Konfigurierbare Systemsoftware
(KSS)

VL 6 — Generative Programming:
The SLOTH Approach

Daniel Lohmann

Lehrstuhl fiir Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

SS13 - 2013-06-13

O http://www4.informatik.uni-erlangen.de/Lehre/SS13/V_KSS

http://www4.informatik.uni-erlangen.de/Lehre/SS13/V_KSS

About this Lecture

% Problem Space)

Domain Expert

Features and Dependencies
.

. o
Configuration | £,

System User intended
properties
% Specific Problem)

—_/\)__(‘
A Variant

°) actal System User
Z Qp\ememauon
=

(Specific Solution

O —

KSS (VL 6 | SS13) 6 The SLOTH Approach

Implementation Techniques: Classification

m Generative Approaches

Q&I. - Metamodel-based generation
% =>> [of components (typed)
e [m] - MDD, C++ TMP, generators

Templates Generator Variant

O ©dl KSS (VL6 |SS13) 6 The SLOTH Approach 6-3

Implementation Techniques: Classification

¢¢ I'd rather write programs to write
programs than write programs.)

Dick Sites (DEC)

m Generative Approaches

Q&I. - Metamodel-based generation
% =>> [of components (typed)
e [m] - MDD, C++ TMP, generators

Templates Generator Variant

O ©dl KSS (VL6 |SS13) 6 The SLOTH Approach 6-3

Agenda

6.1 Motivation: OSEK and Co

6.2 SLOTH: Threads as Interrupts

6.3 SLEEPY SLOTH: Threads as IRQs as Threads
6.4 SLOTH ON TIME: Time-Triggered Laziness
6.5 SLOTH* Generation

6.6 Summary and Conclusions

6.7 References

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach

Agenda

6.1 Motivation: OSEK and Co
Background
OSEK OS: Abstractions
OSEK OS: Tailoring and Generation

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co

The OSEK Family of Automotive OS Standards

1995 OSEK OS (OSEK/VDX) I I——

2001 OSEKtime (OSEK/VDX) [10] -

2005 AUTOSAR OS (AUTOSAR) [1]

OSEK 0OS s “Offene Systeme und deren Schnittstellen fiir die Elektronik in Kraftfahrzeugen”
m statically configured, event-triggered real-time OS

OSEKtime

= statically configured, time-triggered real-time OS

= can optionally be extended with OSEK OS (to run in slack time)
AUTOSAR OS — "“Automotive Open System Architecture”

m statically configured, event-triggered real-time OS

m real superset of OSEK OS ~~ backwards compatible

= additional time-triggered abstractions (schedule tables, timing protection)
m intended as a successor for both OSEK OS and OSEKtime

©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6-6

OSEK OS: Abstractions [8]

m Control flows

m Task: software-triggered control flow (strictly priority-based scheduling)

- Basic Task (BT) run-to-completion task with strictly stack-based
activation and termination

- Extended Task (ET) may suspend and resume execution (+— coroutine)

m ISR: hardware-triggered control flow (hardware-defined scheduling)

- Cat 1 ISR (ISR1) runs below the kernel, may not invoke system
services (— prologue without epilogue)
- Cat 2 ISR (ISR2) synchronized with kernel, may invoke system

services (— epilogue without prologue)

m Hook: OS-—triggered signal/exception handler

- ErrorHook invoked in case of a syscall error
- StartupHook invoked at system boot time

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6-7

OSEK OS: Abstractions [8] (cond)

m Coordination and synchronization

m Resource: mutual exclusion between well-defined set of tasks

- stack-based priority ceiling protocol ([11]):

GetResource() ~ priority is raised to that of highest participating task
- pre-defined RES_SCHED has highest priority (~ blocks preemption)
- implementation-optional: task set may also include cat 2 ISRs

m Event: condition variable on which ETs may block

- part of a task's context

m Alarm: asynchronous trigger by HW/SW counter

- may execute a callback, activate a task, or set an event on expiry

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6-8

OSEK OS: System Services (Excerpt)

Task-related services

- ActivateTask(task) ~ task is active (— ready), counted

- TerminateTask() ~- running task is terminated

- Schedule() ~ active task with highest priority is running
. ActivateTask(task

- ChainTask(task) — atomic ¢ 1ya eTask(task)

TerminateTask()
m Resource-related services
- GetResource(res) ~ current task has res ceiling priority
- ReleaseResource(res) ~ current task has previous priority

Event-related services (extended tasks only!)

