Uberblick Motivation

,,Das Ganze ist mehr als die Summe seiner Teile.”

Aristoteles
Zuverldssige Gruppenkommunikation
grunc::agen o bei Multi m Problemstellungen gilt es oft im Verbund zu bearbeiten
JéSte ungsgarantien bei Multicast ®m Zusammenschluss einzelner Knoten (Rechner, Prozesse) zu Gruppen
roups

. B Einheitliches Kommunikationsmittel innerhalb der Gruppe
Ubungsaufgabe 5

| [
IR LIS
- -
O VS-Ubung (SS14) Zuverldssige Gruppenkommunikation 8-1 O VS-Ubung (SS14) Zuverldssige Gruppenkommunikation — Grundlagen 8-2
Zusammenschliisse in verteilten Systemen Client-Server- und Peer-to-Peer-Systeme
®m Gruppe: Zusammenschluss von Knoten in einem verteilten System m Client-Server-System
n Limiti.erte Anzahl der Knoten _ = Arbeitsteilung - -,
= Gemeinsamer (globaler) Zustand notwendig — Client: Lokale Bereitstellung eines Dienstes \ / :
— Server: Diensterbringer ' -
m Szenarien, Anwendungs- und Einsatzgebiete = Clients sind unabhangig voneinander / \
— = Kommunikation ist nicht gleichberechtigt .
= Replikation
= Instant Messaging
= Virtuelle Konferenzen ‘ ‘
= Netzwerkanwendungen und -spiele m Peer-to-Peer-System (P2P) -
= Knoten sind Client und Server zugleich / N
m Abgrenzung = Jeder Konten besitzt nur eine partielle Sicht - -
= Client-Server-System auf das Gesamtsystem N\ 17 /
u Peer-to-Peer-System (P2P) = Auf sehr groBe Anzahlen von Knoten ausgelegt -

— In vielen Systemen sind die Grenzen jedoch flieBend

O VS-Ubung (SS14) Zuverldssige Gruppenkommunikation — Grundlagen 8-3 O VS-Ubung (SS14) Zuverlidssige Gruppenkommunikation — Grundlagen 8-4

Virtuelle Synchronitat (Virtual Synchrony) Uberblick

m Probleme im Gruppenverbund

= Kein gemeinsamer Speicher

m Keine gemeinsame Uhr

m Zusammensetzung der Gruppe ist oftmals dynamisch
- Knoten treten ihr bei oder verlassen sie Zuverldssige Gruppenkommunikation
- Ausfall von Knoten
- Abbruch von Verbindungen

m |osungsansatz: Virtuelle Synchronitat (Virtual Synchrony)
= Knoten einigen sich auf Liste aller aktiven Gruppenmitglieder
— Gemeinsame Sicht auf das Gesamtsystem (View)
= Erneutes Aushandeln der View bei Anderung der Zusammensetzung
— Abfolge von Views dient als gemeinsame logische Zeitbasis
= Nachrichten sind nur fiir eine View giiltig

Zustellungsgarantien bei Multicast

[l Kenneth P. Birman and Thomas A. Joseph
Exploiting Virtual Synchrony in Distributed Systems
Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles (SOSP), pages 123-138, 1987.

O VS-Ubung (SS14) Zuverldssige Gruppenkommunikation — Grundlagen 8-5 0 VS-Ubung (SS14) Zuverldssige Gruppenkommunikation — Zustellungsgarantien bei Multicast 8-6
Zuverlassigkeit Ordnung
®m Best-Effort Multicast m Keine Ordnung
= Versendet ein korrekter Knoten eine Nachricht, wird sie letztendlich von = Nachrichten werden in keiner festen Reihenfolge ausgeliefert
jedem korrekten Knoten ausgeliefert (Giiltigkeit)
= Keine Nachricht wird mehrmals ausgeliefert (keine Verdopplung) ® First-In-First-Out-Ordnung (FIFO-Ordnung)

= Nachrichten werden von allen korrekten Knoten in der Reihenfolge

= Nur zuvor erstellte und versendete Nachrichten werden ausgeliefert)) i
ausgeliefert, in der sie versendet wurden

