n ~ 2 then assertions 9 and
10 are equivalent. This covers the two cases
in which the if statement is either skipped
or executed.

Finally, the last record R n is updated and
output:

c o m m e n t 11 n out of n records processed
(where 1 ~ n) ;

The whole program can be understood as
a single operation defined as follows:

c o m m e n t 1 0 out of n records processed
(where 0 ~ n) ;
process n records;

c o m m e n t 12 n out of n records processed
(where 0 ~ n) ;

This concurrent program has precisely the
same characteristics as a well-structured se-
quential program. I t can be analyzed in

INPUT UPDATE OUTPUT

I get I I Up °'e I

los,:-... I

I I +
I i--i+' I

Fla. 3 F lowcha r t of t he b o d y of the while s t a t e -
m e n t m A l g o r i t h m 2

terms of time-independent assertions by an
effort proportional to its size, and assertions
about simple statements can gradually be
replaced by assertions about structured
statements until the whole program has been
reduced to a single statement defined by two
assertions. This abstract description of the
program even enables the programmer to ig-
nore the concurrent nature of the solution.
To see this, it is sufficient to observe tha t
the initial and final assertions 0 and 12 for
Algorithm 3 are identical to the assertions
made at the beginning and end of the se-
quential version (Algorithm 1).

In the previous discussion, the concurrent
statement was defined and used informally
to give you an intuitive understanding of its
meaning. We will now explicitly discuss the
assumptions that led to the simplicity of
Algorithm 3.

Computing Surveys, Vol. 5, No. 4, December 1973

230 • Per Brinch Hansen

.

I ,os,:--... I

I '"'s:'" I I
I - - - - " ! I

I I I

I
I S II
t JI

L I

FIG. 4 A flowchart of the body of the while state-
ment m Algorithm 3.

,5. DISJOINT PROCESSES

There is one striking difference between Al-
gorithms 2 and 3: When concurrent state-
ment~ are used, the program text directly
shows where a given process begins and
ends. This simplification is achieved by re-
stricting the freedom of scheduling. The
start and complete statements enable the
programmer to initiate and terminate proc-
esses in any order he pleases. A concurrent
statement defines processes that are started
and completed at the same time. Complete
generality of programming implies complete
absence of structure. As a compromise, one
has to look for programming tools that are
intellectually manageable and at the same
time practical for most (but not necessarily
all) applications. The concurrent statement
is one such compromise.

Since a concurrent statement has a single
starting point and a single completion point,
it is well-suited to structured programming.
Figure 4 shows a flowchart of the body of
the while statement in Algorithm 3. In con-
trast to Fig. 3, the present flowchart can be
decomposed into nested operations. This ex-
plains why we were able to reduce assertions
about simple statements to assertions about

structured statements, and then reduce as-
sertions about structured statements to as-
sertions about the whole algorithm.

It may seem surprising that the use of
concurrent statements in Algorithm 3 in no
way complicated the formulation of asser-
tions. The informal arguments made in ,fa-
vor of its correctness are quite similar to the
arguments on Algorithm 1 in Section 2. I t
turns out that we were able to apply se-
quential methods of program analysis to a
concurrent program simply because the
processes defined by the concurrent state-
ments are completely independent o] one
another. These processes operate on disjoint
sets of variables:

process variables
get next, reader
update this
put last, printer

They are called disjoint or non-interacting
processes. The input, update, and output
processes are carried out simultaneously
only to utilize the computer more efficiently.
But conceptually, these processes could just
as well be carried out strictly sequentially
as defined by Algorithm 1.

Since the processes in Algorithm 3 have
no variables in common, they can be ana-
lyzed one at a time as unrelated sequential
processes. Consider, for example, the con-
current statement inside the loop. I t can be
analyzed as three independent operations
defined by the following assertions:

c o m m e n t 5 a i - 2 out o] n records proc-
essed (where 2 ~ i < n);
get (next, reader) ;

c o m m e n t 6a next = input record Ri + 1
(where 2 ~ i < n);

c o m m e n t 5 b ~ - 2 out o] n records proc-
essed (where 2 ~ i < n) , and this = in-
put record Ri;
update (this) ;

c o m m e n t 6b this = updated record R i
(where 2 ~ i < n);

c o m m e n t 5 c i - - 2 out of n records proc-
essed (where 2 ~ i < n), and last =
updated record R i - 1;
put (last printer) ;

Comput ing Surveys, Vol. 5, No 4, December 1973

Concurrent Programming Concepts • 2"81

comment 6 c i - 1 out of n records proc-
essed (where 2 ~ i < n) ;

Here assertions 5 and 6 have been split into
three pairs of assertions, one for each process
statement. Each pair of assertions defines
our assumptions about a variable i that re-
mains constant during the execution of the
concurrent statement and our assumptions
about the variables that are private to the
corresponding process and may be changed
by it.

Since the processes are disjoint, the con-
junction of assertions 6a, 6b, and 6c holds
after the execution of the concurrent state-
ment.

In general, we can define the properties of
a concurrent statement by the following
rule of disjointness : The statement

cobegin S1; $2; . . . Sn coend

defines statements S1, $2, . . . , Sn that can
be executed concurrently as disjoint proc-
esses. The disjointness imphes that a varia-
ble vi changed by a statement Si cannot be
re]erenced by another statement Sj (where
j ~ i). In other words, a variable subject
to change by a process must be strictly pri-
vate to that process; but disjoint processes
can refer to common variables not changed
by any of them.

The general rule that we intuitively fol-
lowed in analyzing Algorithm 3 can be
stated as follows: Suppose that we know
the following about statements S1, $2, . . . ,
Sn that operate on dlsioint variables:

Statement $1 will terminate with a re-
sult R1 if a precondition P1 holds before
its execution.

Statement $2 will terminate with a re-
sults R2 if a precondit ion/)2 holds before
its execution.

Statement Sn will terminate with a re-
sult Rn if a precondition Pn holds before
its execution.
Then we can conclude that a concurrent

execution of S1, $2, . . . , Sn will terminate
with the result R1 & R 2 . . . & Rn if the
precondition P1 & P2 & . . . & Pn holds be'-
fore its execution. (It should be added that
the assertions Pi and Ri made about state-

ment Si must only refer to variables tha t
are accessible to Si according to the rule of
disjointness.)

6. TIME-DEPENDENT ERRORS

An error in a sequential program can be lo-
cated by repeating the execution of the pro-
gram several times with the data tha t re-
vealed the error. In each of these experi-
ments, the values of selected variables are
recorded to determine whether or not a given
program component works. This process of
elimination continues until the error has
been located.

