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Implementation Techniques: Classification →֒ ??

Decompositional Approaches

Configuration

Components Variant

Text-based filtering (untyped)

Preprocessors

Compositional Approaches

Configuration

Components Variant

Language-based composition

mechanisms (typed)

OOP, AOP, Templates

Generative Approaches

Configuration

Generator VariantTemplates

Metamodel-based generation

of components (typed)

MDD, C++ TMP, generators

Real-world
software

uses
them

all!
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eine maßgechneiderte Variante für 
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optional, independent
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Typical Configurable Operating Systems...

1,250 features



Typical Configurable Operating Systems...

1,250 features

12,000

V
A

M
O

S

features

Challenges: 7→ VAMOS
∗

How to maintain this?
How to test this?
Why so many features anyway?

∗ VAriability Management in Operating Systems
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The Linux Configuration and Generation Process

➊ Configuration with an

KCONFIG frontend

➋ Compilation of a

subset of files

➌ Selection of a

subset of CPP Blocks

➍ Linking of the kernel and

loadable kernel modules
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Dominancy and Hierarchy of Variability

l0: Feature Modelling 12,000 features

l1: Coarse-grained: KBUILD 31,000 source files

l2: Fine-grained: CPP 89,000 #ifdef blocks

l3: Lanugage-level: GCC → if(CONFIG_SMP) ...

K
C

O
N

F
I
G

co
n
tro

lled
V
aria

b
ility

l4: Link-time: LD → branches in linker scripts

l5: Run-time: INSMOD, MODPROBE, ...

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.2 Variability in Linux 5–10



Challenges with Implemented Variability

Configuration

KCONFIG

Implementation

MAKE CPP GCC LD

Consistency?

Coverage?

Central declaration of configurability: KCONFIG

Distributed implementation of configurability: MAKE, CPP, GCC, LD
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Problem Analysis: Configuration Consistency

Configuration Implementation

symbols

constraints

symbols

constraints

config HOTPLUG_CPU

depends on SMP && HOTPLUG

#ifdef CONFIG_CPU_HOTPLUG

#ifdef CONFIG_CPU_HOTPLUG
#else
#endif

Symbolic  

Logic  
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Problem Analysis: Symbolic Inconsistency [9]

config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
depends on SMP && HOTPLUG
---help---

static int
hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
// [...]

switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:

// [...]
#ifdef CONFIG_CPU_HOTPLUG

case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD:
case CPU_DEAD_FROZEN:

free_cpumask_var(cfd->cpumask);
break;

#endif
};
return NOTIFY_OK;

}

Symbolic  

Result:

Fix for a

critical bug
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Problem Analysis: Logic Inconsistency [9]

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

# ifdef CONFIG NUMA

// Block2

# else

// Block3

# endif

#endif

Logic  

Feature DISCONTIGMEM implies feature NUMA

Inner blocks are not actually configuration-dependent

Block2 is always selected 7→ undead
}

configurability defects
Block3 is never selected 7→ dead

; Linux contains superfluous #ifdef Blocks! Result:

Code cleanup
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Solution Approach: Consistency Validation

Problem and solution space are analyzed for configuration points:

MEMORY_MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG_DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

# ifdef CONFIG_NUMA

// Block2
# else

// Block3

# endif
#endif

C = (FLATMEM → MEMORY_MODEL)

∧ (DISCONTIGMEM → MEMORY_MODEL)

∧ (SPARSEMEM → MEMORY_MODEL)

∧ (NUMA → MEMORY_MODEL)

∧ (DISCONTIGMEM → NUMA)

I = (Block1 ↔ DISCONTIGMEM)

∧ (Block2 ↔ Block1 ∧ (NUMA)

∧ (Block3 ↔ Block1 ∧ ¬Block2)

implementation space constraints

implementation space

configuration space constraints

configuration space

dead? sat(C ∧ I ∧ BlockN)

undead? sat(C ∧ I ∧¬BlockN

∧ parent(BlockN))

configurability defects

⇒ and transformed into propositional formulas
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Implementation: The UNDERTAKER [9]

Job: Find (and eventually bury) dead #ifdef-code!
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Implementation: The UNDERTAKER [9]

Job: Find (and eventually bury) dead #ifdef-code!

We have found 1776 configurability defects

in Linux v2.6.35

Submitted 123 patches for 364 defects

20 are confirmed new bugs

(affecting binary code)

Cleaned up 5129 lines of cruft code
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Implementation: The UNDERTAKER [9]

Job: Find (and eventually bury) dead #ifdef-code!

