
A Stack-Based Resource Allocation Policy for Realtime Processes 
T.P. Baker’ 

Department of Computer Science 
Florida State University 

Tallahassee, FL 32304-4019 
Abstract 

The Stack Resource Policy (SRP) is a resource allocation 
policy which permits processes with different priorities 
to share a single runtime stack. It is a refinement of the 
Priority Ceiling Protocol (PCP) of Sha, Rajkumar and 
Lehoczky, which strictly bounds priority inversion and 
permits simple schedulability tests. 

With or without stack sharing, the SRP offers im- 
provements over the PCP, by: (1) unifying the treatment 
of stack, reader-writer, and multiunit resources, and bi- 
nary semaphores; (2) applying directly to some dynamic 
scheduling policies, including EDF, as well as to static 
priority policies; (3) with EDF scheduling, supporting a 
stronger schedulability test; (4) reducing the maximum 
number of context switches for a job execution request 
by a factor of two. It is at least as good as the PCP in 
reducing maximum priority inversion. 

1 Introduction 

Hard realtime computer systems are subject to abso- 
lute timing requirements, which are often expressed 
in terms of deadlines. They are often subject t o  se- 
vere resource constraints; in particular, limited mem- 
ory. They are also expected to be reliable in the ex- 
treme, to that it is necessary to verify a priori  that a 
system design will meet timing requirements within 
the given resource constraints. 

As realtime systems grow in complexity they strain 
the limits of existing software technology. One re- 
sponse to this increasing complexity has been move- 
ment toward process-based models of concurrent pro- 
gramming. Such models have been very successful in 
the design of operating systems and interactive com- 
puter applications. One manifestation of this move- 
ment is the multitasking model of Ada[l], the pro- 
gramming language mandated by the the U.S. De- 
partment of Defense for all mission-critical software. 
Unfortunately, process-based models such as Ada 
tasking do not impose strong enough structural con- 
straints on software to support verification of timing 
requirements, or efficient management of resources. 

’This work supported in part by grants from the U S .  Office 
of Naval Research (N00014-87-J-1166) and the Florida High 
Technology IndustTy Research Council. This paper to appear 
in the proceedings of the IEEE Real-Time Systems Sympo- 
sium, 1990. 

Some progress has been made toward reconciling 
the process model with the need for predictable tim- 
ing, by mapping restricted process models onto clas- 
sical scheduling models. One approach uses off-line 
scheduling [12,7], based on deterministic scheduling 
theory [6]. A more flexible approach, exemplified by 
[4], uses on-line preeemptive priority scheduling and 
is based on the work of [l l] .  

This paper is motivated by concern for another as- 
pect of adapting the process model to hard realtime 
requirements: the efficient allocation of memory for 
process’ runtime stacks. Conventionally, each pro- 
cess needs its own runtime stack. The region allo- 
cated to each stack must be large enough to accom- 
modate the maximum stack storage requirement of 
the corresponding process. Storage is reserved for 
the stack continuously, both while the process is ex- 
ecuting and between executions. 

In some hard realtime applications, where there 
may be thousands of actions that are to be performed 
at  different times in response to appropriate trigger- 
ing events, a great deal of storage may be required 
for the stacks of waiting processes - storage which 
is unused most of the time. 

The requirement for stack space can be dramat- 
ically reduced by using a more primitive model of 
concurrency, closer to classical deterministic schedul- 
ing theory. In such a model, the work is divided 
into simple schedulable units, which we will call jobs.  
The key difference between a job and a process is 
that when a job execution completes, all resources 
required by the job may be released. In particular, 
stack space may be allocated when the job begins 
execution and completely freed when it completes. 

A conventional process may be viewed as a se- 
quence of jobs, if the set of sequences of instructions 
executed by the process between waits is finite and 
no resources are retained between waits. Each se- 
quence of instructions (i.e. execution path) executed 
by the process between waits is a job. 

Suppose all jobs share a single stack. When a job 
J is preempted by a job J’, J continues to hold its 
stack space and J’ is allocated space immediately 
above it on the stack. The only special requirement 
is that if J is preempted it cannot resume execution 
until all the jobs that occupy stack space above it 
have completed. Since these jobs must have higher 
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priority, this requirement is consistent with priority 
scheduling. 

Stack sharing may result in rather large storage 
savings if there are many more processes than rela- 
tive priority levels. For example, if each job needs up 
to  10 kilobytes of stack space and there are 10 jobs 
at each of 10 priority levels, the space savings is 900 
kilobytes; that is, 90%. 

