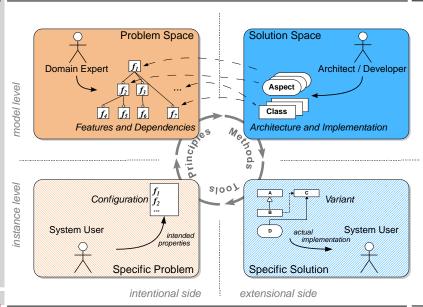
Konfigurierbare Systemsoftware (KSS)

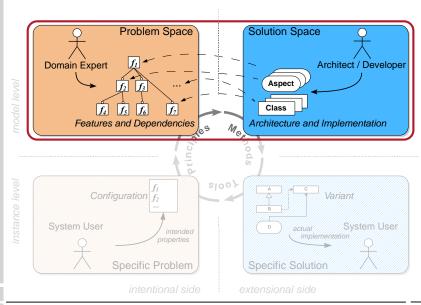
VL 5 – Variability Management in the Large: The VAMOS Approach

Daniel Lohmann


Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universität Erlangen-Nürnberg

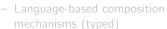
SS 13 - 2013-06-06


About this Lecture

(C) dl

About this Lecture

Implementation Techniques: Classification



Compositional Approa

Generative Approaches

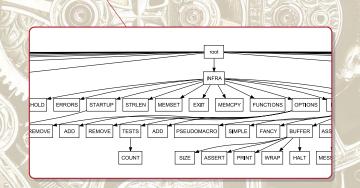
- L-based generation

(C) dI

Agenda

- 5.1 Motivation
- 5.2 Variability in Linux
- 5.3 Configuration Consistency
- 5.4 Configuration Coverage
- 5.5 Automatic Tailoring
- 5.6 Summary
- 5.7 References

33 features


one individual variant for each human being

320 features

more variants than atoms in the universe!

Typical Configurable Operating Systems...

1,250 ecos features

Typical Configurable Operating Systems...

1,250 ecos features

Challenges:

VAMOS*

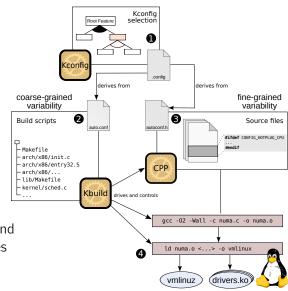
- How to maintain this?
- How to test this?
- Why so many features anyway?

* VAriability Management in Operating Systems

12,000 features

Agenda

- 5.1 Motivation
- 5.2 Variability in Linux Variability Implementation in Linux Challenges
- 5.3 Configuration Consistency
- 5.4 Configuration Coverage
- 5.5 Automatic Tailoring
- 5.6 Summary
- 5.7 References


The Linux Configuration and Generation Process

Configuration with an KCONFIG frontend

Compilation of a subset of files

Selection of a subset of CPP Blocks

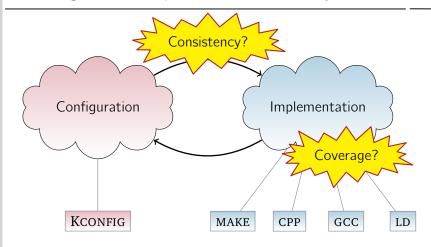
4 Linking of the kernel and loadable kernel modules

Dominancy and Hierarchy of Variability

<i>l</i> ₀ : Feature Modelling 12,000 feature
--

l ₁ : Coarse-grained: KBUILD	31,000 source files
---	---------------------

l₂: Fine-grained: CPP 89,000 #ifdef blocks

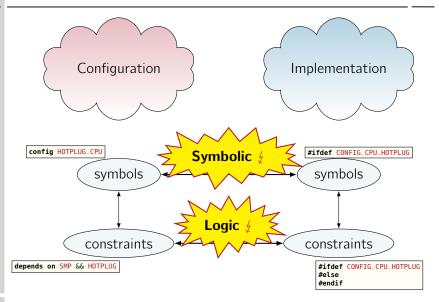

l₃: Lanugage-level: GCC \rightarrow if(CONFIG_SMP) ...

l₄: Link-time: LD → branches in linker scripts

: 15: Run-time: INSMOD, MODPROBE, ...

