
A Stack-Based Resource Allocation Policy for Realtime Processes
T.P. Baker’

Department of Computer Science
Florida State University

Tallahassee, FL 32304-4019
Abstract

The Stack Resource Policy (SRP) is a resource allocation
policy which permits processes with different priorities
to share a single runtime stack. It is a refinement of the
Priority Ceiling Protocol (PCP) of Sha, Rajkumar and
Lehoczky, which strictly bounds priority inversion and
permits simple schedulability tests.

With or without stack sharing, the SRP offers im-
provements over the PCP, by: (1) unifying the treatment
of stack, reader-writer, and multiunit resources, and bi-
nary semaphores; (2) applying directly to some dynamic
scheduling policies, including EDF, as well as to static
priority policies; (3) with EDF scheduling, supporting a
stronger schedulability test; (4) reducing the maximum
number of context switches for a job execution request
by a factor of two. It is at least as good as the PCP in
reducing maximum priority inversion.

1 Introduction

Hard realtime computer systems are subject to abso-
lute timing requirements, which are often expressed
in terms of deadlines. They are often subject t o se-
vere resource constraints; in particular, limited mem-
ory. They are also expected to be reliable in the ex-
treme, to that it is necessary to verify a priori that a
system design will meet timing requirements within
the given resource constraints.

As realtime systems grow in complexity they strain
the limits of existing software technology. One re-
sponse to this increasing complexity has been move-
ment toward process-based models of concurrent pro-
gramming. Such models have been very successful in
the design of operating systems and interactive com-
puter applications. One manifestation of this move-
ment is the multitasking model of Ada[l], the pro-
gramming language mandated by the the U.S. De-
partment of Defense for all mission-critical software.
Unfortunately, process-based models such as Ada
tasking do not impose strong enough structural con-
straints on software to support verification of timing
requirements, or efficient management of resources.

’This work supported in part by grants from the U S . Office
of Naval Research (N00014-87-J-1166) and the Florida High
Technology IndustTy Research Council. This paper to appear
in the proceedings of the IEEE Real-Time Systems Sympo-
sium, 1990.

Some progress has been made toward reconciling
the process model with the need for predictable tim-
ing, by mapping restricted process models onto clas-
sical scheduling models. One approach uses off-line
scheduling [12,7], based on deterministic scheduling
theory [6]. A more flexible approach, exemplified by
[4], uses on-line preeemptive priority scheduling and
is based on the work of [l l] .

This paper is motivated by concern for another as-
pect of adapting the process model to hard realtime
requirements: the efficient allocation of memory for
process’ runtime stacks. Conventionally, each pro-
cess needs its own runtime stack. The region allo-
cated to each stack must be large enough to accom-
modate the maximum stack storage requirement of
the corresponding process. Storage is reserved for
the stack continuously, both while the process is ex-
ecuting and between executions.

In some hard realtime applications, where there
may be thousands of actions that are to be performed
at different times in response to appropriate trigger-
ing events, a great deal of storage may be required
for the stacks of waiting processes - storage which
is unused most of the time.

The requirement for stack space can be dramat-
ically reduced by using a more primitive model of
concurrency, closer to classical deterministic schedul-
ing theory. In such a model, the work is divided
into simple schedulable units, which we will call jobs.
The key difference between a job and a process is
that when a job execution completes, all resources
required by the job may be released. In particular,
stack space may be allocated when the job begins
execution and completely freed when it completes.

A conventional process may be viewed as a se-
quence of jobs, if the set of sequences of instructions
executed by the process between waits is finite and
no resources are retained between waits. Each se-
quence of instructions (i.e. execution path) executed
by the process between waits is a job.

Suppose all jobs share a single stack. When a job
J is preempted by a job J’, J continues to hold its
stack space and J’ is allocated space immediately
above it on the stack. The only special requirement
is that if J is preempted it cannot resume execution
until all the jobs that occupy stack space above it
have completed. Since these jobs must have higher

191
CH2933-0/90/0000/0191$01 .OO 0 1990 IEEE

priority, this requirement is consistent with priority
scheduling.

Stack sharing may result in rather large storage
savings if there are many more processes than rela-
tive priority levels. For example, if each job needs up
to 10 kilobytes of stack space and there are 10 jobs
at each of 10 priority levels, the space savings is 900
kilobytes; that is, 90%.

A problem with stack sharing is that it can cause
blocking. When jobs are not independent, this leads
easily to deadlock. For example, suppose processes
PI and P2 both use a nonpreemptable resource (e.g.
binary semaphore) R. Suppose P2 starts to execute
while PI is holding R. Process P2 will start t o ex-
ecute, occupying the stack space above PI, but will
eventually try to obtain exclusive access to R. It
cannot do this, since PI is still holding R. Unfortu-
nately, P, is now also blocking PI , by sitting on top
of its stack space.

