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Abstract 

A new method of expressing synchronization is presented and the 
motivations and considerations which led to this method are explained. 
Synchronization rules, given by 'path expressions', are incorporated into 
the type definitions which are used to introduce data objects shared by 
several asynchronous processes. It is shown that the method's ability to 
express synchronization rules is equivalent to that of P and V operations, 
and a means of automatically translating path expressions to existing 
primitive synchronization operations is given. 

12th December, 1973. 



90 

1. I n t r o d u c t i o n  

The design and construction of the co-operation and co-ordination of 
concurrent processes is a difficult task, particularly in large operating 
systems. One major problem is the synchronization of actions belonging to 
separate processes. Some present methods~ such as P and V [I] and Wait and 
Signal [2], are extremely primitive and subject to many hazards in programming. 
Other methods such as Monitors [3], Message Passing Systems [4] and Secretaries 
[5] are attempts to overcome some of these hazards. 

We consider a process as operating~ by a sequence of actions, on a known 
set of objects. Synchronization is required in order to maintain the 
integrity of objects which are shared between different processes. The 
explicit programming of critical sections and of communication of processes 
using P, V operations has the effect of spreading the implementation of 
synchronization of operations on shared data throughout the various programs 
of concurrent processes. Dijkstra's idea of the secretaries [5] controlling 
the operations on shared data can be viewed as a step in the direction of 
associating the specification of synchronization with the shared object. This 
paper proposes a general mechanism for representing synchronization rules in a 
consistent and coherent manner. It advocates the further step of combining 
these rules with "type definitions" that are used to introduce each class of 
o b j e c t .  

The new mechan i sm d e s c r i b e s  s y n c h r o n i z a t i o n  a t  t h e  l e v e l  of  p r o c e d u r e s ,  
That is, if we want to synchronize two actions, each must be provided by a 
separate procedure invocation. The mechanism allows one to state what action 
sequencing is permissable, which is in direct contrast with synchronization 
schemes in which the main function is to prohibit or delay actions. Our 
proposal is that the synchronization be specified directly by describin~ how 
the body of one procedure, as a unit~ is allowed to execute in relation to 
others~ irrespective of when invoked by processes. The mechanism will 
specifically describe the synchronizationpermissible between executions of 
procedures and prohibit all others. That is, a process trying to execute 
one of the procedures must wait until the combination of circumstances 
specified in the synchronization has occurred. 

The type definition we shall describe has two divisions~ the first 
cc~sists of the internal structure (for example data declarations and internal 
functions)~ the second~ called its operations,consists of the procedures known 
to the outside program which are permitted to alter the internal structure. 
Together~ the type definition and synchronization mechanism describe which 
procedures (operations) may be invoked by a program to access data objects 
and how these procedures are to be synchronized to allow the objects to be 
shared among separate processes. 

First we shall describe our synchronization method and notation with 
several solutions of well known synchronization problems used as illustrations. 
Then we shall describe our notion of type and discuss, with the aid of examples~ 
how it complements the synchronization method. Finally we shall show that our 
synchronization method is equivalent to P~V operations in terms of its ability 
to express synchronization, and describe an automatic method of translating our 
notation into existing primitive synchronization operations. 

2. The Synchronization Mechanism 

The proposed mechanism allows the synchronization between executions of 
procedures by separate processes to be specified by means of a path expression. 
Later we shall show how these path expressions may be used within a type 
declaration to describe the synchronization which will allow an object of 
that type to be shared by several processes. First, however, we shall identify 
what we think are fundamental synchronization schemes and describe how they may 
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be combined to describe complex synchronization. 

The notation, although somewhat arbitrary, is based on regular express- 
ions, which we feel provide a familiar framework and allows path expressions 
to be represented by finite state machines. We have also placed certain 
restrictions upon the notation which enable us later to describe an implement- 
ation of path expressions in terms of other synchronization primitives. We 
shall indicate the decisions we have made and attempt to justify them by 
example or by argument. 

The idea underlying the mechanism can be envisaged as follows:- A path 
expression names the procedures whose execution by processes are to be 
synchronized. It includes a specification which describes exactly the way in 
which the synchronization is to be organized. Each path expression is 
implemented by a controller. Given that an individual synchronized procedure 
has been invoked by a process, the controller decides when the procedure 
execution should be allowed to commence, and therefore the process to continue. 