- SetEvent(task, mask) ~ events in mask for task are set
— ClearEvent(mask) ~» events in mask for current task are unset
- WaitEvent(mask) ~ current task blocks

until event from mask has been set

Alarm-related services
- SetAbsAlarm(alarm, ...) ~» arms alarm with absolute offset
- SetRelAlarm(alarm, ...) ~» arms alarm with relative offset

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6-9

OSEK OS: Conformance Classes [8]

B OSEK offers predefined tailorability by four conformance classes

s BCC1 only basic tasks, limited to one activation request per task and
one task per priority, while all tasks have different priorities

m BCC2 like BCC1, plus more than one task per priority possible and
multiple requesting of task activation allowed

s ECC1 like BCC1, plus extended tasks
m ECC2 like ECC1, plus more than one task per priority possible and
multiple requesting of task activation allowed for basic tasks

B The OSEK feature diagram

Control Flows

ISRs Cat. 2 ISRs Cat. 1

[Activate Task | [SetEvent |
coor, £002

[Ereccatback | [Resources | [Evems |

Eccr, £ccz

BCC?, ECCt, ECC2

‘ Kernel Sync ‘ ‘ Ful i ‘ ‘ Mixed i ‘ ‘ No i ‘ ‘ Multiple Tasks Per Prio ‘ ‘ Multiple Activations ‘

BCC2, ECC2 BeCz, ECC2

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6-10

OSEK OS: System Specification with OIL [9]

| | 0s Example0S {
® An OSEK QS instance is ampleUS L
configured completely statically | SELATS =
TI'\SK Taskl {
= all general OS features (hooks, ...) oRIon U 1
m all instances of OS abstractions (tasks, ...) ReSOURCET = Rosp
m all relationships between OS abstractions bk Tasks {
. . . e PRIORITY = 3;
m described in a domain-specific language (DSL) auTosTart = FALsE;
RESOURCE = Resl;
m OIL: The OSEK Implementation Language sk taska ¢
. PRIORITY = 4;
m standard types and attributes (TASK, ISR, ...) AUTOSTART = FALSE;
- . };
m vendor/plattform-specific attributes RESOURCE Resl {
. . . . RESOURCEPROPERTY = STANDARD;
(ISR source, priority, triggering) 25
. ISR ISR2 {
m task types and conformance class is deduced CATEGORY = 2;
PRIORITY =2;
OIL File for Example System (BCC1) }\I'.ARM Alarml {
. COUNTER = Timerl;
= Three basic tasks: Taskl, Task3, Task4 ACTION = ACTIVATETASK {
= Category 2 ISR: ISR2 (platform-spec. source/priority) U = Tesles
= Taskl and Task3 use resource Resl -~ ceiling pri = 3 AUTOSTART = FALSE;
= Alarm Alarml triggers Task4 on expiry b

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6-11

OSEK OS: System Generation [9, p. 5]

optional
OSEK Builder

C code

Application
configuration files
(OIL)

1
v

System Generator
(SG)

OSEK 0S

Kernel '

Object libraries

C code C code

Files produced by SG

Compiler

-1
"1 Make tool
_J

I:l Third party tools & related files »

I:l OSEK components, tools & related files v

|:| User written/defined | Executable file |

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6-12

OSEK OS: Example Control Flow

ISR2 -7 iret ~T-.
ISR2 — ire ST Alarml
SetAlarm(Al1,ts) ARV
. \ ~.. Task4 Term()
Act (Task1)
3 Taskl Taskl RelRes(Res1) |
1 i
l
2 .
ISR2
1 Taskl Taskl Term() ~ Taskl
GetRes(Res1)
init ()
O -
Start08Q ; ; ; ; : . + — ¢
Task Prio Level # t t3 ts ts te t7 tg to tio

B Basic tasks behave much like IRQ handlers
(on a system with support for IRQ priority levels)
m priority-based dispatching with run-to-completion
= LIFO, all control flows can be executed on a single shared stack
B So why not dispatch tasks as ISRs? | t
~> Let the hardware do all scheduling!
~ Let's be a SLOTH!