Even if
deadlock is avoided, stack blocking can cause priority
inversion[l5] - the situation where a higher priority
job is blocked by a lower priority job. Priority in-
version is bad, since it reduces the effectiveness of
priority preemptive scheduling, resulting in unneces-
sarily missed deadlines for high priority jobs.

To strictly bound priority inversion in a system
with stack sharing it is essential that the system re-
source management policy take a unified view, man-
aging the stack along with the CPU and other re-
sources. The Stack Resource Policy(SRP), which is
presented and analyzed here, is such a policy. As it
turns out, this policy also offers advantages for sys-
tems in which runtime stack space is not a major
concern, where there may be no stack sharing.

Section 2 defines the elements of our model, includ-
ing jobs, featherweight processes, and resources. Sec-
tion 3 defines the SRP, and proves that it works. Sec-
tion 4 gives a basic schedulability result for earliest-
deadline-first (EDF) scheduling with the SRP. Sec-
tion 5 compares the SRP to the Priority Ceiling Pro-
tocol [15], of which it is an evolutionary development.
Section 6 briefly discusses the implementation of the
SRP and its relation to Ada tasking. Section 7 sum-
marizes the results and mentions some ongoing re-
search.

Deadlock is only part of the problem.

2 Definitions

Jobs. A j o b is a finite sequence of instructions to
be executed on a single processor. It may have some
branching control flow, but its maximum execution
time and its other resource requirements must be

fixed. A job might correspond to a subprogram in
some programming language. Names of the forms
J , J’, J” ,... and Jd denote jobs.

A j o b execution is an instance of execution of a
specific job, in response to a j o b execution request.
The job execution request arrives at some time, af-
ter which the job execution can begin. Requests that
have arrived, but for which the corresponding exe-
cutions have not yet completed are called pending.
Pending requests are classified as waiting, meaning
the job has not yet started, or active, meaning the
job has started to execute. Names of the forms JJ’ ,
J“, ... and 3; denote both job execution requests and
job executions.

Every job belongs to one of a fixed finite set of pro-
cesses, P I , ..., Pn. Each process Pi is characterized
by an (infinite) sequence of job execution requests
Ji,l, 3 , 2 , A process is periodic if the interval
between successive execution requests is a constant
(called the period); otherwise it is aperiodic. The jobs
requested by each process are assumed to belong to
a finite set, which are known a priori. Names of the
forms P and Pi always denote processes.

There should be no need for more than one exe-
cution of any job to go on at the same time. (This
may be taken as an assumption, or as a consequence
of other assumptions we will make: that each job
has a static preemption level and that there is only
one processor.) Thus, it is usually not necessary to
be very careful about distinguishing jobs from job
executions and job execution requests. The current
execution of job J may be referred-to by the same
name as the job, i.e. J . In particular, if we say “job
J” is actively doing something (such as holding or
requesting a resource), we mean “the current execu-
tion of job J ” .

Resources. An execution of a job requires the use
of a processor and runtime stack space, and may re-
quire certain other serially reusable resources. We
assume there is a single processor, which is preempt-
able, and a finite set of nonpreemptable resources,
R1,..,Rm. Allocation of processor time, stack space,
and nonpreemptable resources to jobs is governed by
processor and resource allocation policies. Names of
the forms R and R; always denote resources.

A job acquires an allocation of a nonpreemptable
resource by executing a request instruction. For-
mally, an allocation is a triple (J , R ,m) , where J
is a job, R is a nonpreemptable resource, and m is
a mode. The job making a request must wait to
execute its next instruction until the allocation is
granted. While a job is waiting for a resource alloca-

192

tion the job (and the request) are said to be blocked.
After the allocation is granted, the job holds it un-
til the job executes an instruction that releases it.
While the job holds an allocation the allocation is
said to be outstanding.

The sequence of instructions performed by the job
between the request and release operations for a re-
source allocation is called a cn’tical section of the job
for that resource. Each job is required to request and
release resources in Last-in-First-Out order, so criti-
cal sections of the same job can only overlap if they
are properly nested. For bounding priority inversion,
we will mainly be interested in the execution times
of “outermost” (i.e. non-nested) critical sections.

Binary semaphores and reader-writer locks are
examples of nonpreemptable resources. A binary
semaphore may only be allocated in only one mode.
A reader/writer lock may be allocated in two modes,
either read or wn’te. There may also be multi-unit
resources. For each multinuit resource R there is
a fixed number of units in the system, N R , and the
mode of a request for a multiunit resource is the num-
ber of units being requested, which must be less than
or equal to NR.