The controller mechanism could operate as follows:- Each procedure 
commences with a prologue and finishes with an epilogue. A process executing 
the prologue of a synchronized procedure enquires of the ccntroller whether 
it may proceed. The controller, using the synchronization specification, may 
decide either to delay execution or to allow it to continue. Finally, when 
the process executes the epilogue of the procedure, it notifies the controller 
which may now be able to release other delayed processes. 

The notation we have adopted is designed to simplify the construction of 
these controllers; we show that they might, for example, take the form of 
finite state machines constructed from P, V operations and semaphores [I]. 

The first two fundamental synchronization schemes we shall identify are 
the sequence of actions and the selection from a set of actions. (By action 
we mean the execution by a process of a procedure). A sequence of actions 
permits each one %o occur in the order specified. Suppose the executions of 
three procedures p, q and r are to be sequentially synchronized. Then 

p ; q ; r  

is an example of a path expression which would, in our notation, express that 
procedures p, q and r are to be executed one after the other in the sequence 
given. The procedures may have been invoked by separate processes, in a 
different order and with possible intermediate delays. If an invocation of q 
occurs first, the invoking process will be delayed until procedure p has been 
executed. A ~]~ctinn from a set of actions permits only one to occur. 
Suppose the executions of the three procedures p, q and r are to be selectively 
synchronized. 

Then 
p, q, r 

is an example of a path expression which would specify that a selection of one 
procedure is to be made from p, q and r. The process attempting to execute the 
procedure selected is allowed to continue 9 while processes attempting to execut 
those procedures not selected are delayed until a new selection is made from 
p, q and r. The selection of a procedure is made from amongst these procedures 
which h~ve been invoked by processes. The selection is made using an unspecif~ 
rule which ensures fair random order ~I] (and which caters for any possible 
simultaneity). 

These two basic schemes may be combined to form more complex path 
expressions. 

Thus the path expression 
p ; (q, r ) ;  s 
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synchronizes the executions of procedures, p, q, r and s. Executions of q 
and r are synchronized selectively. The executions of procedure p, the 
selected procedure from q or r, and the procedure s are synchronized sequent- 
ially, Thus the path expression permits two possible series of executions:- 
Either the execution of p precedes that of q which precedes that of s or the 
execution of p precedes that of r which precedes that of s. 

For simplicity in the design of controllers for our notation, we allow 
a procedure name to occur once only in any path expression. This is not very 
restrictive because a procedure can always be renamed by embedding it inside 
another procedure. 

There are two additional synchronization concepts which we find practical 
to represent. These are repetition and simultaneous execution. 

Repetition permits a path expression once completed to be repeated. 
Many processes are cyclic in behaviour and this needs to be reflected in our 
synchronization notation. We represent repetition by enclosing a path 
expression between the key words path en___dd. Again, for simplicity in design 
of controllers for our notation, we make the restriction that repeated path 
expressions may not be embedded within other path expressions. We have not 
found this restriction to be very important in the examples for which we have 
so far written synchronization rules and there are certainly ways in which 
this restriction may be relaxed. The path expression 

path Pl end 

synchronizes the procedure Pl so that it may be executed by processes repeat- 
edly. If many processes invoke PI, one of them at a time will be allowed to 
execute PI while the remainder are delayed until their turn comes. The path 
expression 

path PI, (P2 ; (P3, P4)) en_~d 

is an example of a complex synchronization scheme involving the procedures 
Pl, P2, P3 and P4. At first either procedure PI or P2 may be selected to 
execute. If PI is selected then, when execution by the process of PI is 
complete, repetition will occur and a new selection made between procedures 
PI and P2. If P2 is selected then, when execution by the process of P2 is 
complete, a selection will be made between procedures P3 and P4. In this 
case, ~hen the procedure P3 or P4 which is selected has been executed by its 
invoking process, repetition will occur and a new selection made between 
procedures PI and P2. 