A problem with stack sharing is that it can cause 
blocking. When jobs are not independent, this leads 
easily to  deadlock. For example, suppose processes 
PI and P2 both use a nonpreemptable resource (e.g. 
binary semaphore) R. Suppose P2 starts to execute 
while PI is holding R. Process P2 will start t o  ex- 
ecute, occupying the stack space above PI, but will 
eventually try to obtain exclusive access to R. It 
cannot do this, since PI is still holding R. Unfortu- 
nately, P, is now also blocking PI ,  by sitting on top 
of its stack space. 

Even if 
deadlock is avoided, stack blocking can cause priority 
inversion[l5] - the situation where a higher priority 
job is blocked by a lower priority job. Priority in- 
version is bad, since it reduces the effectiveness of 
priority preemptive scheduling, resulting in unneces- 
sarily missed deadlines for high priority jobs. 

To strictly bound priority inversion in a system 
with stack sharing it is essential that the system re- 
source management policy take a unified view, man- 
aging the stack along with the CPU and other re- 
sources. The Stack Resource Policy(SRP), which is 
presented and analyzed here, is such a policy. As it 
turns out, this policy also offers advantages for sys- 
tems in which runtime stack space is not a major 
concern, where there may be no stack sharing. 

Section 2 defines the elements of our model, includ- 
ing jobs, featherweight processes, and resources. Sec- 
tion 3 defines the SRP, and proves that it works. Sec- 
tion 4 gives a basic schedulability result for earliest- 
deadline-first (EDF) scheduling with the SRP. Sec- 
tion 5 compares the SRP to the Priority Ceiling Pro- 
tocol [15], of which it is an evolutionary development. 
Section 6 briefly discusses the implementation of the 
SRP and its relation to Ada tasking. Section 7 sum- 
marizes the results and mentions some ongoing re- 
search. 

Deadlock is only part of the problem. 

2 Definitions 

Jobs. A j o b  is a finite sequence of instructions to 
be executed on a single processor. It may have some 
branching control flow, but its maximum execution 
time and its other resource requirements must be 

fixed. A job might correspond to a subprogram in 
some programming language. Names of the forms 
J ,  J’, J” ,... and Jd denote jobs. 

A j o b  execution is an instance of execution of a 
specific job, in response to a j o b  execution request. 
The job execution request arrives at some time, af- 
ter which the job execution can begin. Requests that 
have arrived, but for which the corresponding exe- 
cutions have not yet completed are called pending. 
Pending requests are classified as waiting, meaning 
the job has not yet started, or active, meaning the 
job has started to  execute. Names of the forms JJ’ ,  
J“, ... and 3; denote both job execution requests and 
job executions. 

Every job belongs to one of a fixed finite set of pro- 
cesses, P I ,  ..., Pn. Each process Pi is characterized 
by an (infinite) sequence of job execution requests 
Ji,l, 3 , 2 ,  .... A process is periodic if the interval 
between successive execution requests is a constant 
(called the period); otherwise it is aperiodic. The jobs 
requested by each process are assumed to belong to 
a finite set, which are known a priori. Names of the 
forms P and Pi always denote processes. 

There should be no need for more than one exe- 
cution of any job to  go on at the same time. (This 
may be taken as an assumption, or as a consequence 
of other assumptions we will make: that each job 
has a static preemption level and that there is only 
one processor.) Thus, it is usually not necessary to 
be very careful about distinguishing jobs from job 
executions and job execution requests. The current 
execution of job J may be referred-to by the same 
name as the job, i.e. J .  In particular, if we say “job 
J” is actively doing something (such as holding or 
requesting a resource), we mean “the current execu- 
tion of job J ” .  

Resources. An execution of a job requires the use 
of a processor and runtime stack space, and may re- 
quire certain other serially reusable resources. We 
assume there is a single processor, which is preempt- 
able, and a finite set of nonpreemptable resources, 
R1,..,Rm. Allocation of processor time, stack space, 
and nonpreemptable resources to jobs is governed by 
processor and  resource allocation policies. Names of 
the forms R and R; always denote resources. 

A job acquires an allocation of a nonpreemptable 
resource by executing a request instruction. For- 
mally, an allocation is a triple ( J ,  R ,m) ,  where J 
is a job, R is a nonpreemptable resource, and m is 
a mode.  The job making a request must wait to 
execute its next instruction until the allocation is 
granted. While a job is waiting for a resource alloca- 
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tion the job (and the request) are said to be blocked. 
After the allocation is granted, the job holds it un- 
til the job executes an instruction that releases it. 
While the job holds an allocation the allocation is 
said to be outstanding. 