Without loss of generality, semaphores and read-
er/writer locks can be treated as special cases of mul-
tiunit resources. For a binary semaphore, NR = l,
and the mode is 1. For a reader/writer lock, N R can
be any number greater than or equal to the number of
jobs that may request R , read = 1, and write = NR.

Example. Suppose J1, Jz, and 53 are jobs, where
the critical sections of the jobs are given schemati-
cally in Figure 1. Here, an operation of the form “re-
quest (Rj, m)” means the job is requesting m units of
resource R j . A “release” operation releases the most
recently acquired resource allocation. (Since we as-
sume any overlapping critical sections must be prop-
erly nested, the resource and mode are uniquely de-
termined.) The relationship of the jobs to resources
in this example is also shown schematically in Fig-
ure 2. The arrows indicate the “may request” rela-
tionship between jobs and resources, and are labeled
with the number of units the jobs may request. We
are supposing N R ~ = 3, N R ~ = 1, and N R ~ = 3.
Rz behaves as a binary semaphore, R3 behaves as a
reader/writer lock, and RI’s behaves as a more gen-
eral multiunit resource.

Stack Space. Shared runtime stack space is anon-
preemptable resource, but it is treated differently
from the other nonpreemptable resources, since the
location of the requested space, rather than the quan-

J1

...
request(R2,l);

request(R1,3);

release; ...
release;

request(R3,l);

release;

...

...

...

...

...

J?
...
request(R3,3);

request(R2,l);

release; ...
release;

request(R1,2);

release;

...

...

...

...

...

J3

...
request(R3,l);

request(R1,l);

release; ...
release;

...

...

...

Figure 1: The critical sections of J1, 5 2 and 53.

/ A

Figure 2: The resource graph for J1, 5 2 and 53.

tity, matters. Based on the way in which program-
ming language implementations typically use the
runtime stack, we make the following assumptions:

1. Every job using the stack requires an initial allo-
cation of at least one cell of stack space before it
can start execution, and cannot relinquish that
space until it completes execution. This means
the entire execution of each job is a “critical sec-
tion” with respect to the stack.

2. After a job starts execution, if it makes any re-
quest that is blocked it must continue to hold
its stack resources while it is blocked.

3. A stack storage request can be granted to a job
if and only if the job is not yet holding any stack
space or it is holding the top of the stack.

4. Only the job at the top of the stack may execute,
since an executing job may need to increase its
stack size at any time.

Due to these assumptions, the request for the ini-
tial stack allocation of each job may be treated as
part of the request for job execution, and subsequent

193

use of the stack by that job may be allowed without
explicit request and release operations.

Direct blocking. The resource allocation policy is
constrained to block a request (at least) when there
are insufficient resources available to satisfy the re-
quest. We call such a conflict a direct blockage. Since
we are assuming a job never makes a request that
exceeds the total resources in the system, a job exe-
cution 3 can only be directly blocked if there is an
identifiable set of other jobs that are blocking J , in
the sense that there will be sufficient resources avail-
able to satisfy 3’s request as soon as one or more of
these other jobs releases a resource allocation.

For a multinunit nonpreemptable resource, a re-
quest (J , R, m) is blocked directly iff’ VR < m, where
VR denotes the number of units of R that are cur-
rently available (i.e. not outstanding).

As a consequence of this definition, if R is a bi-
nary semaphore, any request for an allocation of R is
blocked directly by any outstanding allocation of R
to another job. Similarly, if R is a reader/writer lock,
any request for an allocation of R is blocked directly
by any outstanding write-allocation of R to another
job, and any request for a write-allocation of R is
further blocked by any outstanding read-allocation
of R to another job.

For a shared stack, a job J is directly blocked
iff there is another job J’ holding the space immedi-
ately above the the space occupied by J on the stack,
so that J’s part of the stack cannot grow without
overflowing into the holdings of J’ . For this situa-
tion to occur, J’ must have preempted J ; J will be
blocked until J’ completes and releases all of its stack
space. That is, once a job is preempted by another
job on the same stack it cannot be resumed until the
preempting job completes. (This does not seriously
limit the effectiveness of scheduling, even though it
significantly narrows the set of scheduling choices.)

The resource management policy may block some
requests that are not directly blocked. In particular,
other blocking may be introduced to bound priority
inversion. However, we will assume that the resource
policy preserves the property that whenever a job J
is blocked there is an identifiable set of other jobs
that are blocking J ; i.e. if some (or all) of the jobs
blocking J released their current allocations J would
become unblocked.

Priorities. Each job execution request J has a
priori ty , ~ (3) . Priorities are values from some or-
dered domain, where J has higher priority than J‘

iff p (J) > ~(3’) . 3 having higher priority than
3’ means that expediting J’ is sufficiently impor-
tant that completion of J’ is permitted to be de-
layed. For concreteness in our examples, we will
use numeric priorities, where larger values indicate
greater urgency. Examples of priority assignments of
interest in realtime systems include RM (priority cx
l/period)2 and EDF (priority 0; l/deadline).