Simultaneous Execution permits several processes to execute given 
procedures concurrently. In many synchronization problems it is often 
desirable that a body of code can be simultaneously executed by several 
processes provided that by doing so the processes do not infringe other 
synchronization restrictions. The notation representing simultaneous 
execution is a bracket pair [ ) placed around a regular expression. These 
brackets may not be nested. One view of simultaneous execution is that it 
generates as many instances of the enclosed expression as there are requests 
for it until all instances have been completed. The path expression 

[ Pl 

synchronizes the procedure PI so that it may be executed by many processes 
simultaneously. Once One process begins to execute PI, other processes may 
do the same without delay, providing that there are outstanding (uncompleted) 
executions of Pl. As soon as the last of these is finished, the path 
expression is considered to be complete and further processes invoking PI will 
be delayed. 

The path expression 
path A ; ~ B ; C ) end 
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synchronizes %he procedures A, B and C using a combination of several basic 
synchronization schemes. Procedure A may be executed firs% by a process:. Qn 
the completion of procedure A by a process, the sequence B ~ C can be executed 
by many processes simultaneously. A process invoking procedure C will be 
delayed until %he execution is completed by some other process of procedure B. 
Procedure~B and C may be executed simultaneously by many processes, however �89 
number of processes executing and which have executed procedure C can never 
exceed the number of processes which have executed B. If at some time all 
requests by processes for the sequence B ~ C have been completed (the number of 
executed procedures B equals the number of executed procedures C and there are 
no more invocations of B) then repetition will enable a new invocation of A by 
a process to execute. 

In our opinion, path expressions provide a clear and compact method for 
describing synchronization problems. For example, the path expression 

path read, write end 

specifies a series of executions by processes of the procedures read and write 
in unpredictable order, none of which overlap in time. 

The path expression 

path {read~, write end 

specifies a series of executions by processes of the procedures read and write 
in unpredictable order. Read executions may overlap other read executions but 
write exeeuiions may not overlap other read or write executions. Reading, onec 
started~ will continue for as long as there are processes invoking read and at 
least one process executing read. 

The above path specifications can be used, for instance, for programming 
file processing~ and we shall now demonstrate how they may be adapted so that 
a particular access priority can he implemented and localized in one central 
place. In the last example~ once reading commences~ all processes requesting 
reading may proceed. It is therefore conceivable that one wants a policy in 
which~ once writing commenees~ all processes requesting writing will proceed 
provided %hat they do so one at a time. This can be implemented by means of 
two path expressions. 

path {read~, {WRITE] end 

path write end 

where WRITE is a procedure defined by 

WRITE = begin write end 

The internally defined procedure write actually performs the writing action. 
The first path ensures %hat if the read procedure begins to execute, all read- 
ing requests are accepted, and similarly with WRITE. The second path ensures 
that the actions of writing are mutually exclusive. Thus executions of WRITE 
are synchronized with respect to the first path and executions of its body 
(write) are synchronized with respect to the second path. The synchronization 
specification given by each path can be understood separately since, in the 
present proposal~ a particular procedure name can appear in only a single path 
expression. (In other words there can be a separate controller with respect to 
each path). 

Another strategy is %0 give individual read and write invocations by 
processes an equal chance of executing first. This can be achieved by having 
each process invoke a READ or a WRITE procedure which first obtains permission 
before performing the read or write. A construct with such properties is: 
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path requestread, requestwrite en__~d 

path {openread; read}, write end 

where requestread = begin openread en__~d 

requestwrite = begin write en_~d 

READ = begin requestread; read end 

WRITE = begin requestwrite end 

The first path gives reading and writing a~" equal chance of starting. Once a 
read request has been granted~ a read has been opened, thus the second path 
disables writing until the read has been executed. The braces in the second 
path make sure that reading can overlap if no writing is requested at all. 

Suppose we require the strategy that writing should have priority over 
reading. This is the readers and writers problem solved by Courtois,Heymans 
and Parnas [9~ and requires that when writing is requested, no further reading 
should be granted and writing should start as soon as the current read'ing is 
finished. The following construct has these properties:- 

path readattempt end 

path requestread, ~requestwrite} end 

path [openread; read~, write end 

where 

readatiempt = begin requestread end 

requestread = begin openread end 

requestwrite = begin write end 

READ = begin readattempt ~ read end 

WRITE = begin requestwrite end 

The purpose of %he first path is %o let only one read request occur at a 
time. While one process requests reading, all others have %o wait until they 
can initiate a read attempt. This assures thai a write request is granted in 
the second path at the earliest possible moment. The braces in the second path 
expression serve the purpose of immediately granting all write requests as 
long as writing is still going on. The braces in %he thir~ path allow, as 
before, read operations to overlap. 