When a given program component has
been found to behave correctly in one test,
we can ignore that component in subsequent
tests because it will continue to behave in
exactly the same manner each time the pro-
gram is executed with the given data. In
other words, our ability to test a large se-
quential program in a step-wise manner de-
pends]undamentally on the reproducible
behawor o] the program.

A careful programmer who writes a well-
structured concurrent program, such as Al-
gorithm 3, and outlines an informal proof
of its correctness can still make mistakes
when he types the final program. And he
may not find all these errors during a proof-
reading of the program text. One possible
mistake would be to type the concurrent
statement within the loop of Algorithm 3 as
follows:

cobegin
get (next, reader) ;
update (this) ;
put (this, printer) ;

coend
In this case, the concurrent statement will

input the next record Ri + 1 correctly, but
will update and output the current record
Ri simultaneously. So the output record will
normally be only partially updated. In a
multiprocessor system with a common store,
a record occupying, say 256 machine words,
may be output with x words updated and
256-x words unchanged (where 0 ~ x
256). The processing of a single record can
therefore produce 257 different results. If

Computing Surveys, Vol 5, No 4, December 1973

232 • Per Brinch Hansen

we update a given file of 10,000 records, the
program can give of the order of 2571°,°°°
different results.

In a multiprogramming system, the execu-
tion of concurrent statements can be inter-
leaved and overlapped in arbitrary order.
The system uses this freedom to multiplex
fast computer resources (processors and
stores) among several user computations to
achieve short response times at a reasonable
cost.

The result of the erroneous version of
Algorithm 3 depends on the relative rates at
which updating and output of the same
record take place. The rates will be influ-
enced by the presence of other (unrelated)
computations, and by the absolute speeds of
peripheral devices and operators interacting
w~th the computations. I t is therefore very
unlikely that the erroneous program will
ever deliver the same result twice for a given
input file. The error will be particularly
hard to find if the updated file is not in-
spected by humans, but just retained for
later processing by other programs.

Such unpredictable program behavior
makes it impossible to locate an error by
systematic testing. I t can only be found by
studying the program text in detail. This can
be very frustrating (if not impossible) when
it consists of thousands of hnes and one has
no clues about where to look. I] we wish to
succeed in designing large, reliable multipro-
gramming system~, we must use program-
mmg tools that are so well-structured that
most t~me-dependent errors can be caught
at compile time.

A closer look at the incorrect version of
Algorithm 3 reveals a clear violation of the
rule of disjomtness: Within the erroneous
concurrent statement the output process re-
fers to a varmble, this, which is changed by
the updating process. I t is therefore inevita-
ble that the result of the output depends on
the time at which updating takes place.

To make it simple for a compiler to check
tbe disjointness it should be possible by scan-
nmg the program text to recogmze concur-
rent statements and variables accessed by
them. The compiler must be able to dis-
tmguish between variables that can be

changed by a statement and variables that
can be referenced by a statement but not
changed by it. These two kinds of variables
are called the variable parameters and con-
stant parameters of a statement.

When start and complete statements are
used, one cannot, in general, recognize con-
current statements from the syntax alone.
This recognition is, however, trivial when
concurrent statements are enclosed in brack-
ets, cobegin and coend. To make the check-
ing of disjomtness manageable, it is neces-
sary to restrict the use of pointer variables
and procedure parameters far more than
present programming languages do.

Although the problem has not yet been
analyzed completely, it seems certain that
the necessity of compile-time checking of
disjointness will have a profound influence
on language design. An example will make
this clear. In sequential programming lan-
guages a pointer variable may be bound to
other variables of a given type, for example:

v a r p: p o i n t e r t o integer;

This declaration indicates that variable p
is a pointer to any integer variable. The no-
tation enables a compiler and its run-time
system to check that p always points to a
variable of a well-defined type (in this case,
an integer) This kind of pointer variable is
far better than one that can point to an
arbitrary store location containing data of
unknown type (or even code). But the dec-
laration pointer to integer still does not
enable a compiler to recognize which integer
the variable p will point to during program
execution So, unless the programmer is will-
ing to make all integers private to a single
process, this pointer concept is inadequate
for multiprogramming. We need to bind a
pointer p to a particular set of integers, for
example:

v a r i, j, k: integer; p: p o i n t e r t o i o r j;

Some of the language requirements needed
to make compile-time checking of disjoint-
hess practical are discussed in more detail in
[1].

The concurrent statement has not yet
been implemented and used for practical

Comput ing Surveys, Vol 5, No 4, December 1973

Concurrent Programming Concepts • 233

programming, but I would expect it to be a
convenient tool for the design of small, dedi-
cated mul t iprogramming systems involwng
a predictable number of processes. I have
some reservatmns about its usefulness in
larger mult iprogramming systems (for ex-
ample, operating systems) as discussed later
in this paper.

The rule of disjointness is introduced to
help the programmer; it enables him to state
explicitly tha t certain processes should be
independent of one another and to depend
on automatic detection of violations of this
assumption. To make mul t iprogrammmg
intellectually manageable and reasonably
efficient, disjoint processes should be used
wherever possible. But, as we shall see, all
mult iprogramming systems must occasion-
ally permit concurrent processes to exchange
data m a well-defined manner. The com-
ponents of a concurrent s tatement must, for
example, be able to indicate their termina-
tion in a common (anonymous) variable;
otherwise, it would be Impossible to deter-
mine when a concurrent s tatement is termi-
nated as a whole. The cobegin coend nota-
tion hides this communication problem from
the user, but it has to be solved at some
other level of programming (m this case by
the code generated by a compiler). The fol-
lowing sections describe language features
used to control interactions among processes

7. TIMING SIGNALS

Concurrent processes tha t access common
variables are called in teract ing or c o m m u m -
cating processes. When processes compete
for the use of shared resources, common
variables are necessary to keep t rack of the
requests for service. And when processes
cooperate on common tasks, common varia-
bles are necessary to enable processes to ask
one another to carry out subtasks and report
on their results.

We will s tudy systems in which one
process produces and sends a sequence of
data items to another process that receives
and consumes them. I t is an obvious con-
straint tha t these data i t ems cannot be re-

ce ived]aster than t hey are sent. To satisfy
this requirement it is sometimes necessary
to delay further execution of the receiving
process until the sending process produces
another data item. Synchron i za t ion is a gen-
eral term for timing constraints of this type
imposed on interactions between concurrent
processes.