A processor allocation policy determines which
one of the pending unblocked jobs is allowed to use
the processor. The primary objective of the proces-
sor and resource allocation policies is to expedite the
highest priority pending job execution request. Nor-
mally, expediting the highest priority pending job
means allocating the processor to that job, but this
is not possible when the job is blocked. If a job J
is blocked, the only way to expedite it is to expedite
another (lower-priority) job that is blocking J , until
the resources released by such jobs remove the cause
of the blocking. This rule, which is called “priority
inheritance” in [15], can be applied transitively to ex-
pedite any directly blocked job that is not involved
in a deadlock.

The rest of this paper assumes that use of the
processor is allocated to jobs preemptively, according
to the priorities of requests and First-In-First-Out
(FIFO) among jobs of equal priority, with priority
inheritance. More precisely, let JC denote the cur-
rently executing request and Jtop denote the oldest
highest priority pending job execution request. Un-
der the priority inheritance policy, either JC = Jtop
or there is a chain of blocked job executions 31, ..., Jn
such that Jl =Aop , Jn = J,, and z is blocking z+l
fori = 1, . . ,n - l . (Oneoftheobjectivesofaresource
allocation policy that bounds priority inversion is to
insure that there is at most one such chain and the
length of this chain never exeeds one.)

Preemption levels. In addition to the priorities
which are attached to individual job execution re-
quests, each job J has a preemption level w (J) (just
“level”, for short). The level of a job is a positive
integer that is statically assigned to the job and ap-
plies to all execution requests for the job. The es-
sential property of preemption levels is that a job
J’ is not allowed to preempt another job J unless
K (J) < K (J ’) . Of course, this is also true for priori-
ties. The reason for introducing preemption levels as
distinct from priorities (~(3)) is to enable us to do
static analysis of potential resource conflicts, even for
some dynamic priority schemes such as EDF schedul-

2Here, cx means “is proportional to”, in the sense of obey-
ing the same ordering. ‘Here, “iff” is an abbreviation for “if-and-only-if” .

194

ing.
For the specific priority assignments mentioned

in this paper, the preemption level of a job will be
inversely proportional to the relative deadline of the
job. The relative deadline of a job J is a fixed value,
D (J) , such that if a request for execution of J arrives
at time t , that execution must be completed by time
t + D (J) . In other words, the relative deadline of a
job is the size of the scheduling “window” in which
each execution of the job must fit.

Suppose there are two jobs, J and J’, with rel-
ative deadlines D (J) = D and D(J’) = D’, respec-
tively. Suppose J’ is a job execution request of J
such that A r r i v a l (3) = t , and J’’ is a request of J‘
such that that Arrival(g’)=t’. In order for J’’ to
preempt J’, we must have:

i. t <t’ (so J’ can get started);

ii. p (J) < p (J ’) (so J’’ can preempt).

With EDF scheduling, p (J) < p (J ’) iff t’+D’<t+
D, so it follows that D’< D. It is therefore consistent
to define preemption levels so that T(J) < 7r(J’) iff

An example will emphasize the difference be-
tween EDF priority and preemption level. Let P and
P’ be two periodic processes, with relative deadlines
20 and 10 (relative to arrival times), respectively.
Preemption level 1 is assigned to jobs of P and pre-
emption level 2 is assigned to jobs of P’, since the
relative deadline of P’ is shorter than the relative
deadline of P . P’ can never be preempted by P , but
this does not mean that job execution requests of P’
always have higher priority than those of P . Sup-
pose a job-request J’ of P arrives at time t , and a
job-request J’‘ of P’ arrives at time t + 11. Since
the absolute deadline of J’ is t + 20 and the absolute
deadline of J” is t + 21, J’ will have higher priority
than 3’. On the other hand, if J’‘ had arrived at
time t + 9 its deadline would have been t + 19 and we
would have had p (J) < p (J ”) . Thus preemption level
is different from priority. This is shown in Figure 3.

Relative deadlines can also serve as a basis for
preemption levels with RM and deadline monotone
scheduling[lO], where p (J) < p (J ’) iff D (J) > D(J‘),
and static least-slack time scheduling, where p (J) <
p (J ’) iff D (J) - C (J) > D(J‘) - C(J’) and C (J) is
the maximum execution time of job J .

