Konfigurierbare Systemsoftware
(KSS)

VL 2 — Software Product Lines

Daniel Lohmann

Lehrstuhl fiir Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universitat
Erlangen-Nirnberg

SS 13 - 2013-04-25

http://wwwé4.informatik.uni-erlangen.de/Lehre/SS13/V_KSS

O

Agenda

2.1 Motivation: The Quest for Variety
2.2 Introduction: Software Product Lines
2.3 Case Study: i4Weathermon

2.4 Problem Space

2.5 Solution Space

2.6 References

0 ©dl KSS (VL 2 | SS13) 2 Software Product Lines 2-3

About this Lecture

Problem Space)

Features and Dependencies
&
. y —

S/

Configuration E; o Variant
RRRREER // ntended : acual System User
A / properties \\ implementation ~
/\ Specific Problem Specific Solution /\

o ©dl KSS (VL 2| SS13) 2 Software Product Lines

Agenda

2.1 Motivation: The Quest for Variety
Model Car Industry
Challenges

0 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.1 Motivation: The Quest for Variety

Model Car Industry: Variety of an BMW X3 Model Car Industry: Variety Increase

® In the 1980s: little variety
= Option to choose series and maybe a few extras (tape deck, roof rack)

= A single variant (Audi 80, 1.3l, 55 PS) accounted
for 40 percent of Audi's total revenue

m Twenty years later: built-to-order

» Audi: 102° possible variants
m Roof interior: 90000 variants available ¢¢ varianten sind ein = BMW: 1032 possible variants
wesentlicher Hebel fiir das . :

. . . = At average there are 1.1 equal instances of an Audi A8 on the street
m Car door: 3000 variants available Unternehmensergebnis 79 9 q

. . Franz Decker (BMW Group) <+ Product lines with fully automated assembly
® Rear axle: 324 variants available

0 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.1 Motivation: The Quest for Variety 2-5 0 ©dl KSS (VL 2 uSENS) 2 Software Product Lines|2.1 Motivation: The Quest for Variety 2-6

optional, independent

33 features

'opt-iona‘i, independent

. more-variants than .

the universe! . -

one individual variant

for each human being

Typical Configurable Operating Systems...

5000 fesire

14000 features

Agenda

2.2 Introduction: Software Product Lines
Terms and Definitions
SPL Development Process
Our Understanding of SPLs

O ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.2 Introduction: Software Product Lines

Challenges

- % Problem Space)
Domain Expert -

R
e __Il

Features and Dependencies/

® How to implement this
variability in the code?

@ How to identify the
actually desired variability?

® How to map variability
options to the code?

® How to express the
intended variability?

O ©dl KSS (VL 2| SS13) 2 Software Product Lines | 2.1 Motivation: The Quest for Variety 2-10

Definition: (Software) Product Line, Feature

Product Line (Withey) (Definition 1)

€¢ A product line is a group of products sharing a common, managed set
of features that satisfy the specific needs of a selected market.)

Withey 1996: Investment Analysis of Software Assets for Product Lines [12]

Software Product Line (SEI) (Definition 2)

¢ A software product line (SPL) is a set of software-intensive sys-
tems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way. 79

Northrop and Clements 2001: Software Product Lines: Practices and Patterns [8]

Remarkable:

SPLs are not motivated by technical
similarity of the products, but by feature
similarity wrt a certain market

2-11 0 ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.2 Introduction: Software Product Lines 2-12

Definition: (Software) Product Line, Feature

Product Line (Withey)

¢¢ A product line is a group of products sharing a common, managed set
of features that satisfy the specific needs of a selected market.)

(Definition 1)

Withey 1996: Investment Analysis of Software Assets for Product Lines [12]

Software Product Line (SEI)

¢ A software product line (SPL) is a set of software-intensive sys-
tems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way. 99

(Definition 2)

Northrop and Clements 2001: Software Product Lines: Practices and Patterns [8]

Feature (Czarnecki / Eisenecker)

€¢ A distinguishable characteristic of a concept [...] that is relevant to
some stakeholder of the concept. 9

(Definition 3)

Czarnecki and Eisenecker 2000: Generative Program-
ming. Methods, Tools and Applications [3, p. 38]