Challenges with Implemented Variability

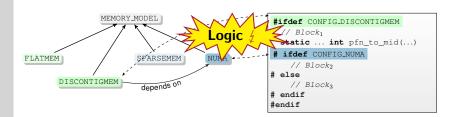
- Central declaration of configurability: KCONFIG
- Distributed implementation of configurability: MAKE, CPP, GCC, LD



Agenda

- 5.1 Motivation
- 5.2 Variability in Linux
- 5.3 Configuration Consistency Problem Analysis Solution Approach Results
- 5.4 Configuration Coverage
- 5.5 Automatic Tailoring
- 5.6 Summary
- 5.7 References

Problem Analysis: Configuration Consistency



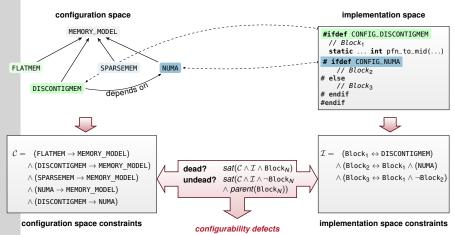
Problem Analysis: Symbolic Inconsistency

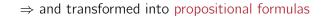
```
config HOTPLUG_CPU
    bool "Support for hot pluggable CPUs"
    depends on SMP && HOTPLNG
    ---help---
static int
  hotpluq_cfd(struct notifier_b\ock *nfb, unsigned long action, void *hcpu)
    // [...]
                                     Symbolic 4
          switch (action) {
          case CPU UP PREPARE:
          case CPU_UP_PREPARE_FROZEN:
      // [...]
#ifdef CONFIG CPU HOTPIUG
          case CPU UP CANCELED:
          case CPU_UP_CANCELED_FROZEN:
          case CPU DEAD:
                                                              Result:
          case CPU_DEAD_FR0ZEN:
                  free_cpumask_var(cfd->cpumask):
                                                             Fix for a
                  break:
                                                            critical bug
#endif
          return NOTIFY_OK;
```


Problem Analysis: Logic Inconsistency

- Feature DISCONTIGMEM implies feature NUMA
- Inner blocks are not actually configuration-dependent
 - Block₂ is always selected → undead
 - $Block_3$ is **never** selected \mapsto **dead**

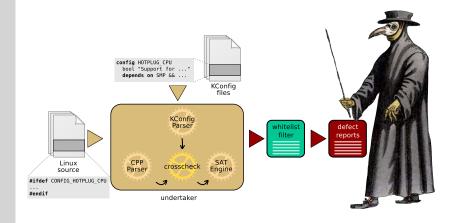
configurability defects


Linux contains superfluous #ifdef Blocks!


Result:Code cleanup

Solution Approach: Consistency Validation

Problem and solution space are analyzed for configuration points:



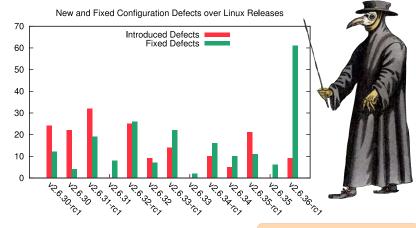
(c) dl

Implementation: The UNDERTAKER

Job: Find (and eventually bury) dead #ifdef-code!

Implementation: The UNDERTAKER

Job: Find (and eventually bury) dead #ifdef-code!


- We have found **1776** configurability defects in Linux v2.6.35
- Submitted 123 patches for 364 defects
- 20 are confirmed new bugs (affecting binary code)
- Cleaned up 5129 lines of cruft code

Implementation: The UNDERTAKER

Job: Find (and eventually bury) dead **#ifdef**-code!

How good is this, really?

