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Predictability refers to the degree to which a correct quantitative or qualitative prediction of the state of a system can be made. In the following 
considerations, this state relates to operating systems. Central role plays time behavior, which is not only determined by the external processes to a given 
frame of reference but also influenced by spatial and energetic characteristics of the system software therein.
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Usually, machine to machine (M2M) interaction „uses“ an operating system. This applies exactly when the correct execution of the latter is necessary, so 
that the former can accomplish according to its specification.

In animation order:
1. The functionality of an operating system will stand and fall with the requirement of the given application domain and the facts of hardware. This 

functionality is never carved in stone, although the logical design behind, i.e., the „functional hierarchy“, is of fairly robust structure.
2. In this hierarchy, some system functions are really present at run-time while others are only present on the paper or in some repository.
3. Basic system functions for M2M interaction are located somewhere in the center of this hierarchy, they merge more or less with surrounding functions 

of adjacent levels of abstractions.
4. These other functions directly or indirectly affect the quality features of the basic (M2M) interaction functions in question.



–Nico Habermann et al, 1976*

“It is the system design which is hierarchical, 
not its implementation.” 

*Modularization and Hierarchy in a Family of Operating Systems, CACM, vol. 19, no. 5
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Preceding the quote (from the same paper): “In a functional hierarchy where functions may actually be macros, a sequence of function calls may result in a 
single machine instruction (or possibly none at all) when the system is compiled.“
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In animation order:
1. This lecture has two purposes. On the one hand it wants to clarify some technical challenges of a balancing act in the design and development of 

operating systems. On the other hand it would like to build a bridge to the outside and thereby promote understanding of certain non-functional 
features in such complexes.

2. Features that influence the time behavior of a system, delay processes unintentionally, cause uncertainties and thus let time to act melt away.
3. These features have cause in system functions that are gathered together in the same frame of reference and which depend directly or indirectly on 

common resources.



Bifocal perspective

issue (acc. Webster, i.a.): 

• a point, matter, or question to 
be disputed or decided 

• problems on the one hand 

• resource usage/use 

• interference 

• aspects on the other hand 

• software structuring 

• implementation
© M.C. Escher
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In animation order: 
1. The issues I want to pursue refer to two points, matters, or questions in the design and development of non-sequential system programs in general and 

operating systems in specific.
2. On the one hand they raise certain problems due to a shared use of resources. Especially problems that cause interference.
3. On the other hand these problems must be taken as a fact due to software-structuring measures and implementation decisions. They have to be 

accepted as given non-functional properties of a particular system — and therefore should be externalised and made part of the application binary 
interface (ABI) of an operating system.



Space

• memory demand 

• static 

• dynamic 

• stack usage 

• best/worst case 

• use pattern 

• process locality 

• data-structure alignment
© wosch
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Speicherstadt („city of warehouses“) in Hamburg

The first point dealt with relates to space.

In animation order:
1. The space aspect concerns the memory demand or storage requirements of a process. This issue is of static (simple) or dynamic (complex) nature.
2. A special point is here stack usage (dynamic), as its correct quantitative prediction has an influence on the reliability not only of an individual process 

but also of the whole computing system. The best case (smallest need) saves resources, while the worst case (biggest need) sets the safe side. Both 
cases ultimately save money — for hardware facilities on the one hand and insurance protection on the other hand.

3. For the purpose of the prediction, knowledge about the usage pattern is very appropriate. Particularly knowledge about process locality and data-
structure alignment, two important points to make estimations about the time behavior of a certain set of entities unknowingly interacting with each 
other — keyword cache.



• timeliness 

• target deadlines 

soft: violation is tolerated, 
task continues 

firm: violation is tolerated, 
task is aborted 

hard:violation is not tolerated, 
exception is raised, safe 
state is to be taken 

• latency

Timing
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So one can deduce that the space aspect may influence timing and, thus, the ability for timeliness.

In animation order:
1. However to be ready in time does not mean being fast, but it means a certain amount of assurance for a set of processes (tasks) that each of them 

meets a specified deadline.
2. Each of those target deadlines is qualified by a grade, whereby either a two-stage (soft, hard) or a three-stage (soft, firm, hard) distinction is made. This 

grading from soft over firm to hard does not necessarily correspond to the level of difficulty in the implementation of a certain real-time property. The 
longer a deadline has passed, the less weight the result calculated too late has. From that follows that soft deadlines need to be monitored even after 
they were missed and corresponding weightings are to be updated. Such a system function is not required for firm or hard deadlines — whereas 
cancelling of tasks and raising of exceptions can be already remarkably easy actions of an operating system.