The sequence of instructions performed by the job 
between the request and release operations for a re- 
source allocation is called a cn’tical section of the job 
for that resource. Each job is required to request and 
release resources in Last-in-First-Out order, so criti- 
cal sections of the same job can only overlap if they 
are properly nested. For bounding priority inversion, 
we will mainly be interested in the execution times 
of “outermost” (i.e. non-nested) critical sections. 

Binary semaphores and reader-writer locks are 
examples of nonpreemptable resources. A binary 
semaphore may only be allocated in only one mode. 
A reader/writer lock may be allocated in two modes, 
either read or wn’te. There may also be multi-unit 
resources. For each multinuit resource R there is 
a fixed number of units in the system, N R ,  and the 
mode of a request for a multiunit resource is the num- 
ber of units being requested, which must be less than 
or equal to NR. 

Without loss of generality, semaphores and read- 
er/writer locks can be treated as special cases of mul- 
tiunit resources. For a binary semaphore, NR = l, 
and the mode is 1. For a reader/writer lock, N R  can 
be any number greater than or equal to the number of 
jobs that may request R ,  read = 1, and write = NR. 

Example. Suppose J1, Jz, and 53 are jobs, where 
the critical sections of the jobs are given schemati- 
cally in Figure 1. Here, an operation of the form “re- 
quest (Rj,  m)” means the job is requesting m units of 
resource R j  . A “release” operation releases the most 
recently acquired resource allocation. (Since we as- 
sume any overlapping critical sections must be prop- 
erly nested, the resource and mode are uniquely de- 
termined.) The relationship of the jobs to resources 
in this example is also shown schematically in Fig- 
ure 2. The arrows indicate the “may request” rela- 
tionship between jobs and resources, and are labeled 
with the number of units the jobs may request. We 
are supposing N R ~  = 3, N R ~  = 1, and N R ~  = 3. 
Rz behaves as a binary semaphore, R3 behaves as a 
reader/writer lock, and RI’s behaves as a more gen- 
eral multiunit resource. 

Stack Space. Shared runtime stack space is anon- 
preemptable resource, but it is treated differently 
from the other nonpreemptable resources, since the 
location of the requested space, rather than the quan- 

J1 

... 
request(R2,l); 

request(R1,3); 

release; ... 
release; 

request(R3,l); 

release; 

... 

... 

... 

... 

... 

J? 
... 
request(R3,3); 

request(R2,l); 

release; ... 
release; 

request(R1,2); 

release; 

... 

... 

... 

... 

... 

J3 

... 
request(R3,l); 

request(R1,l); 

release; ... 
release; 

... 

... 

... 

Figure 1: The critical sections of J1, 5 2  and 53. 

/ A 

Figure 2: The resource graph for J1, 5 2  and 53. 

tity, matters. Based on the way in which program- 
ming language implementations typically use the 
runtime stack, we make the following assumptions: 

1. Every job using the stack requires an initial allo- 
cation of at  least one cell of stack space before it 
can start execution, and cannot relinquish that 
space until it completes execution. This means 
the entire execution of each job is a “critical sec- 
tion” with respect to the stack. 

2. After a job starts execution, if it makes any re- 
quest that is blocked it must continue to hold 
its stack resources while it is blocked. 

3. A stack storage request can be granted to a job 
if and only if the job is not yet holding any stack 
space or it is holding the top of the stack. 

4. Only the job at  the top of the stack may execute, 
since an executing job may need to increase its 
stack size at any time. 

Due to these assumptions, the request for the ini- 
tial stack allocation of each job may be treated as 
part of the request for job execution, and subsequent 
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use of the stack by that job may be allowed without 
explicit request and release operations. 

Direct blocking. The resource allocation policy is 
constrained to  block a request (at least) when there 
are insufficient resources available to satisfy the re- 
quest. We call such a conflict a direct blockage. Since 
we are assuming a job never makes a request that 
exceeds the total resources in the system, a job exe- 
cution 3 can only be directly blocked if there is an 
identifiable set of other jobs that are blocking J ,  in 
the sense that there will be sufficient resources avail- 
able to  satisfy 3’s request as soon as one or more of 
these other jobs releases a resource allocation. 

For a multinunit nonpreemptable resource, a re- 
quest ( J ,  R, m) is blocked directly iff’ VR < m, where 
VR denotes the number of units of R that are cur- 
rently available (i.e. not outstanding). 