O ©dl

SPL Development Reference Process

KSS (VL 2 | SS13) 2 Software Product Lines|2.2 Introduction: Software Product Lines 2-12

1]

evolution & feedback
2 Y 4
S existing code &] i i
(EB o knowledge Domain Domain Domain
3 -g) Analysis Design Implementation
© <
[}
[0} { Terminology & i ;i Reference i
(19) i Requirements | i Architecture : ™
o] it HAC@ADINitY eeeeseresenpeneneenennest traceability
>
S £ y y A j
T3 Application Application Application
= £ specific i i i
S requrements Analysis Design Implementation
T 5
application engineering — tailoring J
O ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.2 Introduction: Software Product Lines 2-14

The Emperors New Clothes?

(Definition 4)
€¢ Program families are defined [...] as sets of programs whose common

properties are so extensive that it is advantageous to study the common
properties of the programs before analyzing individual members.)9

Program Family

Parnas 1976: “On the Design and Development of Program Families” [10]

m Most research on operating-system families from the '70s would
today qualify as work on software product lines [2, 4, 5, 9-11]

= Program Family = Software Product Line

m However, according to the definitions, the viewpoint is different
m Program family: defined by similarity between programs
m SPL: defined by similarity between requirements
= A program family implements a software product line

— Solutions
— Problems

B |n current literature, however, both terms are used synonymously
m Program Family <= Software Product Line

O ©dl KSS (VL 2| SS13) 2 Software Product Lines | 2.2 Introduction: Software Product Lines 2-13

Our understanding: Configurable System Software

Configurability (Definition 5)
Configurability is the property that denotes the degree of
pre-defined variability and granularity offered by a piece of system

software via an explicit configuration interface.

m Common configuration interfaces

m Text-based: configure script or configure.h file (GNU tools)
- configuration by commenting/uncommenting of (preprocessor) flags
- no validation, no explicit notion of feature dependencies
m Tool-based: KConfig (Linux, busybox, CiAQ, ...), ecosConfig (eCos)
- configuration by an interactive configuration editor
- formal model of configuration space, hierarchical features
- implicit/explicit validation of constraints

O ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.2 Introduction: Software Product Lines 2-15

Configurable SPL Reference Process

evolution & feedback v
[o)]
AS
S'< existing code &)
g 8 knowledge Domain
S < Analysis
ST D
IS
[}
) R Y.
D i Terminology Reference
% i Requirements i Architecture ; -
] E ty + traceability
S .g Y)
= _t /7
g9 Application ////;%’{// /
= g specific i onfiguratio / """"""
S5 remamens _AnGIYSIS _ Configuratio %
T @
application engineering — configuring)
©dl KSS (VL 2 | SS13) 2 Software Product Lines | 2.2 Introduction: Software Product Lines 2-16

The i4WeatherMon Weather Station [7]

A typical embedded system
m Several, optional sensors
- Wind
— Air Pressure
— Temperature
m Several, optional actuators
(here: output devices)
- LCD
— PC via RS232
- PCvia USB
To be implemented as a product line

Barometer: Pressure + Display
Thermometer: Temperature + Display
Deluxe: Temperature + Pressure

+ Display + PC-Connection

Outdoor: <as above> + Wind

Display

O ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.3 Case Study: i4Weathermon 2-18

2.3 Case Study: i4Weathermon

O ©dl KSS (VL 2| SS13) 2 Software Product Lines | 2.3 Case Study: i4Weathermon

The i4WeatherMon Software Product Line

C version — solution space
0O version — solution space
AO version — solution space
family model component
m repository
~ @ WeatherMon (A0)

< i sensors
b 8 Temperature

~ @ Pressure
© hasFeature(‘demo_wm_Pressure’)

» @ps:class: pressre @ Display.<pp

@ Requirss: anslogoaelConvagael—> B0ipiayah
Elpsfile: Pressure.h L —» [9DS1621.cpp

e b @ ps:aspect: PressureHanding —> [@os1s21h -
b 8 :Wind Speed © O akefle
~ @ps:aspect: Display [@ Pressure.cpp
¥ hasFeature(‘demo_wm_Displ @pressure h
E)ps:le: Display.ah P sensorh