Although relative deadlines are the basis for pre-
emption levels for all these examples, the theoreti-
cal results proven in this paper do not depend on
preemption levels being the same as relative dead-
lines. The only property of preemption levels on
which these results do depend is the following condi-

D (J) > D(J’) .

tion (PI):

dJ’) IP(J”)

v 7r(J’)<7r(J).
V Arrival(J’) SArrivab(3’)

In words, this says that if J’ has higher priority than
J’, but J’ arrives after J‘, then J must have a higher
preemption level than J’. Note that relative dead-
lines do satisfy condition (P l) above for all the pri-
ority assignments mentioned in this paper, and con-
dition (P l) is sufficient t o guarantee that J can pre-
empt J’ only if n(J’) < n(J).

3 Stack Resource Policy

3.1 Background

The SRP is based on the concept of preemption ceil-
ing, which is a refinement of the concept of “priority
ceiling” defined in [15,13,16,5]. We unify and extend
those definitions in the following ways:

1. Priorities are replaced by preemption levels.
This allows EDF priorities to be handled with-
out requiring ceilings to be recomputed at run
time.

2. Ceilings are defined for multiunit resources, sub-
suming both binary semaphores and reader/-
writer locks.

Abstract ceilings. Each resource R has a current
ceiling, [RI, which is an integer-valued function of
the set of outstanding allocations of R. The SRP
does not depend on the exact definition of [RI, but
only requires that ceilings be related to priorities and
preemption levels by the following condition (C2):

If J is currently executing or can preempt the cur-
rently executing job, and may request an alloca-
tion of R that would be blocked directly by the
outstanding allocations of R, then T(J) 5 [RI.

One specific definition of ceiling, that satisfies
condition (Cl) , is given below.

Specific ceilings. For a multinit nonpreemptable
resource R, [RI may be defined to be [RIvR, where
V R denotes the number of units of R that are cur-
rently available and [RIvR denotes the maximum of
zero and the preemption levels of all the jobs that
may be blocked directly when there are VR units of
R available. That is:

[RI vR = max({O) U { a (J) I VR < P R (J))) ,

3Here V denotes “or”.

195

t 3 due
b 20

k 10 .I
t + 11 3’ due

t 3 due

t + 9 g’ due

Figure 3: Preemption level us. priority.

where ,UR is the maximum number of units of R that
job J may need to hold at any one time. Note that
this definition satisfies condition (Cl) .

Example. The ceilings of the resources for the ex-
ample shown in Figures 1 and 2 are shown in Fig-
ure 4, under the assumption that r (J i) = p (J i) = i
for i= 1 , 2 , 3 .

Ceilings and stack allocations. With a shared
stack, the stack space allocated to a job is also a
critical resource. Because of the assumptions we have
made about stack usage, the stack space held by a
job can only block jobs that it might preempt; that
is, jobs with lower preemption levels. It follows that
condition (Cl) imposes no restriction on the current
ceiling of a stack, which is therefore defined to be
zero.

3.2 Definition of the SRP

Current ceiling. At any instant of time, let the
current ceiling of the system, ?i, be the maximum
of the preemption level of the current job and the
current ceilings of all the resources. That is, if job
J , is currently executing,

If there are no jobs currently executing, 7i; is defined
to be zero.

The SRP. The SRP requires that a job execution
request 3 be blocked from starting execution (i.e.
from receiving its initial stack allocation) until

?i < r(J) .

Once a job J has started execution, all subsequent re-
source requests by J are granted immediately, with-
out blocking.

Note that the SRP does not restrict the order in
which resources may be acquired, in contrast to the
ordered resource allocation approach of [8] . It is also
less restrictive than the other approach of [8] , which
is based on preallocation. That is, even though the
condition if < T (J) is tested before the job J starts
to execute, the SRP does not at that time actually
allocate all the resources that may be requested by
J . They are only allocated when requested] and are
released as soon as they are not needed. Thus, even if
J will later request some allocation of R that would
block a higher level job J H] J H is free to preempt
until J actually requests enough of R to block J H
directly.

Example. Two possible executions of jobs J1 , 5 2 ,
and J3 under the SRP are shown in Figure 5 and Fig-
ure 6. The solid horizontal lines indicate which job is
executing, while the barred lines indicate the relative
value of the current ceiling, F . Figure 5 shows what
happens if J1 acquires R2 before Jz and J3 arrive.
Since [R21 = 2, J 2 is unable to preempt J1 after it
acquires R2, and since [RI1 0 = 3, 53 is unable to pre-
empt J1 after it acquires all of RI . 33 preempts J1 as
soon as J1 releases R I , and J2 preempts J1 as soon
as J1 releases Ra. Figure 6 shows what happens if 53
arrives before J1 acquires R I ; it is able to preempt
immediately, but J 2 still has to wait for J 1 to release
R 2 .