How good is this, really?
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Common Beliefs About Variability in Linux

➊ Most variability is expressed by boolean (or tristate) switches.

➋ arch-x86 is the largest and allyesconfig selects most features.

➌ Variability is mostly implemented with the CPP.

➍ The Linux kernel is highly configurable.
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Linux v3.1: Feature Distribution by Type

➊ Most variability is expressed by boolean (or tristate) switches

KCONFIG features

11,691 [100%]

Option-like

10,907 [93.3%]

Boolean

6,024 [51.5%]

55.2%

Tristate

4,883 [41.8%]

44.8%

93.3%

Value-like

784 [6.7%]

String

87 [0.7%]

11.1%

Integer/Hex

697 [6%]

88.9%

6.7%

⇒ Almost all features in Linux are option-like
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Linux v3.1: Coverage of arch-x86 / allyesconfig

➋ arch-x86 is the largest and allyesconfig selects most features

KCONFIG features

11,691 [100%]

arch-x86

7,776 [66.5%]

allyesconfig

5,482 [46.9%]

70.5%

non-allyesconfig

2,294 [19.6%]

29.5%

66.5%

non-arch-x86

3,915 [33.5%]

33.5%

not considered

by x86,

allyesconfig

6,209 [53.1%]

⇒ arch-x86/allyesconfig is not nearly a full configuration
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Linux v3.1: Distribution by Granularity

➌ Variability is mostly implemented with the CPP

KCONFIG features

11,691 [100%]

KBUILD interpreted

7,749 [66.3%]

KBUILD only

5,850 [50%]

75.5%

KBUILD/CPP

1,899 [16.2%]

24.5%

66.3%

KCONFIG only

1,925 [16.5%]

16.5%

CPP interpreted

3,916 [33.5%]

CPP only

2,017 [17.3%]

51.5%

33.5%

48.5%

⇒ KBUILD implements more than two thirds of all variation points
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Linux v3.2: Distribution by HW/SW

➍ The Linux kernel is highly configurable

KCONFIG features

12,038 [100%]

Software related

1,487 [12.4%]

net

530 [4.4%]

35.6%

kernel+init+mm+lib

510 [4.2%]

34.3%
misc

447 [3.7%]

30.1%

12.4%

Hardware related

10,551 [87.6%]

drivers

5,330 [44.3%]

50.5%

arch

4,685 [38.9%]

44.4%
sound

536 [4.5%]

5.1%

87.6%

⇒ Software features account for

only twelve percent of all variation points
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Linux Feature Growth over Time (#Features, 2007–2012)
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Linux Feature Growth over Time (#Features in arch, 2007–2012)
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Results: Where Have all the Features Gone?

➊ Most variability is expressed by boolean (or tristate) switches ✔

more than 93 percent of all features are option-like

; it is acceptable for tools to ignore value-type features

➋ arch-x86 is the largest and allyesconfig selects most features ✘

more than 53 percent are not covered by this configuration

; other parts of Linux are probably less tested and error-prone!

➌ Variability is mostly implemented with the CPP ✘

more than 66 percent of all features are handled
by the build system, only 17 percent are handled by CPP only

; variability extraction from KBUILD is necessary

➍ The Linux kernel is highly configurable ✘

only 12 percent of all features configure software only

variability is mostly induced by advances in hardware

; complexity will increase further
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Challenges: Variability Extraction from the Build System

Variability extraction 7→ which file is selected by which feature?

Usual approach for variability extraction [6, 9] (KCONFIG, CPP, ...):

source parse & transform propositional formula

Parsing does not work well for MAKE-languages

declarative and Turing-complete languages

special features, like shell, foreach, eval, addprefix, ...

Linux’s KBUILD is built on top of (GNU) MAKE

nevertheless, researchers have tried parsing to extract variability

KBUILDMINER by Berger, She, Czarnecki, et al. [1]

Nadi parser by Nadi and Holt [5]

resulting tools are too brittle at best

work for a (few) Linux version(s) only

each usage of a special feature requires manual tailoring

c© dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.4 Configuration Coverage 5–28



Linux Build Process Revisited

SMP=n

PM=y

APM=m

CONFIG_SMP := n

CONFIG_PM := y

CONFIG_APM := m

#undef CONFIG_SMP

#define CONFIG_PM 1

#undef CONFIG_APM

#define CONFIG_APM_MODULE 1
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Variability Extraction from KBUILD with GOLEM [2]

Basic idea: Systematic probing and inferring of implications

SPLC ’12: Dietrich, et al. [2]

Dancing Makefiles

Identification of KCONFIG

references

obj-y += fork.o
obj-$(CONFIG_SMP) += spinlock.o
obj-$(CONFIG_APM) += apm.o

Recursion into subdirectory

while considering constraints
obj-$(CONFIG_PM) += power/

Robust with respect to

architecture and version

⇒ no adaptations on

or for KBUILD!