3. Finally, the period between an event and the subsequent reaction in real time. This period must be bounded and must be subject to little or no jitter.



Energy

• power demand 

• ecological aspect 

• technical constraint 

• economical factor 

• thermal dissipation 

• dark silicon 

• power-band observance 

• contractual obligations
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Closely related to time is energy, that is to say, the energy converted over a period of time in relation to this period of time — performance.

In animation order:
1. The power demand ultimately produced by a process is not only a technical constraint, but from a certain amount also of economical and not least 

ecological importance
2. A further specific aspect thereby is thermal dissipation, which leads to dark silicon in large-scale many-core processors (MPSoC).
3. At the other end of the spectrum is the need for power-band observance in data or computing centres to avoid costly violations of contractual 

obligations with energy suppliers. The power demand should never exceed a certain upper limit, but it should also not fall below a certain lower limit—
an insight that, however, might depend on the daytime and weekday, respectively. Thus, while power saving is always good for ecological and 
reasonable for specific technical reasons, it is occasionally not first choice for economical reasons.



• This talk is not about analytical methods to 
predetermine quality attributes 

• of non-sequential (real-time) processes 

• but about structuring principles 

• of non-sequential programs 

to favor predetermination of these attributes.

Preliminary remark
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Space
Memory footprint
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–David Parnas, 1979*

“Some users may require only a subset of the 
services or features that other users need. 
These ‘less demanding’ users may demand 

that they not be forced to pay for the resources 
consumed by the unneeded features.” 

*Designing Software for Ease of Extension and Contraction, IEEE TSE, vol. SE-5, no. 2
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The memory footprint of an operating system stands and falls with the function to be provided for the respective application or class of applications. There 
is no one size fits all solution.



processor 
characteristic

Prediction of stack usage
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program characteristic

environment (external process) system characteristic

• subroutine nesting: MAX(call graph) 

• interrupt service routines: MAX(interrupt priority level) 
• edge-triggered: MIN(inter-arrival time) vs. BCET* 
• level-triggered 

• re-entrant: MIN(interrupt receipt latency) vs. BCET*

*best-case execution time
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Customisation
• modularisation for the purpose of a program family 

• a “software product line” in modern terms 

• reuse and adaptation need to go hand in hand  
• above all, apply compositional and generic approaches 

• “aspect-oriented programming” in the broader sense 
• decompositional methods (#ifdef) have to be handled with care 

• establish the basis for the non-functional properties of a process 
• space, time, and energy required by “a program in execution”

cross-cutting 
concerns

X

So custom-made operating systems would be ideal, but without reinventing the wheel every time.

In animation order:
1. For this, an operating system should be understood as a program family. Single family members provide customised solutions in relation to a specific 

use case, while the whole family offers a bunch of solutions to various use cases.
2. The family members have more in common than expected, they are the result of intensive reuse and adaptation of existing programs and modules, 

respectively.
3. Each of it, however, not only provides a specific subset of system functions but is also characterised by certain non-functional properties.
4. This approach looks easy at first glance. However, the trick is in the detail, especially cross-cutting concerns are challenging.



Architectural concerns

far in excess of a certain 
memory footprint: 

• degree of pseudo parallelism 
through preemption 

• kind of penetration or 
anchoring of concurrency 

☛ Multitasking

© The Salomon R. Guggenheim Foundation
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process-based: 

• after any machine instruction, 
only in case of non-blocking 
synchronisation 

• at selected preemption points, 
otherwise 

event-based: 

• at selected preemption points, 
continuations assumed 

• else, never in kernel space

Multitasking

depending on the 
level of abstraction 

lower latency

higher latency
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one stack per instance

one stack per kernel



Parallelism

depending on the 
kind of rootedness

X
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process-based: 

• the kernel is established by a 
non-sequential program 

• partial virtualisation operates 
above instruction set 
architecture (ISA) level 

event-based: 

• the kernel is established by a 
“semi-sequential” program 

• partial virtualisation operates 
above kernel level, only

Parallelism

depending on the 
kind of rootedness

deep parallelism

flat parallelism

X

contd.