3.3

In [3], we prove that the SRP enforces direct blocking
and strictly bounds priority inversion, independent
of stack sharing.
Theorem 1 If n o job J i s permitted to start until
?i < T (J) , then:
(a) No job can be blocked after it starts.
(b) There can be n o transitive blocking or deadlock.
(c) I f t h e oldest highest-priority j o b i s blocked, it will

become unblocked no later than the first instant

Blocking properties of the SRP

1%

Figure 4: Ceilings of Resources.

J3 .""'~.'.....""'""""...... :t ' 4-1-t -t 1-Hit -114 -t 1.1 i I I I I I I I I , I
I I I I I I l l ,

............. ,...........

I

I 1... L I...
Ji I I

Ji 52 Ji 53 Ji 53 53 53 Ji
acquires arrives acquires arrives releases acquires releases completes releases
R2 Ri RI R3 R3 R2

Figure 5: 53 arrives after J1 acquires RI .

I
I I I t

I I I I I I I I ,
............ J3;............ 1 j .~.~.{.~.~.+t, I.

I

.t

I I I I :

Ji
acquires
R2

52 53 53 53 53 Ji
arrives arrives acquires releases completes acquires

R3 R3 RI

: I l l1

Ji 51
releases releases
Ri R2

Figure 6: 53 arrives before J1 acquires RI .

197

that the currently executing job is not holding
any nonpreemptable TesouTces.

Note that part (c) means that no job can be sub-
ject to priority inversion for longer than the duration
of one (outermost) critical section of a lower priority
job. Note also that whenever the processor is not
idle it is executing either the oldest highest-priority
request, &,p, or a job that is directly blocking zap.
The currently executing job, yc, always occupies the
top position on the shared runtime stack, if all jobs
share one runtime stack. (If the SRP is applied to a
system in which runtime stacks are not shared, it is
still helpful to think of all the jobs that have started
executing, but have not finished, as occupying po-
sitions on an imaginary stack, which is ordered by
preemption level.)

4 Schedulability

Theorem 1 is sufficient to apply the schedulability
results for RM scheduling of [11,15]. What is more
important, it can be used to derive a schedulability
test for the EDF policy, stronger than that obtained
by [5] . To do this, we restrict our process model
so that it more closely resembles that of [11,5]. In
particular, let there be a one-to-one correspondence
between processes and jobs. Suppose there are n (pe-
riodic or aperiodic) processes, { P I , ..., p,}, ordered
by increasing relative deadlines of the corresponding
jobs, { J l , ..., J,}. Let the relative deadlines all be
positive. Let Ti denote the period or minimum inter-
arrival time of Pi, let Di denote the relative deadline
of J i , and let Ci denote the maximum execution time
of Ji. Let Bi denote the execution time of the longest
critical section of any job J k such that D; 5 Dk and
i # IC, or zero if there is no such J k . Assume there
is a system start time, before which no jobs are re-
quested. The theorem below is proven in [3].
Theorem 2 A set of n (periodic and aperiodic) j o b s
is schedulable b y EDF scheduling if

5 Relation to PCP.

The SRP is a refinement of the PCP, just as the
PCP is a refinement of previous ordered-resource al-
location techniques such as Havender’s [8]. The im-
provements introduced by the SRP are:

1. Ceilings are defined in terms of preemption lev-
els, instead of priorities, so that the SRP applies

2.
3.
4.

5 .

6 .

7 .

directly to EDF scheduling (without dynamic
recomputation of ceilings).
Ceilings are defined for multiunit resources.
Stack sharing is supported.
The blocking test is only applied when a job
tries to start execution; whereas in the PCP this
condition is applied each time a job requests a
new resource allocation.
Resource requests never block, and hence can-
not require extra context switches; consequently,
there are at most two context-switches per pre-
emption.
Because there is no blocking after a job starts ex-
ecutin, a stronger EDF schedulability result can
be obtained than with dynamic priority ceilings.
Different jobs of a process may have different
priorities.

An important technical difference between the
two techniques is that the PCP only guarantees that
once a job is blocked it will not be blocked again.
In contrast, the SRP also guarantees that if a job is
blocked, it is only blocked before starting. This sim-
plifies schedulability analysis, is the key to the proof
of Theorem 2.

The only way in which the SRP is not a con-
sistent extension of the PCP is the earlier blocking.
Since the SRP only blocks a job before it starts, it
must make worst-case assumptions about the job’s
resource requirements. Therefore the SRP will block
a job in some situations when the PCP would not.
In particular, the PCP may come out ahead on the
average when a job contains conditional code, so that
sometimes it requests a resource and other times it
doesn’t require any4. This difference may be signifi-
cant for applications where average-case performance
is more important than worst-case. We shall prove
below that when the job actually requests all the re-
sources, the PCP is no better in reducing priority
inversion than the SRP.

5.1 Priority Inversion.

Theorem 3 The maximum priority-inversion time
of any j o b under the SRP is no longer than under
the PCP.