The simplest form of interaction is an ex-
change of t iming signals between two proc-
esses. A well-known example is the use of
in terrupts to signal the completion of
asynchronous peripheral operations to a
central processor. Another kind of timing
signals, called events , was used in early
mult iprogramming systems to synchronize
concurrent processes. When a process de-
cides to wa~t for an event, the execution of
its next operation is delayed until another
process causes the event. An event occurring
at a t ime when no processes are waiting for
one has no effect.

The following program illustrates the
transmission of t iming signals from one
process to another by means of a variable e
of type event . Both processes are assumed to
be cyclical:

var e : even t ;
cobegin

cycle "sender"
. . . cause e v e n t (e) ; . . .

end
cycle "rece iver"

. . . awai t e v e n t (e) ; . . .
end

coend

A relationship of this type exists in a real-
t ime system in which one process schedules
concurrent tasks regularly by sending t iming
signals to other processes tha t carry out
these tasks.

In Section 6 we recogmzed tha t simultane-
ous operations on the same variable can lead
to a large number of different results. In
that context, the problem was caused by a
program error. Now we have the same prob-
lem again: The concurrent operations, awai t
and cause, both access the same variable e.
But we can no longer regard this as a viola-
tion of the rule of disjointness since our in-

Computing Surveys, Vol. 5, No 4, December 1973

234 • Per Brinch Hansen

tention is tha t the processes should exchange
data. So we must relax the rule o] disjoint-
ness and permit concurrent processe~ to ac-
cess shared variables by means o] well-de-
fined synchronizing operations. Our next
task is to determine under which conditions
synchronizing operations are "well-defined".

To analyze the effect of an interaction
between the receiver and the sender in the
previous program, we must consider all the
possible ways in which the execution of
await and cause operations can be inter-
leaved and overlapped in time. In a continu-
ous time scale there are infinitely many
possibihties to consider. A drastic simplifica-
tion is clearly needed to reduce this infinity
to a finite (small) number of cases. The only
practical solution is to assume that synchro-
nizing operations on a given variable cannot
be executed at the same time. In other
words, await and cause operations on a given
event variable can be arbitrarily interleaved
(but not overlapped) in time. If a process
tries to operate on an event variable while
another process is operating on it, the system
must delay the former process until the lat-
ter process has completed its operation on
the event variable.

I f this requirement is satisfied, there are
only two cases to consider in the previous
program: either an await operation is exe-
cuted be]ore a cause operation or alter it. If
the receiver waits before the sender causes
the next event, an interaction between the
two processes is defined by the following
sequence of operations:

c o m m e n t recewer not waiting;
await event(e);
c o m m e n t receiver waiting;
cause event (e) ;
c o m m e n t receiver not wa~t~ng ;
But, if the sender causes the event before

the receiver waits for it, the receiver will re-
main delayed until the next event is caused:

c o m m e n t receiver not waiting;
cause event (e) ;
c o m m e n t receiver not waiting;
awazt event (e) ;
c o m m e n t receiver waiting;
The most important result of this analysis

is the general observation that mutual ex-
clusion o] all operatwns on a shared variable
enables the programmer to analyze the pos-
sible ef]ects o] a procesx ir~teraction in finite,
sequential terms. For the special case of
event variables, we have also discovered
that the net effect of await and cause opera-
tlons depends on the order in which these
operations are carried out. Or, to put it more
strongly: event operations]orce the pro-
grammer to be aware of the relative speeds
o] the ~ending and receiving processes.

The programmer does not control the
order in which concurrent statements are
executed; he is therefore unable to predict
the effect of a process interaction revolving
events. In a real-time system, the program-
mer has essentially lost control of process
scheduling--he cannot define a process that
will schedule other processes in a predictable
manner. Event variables are only meaning-
ful to use when one can assume that a
process never is asked to carry out another
task until it has completed its previous task.
Although this assumption may be satisfied
in some applications, it will still complicate
programming tremendously if one depends
on it. The programmer must then be aware
of the relative speeds of processes under all
circumstances. If a multiprogramming sys-
tem is so large that no single person under-
stands its dynamic behavior in detail, the
individual programmer cannot make reliable
estimates of the relative speeds of processes
under all circumstances. In particular, it will
be an intolerable burden to verify tha t the
speed assumptions are uninfluenced by
modifications or extensions of a large sys-
tem.

We must therefore conclude that event
variables of the previous type are impracti-
cal for system design. The effect o] an inter-
action between two procesxes must be inde-
pendent o] the speed at which it is carried
out.

A far more attractive synchronizing tool,
the semaphore, was invented by Dijkstra in
1965. [4, 5] A semaphore is a variable used
to exchange timing signals among concurrent
processes by means of two operations, wait
and signal (originally called P and V). All

Comput ing Surveys, Vol 5, No 4, December 1973

Concurrent Programming Concepts . 235

operations on a semaphore exclude one
another in time. Associated with a sema-
phore v are two integers defining the num-
ber of signals sent and received through v
and a queue in which receiving processes
can await the sending of further timing
signals by other processes. Initially, the
number of signals sent and received are zero
and the queue is empty.

Signals cannot be received faster than
they are sent. This semaphore invariant:

0 ~ received ~ sent

is satisfied by using the following syncho-
nization rules:

1) If a wait operation on a semaphore v
is executed at a time when received < sent
then received is increased by one and the
receiving process continues; but if received
= sent, the receiver is delayed in the queue
associated with v.

2) A signal operation on a semaphore v
increases sent by one; if one or more proc-
esses are waiting in the queue associated
with v, one of these processes is enabled to
continue its execution and received is in-
creased by one.

We assume that all processes waiting to
receive signals eventually will be able to
continue their execution (provided a suffi-
cient number of signals are sent by other
processes). The scheduling algorithm used
for a semaphore queue must not delay any
process indefinitely in favor of more urgent
processes. But, apart from this requirement
of]air scheduling, no assumptions are made
about the specific order in which waiting
processes are allowed to continue. The weak
assumption of finite progress (rather than
absolute speed) for any process is a recur-
reht theme of programming. We have made
this assumption for sequential and disjoint
processes, and now we make it again for
interacting processes to achieve simplicity
of program analysis and flexibility of imple-
mentation.

Algorithm 4 defines a transmission of
timing signals from one process to another
by means of a semaphore v.