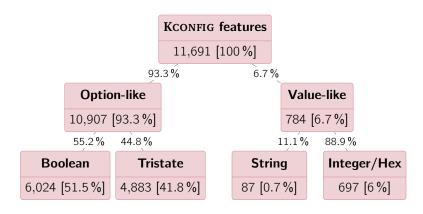
Agenda

- 5.4 Configuration Coverage Where Have All the Features Gone? Results Extracting Variability from KBUILD **Improvements**

Common Beliefs About Variability in Linux

• Most variability is expressed by boolean (or tristate) switches.

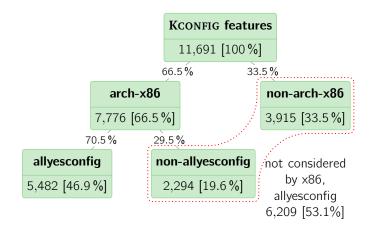
2 arch-x86 is the largest and allyesconfig selects most features.


3 Variability is mostly implemented with the CPP.

4 The Linux kernel is highly configurable.

Linux v3.1: Feature Distribution by Type

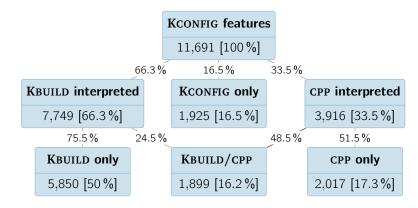
• Most variability is expressed by boolean (or tristate) switches



⇒ Almost all features in Linux are option-like

Linux v3.1: Coverage of arch-x86 / allyesconfig

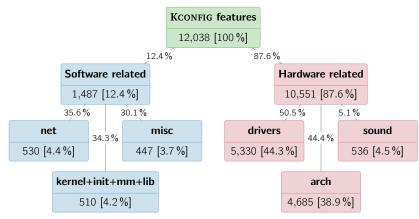
2 arch-x86 is the largest and allyesconfig selects most features



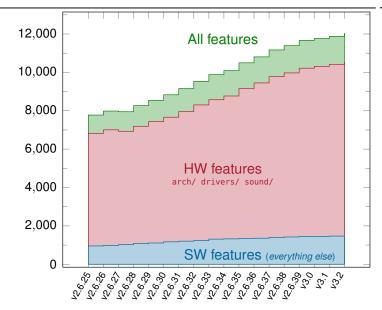
⇒ arch-x86/allyesconfig is not nearly a full configuration

Linux v3.1: Distribution by Granularity

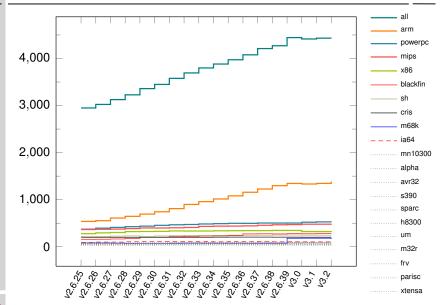
3 Variability is mostly implemented with the CPP



⇒ KBUILD implements more than two thirds of all variation points


Linux v3.2: Distribution by HW/SW

4 The Linux *kernel* is highly configurable

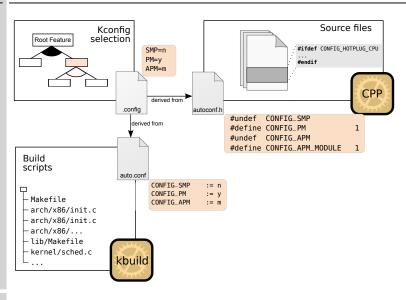


⇒ Software features account for only twelve percent of all variation points

Results: Where Have all the Features Gone?