Finally, let reading have priority over writing, i.e., when reading is 
requested, from that moment no further write requests should be granted and 
reading should begin as soon as the current writing has been finished. A 
write request~ on the other hand, should not stop the flow of reading. This 
can be written as:- 

path writeattempt en__dd 

path [requestread}~ requestwrite end 

path [read~ ~ (openwrite ~ write) end 

where requestwrite = begin openwrite end 

writeattempt = begin requesiwri%e end 

requestread = begin read end 

READ = begin requestread end 

WRITE = begin writeattemp% ~ write end 
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The first path insures that only one prospective writer can request 
writing. The braces in the second path serve the purpose of letting all 
subsequent read requests through so that reading will not be interrupted by 
writing. The braces in the third path allow (as usual) an overlap in reading. 

While not actually proving the correctness of our solutions above, we 
have been able to make assertions about their behaviour. The similarity 
between path expression:s and finite state machines suggest that it might be 
possible to automatically prove or disprove assertions about solutions using 
them. These examples serv@ to demonstrate the synchronization facilities that 
path expressions provide and give an idea as to their power. We shall return 
to this point in the next section where it is shown that P & V operations can 
be simply programmed using path expressions. 

3. Structuring Synchronization with Types 

Types, under one name or another, have been used in programming languages 
for many purposes. Notable instances of their use are for checking as in 
Pascal [6], for describing building blocks as in extensible languages (for 
example ECL ~11]) and for implementing new data objects and operations as in 
the classes of Simula 67 [8] or the modes of Algol 68 [7]. 

Programming languages have long provided an adequate tool for constructing 
complicated operations out of simpler ones by means of a procedure mechanism. 
An important aspect of such a tool from the designer's point of view is that it 
allows the programmer to separate the definition of an operation from its use. 
This has the advantage that, at the places where it is used~ an operation can 
be treated as an object whose properties are known by its specification. 
Moreover, all implementation issues are now concentrated in one place and this 
facilitates validation and modifications of the implementation. We believe 
that type definitions should be used to accomplish on behalf of the construct- 
ion of data objects the analogue of what procedure declarations do for 
operations. Thus, at the place where it is used, the details of the 
implementation of an object should he irrelevant and underlying structure 
should not be accessible at that moment. The reasons why this should be so 
are obviously the same as those that underly a procedure mechanism: separation 
of specification and implementation, and concentration of implementation issues 
so as to facilitate verification, debugging and modifications. 

As a natural consequence of this point of view, a type definition is used 
to create new data objects which appear as atomic entities at the places where 
used. Drawing the parallel between type definitions and procedure declarations 
accessing a structural part of a typed object is similar to jumping into a 
procedure body. 

The primary function of a type definition in a program is to describe the 
implementation of the operations on objects of this type in terms of earlier 
defined operations on the structural parts of such objects (though being the 
earliest of the three languages mentioned above~ SINKILA 67 comes closest to 
this idea of type definition). Thus, another part of a type definition ought 
to be a description of the detailed structure that objects of this type will 
have. 

These two functions of a type definition are reflected in a notation which 
we have devised to help us visualize our ideas. The syntax is purely arbitrary 
and is not intended as a proposal for a new programming language or any part of 
o n e .  
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For example we might have:- 

type buffer; 

message frame; 

operations 

procedure read (returns message m) : m := frame; 

procedure write (accepts message m) : frame : = m; 

endtype  

This exampleis a definition of a type~of object called a buffer, whose 
structure consists of a variable frame of type message, and whose operations 
are the procedures read and write. (The type message is assumed to have been 
previously define~) Instances of buffers can be declared or creaied in the 
scope of the type definition, and each one will contain its own instance of 
frame. The program using a buffer cannot, however, access frame directly but 
must use read and write. The procedures can be applied to them by means of 
the Simula 67 dot notation. 