© Deutsches Technikmuseum



Timing
Scheduling interference
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☛ factual knowledge

☛ strong estimates

Sharing

depending on the 
type of resource
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process scheduling: 

• sequencing of actions 

• at intended/actual moment 
of resource provisioning 

process synchronisation: 

• sequencing of actions 

• at intended/actual moment 
of resource access 



General semaphore
procedure acquire(sema)

sema.load ⇽ sema.load - 1
if sema.load < 0 then

enlist(self, sema.list)
block

end if
end procedure

procedure release(sema)
sema.load ⇽ sema.load + 1
if sema.load ≤ 0 then

next ⇽ delist(sema.list)
ready(next)

end if
end procedure

wrong
reading

priority 
violation

lost 
wake-up

the tip of the iceberg…
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Relinquish processor
function quest(pool)

repeat
next ⇽ elect(pool)
if next = 0 then

halt
end if

until next ≠ 0
return next

end function

procedure block
self.trim ⇽ BLOCKED
next ⇽ quest(R2R)
if next = self then

gauge(self)
else

seize(next)
end if

end procedure

lost 
wake-up

priority 
falsification

double 
personality

trials and tribulations of switching processes…
19



Broad brush approach
• multilateral blocking synchronisation: mutual exclusion
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procedure acquire(sema)
atomic zone(sema) do

…
end atomic

end procedure

procedure release(sema)
atomic zone(sema) do

…
end atomic

end procedure

priority 
violation

double 
personality

6 x dito

priority 
inversion

lost 
wake-up

priority 
falsificationblocking 

time
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Non-blocking synchronised
procedure acquire(sema)

enlist(self, sema.list)
if FAA(sema.load, -1) ≤ 0 then

block
else

unlist(self)
end if

end procedure

procedure release(sema)
if FAA(sema.load, 1) < 0 then

next ⇽ delist(sema.list)
ready(next)

end if
end procedure

21

priority 
violation

double personality

no 
blocking 

time!

no 
priority 

inversion!

no lost 
wake-up!

priority 
falsification



Ease of being

processes may appear ‘closer’ 
then they are 

• double personality 

• logically blocked or ready 

• but physically running 

➡ known from idle loop, e.g. 

• priority violation 

• unlike queuing disciplines 

➡ follow scheduling order

X
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Reconsider decisions
a resuming process has to incur 
liability to back-pedal 

• priority falsification 

• process dispatching never 
happens indivisible! 

• low-urgent process can lag 
medium-urgent process 

• raise a ‘process obligation’ 

• check for a pending higher 
urgent process  

• if any, relinquish processor
X



Non-blocking synchronised
procedure acquire(sema)

enlist(self, sema.list)
if FAA(sema.load, -1) ≤ 0 then

block
else

unlist(self)
end if

end procedure

procedure release(sema)
if FAA(sema.load, 1) < 0 then

next ⇽ delist(sema.list)
ready(next)

end if
end procedure
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scheduling 
order

set of states

no 
blocking 

time!

no 
priority 

inversion!

no lost 
wake-up!

process 
obligation

✔

✔✔

contd.



resource 
m

anagem
ent

• a glimpse under the surface: 
6 resource assignment 
5 basic process control 
4 priority control 
3 process scheduling 
2 process dispatching 
1 processor control 
0 elementary operations
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Non-blocking & wait-free
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An unmöglichen Dingen 
soll man selten verzweifeln, 
an schweren nie. (Goethe)

One should never despair of 
impossible things, never of 

serious ones. (Goethe)



Interference
• almost prevented when using 

non-blocking synchronisation 

• atomic read-modify-write 
machine instructions 

• cooperation with hardware 

• non-trivial remaining issue is 
data-structure handling 

• prevent bad alignment and 
false sharing 

• cache (d)effects

24
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Interference
process synchronisation is not 
the only problem area: 

• it is always simply a means to 
an end  

• coordination 

• communication 

• integrity preservation 

• consistency safekeeping 

• operating-system noise breeds 
trials and tribulations

25

contd.
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Consistency safekeeping
fresh from the operating-system 
kitchen, just one example: 

• page-table maintenance for 
multi-core systems  

• shared memory 

• replicated page descriptors 

• translation lookaside buffer 
(TLB) handling 

• inter-processor interrupt (IPI), 
the root of all evil

26
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address-space
isolation on

address-space
isolation off



–David Parnas, 1979*

“Some users may require only a subset of the 
services or features that other users need. 
These ‘less demanding’ users may demand 

that they not be forced to pay for the resources 
consumed by the unneeded features.” 

*Designing Software for Ease of Extension and Contraction, IEEE TSE, vol. SE-5, no. 2

28

Address-space isolation 
‘on demand’



Energy
Efficient operation
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In animation order:
1. Energy has always been a precious and scarce resource, but it has gained more and more esteem only in the last decades.
2. This applies in particular to machine giants for high-performance computing, big-data processing, or Bitcoin production. A single Bitcoin transfer today 

(2018) needs as much power as a US citizen in a week with 250 kilowatt hours. Or for example Iceland, where Bitcoin mining operations will use around 
840 gigawatt hours of electricity to supply the data centres while all the homes together merely spend around 700 gigawatt hours every year.