- Most variability is expressed by boolean (or tristate) switches
 - more than 93 percent of all features are option-like
 - $\ensuremath{\sim}$ it is acceptable for tools to ignore value-type features
- 2 arch-x86 is the largest and allyesconfig selects most features
 - more than 53 percent are not covered by this configuration
 → other parts of Linux are probably less tested and error-prone!
- **3** Variability is mostly implemented with the CPP
 - more than 66 percent of all features are handled by the build system, only 17 percent are handled by CPP only
 → variability extraction from KBUILD is necessary
- **4** The Linux *kernel* is highly configurable
 - only 12 percent of all features configure software only
 - variability is mostly induced by advances in hardware
 complexity will increase further

Challenges: Variability Extraction from the Build System


- Variability extraction → which file is selected by which feature?
- Usual approach for variability extraction [6, 9] (KCONFIG, CPP, ...):

- Parsing does not work well for MAKE-languages
 - declarative and Turing-complete languages
 - special features, like shell, foreach, eval, addprefix, ...
- Linux's KBUILD is built on top of (GNU) MAKE
 - nevertheless, researchers have tried parsing to extract variability
 - KBUILDMINER by Berger, She, Czarnecki, et al. [1]
 - Nadi parser by Nadi and Holt [5]
 - resulting tools are too brittle at best
 - work for a (few) Linux version(s) only
 - each usage of a special feature requires manual tailoring

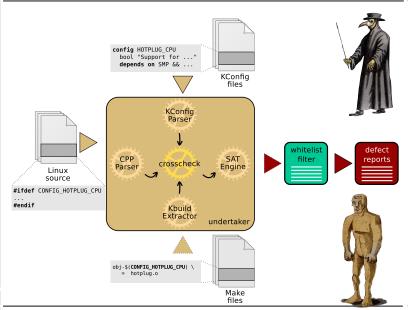
Linux Build Process Revisited

Variability Extraction from KBUILD with GOLEM

Basic idea: Systematic probing and inferring of implications

SPLC '12: Dietrich, et al. [2]

- Dancing Makefiles
- Identification of KCONFIG references
- Recursion into subdirectory while considering constraints
- Robust with respect to architecture and version
- ⇒ no adaptations on or for KBUILD!


```
obj-y += fork.o
obj-$(CONFIG_SMP) += spinlock.o
obj-$(CONFIG_APM) += apm.o
```

1-9	Kernelversion	found inferences	
	v2.6.25	6,274	(93.7%)
	v2.6.28.6	7,032	(93.6%)
	v2.6.33.3	9,079	(94.9%)
	v2.6.37	10,145	(95.1%)
	v3.2	11,050	(95.4%)
	The state of the s		

Case Study: Configuration Consistency

(C) dI

Case Study: Configuration Consistency

Configuration defects in Linux v3.2:

Without KBUILD cons	straints
---------------------	----------

Code defects 1835 Referential defects 415 Logical defects 83 Sum: Σ 2333

With KBUILD constraints

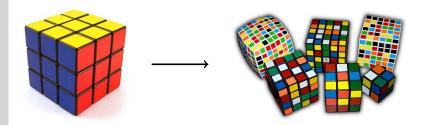
Code defects1835Referential defects439Logical defects299

Sum: Σ **2573**

Result: +10%

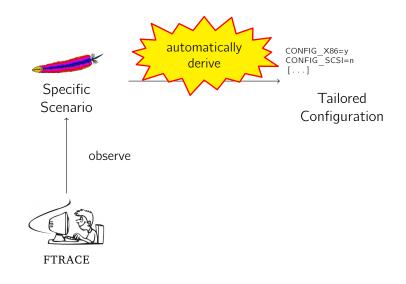
Agenda

- 5.1 Motivation
- 5.2 Variability in Linux
- 5.3 Configuration Consistency
- 5.4 Configuration Coverage
- 5.5 Automatic Tailoring

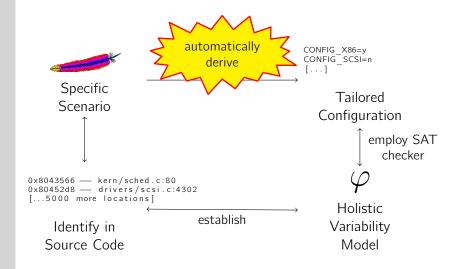

Results

- 5.6 Summary
- 5.7 References

Idea: Automated Tailoring of Linux


- Distribution kernels today come with a maximum configuration
- As side-effect, this maximizes the attack surface!
- Each use-case needs its specific, ideal configuration

→ Automatically derive an ideal configuration for a given use case.