As a consequence of this definition, if R is a bi- 
nary semaphore, any request for an allocation of R is 
blocked directly by any outstanding allocation of R 
to  another job. Similarly, if R is a reader/writer lock, 
any request for an allocation of R is blocked directly 
by any outstanding write-allocation of R to  another 
job, and any request for a write-allocation of R is 
further blocked by any outstanding read-allocation 
of R to another job. 

For a shared stack, a job J is directly blocked 
iff there is another job J’ holding the space immedi- 
ately above the the space occupied by J on the stack, 
so that J’s part of the stack cannot grow without 
overflowing into the holdings of J’ .  For this situa- 
tion to occur, J’ must have preempted J ;  J will be 
blocked until J’ completes and releases all of its stack 
space. That is, once a job is preempted by another 
job on the same stack it cannot be resumed until the 
preempting job completes. (This does not seriously 
limit the effectiveness of scheduling, even though it 
significantly narrows the set of scheduling choices.) 

The resource management policy may block some 
requests that are not directly blocked. In particular, 
other blocking may be introduced to bound priority 
inversion. However, we will assume that the resource 
policy preserves the property that whenever a job J 
is blocked there is an identifiable set of other jobs 
that are blocking J ;  i.e. if some (or all) of the jobs 
blocking J released their current allocations J would 
become unblocked. 

Priorities. Each job execution request J has a 
priori ty ,  ~ ( 3 ) .  Priorities are values from some or- 
dered domain, where J has higher priority than J‘ 

iff p ( J )  > ~(3’) .  3 having higher priority than 
3’ means that expediting J’ is sufficiently impor- 
tant that completion of J’ is permitted to  be de- 
layed. For concreteness in our examples, we will 
use numeric priorities, where larger values indicate 
greater urgency. Examples of priority assignments of 
interest in realtime systems include RM (priority cx 
l/period)2 and EDF (priority 0; l/deadline). 

A processor allocation policy determines which 
one of the pending unblocked jobs is allowed to  use 
the processor. The primary objective of the proces- 
sor and resource allocation policies is to  expedite the 
highest priority pending job execution request. Nor- 
mally, expediting the highest priority pending job 
means allocating the processor to  that job, but this 
is not possible when the job is blocked. If a job J 
is blocked, the only way to  expedite it is to  expedite 
another (lower-priority) job that is blocking J ,  until 
the resources released by such jobs remove the cause 
of the blocking. This rule, which is called “priority 
inheritance” in [15], can be applied transitively to ex- 
pedite any directly blocked job that is not involved 
in a deadlock. 

The rest of this paper assumes that use of the 
processor is allocated to  jobs preemptively, according 
to the priorities of requests and First-In-First-Out 
(FIFO) among jobs of equal priority, with priority 
inheritance. More precisely, let JC denote the cur- 
rently executing request and Jtop denote the oldest 
highest priority pending job execution request. Un- 
der the priority inheritance policy, either JC = Jtop 
or there is a chain of blocked job executions 31, ..., Jn 
such that Jl =Aop ,  Jn = J,, and z is blocking z+l 
fori  = 1, . . ,n - l .  (Oneoftheobjectivesofaresource 
allocation policy that bounds priority inversion is to 
insure that there is at most one such chain and the 
length of this chain never exeeds one.) 

Preemption levels. In addition to  the priorities 
which are attached to individual job execution re- 
quests, each job J has a preemption level w ( J )  (just 
“level”, for short). The level of a job is a positive 
integer that is statically assigned to the job and ap- 
plies to  all execution requests for the job. The es- 
sential property of preemption levels is that a job 
J’ is not allowed to  preempt another job J unless 
K ( J )  < K ( J ’ ) .  Of course, this is also true for priori- 
ties. The reason for introducing preemption levels as 
distinct from priorities (~(3)) is to  enable us to  do 
static analysis of potential resource conflicts, even for 
some dynamic priority schemes such as EDF schedul- 

2Here, cx means “is proportional to”, in the sense of obey- 
ing the same ordering. ‘Here, “iff” is an abbreviation for “if-and-only-if” . 
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ing. 
For the specific priority assignments mentioned 

in this paper, the preemption level of a job will be 
inversely proportional to the relative deadline of the 
job. The relative deadline of a job J is a fixed value, 
D ( J ) ,  such that if a request for execution of J arrives 
at  time t ,  that execution must be completed by time 
t + D ( J ) .  In other words, the relative deadline of a 
job is the size of the scheduling “window” in which 
each execution of the job must fit. 