E)ps:fe: Display.cpp
» #: PC Connecti

Feature Models | i Family Models| H

configuration

feature model variant

=« 1 AVR Weather Monitor [Root] o
= v § Sensors [demo_wm_Sensors]
@ X Temperature [demo_um_Temperature]
L% Wind Speed [demo_wm_wind]
|~ ¥ Air Pressure [demo_wm_Pressure]
| ™ I Display [demo_wm_Display]
= [J% PC Connection [PC_Connection]

B Fecture Models | 8 Famly Hodels

0 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.3 Case Study: i4Weathermon

2-17

[7]

2-19

Agenda

2.4 Problem Space
Domain Analysis
Feature Modelling

©dl KSS (VL 2 | SS13) 2 Software Product Lines | 2.4 Problem Space 2-20

Domain Analysis

O ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.4 Problem Space 2-22

existing code domain domain
. —_——>
expert knowledge anaIyS|s model

Domain Scoping
m Selection and processing of domain knowledge

m Restriction of diversity and variety

Domain Modelling
m Systematic evaluation of the gained knowledge

m Development of a taxonomy

~> Domain Model (Definition 6)

¢¢ A domain model is an explicit representation of the common and the
variable properties of the system in a domain, the semantics of the prop-
erties and domain concepts, and the dependencies between the variable
properties.)

Czarnecki and Eisenecker 2000: Generative Pro-
gramming. Methods, Tools and Applications [3]

0 ©dl KSS (VL 2| SS13)

Challenges

- % Problem Space)

Domain Expert

Features and Dependencies/

©® How to identify the
actually desired variability?

® How to express the
intended variability?

® How to implement this
variability in the code?

O How to map variability
options to the code?

2 Software Product Lines|2.4 Problem Space

Elements of the Domain Model

m Domain definition specifies the scope of the domain
m Examples and counter examples

= Rules for inclusion/exclusion of systems or features

®m Domain glossary defines the vocabulary of the domain
m Naming of features and concepts

m Concept models describe relevant concepts of the domain
m Formal description (e.g., by UML diagrams)
m Textual description

= Syntax and semantics

® [eature models describe the common and
variable properties of domain members

m Textual description

m Feature diagrams

0 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.4 Problem Space

2-21

2-23

l4WeatherMon: Domain Model (simplified)

Domain Definition: i4WeatherMon

= The domain contains software for the
depicted modular hardware platform. ;,<\

. Sensors
Future version should also support new “ﬁ&
sensor and actuator types (humidity, ;
alarm, ...).

m The externally described application
scenarios thermometer, PC, outdoor, ...
shall be supported.

The i4WeatherMon controller software is shipped in the flash memory of
the 1 C and shall not be changed after delivery.

= The i4WeatherMon shall be usable with all versions of the PC Weather
client software.

©dl KSS (VL 2|SS13)

|4\WeatherMon: Domain Model (simplified)

2 Software Product Lines | 2.4 Problem Space 2-24

Concept Models: i4WeatherMon

m XML Protocol: The following DTD specifies the format used for data
transmission over a PC Connection:
<!ELEMEMENT weather ...> ...

s SNG Protocol: Wind, temperature and air pressure data are encoded
into 4 bytes, sequentially transmitted as a 3-byte datagram over a PC
Connection as follows:

s PC Connection ...

©dl KSS (VL 2| SS13)

2 Software Product Lines|2.4 Problem Space 2-26

l4WeatherMon: Domain Model (simplified)

Domain Glossary: i4WeatherMon

m PC Connection: Optional communication channel to an external PC for
the sake of continuous transmission of weather data. Internally also used
for debug purposes.

Sensor: Part (1 or more) of the i4WeatherMon hardware that measures
a particular weather parameter (such as: temperature or air pressure).

= Actuator: Part (1 or more) of the i4WeaterMon hardware that
processes weather data (such as: LCD).

= XML Protocol: XML-based data scheme for the transmission of
arbitrary weather data over a PC Connection.

= SNG Protocol: Binary legacy data scheme for the transmission of wind,
temperature and air pressure data only over a PC Connection. The data
scheme is used by versions < 2.0 of PC Weather.

©dl KSS (VL2 |SS13)

2 Software Product Lines | 2.4 Problem Space 2-25
Challenges
e Problem Space

Features and Dependencies/

.

® How to identify the
actually desired variability?

