
Konfigurierbare Systemsoftware

(KSS)

VL 5 – Variability Management in the Large:

The VAMOS Approach

Daniel Lohmann

Lehrstuhl für Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universität
Erlangen-Nürnberg

SS 13 – 2013-06-06

http://www4.informatik.uni-erlangen.de/Lehre/SS13/V_KSS

http://www4.informatik.uni-erlangen.de/Lehre/SS13/V_KSS

About this Lecture

Problem Space Solution Space

Specif ic Problem Specif ic Solution

Domain Expert ��

��

����

������

Features and Dependencies

Architect / Developer

�����

�����	

�����Class

�����	Aspect...

Architecture and Implementation

System User

��
��
...

�

�Conf iguration
A

B

D

C

System User

in
st

an
ce

 le
ve

l
m

od
el

 le
ve

l

Variant

intended
properties

actual
 implementation

intentional side extensional side

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach 5–2

About this Lecture

Problem Space Solution Space

Specif ic Problem Specif ic Solution

Domain Expert ��

��

����

������

Features and Dependencies

Architect / Developer

�����

�����	

�����Class

�����	Aspect...

Architecture and Implementation

System User

��
��
...

�

�Conf iguration
A

B

D

C

System User

in
st

an
ce

 le
ve

l
m

od
el

 le
ve

l

Variant

intended
properties

actual
 implementation

intentional side extensional side

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach 5–2

Implementation Techniques: Classification →֒ ??

Decompositional Approaches

Configuration

Components Variant

Text-based filtering (untyped)

Preprocessors

Compositional Approaches

Configuration

Components Variant

Language-based composition

mechanisms (typed)

OOP, AOP, Templates

Generative Approaches

Configuration

Generator VariantTemplates

Metamodel-based generation

of components (typed)

MDD, C++ TMP, generators

Real-world
software

uses
them

all!
c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach 5–3

Agenda

5.1 Motivation

5.2 Variability in Linux

5.3 Configuration Consistency

5.4 Configuration Coverage

5.5 Automatic Tailoring

5.6 Summary

5.7 References

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach 5–4

eine maßgechneiderte Variante für

33 33
optional, independent

features

one individual variant

for each human being

320
optional, independent

features

more variants than

atoms in the universe!

Typical Configurable Operating Systems...

1,250 features

Typical Configurable Operating Systems...

1,250 features

12,000

V
A

M
O

S

features

Challenges: 7→ VAMOS
∗

How to maintain this?
How to test this?
Why so many features anyway?

∗ VAriability Management in Operating Systems

Agenda

5.1 Motivation

5.2 Variability in Linux
Variability Implementation in Linux

Challenges

5.3 Configuration Consistency

5.4 Configuration Coverage

5.5 Automatic Tailoring

5.6 Summary

5.7 References

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.2 Variability in Linux 5–8

The Linux Configuration and Generation Process

➊ Configuration with an

KCONFIG frontend

➋ Compilation of a

subset of files

➌ Selection of a

subset of CPP Blocks

➍ Linking of the kernel and

loadable kernel modules

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.2 Variability in Linux 5–9

Dominancy and Hierarchy of Variability

l0: Feature Modelling 12,000 features

l1: Coarse-grained: KBUILD 31,000 source files

l2: Fine-grained: CPP 89,000 #ifdef blocks

l3: Lanugage-level: GCC → if(CONFIG_SMP) ...

K
C

O
N

F
I
G

co
n
tro

lled
V
aria

b
ility

l4: Link-time: LD → branches in linker scripts

l5: Run-time: INSMOD, MODPROBE, ...

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.2 Variability in Linux 5–10

Challenges with Implemented Variability

Configuration

KCONFIG

Implementation

MAKE CPP GCC LD

Consistency?

Coverage?

Central declaration of configurability: KCONFIG

Distributed implementation of configurability: MAKE, CPP, GCC, LD

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.2 Variability in Linux 5–11

Agenda

5.1 Motivation

5.2 Variability in Linux

5.3 Configuration Consistency
Problem Analysis

Solution Approach

Results

5.4 Configuration Coverage

5.5 Automatic Tailoring

5.6 Summary

5.7 References

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.3 Configuration Consistency 5–12

Problem Analysis: Configuration Consistency

Configuration Implementation

symbols

constraints

symbols

constraints

config HOTPLUG_CPU

depends on SMP && HOTPLUG

#ifdef CONFIG_CPU_HOTPLUG

#ifdef CONFIG_CPU_HOTPLUG
#else
#endif

Symbolic

Logic

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.3 Configuration Consistency 5–13