Algorithm ~ Exchange of timing signals
by means of a semaphore

v a r v : semaphore;
cobeg in

cycle "sender"
. . . signal (v) ; . . .

end
cycle "receiver"

• . .wa i t (v) ; . . .
end

coend

Since wait and signal operations on the
semaphore v exclude each other in time, a
signal can be sent either be]ore or after the
receiver decides to walt for it. In the first
case, we can make the following assertions
about the sequence in which an interaction
takes place:

c o m m e n t receiver not waiting and 0
received ~ sent;
szgnal (v) ;
c o m m e n t receiver not waiting and 0
received < sent;
wait (v) ;
c o m m e n t receiver not waiting and 0 <
received ~ sent;
In the second case, the wait operation

may or may not delay the receiver (depend-
ing on whether received = sent or received
< sent). But, in any case, the subsequent
signal operation will ensure that the receiver
continues its execution:

c o m m e n t receiver not waiting and 0
received ~ sent;
wait (v) ;

c o m m e n t receiver waiting and 0 ~ re-
ceived = sent, or recezver not waiting
and 0 < received ~ sent;
signal (v) ;

c o m m e n t receiver not waiting and 0 <
received ~ sent;

The effect of an interaction is independ-
ent of the order in which the wa~t and signal
operations are carried out. The commutative
property o] semaphore operations enables
the programmer to ignore the precise mo-
ment at which a timing signal is produced.
This is certainly the most important contri-
bution of semaphores to program clarity.

Other uses of semaphores will be described
later when we have clarified the funda-
mental role of mutual exclusion in multipro-
gramming.

Computing Surveys, Vol 5, No, 4, December 1973

236 • Per Brinch Hansen

8. CRITICAL REGIONS

We will now consider concurrent processes
that exchange data of arbi t rary type (and
not just t iming signals). As an example we
choose a mult iprogramming system m which
job statistics are collected by a process P
and printed by another process Q. When a
user job has been completed in this system,
process P increases an integer v by one. At
regular intervals process Q prints the value
of v and resets it to zero. To discover the
problems of data sharing we will begin with
a naive "solution":

v a t v : integer;
b e g i n

v : = 0;
c o b e g i n

c y c l e " P "

• . . v : = v + 1 ; . . .

e n d
c y c l e "Q"

. . . p r i n t (v) ; v : = 0 ; . . .
e n d

c o e n d

e n d

This program violates the rule of dlsjoint-
ness since processes P and Q both refer to
and change the same variable v. Although
this violation suggests a weakness of the
present approach to the problem we will ig-
nore it for the time being.

The state of the system accumulating job
statistics can be defined by two integers
(imtially equal to zero) :

x the number of jobs executed
r the number of jobs reported

The variable v should represent the number
of jobs executed but not yet reported; that
is, the relationship v = x - r should remain
invariant after each sequence of operations
on the shared variable v.

The example illustrates two general char-
acteristics of mul t iprogramming systems:

1) The correctness criterion]or concur-
rent operations on a shared variable is de-
fined by an mvar iant - -a relationship tha t
must be true after initlalizatmn of the var i -
able and continue to hold before and after
subsequent operations on the variable.

2) The invariant property o] a shared

variable is defined in terms o] actual and
~mplicit variables• An actual variable (such
as v) is declared m the program and repre-
sented by a store location during its execu-
tion. An implicit variable (such as x or r)
refers to a proper ty of the system tha t is not
represented m the computer during program
execution•

The s tatements executed by processes P
and Q can be arbi t rar i ly overlapped and
interleaved in time. We will, however, only
analyze the effects of an a rb i t ra ry inter-
leaving of the concurrent s tatements tha t
operate on the shared variable v. The in-
crease of v by process P can occur either
be]ore, alter, or in the middle of the print-
ing and resetting of v by process Q. So we
have three cases to consider:

v.= v + 1; pmnt(v); pmnt(v);
print(v); v:=0; v:= v + 1;
v.=0; v:=v + 1; v:= 0,

The correctness criterion of the possible
interactions between processes P and Q is
defined by an invar iant (v = x - r) tha t
relates an actual var iable v to two implicit
variables x and r. To analyze the results of
the three possible cases, we must extend the
program with implicit s tatements referring
to x and r (even though these s ta tements
will never be executed). Conceptually, x is
increased by one when v is increased, and r
is increased by the value of v when the lat ter
is printed. Assuming tha t the desired in-
var ian t holds before an interaction takes
place, we can make the following assertions
about the first case:

c o m m e n t x - - r -~ v ;

v : = v + 1; [x:= x + 1]
c o m m e n t x - - r = v ;

print (v) ; Jr.'= r + v]
c o m m e n t x - - r = 0;
v:=- O;
c o m m e n t x - - r = v ;

The implicit s tatements are enclosed in
square brackets to distinguish them from
actual statements. In this case, the in-
var ian t still holds after the process inter-
action.

In the second case, the m v a r m n t is also
maintained by the interaction:

Comput ing Surveys, Vol 5, No 4, December 1973

Concurrent Programming Concepts • 237

c o m m e n t x - - r = v ;

print (v); I t := r + v]
c o m m e n t x - - r ---- 0 ;

v : = O;
c o m m e n t x - - r ---- v~"

v := v + 1; [x:= x + 1]
c o m m e n t x - r = v ;

But in the third case, the " lnvar ian t" no
longer holds after the process interaction:

c o m m e n t x - - r = v ;

print (v) ; [r := r + v]
c o m m e n t x - - r = 0 ;

v : = v + 1; [x:= x + 1]
c o m m e n t x - - r = l ;

v : = O ;
c o m m e n t x - - r = v ÷ 1 ;

Whether or not the invar iant is main-
tained depends on the ordering of the con-
current s tatements in time. This is, of
course, unacceptable to the programmer who
has no control over the scheduling of con-
current processes.

Notice that in the first two cases, in which
the invariant continues to be satisfied, the
two processes have exclusive access to the
variable v while they are operating on it:

P v: = v ~ 1 ; Q print (v);

print v: = 0;

, 7 i ;
The conflict in the third case is caused by
mixing the sequence of operations of process
Q on variable v with an operation of process
P on the same variable:

pmn! (v) ;

i 1;,
Q

P

Q

Process Q performs a sequence of opera-
tions on the shared variable v. I t is assumed
that the i nvanan t holds before and after
this sequence of operations. But while the
operations are carried out, the variable v
may be in various intermediate states in
which the mvar ian t is not satisfied. I f other
concurrent statements are carried out on the

same variable in one of its intermediate
states, the result will normal ly be incorrect.
In the previous example, process P starts to
operate on variable v a t a t ime when x -
r = 0 (instead of x - r = v) ; this leads to
a final state in which x - r = v + 1 (instead
of x - r = v) .