©® How to implement this

variability in the code?

® How to map variability
options to the code?

® How to express the
intended variability?

0 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.4 Problem Space 2-27

Feature Models

Describe system variants by their commonalities and differences
m Specify configurability in terms of optional and mandatory features

m Intentional construct, independent from actual implementation

Primary element is the Feature Diagram:
= Concept (Root)
= Features

m Constraints

l Car body l l Transmission l Pulls trailer

composition rule:

Pulls trailer requires Combustion

l Automatic l l Manual l l Electric l l Combustion l

rationle: ‘
Manual more energy efficient

Complemented by textual descriptions
= Definition and rationale of each feature

= Additional constraints, binding times, ...

©dl KSS (VL 2 | SS13) 2 Software Product Lines | 2.4 Problem Space 2-28

Feature Diagrams — Language [3]

Syntactical Elements (b) Optional features
f1, f2 can be included
if their parent feature C'

is selected.

A shallow dot o indicates
an optional feature:

V= {(C)7 (C7 f1)7 (C, f2)7
(Cv fl’ fZ)}

(a) Mandatory fea-
tures f; and f, have
to be included if their
parent feature C' is se-
lected.

(b) Optional features
f1. f2 can be included
if their parent feature C'
is selected

(c) Mandatory fea-
ture f; has to be in-
cluded, optional fea-
ture f> can be included
if their parent feature C'
is selected

(d) Exactly one alter-
native feature f) or fo
has to be included if the
group’s parent feature
C is selected.

(e) At most one op-
tional alternative fea-
ture f; or f, can be
included if the group's
parent feature C' is se-
lected.

(f) Not used.
Equivalent to (e)

(g9) At least one cu-
mulative feature fy, fo
has to be included if the
group’s parent feature

C is selected.

(h) Not used.
Egivalent to (b).

(i) Not used.
Equivalent to (b)

O ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.4 Problem Space 2-29

Feature Diagrams — Language [3]

Syntactical Elements

The filled dot e indicates a
mandatory feature:
V= {(Cv fl’ f2)}

(a) Mandatory fea-
tures f; and fy have
to be included if their
parent feature C' is se-
lected.

(a) Mandatory fea-
tures f; and fo have
to be included if their
parent feature C' is se-
lected.

(b) Optional features
Jf1. f2 can be included
if their parent feature C'
is selected.

(c) Mandatory fea-
ture f; has to be in-
cluded, optional fea-
ture f5 can be included
if their parent feature C'
is selected

(d) Exactly one alter-
native feature f or f,
has to be included if the
group's parent feature
C is selected

(e) At most one op-
tional alternative fea-
ture fi or fy can be
included if the group’s
parent feature C'is se-
lected

(f) Not used.
Equivalent to (e).

(9) At least one cu-
mulative feature fy, f
has to be included if the
group’s parent feature

C'is selected

(h) Not used.
Eqivalent to (b)

(i) Not used.
Equivalent to (b)

[]

0 ©dl KSS (VL 2| SS13) 2 Software Product Lines | 2.4 Problem Space 2-29

Feature Diagrams — Language [3]

Syntactical Elements (c) Mandatory fea-
ture f; has to be in-
cluded, optional fea-
ture f> can be included
if their parent feature C'

is selected.

Of course, both can be
combined:
V={(Ch),(C f,r)}

(b) Optional features
f1. f2 can be included
if their parent feature C'
is selected.

(c) Mandatory fea-
ture f; has to be in-
cluded, optional fea-
ture f5 can be included
if their parent feature C'
is selected

(a) Mandatory fea-
tures f; and fy have
to be included if their
parent feature C' is se-
lected.

(e) At most one op-
tional alternative fea-
ture f; or f» can be
included if the group’s
parent feature C' is se-
lected.

(F) Not used.
Equivalent to (e)

(d) Exactly one alter-
native feature f; or fo
has to be included if the
group’s parent feature
C'is selected.

(h) Not used.
Egivalent to (b)

(i) Not used.
Equivalent to (b).

(g9) At least one cu-
mulative feature fy, fo
has to be included if the
group's parent feature

Cis selected.

O ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.4 Problem Space 2-29

Feature Diagrams — Language

3]

Syntactical Elements

The shallow arc & depicts
a group of alternative
features:

V= {(C7 fl)7 (Ca f2)}

(a) Mandatory fea-
tures f; and f» have
to be included if their
parent feature C' is se-
lected.

(d) Exactly one alter-
native feature f, or f,
has to be included if the
group’s parent feature
C'is selected

(g) At least one cu-
mulative feature f;, fo
has to be included if the
group’s parent feature

C'is selected.

(b) Optional features
f1, fo can be included
if their parent feature C'
is selected

(e) At most one op-
tional alternative fea-
ture f; or f; can be
included if the group’s
parent feature C is se-
lected

(h) Not used.
Eqivalent to (b)

(d) Exactly one alter-
native feature f; or f
has to be included if the
group's parent feature
C'is selected.

(c) Mandatory fea-
ture f; has to be in-
cluded, optional fea-
ture f5 can be included
if their parent feature C'
is selected.

(f) Not used.
Equivalent to (e)

(i) Not used.
Equivalent to (b)

O ©dl KSS (VL 2| SS13) 2 Software Product Lines | 2.4 Problem Space

Feature Diagrams — Language

2-29

3]

Feature Diagrams — Language [3]

(e) At most one op-
tional alternative fea-
ture f; or fu can be
included if the group’s
parent feature C is se-
lected.

Syntactical Elements

The shallow arc & depicts
a group of alternative
features:
V={(0),(C,h),(C,H)}

(a) Mandatory fea-
tures fi and fo have
to be included if their
parent feature C' is se-
lected.

(b) Optional features
Jf1. f2 can be included
if their parent feature C'
is selected.

(c) Mandatory fea-
ture f; has to be in-
cluded, optional fea-
ture f5 can be included
if their parent feature C'
is selected

(f) Not used.
Equivalent to (e).

(e) At most one op-
tional alternative fea-
ture f; or f, can be
included if the group’s

(d) Exactly one alter-
native feature f or f,
has to be included if the
group's parent feature
C is selected

(h) Not used.
Eqivalent to (b)

(i) Not used.
Equivalent to (b)

(9) At least one cu-
mulative feature fy, f
has to be included if the
group’s parent feature

C is selected

O ©dl KSS (VL 2| SS13) 2 Software Product Lines | 2.4 Problem Space 2-29

Syntactical Elements

The filled arc & depicts a
group of cummulative
features: V = {(C, 1), (C,

(g) At least one cu-
mulative feature f1, fo
has to be included if the
group's parent feature
C'is selected.

[4\WeatherMon: Feature Model

f2)’ (Cv fi, f2)}

(a) Mandatory fea-
tures f; and f, have
to be included if their
parent feature C' is se-
lected.

(d) Exactly one alter-
native feature f) or fo
has to be included if the
group’s parent feature
C is selected.

(g) At least one cu-
mulative feature fy, fo
has to be included if the
group's parent feature

C'is selected.

(b) Optional features
f1. f2 can be included
if their parent feature C'
is selected

(e) At most one op-
tional alternative fea-
ture f; or f, can be
included if the group's
parent feature C' is se-
lected.

(h) Not used.
Egivalent to (b).

(c) Mandatory fea-
ture f; has to be in-
cluded, optional fea-
ture f> can be included
if their parent feature C'
is selected

(F) Not used.
Equivalent to (e)

(i) Not used.
Equivalent to (b)

O ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.4 Problem Space

2-29

O ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.4 Problem Space 2-30

WeatherMon

Sensors

- l Alarm l l Display l l PC Connection l l Temperature l | Air Pressure | | Wind Speed | -

| RS232Line | | USBLine | [Protocol]

rationale: SNGProto provides

backwards compatibility to
existing client software SNGProto XMLProto

Challenges

. % Problem Space

Domain Expert

Features and Dependencies
.)

® How to implement this
variability in the code?

©® How to identify the
actually desired variability?

® How to map variability
options to the code?

® How to express the
intended variability?