Problem Analysis: Symbolic Inconsistency [9]

config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
depends on SMP && HOTPLUG
---help---

static int
hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
// [...]

switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:

// [...]
#ifdef CONFIG_CPU_HOTPLUG

case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD:
case CPU_DEAD_FROZEN:

free_cpumask_var(cfd->cpumask);
break;

#endif
};
return NOTIFY_OK;

}

Symbolic

Result:

Fix for a

critical bug

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.3 Configuration Consistency 5–14

Problem Analysis: Logic Inconsistency [9]

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

Logic

Feature DISCONTIGMEM implies feature NUMA

Inner blocks are not actually configuration-dependent

Block2 is always selected 7→ undead
}

configurability defects
Block3 is never selected 7→ dead

; Linux contains superfluous #ifdef Blocks! Result:

Code cleanup

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.3 Configuration Consistency 5–15

Solution Approach: Consistency Validation

Problem and solution space are analyzed for configuration points:

MEMORY_MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG_DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG_NUMA

// Block2
else

// Block3

endif
#endif

C = (FLATMEM → MEMORY_MODEL)

∧ (DISCONTIGMEM → MEMORY_MODEL)

∧ (SPARSEMEM → MEMORY_MODEL)

∧ (NUMA → MEMORY_MODEL)

∧ (DISCONTIGMEM → NUMA)

I = (Block1 ↔ DISCONTIGMEM)

∧ (Block2 ↔ Block1 ∧ (NUMA)

∧ (Block3 ↔ Block1 ∧ ¬Block2)

implementation space constraints

implementation space

configuration space constraints

configuration space

dead? sat(C ∧ I ∧ BlockN)

undead? sat(C ∧ I ∧¬BlockN

∧ parent(BlockN))

configurability defects

⇒ and transformed into propositional formulas

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.3 Configuration Consistency 5–16

Implementation: The UNDERTAKER [9]

Job: Find (and eventually bury) dead #ifdef-code!

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.3 Configuration Consistency 5–17

Implementation: The UNDERTAKER [9]

Job: Find (and eventually bury) dead #ifdef-code!

We have found 1776 configurability defects

in Linux v2.6.35

Submitted 123 patches for 364 defects

20 are confirmed new bugs

(affecting binary code)

Cleaned up 5129 lines of cruft code

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.3 Configuration Consistency 5–18

Implementation: The UNDERTAKER [9]

Job: Find (and eventually bury) dead #ifdef-code!

How good is this, really?

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.3 Configuration Consistency 5–18

Agenda

5.1 Motivation

5.2 Variability in Linux

5.3 Configuration Consistency

5.4 Configuration Coverage
Where Have All the Features Gone?

Results

Extracting Variability from KBUILD

Improvements

5.5 Automatic Tailoring

5.6 Summary

5.7 References

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–19

Common Beliefs About Variability in Linux

➊ Most variability is expressed by boolean (or tristate) switches.

➋ arch-x86 is the largest and allyesconfig selects most features.

➌ Variability is mostly implemented with the CPP.

➍ The Linux kernel is highly configurable.

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–20

Linux v3.1: Feature Distribution by Type

➊ Most variability is expressed by boolean (or tristate) switches

KCONFIG features

11,691 [100%]

Option-like

10,907 [93.3%]

Boolean

6,024 [51.5%]

55.2%

Tristate

4,883 [41.8%]

44.8%

93.3%

Value-like

784 [6.7%]

String

87 [0.7%]

11.1%

Integer/Hex

697 [6%]

88.9%

6.7%

⇒ Almost all features in Linux are option-like

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–21

Linux v3.1: Coverage of arch-x86 / allyesconfig

➋ arch-x86 is the largest and allyesconfig selects most features

KCONFIG features

11,691 [100%]

arch-x86

7,776 [66.5%]

allyesconfig

5,482 [46.9%]

70.5%

non-allyesconfig

2,294 [19.6%]

29.5%

66.5%

non-arch-x86

3,915 [33.5%]

33.5%

not considered

by x86,

allyesconfig

6,209 [53.1%]

⇒ arch-x86/allyesconfig is not nearly a full configuration

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–22

Linux v3.1: Distribution by Granularity

➌ Variability is mostly implemented with the CPP

KCONFIG features

11,691 [100%]

KBUILD interpreted

7,749 [66.3%]

KBUILD only

5,850 [50%]

75.5%

KBUILD/CPP

1,899 [16.2%]

24.5%

66.3%

KCONFIG only

1,925 [16.5%]

16.5%

CPP interpreted

3,916 [33.5%]

CPP only

2,017 [17.3%]