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.1 Motivation: OSEK and Co 6-13

Agenda

6.2 SLOTH: Threads as Interrupts
Basic Idea
Design
Results
Limitation

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6-14

“SLOTH: Threads as Interrupts” [5]

Idea: threads are interrupt handlers, Paper title of [5] is a pun to the ap-
proach taken by SOLARIS: “Interrupts

synchronous thread activation is IRQ as Threads’, ACM OSR (1995) [7]
Let interrupt subsystem do the scheduling and dispatching work
Applicable to priority-based real-time systems

Advantage: small, fast kernel with unified control-flow abstraction

©d KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6-15

O

SLOTH Design

IRQ system must support priorities and software triggering

activate(Taskl) prio=1]IRQ Source
request Taskl

Hardware HW IRQ prio=2[|RQ Source
Periphery request ISR2

prio=3[|RQ Source
request Task3

Timer | Alarm Exp. [PH9=4|IRQ Source
System request Task4

IRQ
Arbi-
tration
Unit

CPU

Task Stack

3

curprio=X

]

IRQ Vector
Table

g

task1()

isr2()

task3()

task4 ()

©d

KSS (VL 6 | SS13)

6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts

6-16

SLOTH: Example Control-Flow

CPU Prio Level

A
41 ISR2 I .
3 Taskl RelRes (Res1)
.
14
GetRes (Res1)
init ()

o

enable() : ' " ' : . . . ' t

t1 t2 t3 ta ts te tr ts tg tio

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6-17

SLOTH: Qualitative Results

Concise kernel design and implementation
m < 200 LoC, < 700 bytes code memory, very little RAM

Single control-flow abstraction for tasks, ISRs (1/2), callbacks

= Handling oblivious to how it was triggered (by hardware or software)

Unified priority space for tasks and ISRs

= No rate-monotonic priority inversion [2, 3]

Straight-forward synchronization by altering CPU priority

m Resources with ceiling priority (also for ISRs!)

= Non-preemptive sections with RES_SCHEDULER (highest task priority)
= Kernel synchronization with highest task/cat.-2-ISR priority

©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6-18

Performance Evaluation: Methodology

m Reference implementation for Infineon TriCore
m 32-bit load/store architecture

= Interrupt controller: 256 priority levels, about 200 IRQ sources with
memory-mapped registers

= Meanwhile also implementations for ARM Cortex-M3 (SAM3U) and x86

B FEvaluation of task-related system calls:
m Task activation
= Task termination

m Task acquiring/releasing resource

B Comparison with commercial OSEK implementation and CIAO

B Two numbers for SLOTH: best case, worst case

= Depending on number of tasks and system frequency

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6-19

Performance Evaluation: Results

Cycles
3
400
300
200
100
Activate() Activate() Terminate() Chain() GetRes() ReleaseRes() ReleaseRes()
w/ dispatch w/ dispatch
Speed-Up ~ 2x ~ 4x ~ 20x ~ bx ~ 3x ~ 8x ~ 8x
Comm. OSEK
B SiotH best case
[SLoTH worst case
s ciao
B Commercial OSEK

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6—20

Limitations of the SLOTH Approach

B No extended tasks (that is, events, — OSEK ECC1 / ECC2)
< impossible with stack-based IRQ execution model

m No multiple tasks per priority (— OSEK BCC2 /ECC2)
<> execution order has to be the same as activation order

OSEK OS

Alarms

Control Flows

‘ Activate Task ‘ ‘ Set Event ‘ ‘ Exec Callback ‘ ‘ Resources ‘ ‘ Events ‘
£0o1, £602 5002 EooT E0C2 £G0T EGC2

ISRs Cat. 2 ISRs Cat. 1

</

‘ Multiple Tasks Per Prio ‘ ‘ Multiple Activations ‘
500z £002 5002, £002

‘ Kernel Sync ‘ ‘ Full i ‘ ‘ Mixed i ‘ ‘ No i

Really?

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.2 SLOTH: Threads as Interrupts 6-21

Agenda

6.3 SLEEPY SLOTH: Threads as IRQs as Threads
Motivation
Design
Results

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads = 6-22

Control Flows in Embedded Systems

| Activation Event Sched./Disp. Semantics
ISRs HW by HW RTC
Threads SW by OS Blocking
SLOTH [5] HW or SW by HW RTC
SLEEPY SLOTH [6] | HW or SW by HW RTC or Blocking

(RTC: Run-to-Completion)

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads = 6-23

SLEEPY SLOTH: Main Goal and Challenge

Main Goal

Support extended blocking tasks (with stacks of their own), while
preserving SLOTH's latency benefits by having threads run as ISRs

Main Challenge
IRQ controllers do not support suspension and re-activation of ISRs