O ©dl KSS (VL 2 | SS13) 2 Software Product Lines | 2.5 Solution Space 2-31

l4\WeatherMon: Reference Architecture

Functional decomposition (structure and process):

int main(Q) {
Weather data;
Sink sink;

| Weather: :measure() |

Temperature::
measure()

Pressure:: Wind::

e() e()

while(true) {

// aquire data
data.measure();

// process data

sink.process(data); Sink: :process(

waitQ;
}
} process_data process_data process_data
(Pressure) (Wind) (Temperature)
O ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.5 Solution Space 2-33

2.5 Solution Space
Reference Architecture
Implementation Techniques Overview
Variability Implementation with the C Preprocessor
Variability Implementation with OOP (C++)
Evaluation and Outlook

0 ©dl KSS (VL 2| SS13) 2 Software Product Lines | 2.5 Solution Space 2-32

Implementation Techniques: Classification

m Decompositional Approaches

Text-based filtering (untyped)

Configuration
':,\> (. — Preprocessors

Components Variant

m Compositional Approaches
— Language-based composition
mechanisms (typed)

0 R
03) > = — OOP, AOP, Templates

Components Variant

m Generative Approaches

Metamodel-based generation
of components (typed)
- MDD, C++ TMP, generators

Configuration [[[:]
" Templates Generator Variant

0 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.5 Solution Space 2-34

Implementation Techniques: Goals Implementation Techniques: The C Preprocessor

General m Decompositional Approaches
@ Separation of concerns (SoC)

— Text-based filtering (untyped)

o Confi i
® Resource thriftiness '&>] — Preprocessors (CPP)

Components Variant

Operational

® Granularity Components should be fine-grained. Each artifact should ei-

, : m Conditional compilation with the C Preprocessor (CPP) is
ther be mandatory or dedicated to a single feature only.

the standard approach to implement static configurability [6]

® Economy The use of memory/run-time expensive language features = Simplicity: the CPP “is just there”

should be avoided as far as possible. Decide and bind as much

as possible at generation time. = Economy: CPP-usage does not involve any run-time overhead
® Pluggability Changing the set of optional features should not require mod- . Prpminent especially in the domain of system software
ifications in any other part of the implementation. Feature (Linux 3.2: 85000 #ifdef Blocks +~ “#ifdef hell”)

implements should be able to “integrate themselves”.

® Extensibility The same should hold for new optional features, which may be
available in a future version of the product line.

O ©dl KSS (VL 2 | SS13) 2 Software Product Lines | 2.5 Solution Space 2-35 0 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.5 Solution Space 2-36

l4WeatherMon (CPP): Implementation (Excerpt) l4\WeatherMon (CPP): Implementation (Excerpt)

e A
struct Weather {

#ifdef cfWM_WIND
UIntle _w;
#endif

#ifdef cfWM_PRESSURE
-pi
#endif

#ifdef cfWM_TEMPERATURE
Int8 _t1;
UInt8 _t2;

#endif

#ifdef cfWM_STACK
unsigned int _maxstack;
#endif

Sensor integration cross-
cuts the central data
structure, an interaction
with a mandatory feature.

0 ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.5 Solution Space 2-37 O ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.5 Solution Space 2-37

|4WeatherMon (CPP): Implementation (Excerpt) |4\WeatherMon (CPP): Implementation (Excerpt)

// sensor processing h (" inline void XMLCon_process() { h .
inline void init sensors() { char vall 5 1;
””defs:;‘g”';i:‘i‘?((); Serial::send ("<?xml version=\"1.0\"?>\n" "<weather>\n");
#endif
#ifdef cfWM_WIND #ifdef cfWM_WIND
wind_init(); wind_stringval(val);
#endif XMLCon_data (wind_name(), val);
#endif
#ifdef cfWM_PRESSURE
pressure_init(); #ifdef cfWM_PRESSURE
#endif pressure_stringval(val);
XMLCon_data (pressure_name(), val);
#ifdef cfWM_TEMPERATURE #endif

temperature_init();
#endif #ifdef cfWM_TEMPERATURE
) temperature_stringval(val)
XMLCon_data (temperature_name(), val);
#endif

#ifdef cfWM_STACK
stack_stringval(val);
XMLCon_data (stack_name(), val);
#endif

Serial::send ("</weather>\n");

Sensor (and actuator)
integration both crosscut
the structure of the main
program, an interaction
) with a mandatory feature.

Sensor integration also
crosscuts actuator code,
an interaction between
optional features!