In Section 7 we found tha t the effect of
synchronizing operations on event variables
and semaphores can be predicted only if
they exclude one another in time. The pres-
ent example shows tha t one must also be
able to achieve mutual exclusion of arbi-
t r a ry concurrent statements referring to a
shared variable of an arbi t rary type.

Concurrent s tatements tha t refer to the
same shared variable are called cmt~cal
regions. The previous program contains two
critical regions :

and

v : = v + 1

print (v)
V : ~ 0

Critical regions referring to the same var i -
able exclude one another m time. They can,
however, be arbi t rar i ly interleaved in time.
We make three assumptions about critical
regions tha t operate on the same shared
variable:

Mutual exclusion: At most, one process
at a t ime can be inside a critical region.
Termination: A process will always com-
plete a critical region within a fimte time.
Fair scheduling: A process can always
enter a critical region within a finite time.
Dekker has shown tha t mutual exclusion

of arbi t rary statements can be implemented
by means of load and store operations only
(provided that load and store operations on
a given variable exclude one another in
t ime). His solution is far too complicated
and inefficient to be of practical value [4],
but it does illustrate the subtlety of the mu-
tual exclusion problem.

The inadequacy of the load-and-store ap-
proach to mutual exclusion inspired Di jk-
stra and Scholten to invent semaphores.
Algorithm 5 defines an implementat ion of
critical regions by means of a semaphore
mutex.

Computing Surveys, Vol 5, No 4, December 1973

238 • Per Brinch Hansen

Algorithm 5 Critical regions implemented
by means of a semaphore

var v: integer; mutex : semaphore(I);
begin

v : = 0 ;
cobegin

cycle "P"
• • •wai t (mutex); v : = v ÷ 1;

s~gnal (mutex) ; . . .
end
cycle "Q"

• . . wa~t (mutex) ; print (v) ;
v : = 0; siqnol (mutex) ; . . .

end
cocnd

end

The declaration of a semaphore mutex
has been extended with an integer constant
defining the initial number of available sig-
nals:

var mutex: semaphore (initial)

A semaphore is now characterized by three
integer components:
initial the number of signals initially

available
sent the number o~ signal operations

completed
received the number of wait operations

completed
The semaphore invariant must therefore be
revised slightly:

0 ~ received ~ sent ÷ initial

For the semaphores used in Section 7, initial
is zero. In Algorithm 5, initial is equal to
one.

To make a sequence of statements S1, $2,
. . . , Sn a critical region, we enclose it by a
pair of wait and signal operations on a
semaphore mutex initialized to one:

var mutex: semaphore(l) ;

• . .wa i t (mutex); S1; S 2 ; . . . S n ;
signal (mutex) ; . . .

The initial signal allows precisely one proc-
ess to enter its critical region. Once a proc-
ess has consumed the available signal and
entered its critical region, no other process
can enter a critical region associated with
the same semaphore until the former proc-

ess leaves its critical region and produces
another signal.

A more rigorous proof of the mutual ex-
clusion depends on the following observa-
tions:

1) Independent of how wait and signal
operations are used they maintain the sem-
aphore invariant :

0 ~ recewed ~ sent + 1

2) When a semaphore is used to achieve
mutual exclusion, a process always executes
a wait operation followed by a signal opera-
tion. At any given time, some processes may
have executed a wait operation, but not ye t
the corresponding signal operation• So the
structure of the program shows that the in-
variant :

0 ~ sent ~ received

is also maintained.
3) Finally, it is clear that the number of

processes tha t are inside their critical re-
gions at any given time are those processes
that have completed a wait operation but
not yet the following signal operation, tha t
is:

inside --- received - sent

By combining these three invariants, we
find that the first assumption about critical
regions is satisfied:

0 ~ inside ~ 1

At most, one process at a time can be inside
a critical region.

Assuming that processes are scheduled
fairly when they are inside their critical re-
gions, we can also conclude that the state-
ments executed within the critical regions of
Algorithm 5 will terminate within a finite
time. And if the scheduling of processes
waiting for timing signals in the semaphore
queue is also fair, then a process can only be
delayed a finite number of times while
other processes enter critical regions ahead
of it; so a process will always be able even-
tually to enter its critical region. The im-
plementation of critical regions in Algo-
ri thm 5 is therefore correct. Notice that the
analysis of this concurrent program is stated
in terms of the implicit variables, received,
sent, and inside.

Compu tmg Surveys, Vol• 5, No 4, December 1973

Concurrent Programming Concepts • 239

A semaphore is an elegant synchronizing
tool for an ideal programmer who never
makes mistakes. But unfortunately the con-
sequences of using semaphores incorrectly
can be quite serious. A programmer might
by mistake write the wait and signal opera-
tions in reverse order for a particular criti-
cal region:

signal (mutex) ; . . . wait (mutex) ;

In that case, the system will sometimes per-
mit three processes to be inside their "criti-
cal regions" at the same time. This is a
time-dependent error that only reveals itself
if other processes enter critical regions while
the erroneous critical region is being exe-
cuted.

Another serious error would be the fol-
lowing:

wait (mutex) ; . . . wait (mutex) ;

This one causes the process executing the
critical region to wait forever at the end of
it for a timing signal that will never be pro-
duced. Since the incorrect process is unable
to leave its critical region, other processes
trying to enter their critical regions will
also be delayed forever. Notice, that the be-
havior of the other processes is only in-
fluenced by the erroneous process after the
latter has entered its incorrect region. So the
error is clearly time-dependent. Such a sit-
uation in which two or more processes are
waiting indefinitely for synchronizing con-
ditmns that will never be satisfied is called
a deadlock.

These examples show how easy it is to
cause a time-dependent error by means of a
semaphore. Even if a semaphore is used
correctly it still does not provide us with a
satisfactory notation to indicate that the
violation of the rule of disjomtness with
respect to the variable v in Algorithm 5 is
dehberate.

A semaphore is a general programming
tool that can be used to solve arbi t rary syn-
chronizing problems Hence a compiler can-
not always assume that a pair of wait and
signal operations on a semaphore initialized
to one delimits a critical region. In particu-
lar, a compiler cannot recognize the fol-

lowing errors: if a pair of wait and signal
operations are exchanged, if one or both of
them are missing, or if a semaphore is ini-
tialized incorrectly. A compiler is also un-
aware of the correspondence between a
shared variable v and the semaphore mutex
used to gain exclusive access to v. Conse-
quently, the compiler cannot protest if a
critical region implemented by a semaphore
mutex by mistake refers to another shared
variable w (instead of v). Indeed, a com-
piler cannot give the programmer any assis-
tance whatsoever in establishing critical re-
gions correctly by means o] semaphores.