3. But it also applies to machine dwarves like smart dust, wearable computers, microcontrollers, and especially to the countless devices that make the 
Internet of Things. Small cattle makes a mess, in other words, the energy needs of those small-scale computers in their entirety is in no way inferior to 
the supercomputer.



Prediction protects  
against nasty surprise

hardware converts energy — but 
software determines how much 

• estimate software-induced 
energy demand 

• basic-block level 
➡ static program analysis 

• useful quantification requires 
suitable hardware models  

• where to take, if not steal? 
➡ machine learning
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Energy-aware programming
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Behind energy-aware programming is a multi-phase and cross-cutting approach for the resource-saving operation of a computing system as to energy 
need and reserve. It is based on:
1. static and dynamic program analysis to determine the energy demand of selected processes,
2. a tooling infrastructure for the development of proactive energy-aware programs and multi-variant energy demand analysis,
3. an operating-system executive that aims at reducing the energy need of processes in a cross-layer manner, and
4. an integrated energy measurement method supplemented by a suitable auxiliary device for lossless demand recording.
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Accumulate knowledge
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At the beginning is the as far as possible automatic extraction of knowledge for the expected energy demand of the programs intended for execution. This 
step is similar to the WCET analysis common for real-time systems, but has its focus on the worst-case energy demand, not execution time, of the 
examined programs. Incomplete knowledge from source-code analysis, such as loop bounds or specific system parameters, is completed with application- 
as well as configuration-dependent model information. This way, the unknowns declared by source-code annotations are resolved in the subsequent static 
program analysis step.
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Quantify needs
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In animation order:
1. Energy needs are recorded, estimated, and measured, respectively, at basic-block level. The execution number of each basic block is determined by 

(static/dynamic) program analysis.
2. As far as timing is concerned, the corridor for the execution time is extrapolated using the processor cycles of each instruction.
3. For the derived unit of energy, similar is been done to obtain the parameter for a particular basic block.
4. However, while the processor cycles expected per instruction are obtained simply by reading data sheets, the corresponding energy need in nanojoules 

is to be determined by elaborate measuring.



Involve peripherals
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But all these on internal things oriented investigations are far from sufficient without taking the peripherals (in the broadest sense) as to the likewise given 
use case into account.

Further explanation in animation order.



Where the shoe pinches

prediction stands and falls with 
demand details 

• internal characteristic 
• CPU, main memory, … 

• external characteristic  
• peripherals 

no hands no biscuits — without 
energy model no estimate 

• measure by hand 

• machine learning

36
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Empirical data acquisition

37

1. measure power demand at 
basic-block level 

2. automate process to create a 
representative data set  

3. generate energy model using 
a deep neural network

www4.cs.fau.de/Research/MeasureAlot
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Energy awareness pays off…
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Further explanation in animation order:

…but this does not mean to save energy!

The price curve is a calculation of the energy supplier. Incoming quantities of power supply from available energy sources are linked to outgoing quantities 
of power demand by end-use customers, and from this a price is formed. Oversupply results in a „negative price“, which then is an incentive to sustained 
power consumption for grid stability— due to the lack of storage capacity for excess power from renewable energy sources.

Addendum:

Conventional power plants (non-renewable energy sources, orange/middle curve) are set to specified operating points, which are influenceable 
parameters. These points depend not only on the day of the week and the expected system load, but also on the weather report. Conventional power 
generation is falling sharply over the weekend, as (1) the weather forecast predicted sun and wind and (2) the expected system load was low for that time.

Addition of renewable energy sources (blue/upper curve) brings a nearly uniform up and down of power supply. At night the regenerative sources provide 
their minimum and the share of conventional energy sources increases in order to satisfy the demand of the end-use customers. The proportion of 
regenerative sources hardly fluctuates and is only a few gigawatts.

At the weekend, the skewer rotates: regenerative sources deliver record values, which is why conventional power generation is reduced. At this time, 
however, system load is low as industry pauses. For reasons of grid stability, negative prices are offered as an incentive for further power take-up.



Summary
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Daß dies mit Verstand geschah
war Herr Lehrer Lämpel da.

Of this wisdom an example 
To the world was Master Laempel.

(Max and Moritz — A Juvenile History in Seven Tricks by Wilhelm Busch, here: Fourth Trick)



Predictability…

... is always subject to the underlying assumptions being 
made and relates to the dimensions along which real-
time systems can be categorized* 
• deadlines (granularity, strictness), laxities for tasks 
• reliability requirements 
• system size, interaction, environmental characteristics 

• design for predictability is an overarching aspect that 
crosscuts the whole computing system

*J. A. Stankovic, K. Ramamritham, What is Predictability for Real-Time Systems?, 1990
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