For example: buffer A; 

message T; 

A. read  (T);  

A. write (T); 

The type definition thus has two important properiies:- 

1. Protection of its structure by the scope rules. 

2. Only a fixed, ideniifiable set of procedures is defined, giving 
carefully controlled access to the data of the objecis of that 
type. 

Objects created from type definitions can be common to the scope of two or 
more processes. The type buffer defined above is not saiisfactory when various 
concurrent processes may simultaneously read and write a shared buffer and some 
form of synchronization is required. 

In general, the sharing of objecis of a type will be unsatisfactory if the 
data contained in the objeci can be corrupied by several processes execuiing 
procedures simulianeously or in invalid sequences. We will combine our path 
expressions with our notion of type to iniroduce some orderly structure in %he 
sharing of objects. 

The restrictions we must place on the operations read and write of our 
buffer example in order to preserve the integrity of the contained data are:- 

I. Every read must be followed by a write. 

2. Every write must be followed by a read. 

5. A read and write must not execute simultaneously. 

Provided the buffer obeys these rules we can assert thai it will not lose or 
duplicate any information. 

The following type definition ensures these three properties:- 
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t~pe buffer; 

message frame; 

path write; read end 

operations 

procedure read (returns message m) : m : = frame; 

procedure write (accepts message m) : frame : = m; 

e n d t y p e  

The pa th  i s  a p p l i e d  to  t h e  o p e r a t i o n s  t o  produce the  c o r r e c t  s y n c h r o n i z a t i o n .  
A different instance of the synchronization path is associated with each 
instance of a buffer. Thus any declaration of a buffer will result in an 
atomic object which can be read or written alternately. 

This type definition of a buffer may be used to build more complex data 
structures, for example objects of type "ring buffer". Suppose that a number 
of similar readers and writers wish to exchange information but are constrained 
by the amount of space available for buffers. One such device is demonstrated 
below and is designed to permit as much concurrency as possible. A ring of the 
above described buffers is declared. A send or receive request allocates a 
buffer to be read or written on a round-robin basis. The integrity of the 
buffers is assured by their type definition. Allocation is achieved by 
advancing pointers around the ring of buffers. Many requests to send or 
receive may occur simultaneously. However, each pointer may only he advanced 
by one process at a time if the integrity of the allocation mechanism is to be 
preserved. A type pointer is introduced which includes the necessary synchron- 
ization. Thus we have:- 

type ring-buffer; 

array 0 %_~o N - 1 buffer R; 

t~pe pointer; 

integer P = O; path next end; 

operations 

procedure next (returns integer I): 

begin P: = (P + 1) mod N; I: = P; end; 

endtype; 

pointer write-slot, read-slot; 

operations 

procedure send (accepts message M): 

begin integer J; j: = ,write-slot.next; R[J].write (M); end; 

procedure receive (returns message M): 

begin integer J; J: = read-slot.next; M: = R[J].read; end; 

endtype; 

The implementations of the buffers and the pointers are separated from the 
ring-buffer mechanism. Similarly the readers and writers can be programmed 
independently of the implementation of the buffering system. 

The examples we have described above encourage us in our belief that the 
method is worth studying and is a potential contribution to better structured 
and safer synchronization methods. We shall now show that it is at least as 
powerful as the more primitive synchronization operations such as P and V [I] 
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or Signal and Wait [2]. For example the path path [V;P~ end provides the 
synchronization necessary to implement P and V operations. The number of 
executed Ps can never he greater than the number of completely executed Vs. 
This path may be embedded within the type description for a semaphore. Thus:- 

type semaphore; 

path IV;P} end ; 

operations 

procedure V : null; 

procedure P : null; 

endtype; 

Variables of type semaphore may he declared and each instance will have its own 
synchronizing path. The value of the semaphore can only be changed by executing 
either a P or a V. In the example above, semaphores are always initialized to 
zero. An extension to the above notation would be to include initialization in 
types and perhaps paths. Thus a program restricted to using our notation has 
lost none of the power of P, V operations but has gained the structuring 
facilities that the use of types and paths provide. 