Since semaphores alone do not enable a
programmer to indicate whether a variable
v should be private to a single process or
shared by several processes, a compiler must
either forbid or permit any process inter-
action revolving that variable. To forbid
process interaction is unrealistic (since it
prevents us from building interactive multi-
programming systems consisting of co-
operating processes); to permit arbi t rary
process interaction is disastrous (because
of the danger of irreproducible program-
ming errors). We must therefore conclude
that semaphores do not enable a compiler
to give a programmer the effective assist-
ance in error detection that he should ex-
pect from an implementation of a high-level
language.

To improve this situation, I have sug-
gested a structured notation for shared vari-
ables and erotical regions [2]. A shared vari-
able v of type T is declared as follows:

var v : shared T

Concurrent processes can only refer to and
change a shared variable v inside a struc-
tured statement of the form:

r e g i o n v do S1; $2 . . . Sn end

This notation indicates that the sequence of
statements S1, $ 2 , . . . , Sn should have ex-
clusive access to the shared variable v. By
explicitly associating a critical region with
the shared variable on which it operates the
programmer tells the compiler that the shar-
ing of this variable among concurrent proc-
esses is a deliberate exception to the rule of
disjointness; at the same time, the compiler

Computing Smveys, Vol. 5, No 4, December 1973

240 • Per Brmch Hansen

can check that a shared variable is used
only inside critical regions and can generate
code that implements mutual exclusion cor-
rectly. I t is perfectly reasonably to use sem-
aphores m the underlying implementation
of this language feature, but at higher levels
of programming the explicit use of sema-
phores to achieve mutual exclusion is de-
batable. A similar notation for critical re-
gions was developed independently by
Hoare [6].

Algorithm 6 shows the use of a shared
integer v and two critical regions to solve
the previous problem (See also Algorithm
5) .

Algorithm 6 Critical regions represented
by a structured notation

var v : shared integer;
begin

v := 0;
cobegin

cycle "P"
• . . r e g i o n v d o v : = v + l e n d . . .

end
cycle "Q"

. . . r e g i o n v do print(v); v : = 0
e n d . . .

end
coend

end

It has been our persistent goal to look for
multiprogramming features that can be un-
derstood in time-independent terms. Since
the precise ordering of critical regions in
time is unknown, a time-independent as-
sertion of their net effect can only be an as-
sertion about a propertly of the associated
shared variable that remains constant--in
short, an invariant I that must be true after
initialization of the variable and before and
after each critical region operating it.

A relationship I that remains true at all
times must in some way reflect the entire
history of the processes referring to the
shared variable. So we find that the in-
variant for Algorithms 5 and 6 is expressed
in terms of the total number of jobs exe-
cuted and reported throughout the existence
of the multiprogramming system. However,
since the range of such implicit variables is

unbounded, they cannot be represented in a
computer with a finite word length. On the
other hand, actual variables being bound to
a finite range can only represent the most
recent past of a system's history. We must
therefore find a function J(x, r) of the im-
plicit variables x and r with a finite range
that can be represented by an actual vari-
able v. In Algorithms 5 and 6 the function is

f (x , r) = x - r = v

For a semaphore, the invanant is a rela-
tionship among the implicit variables rep-
resenting all signals sent and received
throughout the lifetime of a semaphore:

0 <~ received <~ sent + initial

In a computer, these implicit variables can
be represented by a single integer (equal to
sent + ~nitial - received) that must remain
non-negative.

People with a strong interest in correct-
ness proofs may well find it helpful to de-
clare implicit variables and implicit state-
ments referring to them expliclty in the
program text Implicit quantities have no
effect on the execution of a program; their
sole function is to facilitate program veri-
fication by making assumptions about the
system's history explicit.

Implicit variables and statements should
be subject to the following restrictions:

1) Assertions about a program may refer
to actual as well as implicit variables.

2) Expressions involving actual and im-
plicit variables may formally be "evalu-
ated" and "assigned" to implicit variables.

3) Expressions evaluated and assigned to
actual variables mawr only refer to actual
variables.

Critical regions referring to different
shared variables can be executed simulta-
neously. The use of nested critzcal regions
can, however, lead to a deadlock, unless
precautions are taken. Consider, for exam-
ple, the following program with two shared
variables v and w of types T and T':

var v : shared T; w: shared T' ;
cobegin

"P" region v do region w d o . . . end
end

C o m p u t i n g S u r v e y s , V o l 5, N o 4, D e c e m b e r 1973

Concurrent Programming Concepts • 241

"Q" r e g i o n w do r e g i o n v d o . . . end
e n d

e o e n d

Process P can enter its region v at the same
time that process Q enters its region w.
When process P tries to enter its region w,
it will be delayed because Q is already
inside its region w. And process Q will be
delayed trying to enter its region v because
P is already inside its region v.

The deadlock occurs because the two
processes enter their critical regions in op-
pos]te order and create a situation m which
each process is waiting indefinitely for the
completion of a region within the other
process. I t can be proved that a deadlock
cannot occur if all processes enter nested
regions in the same (hierarchical) order
[1] A compiler might prevent such dead-
locks simply by checking that nested critical
regions refer to shared variables in the (lin-
ear) order in which these variables are de-
clared in the program.

It is an amusing paradox of critical re-
gions that to implement one, we must ap-
peal to the existence of simpler critical
regions (called wait and szgnal). The im-
plementation of wait and signal operations,
in turn, reqmres the use of an arbiter--a
hardware lmplementatmn of still simpler
critical regions that guarantee exclusive
access to a semaphore by a single processor
in a multiprocessor system. This use of
nested critical regions continues at all levels
of machine design until we reach the atomic
level, at which nuclear states are known to
be discrete and mutually exclusive.

The main conclusion of this section must
be that it is impossible to make useful as-
sertions about the effect of concurrent state-
ments unless operations on shared variables
exclude one another in time. Mutual exclu-
sion is necessary to reduce a virtual infinity
of possible time-dependent results to a
small number of possibilities. The use of
mvariant relationships simplifies the pro-
gram analysis further. Together, these men-
tal tools enable us to study concurrent pro-
grams in time-independent terms by an
effort proportional to the number of critical
regions used. So in the end, our understand-

ing of concurrent processes is based on our
ability to execute their interactions strictly
sequentially; Only disjoint processes can
proceed truly s,multaneously.