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads = 6-24

SLEEPY SLOTH Design: Task Prologues and Stacks

Task Stack
activate(Taskl) prio=1[IRQ Source_)
req||E | ExtTaskl CPU T
Hardware prio=2||RQ Source curprio=X
HW IR
Periphery Q request ISR2] AR'? Stack ET1
rbi-
- tration T
prio=3[|RQ Source_> Unit IRQ Vector
request Task3 Table
cp—"y Stack ET4
Timer Alarm Exp. [P"°=*]IRQ Source roll() task1()
System P realiE| ExtTaskd | = — Pl las | e
isr
prold3() [task3()
prold () |task4()

O (@d

KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads = 6-25

SLEEPY SLOTH: Dispatching and Rescheduling

m Task prologue: switch stacks if necessary

= Switch basic task < basic task omits stack switch
= On job start: initialize stack
= On job resume: restore stack

B Task termination: task with next-highest priority needs to run

= Yield CPU by setting priority to zero
m (Prologue of next task performs the stack switch)

B Task blocking: take task out of “ready list”

m Disable task’'s IRQ source
= Yield CPU by setting priority to zero

B Task unblocking: put task back into “ready list”
m Re-enable task's IRQ source
m Re-trigger task's IRQ source by setting its pending bit

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads 6-26

SLEEPY SLOTH: Example Control Flow

CPU/Task Priority

block()
3] (AAA AN AN (8P| prrrnmnanmrmasAnn—
Prologue ET3 Task ET3| Prologue ET3 Task ET3 (ctd.)
save(sthbt) save(stk_et3) Prologue BT2 Task BT2
27 init(stk et toad(stkbt) unblock (ET3)
Task BT1] Prologue BT1 Task BT1 (ctd.)
1
act (ET3)))) act (BT2)))) .
Basic Stack
prio=11IRQ Source| |
request Taskl CPU 3
_ IRQ —
prio=2||RQ Source Arbi- curprio=
request| Task2 | tration Stack ET3
Unit
— I
prio=3 [|RQ Source
- IRQ Vector
reql |E | ExtTask3 Table
proli() P task1i()
prol2() P|task2()
prol3() [>|task3()

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads 6-27

SLEEPY SLOTH: Evaluation

B Reference implementation on Infineon TriCore microcontroller

B Measurements: system call latencies in 3 system configurations,
compared to a leading commercial OSEK implementation

1. Only basic run-to-completion tasks

2. Only extended blocking tasks
3. Both basic and extended tasks

6-28

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads

Evaluation: Only Basic Tasks

Cycles
400
300
200
100
Activate() Activate() Terminate() Chain() GetRes() ReleaseRes() ReleaseRes()
w/ dispatch ~ w/ dispatch ~ w/ dispatch w/ dispatch
Speed-Up 2.0 46 19.0 49 37 8.0 7.4
Sloth
Average Speed-Up: 7x B Slecpy Sloth

B Commercial OSEK

B SLEEPY SLOTH outperforms commercial kernel with SW scheduler
B SLEEPY SLOTH as fast as original SLOTH

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads 6-29

Evaluation: Only Extended Tasks

Cycles
400
300
200
100
Activate() Block() Unblock() ClearMask() Terminate() Chain()
w/ dispatch w/ dispatch w/ dispatch w/ dispatch w/ dispatch
Speed-Up 2.4 16 17 5.3 34 35
Average Speed-Up: 3x B Slecpy Sloth

B Commercial OSEK

m Still faster than commercial kernel with SW scheduler
B SLEEPY SLOTH: Extended switches slower than basic switches

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads = 6-30

Evaluation: Extended and Basic Tasks

Cycles
400
300
200
100
0 ActO) Act O Block() Unblock() Term() Term() Term() Chain()
BT — BT BT — ET ET — BT BT — ET BT — BT ET - ET BT — BT BT — BT
stack switch stack switch stack switch stack switch stack switch
Speed-Up 3.6 25 13 1.7 9.7 3.7 33 4.0
Average Speed-Up: 4x B Slecpy Sloth

B Commercial OSEK

B Basic switches in a mixed system only slightly slower
than in purely basic system

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.3 SLEEPY SLOTH: Threads as IRQs as Threads 6-31

Agenda

6.4 SLOTH ON TIME: Time-Triggered Laziness

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.4 SLOTH ON TIME: Time-Triggered Laziness 6-32

SLOTH ON TIME: Time-Triggered Laziness [4]

Idea: use hardware timer arrays to implement schedule tables

TC1796 GPTA: 256 timer cells, routable to 96 interrupt sources

m use for task activation, deadline monitoring, execution time budgeting,
time synchronization, and schedule table control

SLOTH ON TIME implements OSEKtime [10]
and AUTOSAR OS schedule tables [1]

m combinable with SLOTH or SLEEPY SLOTH for mixed-mode systems

m up to 170x lower latencies compared to commercial implementations
dispatcher round length

' '

Task2 : X :

Taskl + X x :M—Tw—
]]

idle !