51.5%

33.5%

48.5%

⇒ KBUILD implements more than two thirds of all variation points

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–23

Linux v3.2: Distribution by HW/SW

➍ The Linux kernel is highly configurable

KCONFIG features

12,038 [100%]

Software related

1,487 [12.4%]

net

530 [4.4%]

35.6%

kernel+init+mm+lib

510 [4.2%]

34.3%
misc

447 [3.7%]

30.1%

12.4%

Hardware related

10,551 [87.6%]

drivers

5,330 [44.3%]

50.5%

arch

4,685 [38.9%]

44.4%
sound

536 [4.5%]

5.1%

87.6%

⇒ Software features account for

only twelve percent of all variation points

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–24

Linux Feature Growth over Time (#Features, 2007–2012)

v2
.6

.2
5

v2
.6

.2
6

v2
.6

.2
7

v2
.6

.2
8

v2
.6

.2
9

v2
.6

.3
0

v2
.6

.3
1

v2
.6

.3
2

v2
.6

.3
3

v2
.6

.3
4

v2
.6

.3
5

v2
.6

.3
6

v2
.6

.3
7

v2
.6

.3
8

v2
.6

.3
9

v3
.0

v3
.1

v3
.2

0

2,000

4,000

6,000

8,000

10,000

12,000 All features

HW features
arch/ drivers/ sound/

SW features (everything else)

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–25

Linux Feature Growth over Time (#Features in arch, 2007–2012)

v2
.6

.2
5

v2
.6

.2
6

v2
.6

.2
7

v2
.6

.2
8

v2
.6

.2
9

v2
.6

.3
0

v2
.6

.3
1

v2
.6

.3
2

v2
.6

.3
3

v2
.6

.3
4

v2
.6

.3
5

v2
.6

.3
6

v2
.6

.3
7

v2
.6

.3
8

v2
.6

.3
9

v3
.0

v3
.1

v3
.2

0

1,000

2,000

3,000

4,000

all

arm

powerpc

mips

x86

blackfin

sh

cris

m68k

ia64

mn10300

alpha

avr32

s390

sparc

h8300

um

m32r

frv

parisc

xtensa

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–26

Results: Where Have all the Features Gone?

➊ Most variability is expressed by boolean (or tristate) switches ✔

more than 93 percent of all features are option-like

; it is acceptable for tools to ignore value-type features

➋ arch-x86 is the largest and allyesconfig selects most features ✘

more than 53 percent are not covered by this configuration

; other parts of Linux are probably less tested and error-prone!

➌ Variability is mostly implemented with the CPP ✘

more than 66 percent of all features are handled
by the build system, only 17 percent are handled by CPP only

; variability extraction from KBUILD is necessary

➍ The Linux kernel is highly configurable ✘

only 12 percent of all features configure software only

variability is mostly induced by advances in hardware

; complexity will increase further

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–27

Challenges: Variability Extraction from the Build System

Variability extraction 7→ which file is selected by which feature?

Usual approach for variability extraction [6, 9] (KCONFIG, CPP, ...):

source parse & transform propositional formula

Parsing does not work well for MAKE-languages

declarative and Turing-complete languages

special features, like shell, foreach, eval, addprefix, ...

Linux’s KBUILD is built on top of (GNU) MAKE

nevertheless, researchers have tried parsing to extract variability

KBUILDMINER by Berger, She, Czarnecki, et al. [1]

Nadi parser by Nadi and Holt [5]

resulting tools are too brittle at best

work for a (few) Linux version(s) only

each usage of a special feature requires manual tailoring

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–28

Linux Build Process Revisited

SMP=n

PM=y

APM=m

CONFIG_SMP := n

CONFIG_PM := y

CONFIG_APM := m

#undef CONFIG_SMP

#define CONFIG_PM 1

#undef CONFIG_APM

#define CONFIG_APM_MODULE 1

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–29

Variability Extraction from KBUILD with GOLEM [2]

Basic idea: Systematic probing and inferring of implications

SPLC ’12: Dietrich, et al. [2]

Dancing Makefiles

Identification of KCONFIG

references

obj-y += fork.o
obj-$(CONFIG_SMP) += spinlock.o
obj-$(CONFIG_APM) += apm.o

Recursion into subdirectory

while considering constraints
obj-$(CONFIG_PM) += power/

Robust with respect to

architecture and version

⇒ no adaptations on

or for KBUILD!