4. Implementation 

One important aspect of our notation is that it has a practical implement- 
ation. Controllers for our notation can be implemented using existing 
synchronization methods and these may be generated automatically from the path 
expressions, for example by a compiler. We will show one particular implement- 
ation in which path expressions are transformed into appropriate P and V 
operations for use in the prologues and epilogues of the procedures the path 
expressions name. (Incidentally, this will complete the equivalence between 
the two synchronization methods.) 

The following recursive algorithm will translate path expressions composed 
of the synchronization schemes of Section 2) above. Each path expression is 
subjected to repeated transformations, the final result providing the prologues 
and epilogues for each of the procedures named in the path expression. At 
each stage of the algorithm the path expression yet to he translated is labelled 
<pathexpression>. In general, the <pathexpression> will be surrounded by two 
generated synchronization operations 0 L and O R which are on its left and right 
respectively. The operation 0_ may be either a P or a PP operation (To 

�9 . . L 

slmpllfy the algorlthm two operations PP and W are introduced which take three 
parameters, a counter and two semaphores. These Operations will be explained 
later in terms of P and V.) The operation O R may be either a V or a W 
operation. 

Stage I) 

replace 

Select a unique semaphore $I, initialized to one, and 

path <path expression> end by 

F(Sl) <path expression> V(SI) 

Carry out stage 2) of the algorithm for <path expressions. 

Finish. 

Stage2) Examine the <path expression> and depending upon the 

synehrcnizat~n scheme of which it is composed do one of the following:- 

a) A Sequence: The <path expressio~ is composed of:- 

<path expression I> ; <path expression 2>. 

Select a unique semaphore $2, initialized to zero and replace the 
<path expression> by:- 
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<path expression I> V(S2) P(S2) <path expression 2> 

Carry out stage 2) for <path expression I> and <path expression 2> 

Finish of stage 2). 

b) A selection: The <path expression> is composed of:- 

<path expression I>, <path expression 2> 

Using the two synchronizing operations 0 L (which may either be a F or a 

FP operation) and O R (which may be either a V or a W operation) enclosing 

the <path expression> replace the <path expression> using the replacement 

rule:- 
0 L <path expression I>, <path expression 2> 0 R is replaced by 

0 L <path expression I> O R 0 L <path expression 2> O R 

Carry out stage 2) for <path expression I> and <path expression 2> 

Finish of stage 2). 

c) Simultaneous Execution: The <path expression> is composed of:- 

<path expression> ] 

Select a unique counter CI~ initialized to zero, and semaphore $3~ 

initialized to one. The operations 0 L and O R enclosing the <path 

expression> will he of the form 

P(Si) [ <path expression> ~ V(Sj) 

Replace the operations and braces in the following way:- 

PP(C1, S3, St) <path expression> W (CI, $3, Sj) 

Carry out stage 2) for the remaining <path expression>. 

Finish of stage 2). 

d) Procedure name: The path expression remaining is just the name of 

one of the procedures to be synchronized. The synchronizing operation 0 L 

(which may be a F or a PP operation) on the left of the procedure name is 

to he included in that procedure's prologue. The operation O R (which may 

be a V or W operation) is to he included in the epilogue of that procedur~ 

Finish of stage 2). 

The operations PP and ~V implement the simultaneous execution synchronizat- 
ion. Both operations share a counter CI and a semaphore S3. The semaphore $3 
is used %o exclude more than one process from changing the counter at a time. 
The PF operation increments the counter, the VV operation decrements it. If 
the counter is increased from zero the operation P(Si) is invoked.(See below). 
If the counter is decreased to zero the operation V(Sj) is invoked. 
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p r o c e d u r e  PP ( c o u n t e r  C1; semaphore  $3,  S t ) ;  p r o c e d u r e  W ( c o u n t e r  C1 ; semaphore  
S3,Sj); 

b e g i n  be__ef~ 

P (s3); P (s3); 
C1 : = C1 + I; C1 : = C1 - 1; 

if CI = I then P(Si); if CI = 0 then V(Sj); 
I 

v (s3); v (s3); 
end; end; 

The following example illustrates the translation of a path expression 
into P, V operations. The translation is represented by a tree. Each step of 
the algorithm corresponds to a node in that tree and the synchronization 
operations which have been generated up to a given step are written on either 
side of the corresponding node. 

