Embedded Computing Systems in the Multi-Core Era

Wolfgang Schröder-Preikschat

Background

multi/manycore systems

(since 2008)

embedded & real-time systems

(since 1995)

uniprocessor systems (1981-1986)

multiprocessor systems

(1986-1995)

Background

Sparc LEON IA-32/64

Operating Systems

MCS6502 M6800 & M6809 PDP 11/40e TMS9900 IBM PC

AVR HC08 C167 MPC60x TC1796 (AUDO) TC277T (AURIX)

320 node M68020- & 16 node (dual CPU) i860-based machines

Leitmotif

ø embedded
 ≘ parallel: corresponds to

- embedded system as epitome of concurrent operation
- \odot parallel \sim embedded: similar to
 - parallel system as epitome of power guzzler
 - and being sensitive to jitter

Outline

- ✓ prologue
- stock taking
 - embedded computing system
- multi-core as reference point
 - ø embedded

 ≘ parallel
 - o parallel a embedded
- ø epilogue

Embedded Computing System

- a microprocessor-based system
- that is built to control a function or range of functions and
- is not designed to be programmed by the end user in the same way that a PC is

(Heath, Embedded Systems Design, 1997)

- is designed to perform one particular task
- albeit with choices and different options
- has to communicate with the outside world
 - ø done by [a zoo of] peripherals

(Heath, Embedded Systems Design, 1997)

- any computer system hidden inside a product
- other than a computer

(Simon, An Embedded Software Primer, 1999)

- have a microprocessor and a memory
- some have a serial port and a network connection
- they usually don't have keyboards, screens, or disk drives

(Simon, An Embedded Software Primer, 1999)

An exception that proves the rule...

- a computer system with a dedicated function
- within a larger mechanical or electrical system
- often with real-time computing constraints(Wikipedia, 2013)

- o range from portable devices
 - such as digital watches and MP3 players
- to large stationary installations
 - like traffic lights, factory controllers
- o and large complex systems
 - e.g. hybrid vehicles, MRI, and avionics

(Wikipedia, 2013)

- often have several things to do at once
 - they must respond to external events
 - their work is subject so deadlines
 - they must cope with all unusual conditions without human intervention

(Simon, An Embedded Software Primer, 1999)

An exception that proves the rule...

Extremes meet

- mass product
- small appliance
- o resource shortage
- best effort
- non-/soft real-time
- o planned obsolescence

- custom-built machinery
- o giant equipment
- o needs-based design
- dependable
- o firm/hard real-time
- non-stop operation

Embedded Parallel

Simultaneous operation

stirred-tank reactor

- functional units
 - sensor system
 - specific processing
 - actuating elements
- mixed mode
 - periodic
 - aperiodic/sporadic

Simultaneous operation

personal trainer

- functional units
 - sensor system
 - specific processing
 - actuating elements
- mixed mode
 - periodic
 - aperiodic/sperudic

Latent concurrency

- not because of internal constraints such as to improve system utilisation but...
- induced by the characteristics of the actual object to be monitored or controlled
- positioned through hardware features used to interact with the external process and
- reflected by the logical structure of the corresponding internal process

Mix of parallelism: pseudo and real

- hardware multiplexing (CTSS, 1961)*
 - processing unit
 - address space, if applicable
- hardware multiplication (B5000, 1961)
 - o processing unit, at least

partitioning in time or space, respectively

Bottom line

for embedded computing systems, multi-core technology is an implication

- "free lunch" never was an option in that domain — and never will be
 - but the "menu" shows an even greater selection

Multi-core roots

MC68356, 1994

- first embedded triple-core
 - @ CISC (MC68302)
 - @ RISC (CP, 16550)
 - DSP (MC56002)
- heterogeneous

Multi-core roots

POWER4, 2001

first non-embedded dual-core, homogeneous

Being brought back down to earth...

- parallelism is challenging, but not the real problem in embedded systems
 - and so is multi-core
- much more challenging is the handling of the multitude of different functional units
 - system control, power management
 - security, multimedia, connectivity, ...

Concrete example

— thousands of manual pages, excl. CPU —

Multi-core/processor

System on chip

(MPSoC)

i.MX6

System on module

System in field

System in field

Favourite plaything

Rolling embedded system

Intranet on wheels

- but not for much longer -

Hybrid network

Electronic control unit

- o engine management
- chassis applications
- body control module
- driver information system
- safety functions
- gateway operations

Breadboarding of a motor vehicle

Audi A6 (C6), detail

source: Audi AG

Network complexity

o number of ECUs: Audi A8

D4, 2010

D2, 1993

Through the ages

Audi A3 (8P), 2012

Consumption factor

- length of 3km, weight of 60kg: not unusual...
- ø including ECUs ≈ 11/100km or (US) 235mpg

Streamlining needed...