Suppose there are two jobs, J and J’, with rel- 
ative deadlines D ( J )  = D and D(J’)  = D’, respec- 
tively. Suppose J’ is a job execution request of J 
such that A r r i v a l ( 3 )  = t ,  and J’’ is a request of J‘ 
such that that Arrival(g’)=t’.  In order for J’’ to 
preempt J’, we must have: 

i. t <t’ (so J’ can get started); 

ii. p ( J ) < p ( J ’ )  (so J’’ can preempt). 

With EDF scheduling, p ( J )  < p ( J ’ )  iff t’+D’<t+ 
D, so it follows that D’< D. It is therefore consistent 
to define preemption levels so that T(J) < 7r(J’) iff 

An example will emphasize the difference be- 
tween EDF priority and preemption level. Let P and 
P’ be two periodic processes, with relative deadlines 
20 and 10 (relative to  arrival times), respectively. 
Preemption level 1 is assigned to jobs of P and pre- 
emption level 2 is assigned to jobs of P’, since the 
relative deadline of P’ is shorter than the relative 
deadline of P .  P’ can never be preempted by P ,  but 
this does not mean that job execution requests of P’ 
always have higher priority than those of P .  Sup- 
pose a job-request J’ of P arrives at time t ,  and a 
job-request J’‘ of P’ arrives at  time t + 11. Since 
the absolute deadline of J’ is t + 20 and the absolute 
deadline of J” is t + 21, J’ will have higher priority 
than 3’. On the other hand, if J’‘ had arrived at  
time t + 9 its deadline would have been t + 19 and we 
would have had p ( J )  < p ( J ” ) .  Thus preemption level 
is different from priority. This is shown in Figure 3. 

Relative deadlines can also serve as a basis for 
preemption levels with RM and deadline monotone 
scheduling[lO], where p ( J )  < p ( J ’ )  iff D ( J )  > D(J‘), 
and static least-slack time scheduling, where p ( J )  < 
p ( J ’ )  iff D ( J )  - C ( J )  > D(J‘) - C(J’) and C ( J )  is 
the maximum execution time of job J .  

Although relative deadlines are the basis for pre- 
emption levels for all these examples, the theoreti- 
cal results proven in this paper do not depend on 
preemption levels being the same as relative dead- 
lines. The only property of preemption levels on 
which these results do depend is the following condi- 

D ( J )  > D(J’) .  

tion (PI): 

dJ’) IP(J”) 

v 7r(J’)<7r(J). 
V Arrival(J’)  SArrivab(3’)  

In words, this says that if J’ has higher priority than 
J’, but J’ arrives after J‘, then J must have a higher 
preemption level than J’. Note that relative dead- 
lines do satisfy condition ( P l )  above for all the pri- 
ority assignments mentioned in this paper, and con- 
dition (P l )  is sufficient t o  guarantee that J can pre- 
empt J’ only if n(J’) < n(J). 

3 Stack Resource Policy 

3.1 Background 

The SRP is based on the concept of preemption ceil- 
ing, which is a refinement of the concept of “priority 
ceiling” defined in [15,13,16,5]. We unify and extend 
those definitions in the following ways: 

1. Priorities are replaced by preemption levels. 
This allows EDF priorities to be handled with- 
out requiring ceilings to be recomputed at  run 
time. 

2. Ceilings are defined for multiunit resources, sub- 
suming both binary semaphores and reader/- 
writer locks. 

Abstract ceilings. Each resource R has a current 
ceiling, [RI, which is an integer-valued function of 
the set of outstanding allocations of R. The SRP 
does not depend on the exact definition of [RI, but 
only requires that ceilings be related to priorities and 
preemption levels by the following condition (C2): 

If J is currently executing or can preempt the cur- 
rently executing job, and may request an alloca- 
tion of R that would be blocked directly by the 
outstanding allocations of R, then T(J) 5 [RI. 

One specific definition of ceiling, that satisfies 
condition (Cl) ,  is given below. 

Specific ceilings. For a multinit nonpreemptable 
resource R, [RI may be defined to be [RIvR, where 
V R  denotes the number of units of R that are cur- 
rently available and [RIvR denotes the maximum of 
zero and the preemption levels of all the jobs that 
may be blocked directly when there are VR units of 
R available. That is: 

[RI vR = max({O) U { a ( J )  I VR < P R ( J ) ) ) ,  

3Here V denotes “or”. 
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t 3 due 
b 20 

k 10 .I 
t + 11 3’ due 

t 3 due 

t + 9  g’ due 

Figure 3: Preemption level us. priority. 

where ,UR is the maximum number of units of R that 
job J may need to hold at any one time. Note that 
this definition satisfies condition (Cl) .  