Kernelversion found inferences

v2.6.25 6,274 (93.7%)

v2.6.28.6 7,032 (93.6%)

v2.6.33.3 9,079 (94.9%)

v2.6.37 10,145 (95.1%)

v3.2 11,050 (95.4%)
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Case Study: Configuration Consistency →֒ 5–17
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Case Study: Configuration Consistency →֒ 5–17

Configuration defects in Linux v3.2:

Without KBUILD constraints

Code defects 1835

Referential defects 415

Logical defects 83

Sum: Σ 2333

With KBUILD constraints

Code defects 1835

Referential defects 439

Logical defects 299

Sum: Σ 2573 Result: +10%
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Idea: Automated Tailoring of Linux

Distribution kernels today come with a maximum configuration

As side-effect, this maximizes the attack surface!

Each use-case needs its specific, ideal configuration

→ Automatically derive an ideal configuration for
a given use case.
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Approach

Specific

Scenario

CONFIG_X86=y
CONFIG_SCSI=n
[ . . . ]

Tailored

Configuration

0 x8043566 −− ke r n / sched . c : 80
0 x80452d8 −− d r i v e r s / s c s i . c :4302
[ . . . 5 0 0 0 more l o c a t i o n s ]

Identify in

Source Code

automatically
derive

FTRACE

observe

debug symbols

ϕ
Holistic

Variability

Model

establish

employ SAT
checker
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Evaluation

Ubuntu 12.04 with Linux 3.2 kernel; two use cases
Web server setup with Apache, MySQL, PHP (LAMP)
Workstation setup with NFS (Desktop)

Trace time: 15 min, running defined workload
LAMP: Google Skipfish ; 5377 unique kernel functions
Desktop: iozone, bonnie++ ; 6933 unique kernel functions

Black and whitelist for manual tailoring
Blacklist: CONFIG_FTRACE

Whitelist: CONFIG_UNIX, CONFIG_PACKET, CONFIG_DEVTMPFS,

CONFIG_DEVTMPFS_MOUNT, CONFIG_ATA_PIIX, CONFIG_SATA_AHCI,

CONFIG_ATA_GENERIC, CONFIG_DRM_I915_KMS, CONFIG_BLK_DEV_INITRD

Tailored Tailored
Baseline LAMP Workstation/NFS

Kernel size in Bytes 9,933,860 4,228,235 (44%) 4,792,508 (48%)
LKM total size in Bytes 62,987,539 2,139,642 ( 3%) 2,648,034 ( 4%)
Options set to ’y’ 1,537 452 (29%) 492 (32%)
Options set to ’m’ 3,142 43 ( 1%) 63 ( 2%)
Compiled source files 8,670 1,121 (13%) 1,423 (16%)
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Evaluation: Reduction for LAMP
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Evaluation: Reduction for LAMP

90% less executable code

10% less functions with known vulnerabilities
(with published CVE issues)
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Evaluation: Performance Impact for LAMP
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Results: Automatic Tailoring [7]

HotDep ’12: Tartler, Kurmus, Ruprecht, Heinloth, Rothberg et al. [7]

TCB is significantly smaller

Easy to use: process is fully automated

If necessary, the tailoring can guided with whitelists and blacklists

Going further: Dynamic ASR [4]

Even if present: Who is allowed to call what ; CFG analysis

At runtime: Block illegal invocations.
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Summary

Real-world system software offers thousands of features

eCos: 1,250 features
}

mostly induced by hardware!
Linux: 12,000 features

central declaration (ecosConfig, KCONFIG)

distributed, multi-paradigm implementation (MAKE, CPP, GCC, ...)

This imposes great challenges for management and maintenance

how to ensure configurability consistency?

how to ensure configuration coverage?

how to keep pace with the constant feature increase?

A strong call for adequate tool support 7→ VAMOS

already found thousands and fixed hundreds of defects and bugs

more to come!
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