Consolidation

Virtualisation

Multi-Core

rationalised

Consolidation

- o logical
 - simplified operations, common processes
- physical
 - o co-location of multiple platforms, fewer sites
- · workload
 - more users, same application, fewer platforms
- application
 - combine mixed workloads, fewer platforms

Application consolidation

combines multiple applications

of different types

onto the same physical platform (i.e., ECU)

Constraint: Two-tier system

QNX, CE, Linux

Constraint: Transparency

- adopt application software as it stands
 - library-like operating system (OS)
 - OS and application program as a package

firm/hard real-time

application program

operating system

operating-system machine level

Physical consolidation

- one application per ECU
- co-location of multiple ECUs
- single site: motor vehicle

- operating-system machine level (OSML)
- o instruction set architecture level (ISAL)

Rationalised consolidation

multiple applications per ECU, fewer ECUs

system virtual machine level (SVML)

Rationalised consolidation

* interference with (guest) operating system

Performance handicaps

- partial interpretation of system requests
 - o traps, interrupts
- maintenance of real-machine state
 - processor state, shadow page tables, ...
- o interference with guest operating system
 - scheduling, synchronisation
- o interference with guest system(s) in general
 - cache-aware (machine) programs

Partitioning techniques

- with HW support
 - physical
 - logical

To The state of th

- microprogramm
- hypervisor

efficiency

- without HW support
 - SVM-based

- homogeneous
- heterogeneous
- OS-based

flexibility

Partial virtualisation

- address-space/memory protection
- static IRQ forwarding
- prevent false sharing
 - o cache lines!!!

o interference may break deadlines!!!

Multi-core case: Safety applications

MPC564xL

Multi-core case: Power-train applications

MPC5746M

Parallel ~ Embedded

Parallel processing

Parallel processor: CPU

Parallel processor: GPU

512 1536

Parallel system: HPC

3120000

Collective operations

- gather
 - collect data from all nodes
- scatter
 - split a set of data into pieces
 - send a different piece to all nodes
- broadcast
 - send same data to all nodes

Collective operations

- o reduce
 - o collect data from all nodes
 - o combine collected data in some way
 - ø if applicable, send result to all nodes
- barrier
 - suspend the arriving process until all of one's peers have arrived

Outline of the problem

theory

practice

Detrimental factors

- process skew
 - parallel operations cannot start at once
 - system noise delays processes by chance
 - process lags keep other processes waiting
- data skew
 - o unbalanced (distributed) data sets
 - overloaded processes thwart under- or normally loaded processes, resp.

Solution statement

unbalanced (distributed) data sets

partitioning, static load balancing

time-shifted start of parallel operations

- latency-aware process and data structures
- predictable operating-system processing

sporadic process delays

- o co- or gang scheduling, resp., of processes
- holistic operating-system design

Energy consumption

Tianhe-2 (i.e., three-million-something cores)

- @ 24 MW for external cooling, to be added

Descriptively written...

ultimate consumer

- ø high-speed train TGV: ≈ 20 MW
- medium-sized town in Germany: ≈ 48 MW

power generator: wind engine, 2.3 MW

- Tianhe-2 uncooled needs 9 installations
- Tianhe-2 cooled, a complete wind farm...

Potential "power supply"

Observing of predictions

- load-dependent power allocation
 - stipulated by contract
 - minimum payment clause
 - o chargeable unexpected underload
- contract-aware deployment and scheduling
 - economise: waste energy to avoid a fine...

Near embedded systems

- , a priori" knowledge is all the world
 - worst-case execution time (WCET)
 - o process and data dependency
 - predictable run-time behavior
- special-purpose mode of operation
 - foreseeable and timely processes
- resource-aware programming
 - feature-oriented and holistic approach

Epilogue

Challenges

- ✓ consolidation
- o interference suppressed, temporal isolaton
- mode of operation
 - asymmetric, symmetric, bound
- RAMS plus security (RAMSS)
 - reliability, availability, maintainability, safety

Conclusion

embedded computing systems

- are dedicated to handle a specific task
- life cannot possibly be imagined without it
- were forerunner of multi-core technology
- stop at nothing, neither virtualisation
- can serve as role models for "green HPC"