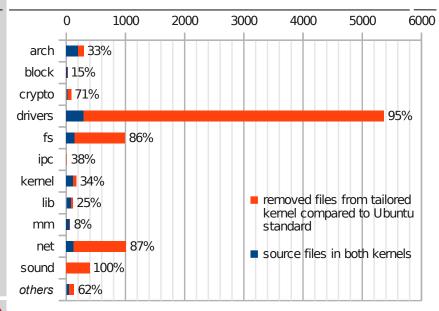

Approach

© dI

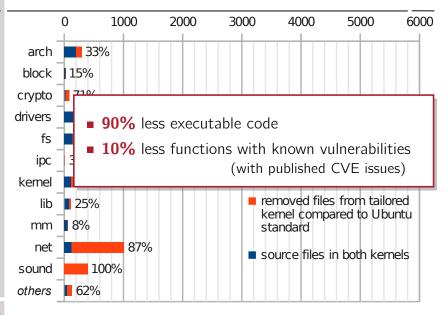
Approach

(C) dI

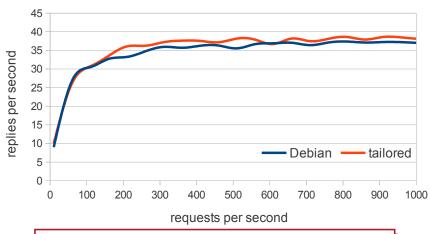
Evaluation


- Ubuntu 12.04 with Linux 3.2 kernel; two use cases
 - Web server setup with Apache, MySQL, PHP (LAMP)
 - Workstation setup with NFS (Desktop)
- Trace time: 15 min, running defined workload
 - LAMP: Google Skipfish ~> 5377 unique kernel functions
 - Desktop: iozone, bonnie++ ~> 6933 unique kernel functions
- Black and whitelist for manual tailoring
 - Blacklist: CONFIG FTRACE
 - Whitelist: CONFIG_UNIX, CONFIG_PACKET, CONFIG_DEVTMPFS, CONFIG_DEVTMPFS_MOUNT, CONFIG_ATA_PIIX, CONFIG_SATA_AHCI, CONFIG_ATA_GENERIC, CONFIG_DRM_I915_KMS, CONFIG_BLK_DEV_INITRD

		Tailored	Tailored
	Baseline	LAMP	${\sf Workstation}/{\sf NFS}$
Kernel size in Bytes	9,933,860	4,228,235 (44%)	4,792,508 (48%)
LKM total size in Bytes	62,987,539	2,139,642 (3%)	2,648,034 (4%)
Options set to 'y'	1,537	452 (29%)	492 (32%)
Options set to 'm'	3,142	43 (1%)	63 (2%)
Compiled source files	8,670	1,121 (13%)	1,423 (16%)



Evaluation: Reduction for LAMP



Evaluation: Reduction for LAMP

Evaluation: Performance Impact for LAMP

KSS (VL 5 | SS 13)

HotDep '12: Tartler, Kurmus, Ruprecht, Heinloth, Rothberg et al. [7]

- TCB is significantly smaller
- Easy to use: process is fully automated
- If necessary, the tailoring can guided with whitelists and blacklists
- Going further: Dynamic ASR

[4]

- Even if present: Who is allowed to call what ~ CFG analysis
- At runtime: Block illegal invocations.

Summary

- Real-world system software offers thousands of features
 - eCos: 1,250 features mostly induced by hardware! ■ Linux: 12.000 features
 - central declaration (ecosConfig, KCONFIG)
 - distributed, multi-paradigm implementation (MAKE, CPP, GCC, ...)
- This imposes great challenges for management and maintenance
 - how to ensure configurability consistency?
 - how to ensure configuration coverage?
 - how to keep pace with the constant feature increase?
- A strong call for adequate tool support $\mapsto VAMOS$
 - already found thousands and fixed hundreds of defects and bugs
 - more to come!