O ©dl KSS (VL 2 | SS13) 2 Software Product Lines | 2.5 Solution Space 2-37 0 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.5 Solution Space 2-37

l4WeaterMon (CPP): Evaluation Implementation Techniques: OOP

General

© Separation of concerns (SoC) Compositional Approaches

e R thrifti v !
FronreE e D@ Configuration mechanisms (typed)
| a0 = B | _ oop, AoP, Templ
Operational B , . Templates

x
|

— Language-based composition

) C t Variant
® Granularity (V) erponens e
- Components implement only the functionality of a single feature, m Object-oriented programming languages provide means for loose
but contain integration code for other optional features. coupling by generalization and OO design patterns
® Economy v ® Interfaces
- All features is bound at compile time. ~ type substitutability (optional/alternative features)
@ Pluggability 4 = Observer-Pattern
— Sensor integration crosscuts main program and actuator implementation. ~ quantification (cumulative feature groups)
@ Extensibility X = Implicit code execution by global instance construction
- New actuators require extension of main program. ~ self integration (optional features)

— New sensors require extension of main program and existing actuators.

0 ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.5 Solution Space 2-38 O ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.5 Solution Space 2-39

14\WeatherMon (OOP): Design (Excerpt) |4\WeaterMon (OOP): Evaluation

General
Weather Sink
registerSensor registerSensor() registerActuator() P y— @ Separation of concerns (SoC) v
measure() process()
o oL s
- L o ® Resource thriftiness ?
5 | e _actuators - PCConnection
5 3 s#send() Operational
g g
s m 4 ® Granularity 4
oo - Ev<_3ry component |s_e|th§r a base .class
id0 A or implements functionality of a single feature only.
Eeasure() SNGConnection
| name() before_process() L 0 Economy (V)
‘S’,'Z'tea,() cinterface cinterface after_process() - Run-time binding and run-time type information is used
o Sensor Actuator process()]
init() init() only where necessary to achieve SoC.
measure() before_process()
name() <------1 after_process() il
unit() i . ® Pluggability v
d;’ess‘"e ,Sr:(t-()‘/a’() init() Display - Sensors and actuators integrate themselve by design patterns
id(ini #print() H i
e e, g—— and global instance construction.
| name() process() T
unit() nit) ® Extensibility v
str_val() o " . .
i) Plug & Play” of sensor and actuator implementations.
O ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.5 Solution Space 2-40 ©dl KSS (VL 2| SS13) 2 Software Product Lines|2.5 Solution Space 2-41

l4WeaterMon: CPP vs. OOP — Footprint l4WeaterMon: CPP vs. OOP — Footprint

5632

5120 variant version text data bss stack =flash =RAM time (ms)
4608 Air Pressure, Display [1392 30 7 34 1422 71 1.21
__ 4096 — AO 1430 30 10 38 1460 78 1.21
Q
g =™ 00 2460 100 22 44 2560 166 1.29
T 3072
é 2560 Air Pressure, Display, o] 1578 104 7 34 1682 145 60.40
. o RS232Line, XMLProto AO 1622 104 12 38 1726 154 59.20
1536 00 3008 206 26 44 3214 276 60.80
1024 Air Pressure, Wind Speed, C 1686 38 14 55 1724 107 296
512 Display AO 1748 38 18 61 1786 117 2.96
384 OOP iS Way more eXpenSiVe! 00 3020 146 33 65 3166 244 3.08
352 . . Temperature, Display Cc 2378 28 8 34 2406 70 1.74
Requires a larger uC for each variant
320 : AO 2416 28 11 38 2444 77 1.73
288 [e]e] 3464 98 23 44 3562 165 1.82
Q
c% 256 — Temperature, Wind Speed, (o] 2804 90 17 35 2894 142 76.40
B 224 Air Pressure, RS232Line, AO 2858 90 23 41 2948 154 76.40
® 1% XMLProto 00 4388 248 39 41 4636 328 76.40
160
128 | . Temperature, Wind Speed, Cc 3148 122 17 57 3270 196 79.60
% Air Pressure, RS232Line, AO 3262 122 24 63 3384 209 77.60
4 ‘ ‘ ‘ ‘ ‘ XMLProto, Display 00 5008 300 44 67 5308 411 80.00
Air Pressure Air Pressure Air Pressure Temperature Temperature Temperature
Display Display Wind Speed Display Air Pressure Air Pressure
RS232Line Display Wind Speed Wind Speed
XMLProto RS232Line RS232Line
XMLProto XMLProto
C Version AO Version 00 Version Display ©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.5 Solution Space 2-43