(keine Erschaffung)
m Von verschiedenen Knoten gesendete Nachrichten werden in keiner festen
m Zuverldssiger Multicast Reihenfolge ausgeliefert

m Liefert ein korrekter Knoten eine Nachricht aus, wird sie letztendlich von

m Total
jedem korrekten Knoten ausgeliefert (Einigkeit) otale Ordnung

= Nachrichten werden von allen korrekten Knoten in der gleichen

= Ansonsten wie Best-Effort Multicast Reihenfolge ausgeliefert

= Uniformer Multicast = Totale Ordnung ist orthogonal zur FIFO-Ordnung

m Liefert ein beliebiger Knoten eine Nachricht aus, wird sie letztendlich von
jedem korrekten Knoten ausgeliefert (Uniforme Einigkeit)

= Ansonsten wie zuverldssiger Multicast

O VS-Ubung (SS14) Zuverlidssige Gruppenkommunikation — Zustellungsgarantien bei Multicast 8-7 O VS-Ubung (SS14) Zuverldssige Gruppenkommunikation — Zustellungsgarantien bei Multicast 8-8

http://www.cs.cornell.edu/home/rvr/sys/p123-birman.pdf

Uberblick

Zuverldssige Gruppenkommunikation

JGroups

0 VS-Ubung (SS14) Zuverldssige Gruppenkommunikation —JGroups

Protokoll-Stack

m Protokoll-Stack von JGroups ist konfigurier- und erweiterbar

JChannel A

SEQUENCER
GMS €
UNICAST
NAKACK

org.jgroups.stack.

Re ~ Protocol
”

org.jgroups.Header

JChannel B

SEQUENCER
GMS
UNICAST

FD
FD_SOCK
MERGE2
TCPPING
TCP

___jr___//

NAKACK
FD
FD_SOCK
MERGE2
TCPPING
TCP

L

$

org.jgroups.Message

[P ——

-,

32835]00030.44"32e3s'sdnous[810

O VS-Ubung (SS14) Zuverldssige Gruppenkommunikation —JGroups

JGroups (Kurze Zusammenfassung)

m JGroups
m Bibliothek und Framework fiir zuverldassige Gruppenkommunikation
— Virtual Synchrony, Zustandstransfer, Zustellungsgarantie

= Durch modularen Aufbau iiber Konfiguration an bestehende
Erfordernisse anpassbar

m Verwendung

= Knoten verbinden sich mittels eines org. jgroups. JChannel-Objekts

= Nachrichten (org.jgroups.Message) konnen per Unicast oder Multicast
versendet werden

m Auslieferung von Nachrichten erfolgt asynchron
(org . jgroups. MessageListener)

= Benachrichtigung liber Gruppenzusammensetzung (org. jgroups.View)
sind ebenfalls asynchron (org.jgroups.MembershipListener)

Siehe Folien zu Ubungsaufgabe 4 (Replikation)
API-Dokumentation: http://jgroups.org/javadoc/index.html

O VS-Ubung (SS14) Zuverldssige Gruppenkommunikation—JGroups 8-10

Protokolle

m Bestehende Protokolle (Auswahl)
= SEQUENCER
- Realisiert eine totale Ordnung auf Basis von NAKACK
= GMS (Group Membership Service)
- Protokoll fiir Gruppenmitgliedschaft und Sichten (Views)
= NAKACK (Not Acknowledge, Acknowledge)
- Implementiert FIFO-Multicast
= FD (Failure Detection)
- Heartbeat-Protokoll fiir Ausfallerkennung
TCP/UDP

- Transportprotokolle

m Vollstindige Liste: jg-protocol-ids.xml (— JGroups Quellcode)
®m Implementierung eigener Protokolle moglich

B Protokolle leiten von der Klasse org. jgroups.stack.Protocol ab
m Registrierung mittels XML-Datei oder zur Laufzeit

ClassConfigurator.addProtocol(short id, Class protocol);

O VS-Ubung (SS14) Zuverldssige Gruppenkommunikation—JGroups 8-12

http://jgroups.org/javadoc/index.html

Ereignisse

Protokoll-Header

Empfang und Versand von Nachrichten sowie Statusanderungen
werden als Ereignisse im Protokoll-Stack propagiert
m Zugehorige Methoden der Klasse Protocol

Object down(Event evt); // Aufruf durch hoehere Schicht
Object up(Event evt); // Aufruf durch untere Schicht

- Riickgabe von Ergebnis der unteren (super.down(evt) ;) oder hdheren
Schichten (super.up(evt) ;) bzw. null, wenn Ereignis verworfen wurde

m Klasse org. jgroups.Event

int getType(); // Typ des Ereignisses

Object getArg(); // Mitgeliefertes Argument

Typ (Event.*) Beschreibung Argument

MSG Versand (down) oder Empfang (up) org.jgroups.Message
einer Nachricht

VIEW_CHANGE Anderung der aktuellen Sicht org. jgroups.View

(up und down)
SET_LOCAL_ADDRESS Setzen der lokalen Adresse (down) org.jgroups.Address