Referenzen

- [1] Thorsten Berger, Steven She, Krzysztof Czarnecki, et al. Feature-to-Code Mapping in Two Large Product Lines. Tech. rep. University of Leipzig (Germany), University of Waterloo (Canada), IT University of Copenhagen (Denmark), 2010.
- [2] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, et al. "A Robust Approach for Variability Extraction from the Linux Build System". In: Proceedings of the 16th Software Product Line Conference (SPLC '12). (Salvador, Brazil, Sept. 2–7, 2012). Ed. by Eduardo Santana de Almeida, Christa Schwanninger, and David Benavides. New York, NY, USA: ACM Press, 2012, pp. 21–30. ISBN: 978-1-4503-1094-9. DOI: 10.1145/2362536.2362544.
- [3] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, et al. "Understanding Linux Feature Distribution". In: *Proceedings of the 2nd AOSD Workshop on Modularity in Systems Software (AOSD-MISS '12)*. (Potsdam, Germany, Mar. 27, 2012). Ed. by Christoph Borchert, Michael Haupt, and Daniel Lohmann. New York, NY, USA: ACM Press, 2012. ISBN: 978-1-4503-1217-2. DOI: 10.1145/2162024.2162030.
- [4] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, et al. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring". In: Proceedings of the 20th Network and Distributed Systems Security Symposium. (San Diego, CA, USA, Feb. 24–27, 2013). The Internet Society, 2013. URL: http://www4.cs.fau.de/Publications/2013/kurmus_13_ndss.pdf.

Referenzen (Cont'd)

- [5] Sarah Nadi and Richard C. Holt. "Mining Kbuild to Detect Variability Anomalies in Linux". In: Proceedings of the 16th European Conference on Software Maintenance and Reengineering (CSMR '12). (Szeged, Hungary, Mar. 27–30, 2012). Ed. by Tom Mens, Yiannis Kanellopoulos, and Andreas Winter. Washington, DC, USA: IEEE Computer Society Press, 2012. ISBN: 978-1-4673-0984-4. DOI: 10.1109/CSMR.2012.21.
- [6] Julio Sincero, Reinhard Tartler, Daniel Lohmann, et al. "Efficient Extraction and Analysis of Preprocessor-Based Variability". In: Proceedings of the 9th International Conference on Generative Programming and Component Engineering (GPCE '10). (Eindhoven, The Netherlands). Ed. by Eelco Visser and Jaakko Järvi. New York, NY, USA: ACM Press, 2010, pp. 33–42. ISBN: 978-1-4503-0154-1. DOI: 10.1145/1868294.1868300.
- [7] Reinhard Tartler, Anil Kurmus, Bernard Heinloth, et al. "Automatic OS Kernel TCB Reduction by Leveraging Compile-Time Configurability". In: *Proceedings of the 8th International Workshop on Hot Topics in System Dependability (HotDep '12)*. (Los Angeles, CA, USA). Berkeley, CA, USA: USENIX Association, 2012, pp. 1–6.
- [8] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, et al. "Configuration Coverage in the Analysis of Large-Scale System Software". In: ACM SIGOPS Operating Systems Review 45.3 (Jan. 2012), pp. 10–14. ISSN: 0163-5980. DOI: 10.1145/2094091.2094095.

Referenzen (Cont'd)

[9] Reinhard Tartler, Daniel Lohmann, Julio Sincero, et al. "Feature Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem". In: Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys '11). (Salzburg, Austria). Ed. by Christoph M. Kirsch and Gernot Heiser. New York, NY, USA: ACM Press, Apr. 2011, pp. 47–60. ISBN: 978-1-4503-0634-8. DOI: 10.1145/1966445.1966451.