9. CONDITIONAL CRITICAL REGIONS

We will now consider multiprogramming
systems in which processes can wait until
certain conditions are satisfied by other
processes. The classic example is the ex-
change of messages between two processes
by means of a buffer of finite capacity as
defined by Algorithm 7. Here the sender
must be able to wait while the buffer is full,
and the receiver must able to wait while the
buffer is empty.

The message buffer v is declared as a
shared record consmting of two components:
a sequence s of messages of some type T,
and an integer full defining the number of
messages currently stored in the sequence.

Initially, the buffer is empty (full = 0).
Since the buffer has a fimte capacity, the
operations used to send and receive a rues-
sage must maintain the following buffer in-
vamant :

0 ~ full ~ capacity

Algorithm 7 Message buffer

var v: shared r e c o r d
s." s e q u e n c e o f T;
full." integer;

e n d
m, n: T;

c o m m e n t send message m;
reg ion v w h e n full < capacity do

put(m, s) ;
ful l:= full + 1;

e n d

c o m m e n t receive message n;
r e g i o n v w h e n full > 0 do

get (n, s) ;
ful l:= full - 1 ;

end

To indicate that the sending of a message
must be postponed until full < capacity, we
will use the conditional critical region pro-
posed by Hoare [6]:

Computing Surveys, Vol 5, No. 4, December 1973

242 • Per Brmch Hansen

r e g i o n v w h e n lull < capacity d o . . . e n d

When the sender enters this conditional
critical region, the Boolean expression lull
< capacity is evaluated. I f the expression is
true, the sender completes the execution of
the critical region by putting a message m
of type T into the sequence s and increasing
lull by one. But if the expression is false, the
sender leaves the critical regmn temporar-
fly and enters an anonymous queue associ-
ated with the shared variable v. The sender
will be allowed to reenter and complete the
critical region as soon as the receiver has
removed a message from the buffer (thus
making lull < capacity).

Another conditional critical region is used
to postpone the receiving of a message until
lull > 0. I f full = 0, the receiver leaves the
critical region temporari ly and joins the
anonymous queue. In that case, the critical
region will be continued when the sender has
put another message into the buffer and
made lull > 0. At this point, the receiver
will take a message n of type T from the
sequence s and decrease full by one.

In general, a conditional critical region

r e g i o n v w h e n B d o S1 ; $2 ; . . . ; Sn e n d

is used to delay the completion of a critical
region until a shared variable v satisfies a
a specific condition B (in addition to an in-
variant I) .

When a process enters a conditional criti-
cal region, a Boolean expression B is evalu-
ated. I f B is true, the critical region is com-
pleted by executing the statements S1, $2,
. . . , Sn; otherwise, the process leaves its
critical region temporari ly and enters a
queue associated with the shared variable v.

All processes waiting for one condition or
another on the variable v enter the same
queue. When a process completes a critical
region on v, the synchronizing conditions of
the waiting processes are reevaluated. I f
one of these conditions is satisfied, the cor-
responding process is allowed to reenter and
complete its critical region.

The scheduling of waiting processes must
be fair in the following sense: If a process
is waiting for a condition B that is repeat-
edly made true by one or more "producers"

and false by one or more "consumers," the
completion of the given critical region can
only be delayed a finite number of times by
other critical regions.

We will use conditional critical regions to
solve the following problem [8]: A stream
of data elements of type T produced by a
process P0 passes through a sequence of
processes P1, P 2 , . . . , Pn tha t operate on
the data elements in tha t order:

PO --> P1 ~ P2 • • • ---> Pn

Each pair of processes (Pi-1 and Pi,
where 1 ~ i ~ n) is connected by a sequence
s (i) tha t can hold one or more data elements
of type T. The sequences s (1) , . . . , s(n)
are kept in a common store with a finite
capacity. Algorithm 8 gives an overview of
this pipeline system.

The common store is declared as a vari-
able v of type pipeline (to be defined later).
A process Pi receives a message ti of type T
from its predecessor and sends an updated
message to its successor by means of two
procedures

receive (ti, v, i) send(ti, v, i+ 1)

Algorithm 9 defines the data type pipe-
line and the procedures send and receive. A
pipeline is a shared record consisting of
four components: an array of sequences s;
an array of integers defining the number of
lull locations ("messages) in each sequence;
an array of integers defining the minimum
number of store locations reserved perma-
nently for transmission of messages through
each sequence; and an integer defining the
number of store locations that are generally
available for transmission of messages
through all sequences (when they have used
up their reserved locations).

Initially, all sequences are empty and the
p~peline has been divided into reserved and
generally available storage. A sequence s (i)
can always hold at least reserved(i) mes-
sages. When this amount has been used, the
sequence must compete with other sequences
for use of the rest of the available store. So
the condition for sending a message through
sequence s(i) is

lull(i) < received(i) o r available > 0

Comput ing Surveys, Vol 5, No 4, December 1973

Concurrent Programming Concepts • 243

Algori thm 8 Pipeline system
v a t v: pipeline; tO, t l , . . . , tn: T;
begin

ir~itialize (v) ;
e o b e g i n

cycle "PO"
produce (tO) ;
send(tO, v, I) ;

e n d

cycle "Pi"
receive (ti, v, i) ;
update (ti) ;
send(ti , v, i + 1) ;

e n d

cyc le "Pn"
receive (tn, v, n) ;
consume (tn) ;

e n d
e o e n d

e n d

Algori thm 9 Pipeline system (cont.)

type pipehne = shared record
s: array 1 . . n o f

s e q u e n c e o f T ;
full, reserved."

array 1. . n of integer;
available: integer;

e n d
p r o c e d u r e send(t: T; var v: pipeline; i:

1 . . n) ;
r e g i o n v

w h e n full(~) < reserved(i) or avadable
> O d o

put (t , s(i)) ;
]ull(i) := ful l (i) + 1;
i f full (i) > reserved (i) t h e n

available:= available - 1;
e n d

e n d
p r o c e d u r e receive (var t: T; var v: pipe-

line; i: 1 . . n) ;
r e g i o n v

w h e n full (i) > 0 do
g e t (t , s (i)) ;
if ful l(i) > reserved(i) t h e n

available:= available + 1;
e n d
ful l(i) := full(~) -- 1;

e n d

The condition for receiving a message
through sequence s (i) is

ful l (i) > 0

A sequence s (i) may temporarily contain
more than reserved(i) messages. But the
total number of messages stored in all se-
quences cannot exceed the capacity of the
pipeline. So the system must maintain the
following mvariant :

full(i) >i 0 for 0 <~ ~ n

available + ~ max(fu l l (t) , reserved(i))

-= capacity

It can be shown formally that Algorithm 9
maintains this invariant, but the proof is
tedious and adds nothing to one's informal
understanding of the pipeline.