Proof. Suppose a set of jobs and a sequence of job
execution requests is given. We will compare the
maximum priority-inversion time of some job J un-
der both policies. Since we are comparing against
the PCP, which only supports binary semaphores

With the PCP, whether a request blocks does not depend
on which resource is being requested.

198

and static priorities, we will assume that the only re-
sources are semaphores and that the priority of each
job execution request is the same as the preemption
level of the job. Under these assumptions, the only
significant difference between the SRP and the PCP
is that the SRP blocks earlier.

Let J’ be a request for J that achieves the max-
imum priority inversion under the SRP. From The-
orem 1 we know that J’ can only be subject to pri-
ority inversion from the current job, g,. Thus, J ,
is holding a semaphore S that blocks J’ from start-
ing. That is, T(J) < [SI. Since we are assuming
preemption level equals priority, p (3) < [q.

The same order of events may happen with the
PCP. That is, a higher-priority job execution request
for J may arrive while J , is holding S. Under the
PCP, J would preempt. Since we are assuming the
worst case, suppose J later requests some resource.
We have p (3) < IS1 5 [S*l, where S* is the ceiling
of the semaphore that has the highest ceiling among
all semaphores locked by jobs other than J , or is zero
if there are no such locked semaphores. Since this is
the blocking condition for the PCP, this request by
J would be blocked. J’ would therefore be subject
to priority inversion until J, releases S, which is at
least as long as under the SRP.

5.2 Context Switches

The cost of context switches can be significant for
certain processors. Architectural features that in-
crease the relative cost of context switching in-
clude large register sets, address-translation looka-
side buffers, instruction pipelining, prefetching, and
cache memory for data and instructions. For such ar-
chitectures, the early blocking property of the SRP
may be important, because it saves context switches.

Theorem 4 The SRP requires at most two context
switches per job execution request.

Proof. This is a consequence of early blocking,
and can be seen immediately from the definition of
the SRP. Since a job cannot be blocked after it starts
execution, the only context switches are one from the
job that is preempted to the job that is requested,
and back when the preempting job completes. 0

Theorem 5 T h e PCP, like any other policy that
waits t o block a job until it makes a resource request,
m a y require f o u r context switches per job execution
request, for any job that shares a semaphore with a
lower priority job.

Proof. Let J be any job such that there is a
lower-priority job JL and a semaphore S such that
both J and J L lock S. If J is requested while JL is

running and has locked S, there will be four context
switches: (1) from J to J L , when J preempts; (2)
from JL to J , when J tries to lock S; (3) from J L to
J , when JL unlocks S; (4) from J back to J L , when
J completes. U

Note that two is the least possible upper bound
on the number of context switches per request, if pre-
emption is allowed. Together, Theorem 4 and The-
orem 5 say that the upper bound on the number of
context switches with the SRP is half of the worst
case for the PCP. This improvement is due to earlier
blocking.

6 Implementation Considerations

The SRP can be implemented very simply and ef-
ficiently. The implementation is similar t o that of
the PCP[15,4], but the locking operations are sim-
pler because they cannot involve blocking. The ceil-
ings [RIn are static, and so may be precomputed
and stored in a table. A stack may be used to keep
track of the current ceiling, T. When a resource R
is allocated its current state, VR, is updated, and T
is set to [RI v R iff T < [RI vR. The old values of VR
and ?f are pushed on the stack. When resource R is
released, the values of ?r and VR are restored from
the stack. If the restored ceiling is lower than the
previous ceiling, a dispatching procedure is invoked
to check whether a waiting higher level job should be
allowed to preempt.

The dispatching procedure checks the job at the
top of the queue, Jttop, to see if it is different from
the current job, J’,, and satisfies the preemption cri-
terion, T< r (J t O p) . If J, passes this test, the identity
of 3, is pushed on the stack, runtime stack space is
allocated to Jtop and J’top starts execution. If JtOp
fails the test, the dispatcher simply returns. When-
ever a job completes, 3, is restored from the stack,
and the dispatcher is invoked. The dispatcher is also
called when a request arrives, if it becomes the new
Atop.

7 Conclusions, and Further Research

By transforming processes into a classical job sched-
d ing model, they may be allowed to share runtime
stack space. However, such stack sharing requires
a unified approach to processor and resource alloca-
tion in order to prevent deadlock and bound priority
inversion tightly. The SRP is such a resource alloca-
tion policy.

The SRP is a good policy even when there is no

199

stack sharing. It is an improvement over previously
published versions of the PCP in several respects.
One of these is that it is directly compatible with
EDF scheduling.