1
! ! ! ! 1 —

]

y

+ t U t

0 200 400 600 800 1000 1200

©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.4 SLOTH ON TIME: Time-Triggered Laziness 6-33

Qualitative Evaluation: AUTOSAR

Commercial AUTOSAR: Priority inversion with time-triggered
activation (2,075 cycles each)

address | _500us 725us 950us
_ L]]
CTOR_STM_SRCO%| | | | |
Task1Usercode 4| TT Act. Taskl —
Task2Usercode < (T Act. Task2 g
Task3Usercode < | | L]
SLOTH ON TIME: avoids this by design!
72§us 950us
]
|
|
|

functionTask3| G

¢ ¢ Interrupts are perhaps the biggest cause of priority inversion in
real-time systems, causing the system to not meet all of its timing
requirements.))
Stewart 1999: “Twenty-Five Most Common Mis-
takes with Real-Time Software Development” [12]

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.4 SLOTH ON TIME: Time-Triggered Laziness 6-34

Agenda

6.5 SLOTHx* Generation

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.5 SLOTH* Generation 6-35

SLOTHx* Generation

Two generation
dimensions

m Architecture

m Application

Generator is
implemented in Perl

= Templates

= Configuration

App-specific

App-independent

Arch-independent

Arch-specific

Arch-ind d

templates

configuration

/system

Arch-specific
templates

— Kernel object

I

~ IRQ vector table
and management

- Kernel — Schedule table
configuration
template -
(Common calcuations) template
App-specific, arch- App-specific,

files

~ Kernel object
instantiation

Kernel
configuration

App-independent,

arch-specific files

— IRQ vector table
~ IRQ source init
and management

- Schedule table init
and management

arch-independent files

— Kernel interfaces

App-independent,
arch-specific files

— Linker script

and syscalls
i — Startup code
— IRQ suspension Compiler
management P ~ IRQ handler
management
— Event N i
management — Task dispatching
Application L Application—

system binary

SLOTH ON TIME Generation

Input

Static Application Configuration:

roundLength = 1000;
expiryPoints = {
100 => Taskl,

950 => Taskl

Y
availableTimerCells =
{cell7, ..., Cell12, Cell42}

—»(Analysis and Cell Mappingj

Intermediate
Cell and IRQ Map:

=> Cell7 Activation
Cell8 // Activation
Cell9 // Activation
Cell10 // Deadline

Deadline

Deadline

|

Timer Hardware Description:
TimerArrayd = {
Cello =
irqSource

isMaster
controls

Cellaz = ¢
irqSource
isMaster
controls

Cell | zation Code:

void initCells(void) {
Cell7.compare = 1000,

Cell7.value = 1000 - 100;

b

void startDispatcher (void) {

#1fndef CONTROLCELLS
Cell7.enable = 1.

#else
// Control Cell 42 for Cel
Cellaz.output = 1;

#endif

¥

IRQ Initialization Code:
void initIRQs(void) {
Cell7.irqPrio =
triggerPrio;

Cell7.handler =
shandlerTaskl;

Cell10.handler =
&deadlineViolationHandler

Output
Task Handler Code:

void handlerTaskl(void) {
1/ Prologue
savePreemptedContext () ;
setCPUPrio (execPrio
Cell10. regEnable =
Cell12. regEnable =

userTaskl();

// Epilogue
Cell10. regEnable
Cell12.regEnable = .
restorePreemptedContext () ;
iret();

©dl KSS (VL6 |SS13)

6 The SLOTH Approach | 6.5 SLOTH=* Generation

Agenda

6.6 Summary and Conclusions

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.6 Summary and Conclusions 6-38

Summary: The SLOTHx* Approach

m Exploit standard interrupt/timer hardware to
delegate core OS functionality to hardware

= scheduling and dispatching of control flows

m OS needs to be tailored to application and hardware platform

~» generative approach is necessary

m Benefits

m tremendous latency reductions, very low memory footprints
= unified control flow abstraction

m less work for the OS developer :-)

hardware/software-triggered, blocking/run-to-completion
no need to distinguish between tasks and ISRs

no rate-monotonic priority inversion

reduces complexity

O ©dl

KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.6 Summary and Conclusions 6-39

Referenzen

(1]

(2]

(3]

(4]

AUTOSAR. Specification of Operating System (Version 4.1.0). Tech. rep.
Automotive Open System Architecture GbR, Oct. 2010.