In Hoare's conditional critical regions,
processes can only be delayed at the begin-
ning of a critical region. In practice, one
must be able to place synchronizing condi-
tions anywhere withm critical regions as
shown in [2].

The conditional critical region is an im-
portant description tool for multiprogram-
ruing systems. It remains to be seen whether
it also is a practical programming tool. The
main difficulty of achieving an efficmnt im-
plementation is the reevaluation of syn-
chronizing eonditmns each time a critical
region is completed.

In simple cases, the reevaluation can be
reduced (but seldom eliminated) by the use
of semaphores. To do this, one must asso-
ciate a semaphore with each synchronizing
condition When a process makes a condi-
tion B true, the process must eheek whether
other processes are waiting for that condi-
tion, and, if so, produce a signal that will
enable one (and only one!) of them to con-
tinue. As I have pointed out elsewhere, [7]
the efficiency of this scheme is bought at the
expense of increased program complexity.

Concurrent statements and critical re-
gions seem well-suited to the design of
small multiprogramming systems dedicated
to user applications (but remember that
they have not yet been implemented and
used in practice). Although these concepts

Computing Surveys, Vol 5, No 4, December 1973

244 • Per Brinch Hansen

are simple and well-structured, they do not
seem to be adequate for the design of large
mul t lp rogramming systems (such as oper-
at ing systems) . The main problem is t ha t
the use of critical regions scat tered th rough-
out a p rogram makes xt difficult to keep
t r ack of how a shared var iable is used by
concurrent processes. I t has therefore re-
cent ly been suggested tha t one should com-
bine a shared var iable and the possible
operat ions on it in a single, syntac t ic con-
s truct called a monitor [1, 10, 11]. I t is,
however, too ear ly to speculate about wha t
this approach m a y lead to.

10. CONCLUSION

I have tr ied to show tha t the design of reli-
able mul t ip rogramming systems should be
guided by two simple principles t h a t are
equal ly val id for sequential p rogramming :

1) I t should be possible to unders tand a
p rogram in t ime- independent terms by an
effort propor t ional to its size.

2) I t should be possible to state assump-
t ions about invar ian t relat ionships among
p rogram components , and have them
checked automat ica l ly .

I have also discussed some specific lan-
guage features for mul t iprogramming. To
avoid misunders tanding, I ask you to re-
gard these not as definite proposals but
merely as i l lustrations of a common theme.
Bet ter language concepts for mul t ip rogram-
ming will undoub ted ly be proposed by
others. Bu t I would expect any realistic
proposal to :

1) distinguish clearly between disjoint
and interact ing processes;

2) associate shared da ta explicitly with
operat ions defined on them;

3) ensure mutua l exclusion of these op-
erations in t ime; and

4) include synchronizing primit ives t h a t
permit par t ia l or complete p rog rammer con-
trol of process scheduling.

ACKNOWLEDGEMENTS

I am indebted to my students Ram Rao, Dawd
Smith, and Sankar~n Srmlvas for many helpful

comments on tills paper. I am also grateful for the
constructive crmclsm of Coen Bron, Peter Denning,
Brian Wlchmann, Mike Woodger, and the referees

BIBLIOGRAPHY

1. BRINCH HANSEN, P. Operating system princi-
ples. Prentice-Hall, Englewood Chffs, New
Jersey (July 1973).

An introduction to operating systems covering
sequential and concurrent processes, processor
and store management, scheduling algorithms
and resource protection. Describes the RC
4000 multlprogramming system in detail. In-
troduces a programming language notation
for momtors based on the class concept of
SIMULA 67.

2 BRINCH HA~SEN, P. "Structured multipro-
grammlng" Comm ACM 15, 7 (July 1972),
574-578

A condensed presentation of the vmwpoints
described m the present paper I t suggests the
use of event queues within critical regions as

means of reducing the overhead of process
scheduling.

3. WIRTH, N. "The programming language Pas-
cal." Acla In/o~matwa 1, 1 (1971), 35-63.

A highly readable defimtlon of a sequentaal
programming language that combines the al-
gorithmic notation of ALGOL 60 with far more
general data structures

4. DIJKSTRA, E. W. "Cooperating sequential proc-
esses" m Programming Languages, F. Genuys.
(Ed.) Academic Press, New York, New York,
1968.

The classical monograph that introduced con-
current statements, semaphores, and cntmal
regmns I t also contains Dekker's solution to
the mutual exclusmn problem.

5 I-IABERMANN, A. N. "Synchromzatmn of com-
mumcatmg processes" Comm ACM 15, 3
(March 1972), 171-176.

An axmmatlc defimtmn of the semaphore
operations, wa~t and s~gnal

6 HOARE, C. A R. "Towards ~ theory of parallel
programming."]n Operating Systems Tech-
niques, C A. R Hoare and R. H. Perrott,
(Eds), Academic Press, New York, New York,
1973

The original proposal for condatmnal critical
regmns which includes an axmmatlc defimtmn
of disjoint processes and critical regmns.

7. BRINCH HANSEN, P "A comparison of two syn-
chromzmg concepts." Acta In]ormatica l , 3
(1972), 190-199.

A comparlson of the use of semaphores and
con&tmnal critical regions to solve a schedul-
ing problem.

8 DIJKSTtCA, F~. W. "Information s t r e a m s sha r ing
a fimte buffer." In]ormatwn Processing Letters
1, (1972), 179-180.

A solutmn to the "p~pehne" problem by means
of condltmnal critical regmns

Computing Surveys, Vol 5, No 4, December 1973

Concurrent Programming Concepts • 245

9. DIJKSTRA, E. W. "The structure of THE multi-
programming system." Comm ACM l l , 5
(May 1968), 341-346.

A brmf description of the hmrarchlcal struc-
ture of THE multlprogramming system.

10. DIJKSTRA, E. W. "Hmrarchlcal ordering of
sequential processes." Acta Inlormatwa It 2
(1971), 115-138

A more extensive motivation of the basic

design decisions made in TH~ multiprogram-
mmg system (See also 9). Recommends the
use of monitors (called "secretaries") for fu-
ture operating system design.

l l . HOARE, C. A. R. "A structured paging system."
Computer Journal 16, 3 (August 1973), 209-
214.

Illustrates the use of the monitor concept
presented in (1) for the design of a demand
paging system

Computing Surveys, Vol 5, No. 4, December 1973