Example. The ceilings of the resources for the ex- 
ample shown in Figures 1 and 2 are shown in Fig- 
ure 4, under the assumption that r ( J i )  = p ( J i )  = i 
for i= 1 , 2 , 3 .  

Ceilings and stack allocations. With a shared 
stack, the stack space allocated to a job is also a 
critical resource. Because of the assumptions we have 
made about stack usage, the stack space held by a 
job can only block jobs that it might preempt; that 
is, jobs with lower preemption levels. It follows that 
condition (Cl) imposes no restriction on the current 
ceiling of a stack, which is therefore defined to be 
zero. 

3.2 Definition of the SRP 

Current ceiling. At any instant of time, let the 
current ceiling of the system, ?i, be the maximum 
of the preemption level of the current job and the 
current ceilings of all the resources. That is, if job 
J ,  is currently executing, 

If there are no jobs currently executing, 7i; is defined 
to  be zero. 

The SRP. The SRP requires that a job execution 
request 3 be blocked from starting execution (i.e. 
from receiving its initial stack allocation) until 

?i < r( J ) .  

Once a job J has started execution, all subsequent re- 
source requests by J are granted immediately, with- 
out blocking. 

Note that the SRP does not restrict the order in 
which resources may be acquired, in contrast to the 
ordered resource allocation approach of [8 ] .  It is also 
less restrictive than the other approach of [8 ] ,  which 
is based on preallocation. That  is, even though the 
condition if < T ( J )  is tested before the job J starts 
to execute, the SRP does not at that time actually 
allocate all the resources that may be requested by 
J .  They are only allocated when requested] and are 
released as soon as they are not needed. Thus, even if 
J will later request some allocation of R that would 
block a higher level job J H ]  J H  is free to  preempt 
until J actually requests enough of R to block J H  
directly. 

Example. Two possible executions of jobs J1 ,  5 2 ,  
and J3 under the SRP are shown in Figure 5 and Fig- 
ure 6. The solid horizontal lines indicate which job is 
executing, while the barred lines indicate the relative 
value of the current ceiling, F .  Figure 5 shows what 
happens if J1 acquires R2 before Jz  and J3 arrive. 
Since [R21 = 2,  J 2  is unable to preempt J1 after it 
acquires R2, and since [RI1 0 = 3,  53 is unable to pre- 
empt J1 after it acquires all of RI .  33 preempts J1 as 
soon as J1 releases R I ,  and J2 preempts J1 as soon 
as J1 releases Ra. Figure 6 shows what happens if 53 
arrives before J1  acquires R I ;  it is able to preempt 
immediately, but J 2  still has to wait for J 1  to release 
R 2 .  

3.3 

In [3], we prove that the SRP enforces direct blocking 
and strictly bounds priority inversion, independent 
of stack sharing. 
Theorem 1 If n o  job  J i s  permitted to  start until 
?i < T (  J ) ,  then:  
(a)  No job  can be blocked after it starts. 
(b) There can be n o  transitive blocking or deadlock. 
( c )  I f t h e  oldest highest-priority j o b  i s  blocked, it will 

become unblocked no later than  the first instant  

Blocking properties of the SRP 
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Figure 4: Ceilings of Resources. 
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Figure 5: 53 arrives after J1 acquires RI .  
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that the currently executing job is not holding 
any nonpreemptable TesouTces. 

Note that part (c) means that no job can be sub- 
ject to  priority inversion for longer than the duration 
of one (outermost) critical section of a lower priority 
job. Note also that whenever the processor is not 
idle it is executing either the oldest highest-priority 
request, &,p, or a job that is directly blocking zap. 
The currently executing job, yc, always occupies the 
top position on the shared runtime stack, if all jobs 
share one runtime stack. (If the SRP is applied to a 
system in which runtime stacks are not shared, it is 
still helpful to think of all the jobs that have started 
executing, but have not finished, as occupying po- 
sitions on an imaginary stack, which is ordered by 
preemption level.) 