Implementation Techniques: Summary

CPP: minimal hardware costs — but no separation of concerns

OOP: separation of concerns — but high hardware costs

OOP cost drivers

= Late binding of functions (virtual functions)
- Calls cannot be inlined (~ memory overhead for small methods)
— Virtual function tables
— Compiler always generates constructors (for vtable initialization)
— Dead code elimination less effective

= Dynamic data structures

m Static instance construction
— Generation of additional initialization functions
— Generation of a global constructor table
Additional startup-code required

©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.5 Solution Space 2-44

Referenzen

[1] Gunter Bockle, Peter Knauber, Klaus Pohl, et al. Software-Produktlinien:
Methoden, Einfiihrung und Praxis. Heidelberg: dpunkt.verlag GmbH, 2004. isbn:
3-80864-257-7.

[2] Fred Brooks. The Mythical Man Month. Addison-Wesley, 1975. isbn:
0-201-00650-2.

[3] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. Methods,

Tools and Applications. Addison-Wesley, May 2000. isbn: 0-20-13097-77.

[4] Edsger Wybe Dijkstra. “The Structure of the THE-Multiprogramming System”.
In: Communications of the ACM 11.5 (May 1968), pp. 341-346.

[5] Arie Nicolaas Habermann, Lawrence Flon, and Lee W. Cooprider.
“Modularization and Hierarchy in a Family of Operating Systems”. In:
Communications of the ACM 19.5 (1976), pp. 266—272.

[6] Jorg Liebig, Sven Apel, Christian Lengauer, et al. “An Analysis of the Variability
in Forty Preprocessor-Based Software Product Lines”. In: Proceedings of the

32nd International Conference on Software Engineering (ICSE '10). (Cape Town,

South Africa). New York, NY, USA: ACM Press, 2010. doi:
10.1145/1806799.1806819.

©dl KSS (VL 2 | SS13) 2 Software Product Lines|2.6 References 2-45

Implementation Techniques: Summary

CPP: minimal hardware costs — but no separation of concerns

OOP: separation of concerns — but high hardware costs

OOP cost drivers

= Late binding of functions (virtual functions)
- Calls cannot be inlined (~ memory overhead for small methods)
- Virtual function tables
- Compiler always generates constructors (for vtable initialization)
- Dead code elimination less effective

= Dynamic data structures
= Static instance construction Root of the problem:
- Generation of additional initializatior With OOP we have to use dynamic

~ Generation of a global constructor t language COMGERAS (20 achieve loose
Additional startup-code required coupling of static decisions.

~> AOP as an alternative.

©dl KSS (VL 2| SS13) 2 Software Product Lines|2.5 Solution Space 2-44

Referenzen (conq

[7]1 Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schroder-Preikschat. “Lean and
Efficient System Software Product Lines: Where Aspects Beat Objects”. In:
Transactions on AOSD [I. Ed. by Awais Rashid and Mehmet Aksit. Lecture
Notes in Computer Science 4242. Springer-Verlag, 2006, pp. 227—255. doi:
10.1007/11922827_8.

[8] Linda Northrop and Paul Clements. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. isbn: 978-0-201-70332-0.

[9] David Lorge Parnas. “On the Criteria to be used in Decomposing Systems into
Modules”. In: Communications of the ACM (Dec. 1972), pp. 1053-1058.

[10] David Lorge Parnas. “On the Design and Development of Program Families”. In:
IEEE Transactions on Software Engineering SE-2.1 (Mar. 1976), pp. 1-9.

[11] David Lorge Parnas. Some Hypothesis About the “Uses” Hierarchy for Operating
Systems. Tech. rep. TH Darmstadt, Fachbereich Informatik, 1976.

[12] James Withey. Investment Analysis of Software Assets for Product Lines.
Tech. rep. Pittsburgh, PA: Carnegie Mellon University, Software Engineering
Institute, Nov. 1996.

KSS (VL 2| SS13) 2 Software Product Lines|2.6 References 2-46