Kernelversion found inferences

v2.6.25 6,274 (93.7%)

v2.6.28.6 7,032 (93.6%)

v2.6.33.3 9,079 (94.9%)

v2.6.37 10,145 (95.1%)

v3.2 11,050 (95.4%)

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–30

Case Study: Configuration Consistency →֒ 5–17

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–31

Case Study: Configuration Consistency →֒ 5–17

Configuration defects in Linux v3.2:

Without KBUILD constraints

Code defects 1835

Referential defects 415

Logical defects 83

Sum: Σ 2333

With KBUILD constraints

Code defects 1835

Referential defects 439

Logical defects 299

Sum: Σ 2573 Result: +10%

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–32

Agenda

5.1 Motivation

5.2 Variability in Linux

5.3 Configuration Consistency

5.4 Configuration Coverage

5.5 Automatic Tailoring
Idea

Results

5.6 Summary

5.7 References

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–33

Idea: Automated Tailoring of Linux

Distribution kernels today come with a maximum configuration

As side-effect, this maximizes the attack surface!

Each use-case needs its specific, ideal configuration

→ Automatically derive an ideal configuration for
a given use case.

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–34

Approach

Specific

Scenario

CONFIG_X86=y
CONFIG_SCSI=n
[. . .]

Tailored

Configuration

0 x8043566 −− ke r n / sched . c : 80
0 x80452d8 −− d r i v e r s / s c s i . c :4302
[. . . 5 0 0 0 more l o c a t i o n s]

Identify in

Source Code

automatically
derive

FTRACE

observe

debug symbols

ϕ
Holistic

Variability

Model

establish

employ SAT
checker

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–35

Approach

Specific

Scenario

CONFIG_X86=y
CONFIG_SCSI=n
[. . .]

Tailored

Configuration

0 x8043566 −− ke r n / sched . c : 80
0 x80452d8 −− d r i v e r s / s c s i . c :4302
[. . . 5 0 0 0 more l o c a t i o n s]

Identify in

Source Code

automatically
derive

FTRACE

observe

debug symbols

ϕ
Holistic

Variability

Model

establish

employ SAT
checker

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–35

Evaluation

Ubuntu 12.04 with Linux 3.2 kernel; two use cases
Web server setup with Apache, MySQL, PHP (LAMP)
Workstation setup with NFS (Desktop)

Trace time: 15 min, running defined workload
LAMP: Google Skipfish ; 5377 unique kernel functions
Desktop: iozone, bonnie++ ; 6933 unique kernel functions

Black and whitelist for manual tailoring
Blacklist: CONFIG_FTRACE

Whitelist: CONFIG_UNIX, CONFIG_PACKET, CONFIG_DEVTMPFS,

CONFIG_DEVTMPFS_MOUNT, CONFIG_ATA_PIIX, CONFIG_SATA_AHCI,

CONFIG_ATA_GENERIC, CONFIG_DRM_I915_KMS, CONFIG_BLK_DEV_INITRD

Tailored Tailored
Baseline LAMP Workstation/NFS

Kernel size in Bytes 9,933,860 4,228,235 (44%) 4,792,508 (48%)
LKM total size in Bytes 62,987,539 2,139,642 (3%) 2,648,034 (4%)
Options set to ’y’ 1,537 452 (29%) 492 (32%)
Options set to ’m’ 3,142 43 (1%) 63 (2%)
Compiled source files 8,670 1,121 (13%) 1,423 (16%)

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–36

Evaluation: Reduction for LAMP

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–37

Evaluation: Reduction for LAMP

90% less executable code

10% less functions with known vulnerabilities
(with published CVE issues)

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–37

Evaluation: Performance Impact for LAMP

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

40

45

Debian tailored

requests per second

re
p

li
e

s
 p

e
r

s
e

c
o

n
d

No observable performance impact

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–38

Results: Automatic Tailoring [7]

HotDep ’12: Tartler, Kurmus, Ruprecht, Heinloth, Rothberg et al. [7]

TCB is significantly smaller

Easy to use: process is fully automated

If necessary, the tailoring can guided with whitelists and blacklists

Going further: Dynamic ASR [4]

Even if present: Who is allowed to call what ; CFG analysis

At runtime: Block illegal invocations.

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.5 Automatic Tailoring 5–39

Summary

Real-world system software offers thousands of features

eCos: 1,250 features
}

mostly induced by hardware!
Linux: 12,000 features

central declaration (ecosConfig, KCONFIG)

distributed, multi-paradigm implementation (MAKE, CPP, GCC, ...)

This imposes great challenges for management and maintenance

how to ensure configurability consistency?

how to ensure configuration coverage?

how to keep pace with the constant feature increase?

A strong call for adequate tool support 7→ VAMOS

already found thousands and fixed hundreds of defects and bugs

more to come!