EDF scheduling permits higher utilization than
fixed-priority scheduling, but fixed-priority schedul-
ing has an advantage of “stability” - that is, it guar-
antees lower priority jobs will not prevent higher pri-
ority jobs from meeting their deadlines during peri-
ods of processing overload. Since the SRP supports
both fixed and EDF priorities, it may be possible to
run EDF jobs as “background” in a system where the
critical jobs are scheduled in “foreground” according
to a RM policy. In particular, it appears that the
schedulability result of [ll] on using a mixture of RM
and EDF policies can be applied to this situation, if
Bk is subtracted from the processor availability func-
tion. It also appears that this model is compatible
with the sporadic server concept of [9,17].

We have also developed a refinement of the SRP,
called the Minimal SRP (MSRP)[3]. This is aslightly
more complex policy, which is the least restrictive
policy for rate monotone (RM) and earliest-deadline-
first (EDF) scheduling that can strictly bound pri-
ority inversion and prevent deadlock, given that jobs
share a single runtime stack.

The SRP has been implemented. In continuing
research, we plan to conduct some empirical studies
of the SRP versus other scheduling and resource allo-
cation policies. We also hope to extend the theory in
several directions. More specifically, it appears that
Theorem 3 can be generalized to show the efficacy
of early blocking for arbitrary policies. The distinc-
tion between preemption level and priority may also
have broader applications. It appears Theorem 2 can
be extended to processes with multiple jobs. Exten-
sions to multiprocessor applications, similar to [14] ,
also seem to be possible.

Acknowledgement

This paper is a development of ideas first pro-
posed in [2], based on discussions with Russ Wilson,
Carl Malec, and Greg Scallon of Boeing Aerospace
and Electronics.

References

[l] Military Standard Ada Programming Language,
ANSI/MILSTD1815A, U.S. Department of Defense,
Ada Joint Program Office (January 1983).

[2] T.P. Baker, C. Malec, R. Wilson, “Practical Task-
ing”, Boeing Aerospace and Electronics Company
white paper (July 1989).

[3] T.P. Baker, “Stack-Based Scheduling of Realtime
Processes”, technical report, Computer Science De-
partment, Florida State University, Tallahassee, FL
(April 1990).

[4] M.W. Borger, and R. Rajkumar, “Implementing Pri-
ority Inheritance Algorithms in an Ada Runtime Sys-
tem”, technical report, Software Engineering Institute,
Carnegie-Mellon University, Pittsburgh, PA (Febru-
ary, 1989).

[5] M.I. Chen and K.J. Lin, “Dynamic Priority Ceilings:
A Concurrency Control Protocol for Real-Time Sys-
tems’,, technical report UIUCDCS-R-89-1511, Depart-
ment of Computer Science, University of Illinois at
Urbana-Champaign (April 1989).

[6] E.G. Coffman, Jr. and P. J. Denning, “Operating Sys-
tems Theory”, Prentice-Hall (1973).

[7] E.W. Giering I11 and T.P. Baker, “Toward the De-
terministic Scheduling of Ada Tasks” , Proceedings of
the IEEE Real- Time Systems Symposium, (December
1989) 31-40.

[8] J.W. Havender, “Avoiding deadlock in multitasking
systems”, IBM Systems Journal 7,2 (1968) 74-84.

[9] J.P. Lehoczky, L. Sha, J.K. Strosnider, ”Aperiodic
Scheduling in a Hard-Real-Time Environment” , Tech-
nical Report, Carnegie-Mellon University (1987).

[lo] J.Y.-T. Leung and J. Whitehead, “On the Com-
plexity of Fixed-Priority Scheduling of Periodic Real-
Time Tasks”, Performance Evaluation 2 (1982) 237-
250.

[ll] C.L. Liu and J. W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environ-
ment”, JACM 20.1 (January 1973) 46-61.

[12] A.K.-L. Mok, “Fundamental Design Problems of
Distributed Systems for the Hard Real-Time Environ-
ment”, Ph.D. Thesis, MIT (1983).

[13] R. Rajkumar, L. Sha, and J.P. Lehoczky, “An Opti-
mal Priority Inheritance Protocol for Real-Time Syn-
chronization”, technical report, Carnegie Mellon Uni-
versity (October 1988) submitted for publication.

[14] R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-
Time Synchronization Protocols for Multiprocossors” ,
Proceedings of the Real-Time Systems Symposium,

[15] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Prior-
ity Inheritance Protocols, An Approach to Real-Time
Synchronization”, technical report CMU-CS-87-181,
Carnegie Mellon University (November 1987).

[16] L. Sha, R. Rajkumar, J. Lehozcky, “A Priority
Driven Approach to Real-Time Concurrency Control”,
technical report, Carnegie Mellon University (July
1988).

[17] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic Task
Scheduling for Hard-Real-Time Systems”, Real Time
Systems 1,l (June 1989) 27-60.

IEEE (1988) 259-272.

200