Luis E. Leyva-del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz. “Integrated
Task and Interrupt Management for Real-Time Systems". In: Transactions on
Embedded Computing Systems 11.2 (July 2012), 32:1-32:31. ISSN: 1539-9087.
DOI: 10.1145/2220336.2220344. URL:
http://doi.acm.org/10.1145/2220336.2220344.

Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz. “Predictable
Interrupt Management for Real Time Kernels over conventional PC Hardware”.
In: Proceedings of the 12th IEEE International Symposium on Real-Time and
Embedded Technology and Applications (RTAS '06). Los Alamitos, CA, USA:
IEEE Computer Society Press, 2006, pp. 14-23. DOI: 10.1109/RTAS.2006.34.

Wanja Hofer, Daniel Danner, Rainer Miiller, et al. “Sloth on Time: Efficient
Hardware-Based Scheduling for Time-Triggered RTOS". In: Proceedings of the
33rd IEEE International Symposium on Real-Time Systems (RTSS '12). (San
Juan, Puerto Rico, Dec. 4-7, 2012). IEEE Computer Society Press, Dec. 2012,
pp. 237-247. ISBN: 978-0-7695-4869-2. DOI: 10.1109/RTSS.2012.75.

O ©dl

KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.7 References 6-40

http://dx.doi.org/10.1145/2220336.2220344
http://doi.acm.org/10.1145/2220336.2220344
http://dx.doi.org/10.1109/RTAS.2006.34
http://dx.doi.org/10.1109/RTSS.2012.75

Referenzen (conrq)

(5]

(6]

(7]

(8]

(9]

(10]

Wanja Hofer, Daniel Lohmann, Fabian Scheler, et al. “Sloth: Threads as
Interrupts”. In: Proceedings of the 30th IEEE International Symposium on
Real-Time Systems (RTSS '09). IEEE Computer Society Press, Dec. 2009,
pp. 204—213. ISBN: 978-0-7695-3875-4. DOI: 10.1109/RTSS.2009.18.

Wanja Hofer, Daniel Lohmann, and Wolfgang Schroder-Preikschat. “Sleepy
Sloth: Threads as Interrupts as Threads". In: Proceedings of the 32nd IEEE
International Symposium on Real-Time Systems (RTSS '11). IEEE Computer
Society Press, Dec. 2011, pp. 67—77. ISBN: 978-0-7695-4591-2. DOI:
10.1109/RTSS.2011.14.

Steve Kleiman and Joe Eykholt. “Interrupts as Threads”. In: ACM SIGOPS
Operating Systems Review 29.2 (Apr. 1995), pp. 21-26. ISSN: 0163-5980.

OSEK/VDX Group. Operating System Specification 2.2.3. Tech. rep.
http://portal.osek-vdx.org/files/pdf/specs/0s223.pdf, visited 2011-08-17.
OSEK/VDX Group, Feb. 2005.

OSEK/VDX Group. OSEK Implementation Language Specification 2.5.
Tech. rep. http://portal.osek-vdx.org/files/pdf/specs/0il25.pdf, visited
2009-09-09. OSEK/VDX Group, 2004.

OSEK/VDX Group. Time-Triggered Operating System Specification 1.0.
Tech. rep. http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf.
OSEK/VDX Group, July 2001.

O ©dl

KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.7 References 6-41

http://dx.doi.org/10.1109/RTSS.2009.18
http://dx.doi.org/10.1109/RTSS.2011.14
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf

Referenzen (conrq)

[11] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization”. In: IEEE Transactions
on Computers 39.9 (1990), pp. 1175-1185. ISSN: 0018-9340. DOI:
10.1109/12.57058.

[12] David B. Stewart. “Twenty-Five Most Common Mistakes with Real-Time
Software Development”. In: Proceedings of the 1999 Embedded Systems
Conference (ESC '99). 1999.

O ©dl KSS (VL 6 | SS13) 6 The SLOTH Approach | 6.7 References 6-42

http://dx.doi.org/10.1109/12.57058

	6 The Sloth Approach
	6.1 Motivation: OSEK and Co
	6.2 Sloth: Threads as Interrupts
	6.3 Sleepy Sloth: Threads as IRQs as Threads
	6.4 Sloth on Time: Time-Triggered Laziness
	6.5 Sloth* Generation
	6.6 Summary and Conclusions
	6.7 References