4 Schedulability 

Theorem 1 is sufficient to apply the schedulability 
results for RM scheduling of [11,15]. What is more 
important, it can be used to  derive a schedulability 
test for the EDF policy, stronger than that obtained 
by [ 5 ] .  To do this, we restrict our process model 
so that it more closely resembles that of [11,5]. In 
particular, let there be a one-to-one correspondence 
between processes and jobs. Suppose there are n (pe- 
riodic or aperiodic) processes, { P I ,  ..., p,}, ordered 
by increasing relative deadlines of the corresponding 
jobs, { J l ,  ..., J,}. Let the relative deadlines all be 
positive. Let Ti denote the period or minimum inter- 
arrival time of Pi, let Di denote the relative deadline 
of J i ,  and let Ci denote the maximum execution time 
of Ji. Let Bi denote the execution time of the longest 
critical section of any job J k  such that D; 5 Dk and 
i # IC, or zero if there is no such J k .  Assume there 
is a system start time, before which no jobs are re- 
quested. The theorem below is proven in [3]. 
Theorem 2 A set of n (periodic and aperiodic) j o b s  
is schedulable b y  EDF scheduling if 

5 Relation to  PCP. 

The SRP is a refinement of the PCP, just as the 
PCP is a refinement of previous ordered-resource al- 
location techniques such as Havender’s [8]. The im- 
provements introduced by the SRP are: 

1. Ceilings are defined in terms of preemption lev- 
els, instead of priorities, so that the SRP applies 

2. 
3. 
4. 

5 .  

6 .  

7 .  

directly to EDF scheduling (without dynamic 
recomputation of ceilings). 
Ceilings are defined for multiunit resources. 
Stack sharing is supported. 
The blocking test is only applied when a job 
tries to start execution; whereas in the PCP this 
condition is applied each time a job requests a 
new resource allocation. 
Resource requests never block, and hence can- 
not require extra context switches; consequently, 
there are at most two context-switches per pre- 
emption. 
Because there is no blocking after a job starts ex- 
ecutin, a stronger EDF schedulability result can 
be obtained than with dynamic priority ceilings. 
Different jobs of a process may have different 
priorities. 

An important technical difference between the 
two techniques is that the PCP only guarantees that 
once a job is blocked it will not be blocked again. 
In contrast, the SRP also guarantees that if a job is 
blocked, it is only blocked before starting. This sim- 
plifies schedulability analysis, is the key to  the proof 
of Theorem 2. 

The only way in which the SRP is not a con- 
sistent extension of the PCP is the earlier blocking. 
Since the SRP only blocks a job before it starts, it 
must make worst-case assumptions about the job’s 
resource requirements. Therefore the SRP will block 
a job in some situations when the PCP would not. 
In particular, the PCP may come out ahead on the 
average when a job contains conditional code, so that 
sometimes it requests a resource and other times it 
doesn’t require any4. This difference may be signifi- 
cant for applications where average-case performance 
is more important than worst-case. We shall prove 
below that when the job actually requests all the re- 
sources, the PCP is no better in reducing priority 
inversion than the SRP. 

5.1 Priority Inversion. 

Theorem 3 The maximum priority-inversion time 
of any j o b  under the SRP is no longer than under 
the PCP. 

Proof. Suppose a set of jobs and a sequence of job 
execution requests is given. We will compare the 
maximum priority-inversion time of some job J un- 
der both policies. Since we are comparing against 
the PCP, which only supports binary semaphores 

With the PCP, whether a request blocks does not depend 
on which resource is being requested. 

198 



and static priorities, we will assume that the only re- 
sources are semaphores and that the priority of each 
job execution request is the same as the preemption 
level of the job. Under these assumptions, the only 
significant difference between the SRP and the PCP 
is that the SRP blocks earlier. 

Let J’ be a request for J that achieves the max- 
imum priority inversion under the SRP. From The- 
orem 1 we know that J’ can only be subject to pri- 
ority inversion from the current job, g,. Thus, J ,  
is holding a semaphore S that blocks J’ from start- 
ing. That is, T(J) < [SI. Since we are assuming 
preemption level equals priority, p ( 3 )  < [q. 

The same order of events may happen with the 
PCP. That is, a higher-priority job execution request 
for J may arrive while J ,  is holding S. Under the 
PCP, J would preempt. Since we are assuming the 
worst case, suppose J later requests some resource. 
We have p ( 3 )  < IS1 5 [S*l, where S* is the ceiling 
of the semaphore that has the highest ceiling among 
all semaphores locked by jobs other than J ,  or is zero 
if there are no such locked semaphores. Since this is 
the blocking condition for the PCP, this request by 
J would be blocked. J’ would therefore be subject 
to priority inversion until J, releases S, which is at  
least as long as under the SRP. 

5.2 Context Switches 

The cost of context switches can be significant for 
certain processors. Architectural features that in- 
crease the relative cost of context switching in- 
clude large register sets, address-translation looka- 
side buffers, instruction pipelining, prefetching, and 
cache memory for data and instructions. For such ar- 
chitectures, the early blocking property of the SRP 
may be important, because it saves context switches. 

Theorem 4 The  SRP requires at most  two context 
switches per job  execution request. 