The path expression path ([A;B}), C end translates as:- 

p a t h  end 

P(s1) [ v(sl) 

P(Sl) [ Iv ( s1 )  p(sl)  c v(s l )  !- 
PP(C1,S2,S1) �9 W(C1,$2,$1) 

PP(C1,S2,S1)  A V(S3) P(S3) B VV(Cl ,S2 ,S1)  

The resulting set of procedure prologues and epilogues which are created 
by part d) of the algorithm are written below in program form. 

semaphore  

p r o c e d u r e s  

A : 

B : 

C : 

end 

$I = I, $2 = I, $3 = O; counter CI=0; 

begin 

begin 

begin 

PP(CI, S2, S1) ; <body of A>; V(S3); end 

P(S3) ; <body of B>; W(CI,$2,$I) end 

P(SI) ; <body of C>; V(SI) end 

The procedures A, B and C implement the path precisely. Execution by a 
process of procedure A will set semaphore S] to zero, ~hus excluding the 
execution of procedure C by processes), semaphore $3 to one and the counter 
to one. Thus further processes may execute A and one process can execute B. 
When t h e r e  a r e  an e q u a l  number of  e x e c u t e d  A and B p r o c e d u r e s  and no f u r t h e r  
p r o c e s s e s  e x e c u t i n g  A t h e  c o u n t e r  w i l l  have been  reduced  t o  ze ro  and semaphore  
$1 s e t  t o  one p e r m i t t i n g  t h e  r e p e t i t i o n  o f  t h e  p a t h  e x p r e s s i o n .  I f  a p r o c e s s  
e x e c u t e s  p r o c e d u r e  C, i t  s e t s  t h e  semaphore  $1 to  z e r o  t o  e xc lude  p r o c e s s e s  
f rom e x e c u t i n g  A. When a p r o c e s s  f i n i s h e s  e x e c u t i n g  C i t  r e s e t s  semaphore  $1 
to  one a l l o w i n g  r e p e t i t i o n  o f  t h e  p a t h  e x p r e s s i o n .  

The example d e s c r i b e d  above  a l s o  s e r v e s  t o  show t h a t  t h e  p a t h  e x p r e s s i o n  
p r o v i d e s  a s t r u c t u r e d  s y n c h r o n i z a t i o n  t e c h n i q u e  which  e m p h a s i z e s  what  i s  needed ,  
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not how it is to be achieved. The P, V implementation of the path expression 
does not directly express the synchronization it is used to create. (See 
also [10]). 

Therefore, our mechanism can lead to automatically generated~ well 
structured uses of synchronization primitives and the programmer is relieved 
of the problem of implementing his desired synchronization. Our choice of 
implementation is reflected in the constraints we have adopted in our notation. 
(See section 2). This aspect requires further investigation to ascertain what 
are the minimum set of constraints necessary to ensure unambiguous path expres- 
sions~ and what are the minimum set of constraints for any given implementation. 

Conclusion 

We have introduced a new method of synchronization which provides a clear 
and structured approach to the description of shared data and the coordination 
and communication between concurrent processes. This method is equivalent to 
P and V operations with respect to its ability to express any given 
synchronization. 

The path expression describes synchronization between executions of 
procedures by processes. It is a statement of all permissible synchronizations 
between the various procedures named within it. When combined with our type 
definition~ it provides a powerful tool with which to design shared data 
objects. The type contributes the protection necessary to avoid carefully 
designed synchronization schemes from being upset by processes directly 
accessing the data and collects together in one place all the implementation 
details of a shared object. The path expression allows a specification of 
the synchronization needed to ensure the successful sharing of an object and 
does not require details of how that is to be done. Assertions can be made 
about the behaviour of path expressions. The resemblance of these expressions 
to finite state machines suggests that it may be possible to provide a means 
of automatically checking such assertions. Implementations of path expressions 
are possible using existing synchronization methods. In our notation we have 
restricted path expressions to allow for a simple implementation scheme, 
however this has seemed quite adequate for a variety of quite complicated 
synchronization problems. The algorithm which translates our notation into 
P and V operations hasbeen used in a program to automatically generate code 
from path expressions. When the mechanism is used in this way the burden of 
implementing any given synchronization is removed from the programmer, 
eliminating the possibility of mistakes. 
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