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.6 Summary 5–40

Referenzen

[1] Thorsten Berger, Steven She, Krzysztof Czarnecki, et al. Feature-to-Code
Mapping in Two Large Product Lines. Tech. rep. University of Leipzig (Germany),
University of Waterloo (Canada), IT University of Copenhagen (Denmark), 2010.

[2] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, et al. “A
Robust Approach for Variability Extraction from the Linux Build System”. In:
Proceedings of the 16th Software Product Line Conference (SPLC ’12).
(Salvador, Brazil, Sept. 2–7, 2012). Ed. by Eduardo Santana de Almeida,
Christa Schwanninger, and David Benavides. New York, NY, USA: ACM Press,
2012, pp. 21–30. ISBN: 978-1-4503-1094-9. DOI: 10.1145/2362536.2362544.

[3] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, et al.
“Understanding Linux Feature Distribution”. In: Proceedings of the 2nd AOSD
Workshop on Modularity in Systems Software (AOSD-MISS ’12). (Potsdam,
Germany, Mar. 27, 2012). Ed. by Christoph Borchert, Michael Haupt, and
Daniel Lohmann. New York, NY, USA: ACM Press, 2012. ISBN:
978-1-4503-1217-2. DOI: 10.1145/2162024.2162030.

[4] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, et al. “Attack Surface Metrics
and Automated Compile-Time OS Kernel Tailoring”. In: Proceedings of the 20th
Network and Distributed Systems Security Symposium. (San Diego, CA, USA,
Feb. 24–27, 2013). The Internet Society, 2013. URL:
http://www4.cs.fau.de/Publications/2013/kurmus_13_ndss.pdf.

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.7 References 5–41

http://dx.doi.org/10.1145/2362536.2362544
http://dx.doi.org/10.1145/2162024.2162030
http://www4.cs.fau.de/Publications/2013/kurmus_13_ndss.pdf

Referenzen (Cont’d)

[5] Sarah Nadi and Richard C. Holt. “Mining Kbuild to Detect Variability Anomalies in
Linux”. In: Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR ’12). (Szeged, Hungary, Mar. 27–30,
2012). Ed. by Tom Mens, Yiannis Kanellopoulos, and Andreas Winter.
Washington, DC, USA: IEEE Computer Society Press, 2012. ISBN:
978-1-4673-0984-4. DOI: 10.1109/CSMR.2012.21.

[6] Julio Sincero, Reinhard Tartler, Daniel Lohmann, et al. “Efficient Extraction and
Analysis of Preprocessor-Based Variability”. In: Proceedings of the 9th
International Conference on Generative Programming and Component Engineering
(GPCE ’10). (Eindhoven, The Netherlands). Ed. by Eelco Visser and Jaakko Järvi.
New York, NY, USA: ACM Press, 2010, pp. 33–42. ISBN: 978-1-4503-0154-1.
DOI: 10.1145/1868294.1868300.

[7] Reinhard Tartler, Anil Kurmus, Bernard Heinloth, et al. “Automatic OS Kernel
TCB Reduction by Leveraging Compile-Time Configurability”. In: Proceedings of
the 8th International Workshop on Hot Topics in System Dependability (HotDep
’12). (Los Angeles, CA, USA). Berkeley, CA, USA: USENIX Association, 2012,
pp. 1–6.

[8] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, et al. “Configuration
Coverage in the Analysis of Large-Scale System Software”. In: ACM SIGOPS
Operating Systems Review 45.3 (Jan. 2012), pp. 10–14. ISSN: 0163-5980. DOI:
10.1145/2094091.2094095.

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.7 References 5–42

http://dx.doi.org/10.1109/CSMR.2012.21
http://dx.doi.org/10.1145/1868294.1868300
http://dx.doi.org/10.1145/2094091.2094095

Referenzen (Cont’d)

[9] Reinhard Tartler, Daniel Lohmann, Julio Sincero, et al. “Feature Consistency in
Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature
Problem”. In: Proceedings of the ACM SIGOPS/EuroSys European Conference on
Computer Systems 2011 (EuroSys ’11). (Salzburg, Austria). Ed. by
Christoph M. Kirsch and Gernot Heiser. New York, NY, USA: ACM Press, Apr.
2011, pp. 47–60. ISBN: 978-1-4503-0634-8. DOI: 10.1145/1966445.1966451.

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.7 References 5–43

http://dx.doi.org/10.1145/1966445.1966451

	5 The VAMOS Approach
	5.1 Motivation
	5.2 Variability in Linux
	5.3 Configuration Consistency
	5.4 Configuration Coverage
	5.5 Automatic Tailoring
	5.6 Summary
	5.7 References