Proof. This is a consequence of early blocking, 
and can be seen immediately from the definition of 
the SRP. Since a job cannot be blocked after it starts 
execution, the only context switches are one from the 
job that is preempted to the job that is requested, 
and back when the preempting job completes. 0 

Theorem 5 T h e  PCP, like any  other policy that  
waits t o  block a job  until it makes a resource request, 
m a y  require f o u r  context switches per job  execution 
request, for any job  that  shares a semaphore with a 
lower priority job. 

Proof. Let J be any job such that there is a 
lower-priority job JL and a semaphore S such that 
both J and J L  lock S. If J is requested while JL is 

running and has locked S, there will be four context 
switches: (1) from J to J L ,  when J preempts; (2) 
from JL to J ,  when J tries to lock S; (3) from J L  to 
J ,  when JL unlocks S; (4) from J back to J L ,  when 
J completes. U 

Note that two is the least possible upper bound 
on the number of context switches per request, if pre- 
emption is allowed. Together, Theorem 4 and The- 
orem 5 say that the upper bound on the number of 
context switches with the SRP is half of the worst 
case for the PCP. This improvement is due to earlier 
blocking. 

6 Implementation Considerations 

The SRP can be implemented very simply and ef- 
ficiently. The implementation is similar t o  that of 
the PCP[15,4], but the locking operations are sim- 
pler because they cannot involve blocking. The ceil- 
ings [RIn are static, and so may be precomputed 
and stored in a table. A stack may be used to  keep 
track of the current ceiling, T. When a resource R 
is allocated its current state, VR, is updated, and T 
is set to [RI v R  iff T < [RI vR. The old values of VR 
and ?f are pushed on the stack. When resource R is 
released, the values of ?r and VR are restored from 
the stack. If the restored ceiling is lower than the 
previous ceiling, a dispatching procedure is invoked 
to check whether a waiting higher level job should be 
allowed to preempt. 

The dispatching procedure checks the job at  the 
top of the queue, Jttop,  to see if it is different from 
the current job, J’,, and satisfies the preemption cri- 
terion, T< r ( J t O p ) .  If J, passes this test, the identity 
of 3, is pushed on the stack, runtime stack space is 
allocated to Jtop and J’top starts execution. If JtOp 
fails the test, the dispatcher simply returns. When- 
ever a job completes, 3, is restored from the stack, 
and the dispatcher is invoked. The dispatcher is also 
called when a request arrives, if it becomes the new 
Atop. 

7 Conclusions, and Further Research 

By transforming processes into a classical job sched- 
d ing  model, they may be allowed to share runtime 
stack space. However, such stack sharing requires 
a unified approach to processor and resource alloca- 
tion in order to prevent deadlock and bound priority 
inversion tightly. The SRP is such a resource alloca- 
tion policy. 

The SRP is a good policy even when there is no 

199 



stack sharing. It is an improvement over previously 
published versions of the PCP in several respects. 
One of these is that it is directly compatible with 
EDF scheduling. 

EDF scheduling permits higher utilization than 
fixed-priority scheduling, but fixed-priority schedul- 
ing has an advantage of “stability” - that is, it guar- 
antees lower priority jobs will not prevent higher pri- 
ority jobs from meeting their deadlines during peri- 
ods of processing overload. Since the SRP supports 
both fixed and EDF priorities, it may be possible to 
run EDF jobs as “background” in a system where the 
critical jobs are scheduled in “foreground” according 
to a RM policy. In particular, it appears that the 
schedulability result of [ll] on using a mixture of RM 
and EDF policies can be applied to this situation, if 
Bk is subtracted from the processor availability func- 
tion. It also appears that this model is compatible 
with the sporadic server concept of [9,17]. 

We have also developed a refinement of the SRP, 
called the Minimal SRP (MSRP)[3]. This is aslightly 
more complex policy, which is the least restrictive 
policy for rate monotone (RM) and earliest-deadline- 
first (EDF) scheduling that can strictly bound pri- 
ority inversion and prevent deadlock, given that jobs 
share a single runtime stack. 

The SRP has been implemented. In continuing 
research, we plan to  conduct some empirical studies 
of the SRP versus other scheduling and resource allo- 
cation policies. We also hope to extend the theory in 
several directions. More specifically, it appears that 
Theorem 3 can be generalized to show the efficacy 
of early blocking for arbitrary policies. The distinc- 
tion between preemption level and priority may also 
have broader applications. It appears Theorem 2 can 
be extended to processes with multiple jobs. Exten- 
sions to  multiprocessor applications, similar to  [14] , 
also seem to be possible. 
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