Protokolle tauschen iiber Header interne Daten zwischen Knoten aus

Header leiten von org. jgroups.Header ab
Miissen vergleichbar zu Protokollen registriert werden

ClassConfigurator.add(short id, Class header);

Header sind Teil von Nachrichten und werden mit diesen iibertragen
Zugehorige Methoden der Klasse org. jgroups.Message

- Hinzufiigen eines Header an Nachricht
void putHeader (short id, Header hdr);

- Riickgabe des Header einer Nachricht oder null, wenn nicht vorhanden
Header getHeader(short id);

= Beispiel:

Message msg = new Message(...);
VSTotalOrderHeader hdr = VSTotalOrderHeader.createMulticast(msgid);
msg.putHeader(id, hdr); // id: Attribut aus Oberklasse

VS-Ubung (SS14) Zuverldssige Gruppenkommunikation —JGroups 8-13

Serialisierung

VS-Ubung (SS14) Zuverldssige Gruppenkommunikation—JGroups 8-14

Uberblick

JGroups verwendet eigene Mechanismen zur Serialisierung und
Deserialisierung zum Beispiel von Headers

m Schnittstelle org. jgroups.util.Streamable

void writeTo(DataOutputStream out); // Serialisierung
void readFrom(DatalnputStream in); // Deserialisierung

= Klassen miissen iiber XML-Datei oder zur Laufzeit registriert werden
(siehe Registrierung von Headers)
= Hilfsmethoden in Klasse org.jgroups.util.Util

byte[] objectToByteBuffer(Object obj);
Object objectFromByteBuffer(byte[] buf, int off, int len);

Zuverlassige Gruppenkommunikation

Ubungsaufgabe 5

O VS-Ubung (SS14) Zuverlidssige Gruppenkommunikation—JGroups 8-15

O VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-16

Aufgabenstellung

Implementierung eines eigenen Sequencers als
JGroups-Protokoll ,,VSTotalOrder”

Naive Implementierung
m VSTotalOrder setzt auf NAKACK auf, das FIFO implementiert
= Umleitung aller Multicast-Nachrichten zu einem ausgewdahlten Knoten,
dem Leader
m Leader versendet Nachrichten
— Ein einziger Knoten sendet Multicasts + FIFO = totale Ordnung

Optimierte Implementierung

= Knoten versenden Multicasts selbst

= Leader sendet extra Nachricht mit Ordnung

= Nachrichten werden erst ausgeliefert, wenn Ordnung bekannt

Hinweise zu Teilaufgabe 5.1

VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-17

Hinweise zu Teilaufgabe 5.2 (1/2)

Behandeln von Statusanderungen innerhalb der Gruppe
m Speichern der lokalen Adresse des Knotens bei Event .SET_LOCAL_ADDRESS

m Speichern der aktuellen Sicht und bestimmen des Leader bei
Event .VIEW_CHANGE

- View besteht aus geordneter Liste der Adressen aller Mitglieder

Vector<Address> view.getMembers ()

- Erstes Mitglied der aktuellen Sicht ist Leader
— Zusammen mit lokaler Adresse kann bestimmt werden,
ob ein Knoten der Leader ist

Klasse vSTotalOrder (im Pub-Verzeichnis) soll als Grundlage dienen

Umleiten aller Multicasts zu Leader (Naive Implementierung)

= Uberpriifen, ob zu versendende Nachricht auBerhalb der Ordnung liegt:
msg.isFlagSet (Message.NO_TOTAL_ORDER) | |
msg.getDest() != null && !'msg.getDest().isMulticastAddress()
In diesem Fall Ereignis unbehandelt an untere Schicht weiterreichen:

super.down(...);

m Initialisierung des Versenders der Nachricht mit lokaler Adresse, falls
nicht anders festgelegt:
msg.getSrc();
msg.setSrc(...);

= Einpacken der Originalnachricht (Serialisierung)

= Neues Nachrichtenobjekt mit Leader als Empfanger erzeugen, anhdngen
der Originalnachricht, Header hinzufiigen

Versenden der Nachricht vom Leader
= Wiederum neues Nachrichtenobjekt erzeugen

new Message(null, <local>, msg.getRawBuffer(),
msg.getOffset(), msg.getLength());

VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-18

Hinweise zu Teilaufgabe 5.2 (2/2)

O VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-19

Nachricht weiterreichen
m Nachricht vom Leader entgegennehmen
= Originalnachricht auspacken

= Originalnachricht an héhere Schicht weiterreichen

Vorgegebene Klassen
m VSMsgID
- NachrichtenID; bekommt jede Originalnachricht

m VSTotalOrderMsgType
- Typ der Nachricht, bisher: REROUTING (,,Ein Knoten an Leader”) und
MULTICAST (,,Leader an alle Knoten™)
m VSTotalOrderHeader

- Header fiir internen Datenaustausch; enthélt: Nachrichtentyp und -ID,
sowie ggf. Ordnung (ViewId und Sequenznummer)

O VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-20

Hinweise zu Teilaufgabe 5.3 Hinweise zu Teilaufgabe 5.4

m Auslieferung von Nachrichten verzogern m Versenden der Multicasts direkt vom Knoten selbst
= Nachricht vom Leader entgegennehmen = Nachricht muss weder verpackt noch ausgepackt werden
= Nachricht abspeichern ohne sie auszuliefern

m Auslieferung der Nachricht ist zu verzégern bis Ordnung und
= ACK (neuer Nachrichtentyp) an alle Knoten versenden

ACKs vorliegen
m Nachricht h Empf. ACK lief
achrichten nach Empfang von s ausliefern = Herstellung der Reihenfolge

= Leader versendet beim Eintreffen der Originalnachricht eine
Ordnungsnachricht (ohne abermaliges Versenden der Originalnachricht)

m Versenden der Nachricht erst nach Eintreffen der Empfangsbestatigungen
von einer Mehrheit an Knoten
m Trotz Verzégerung muss die totale Ordnung beachtet werden

m ACKs konnen schon vor eigentlicher Nachricht eintreffen
B Anmerkung

m Zwischenspeicherung in geeigneter Datenstruktur m Die Implementierung der ersten drei Teilaufgaben ist in geeigneter Weise
m Schrittweiser Empfang einzelner Teile der vollstandigen Nachricht so weit wie moglich wiederzuverwenden
= Signatur einer vollstindigen Nachricht (Zertifikat):
<Nachricht-ID, Nachricht, Anzahl erhaltener ACKs, Sequenznummer>
m Auslieferung darf erst geschehen, sobald eine vollstindige Nachricht die
geforderten Kriterien (z. B. ACKs, Sequenznummer) erfiillt

= Die naive Implementierung sollte weiterhin lauffahig bleiben

0 VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-21 O VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-22
Vereinfachungen in Ubungsaufgabe 5 Allgemeine Hinweise
m Anderungen der Gruppenzusammensetzung ®m Synchronisation
= Neuen Knoten fehlt die Nachrichtenhistorie m Es ist davon auszugehen, dass auf Instanzen der Protokollklassen von
m Leader-Wechsel muss bei totaler Ordnung beriicksichtigt werden mehreren Threads parallel zugegriffen wird
m Beides kann zur Verletzung von Zustellungsgarantien fiihren
— Wechsel von Sichten wird nicht unterstiitzt ®m Exceptions

= Auftretende Exceptions sind zumindest auszugegeben
m Bereinigen von Zwischenspeichern

m Zwischenspeicher von Nachrichten, z. B. zum Verhindern von ® Testen der Implementierung
Mehrfachauslieferungen, miissen irgendwann bereinigt werden m Das Skript distribute.sh erstellt mehrere entfernte Prozesse,
— wird vernachlassigt die anschlieBend die Testanwendung VSTestClient ausfiihren

= Die Ergebnisse werden in Logs ausgegeben, die mittels des Skripts
checklogs.sh iiberpriift werden kdnnen.

= Vor Aufruf von distribute.sh muss die Datei my_hosts mit Hostnamen
von regular erreichbaren CIP-Pool-Rechnern gefiillt werden

O VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-23 O VS-Ubung (SS14) Zuverlissige Gruppenkommunikation— Ubungsaufgabe 5 8-24

Effizientes Arbeiten mit Screen screen(1)

“Screen is a window manager that allows you to handle several
independent screens (UNIX ttys) on a single physical terminal;
each screen has its own set of processes connected to it (...)"

Posting von Christopher Laumann <net@tub.UUCP>
20. M3rz 1987, Communications and Operating Systems Research Group, TU Berlin

Wichtige Screen-Kommandos:
Ctrl+a c Erstelle neues Fenster und wechsle zu diesem

Ctrl+a Ctrl+a Springe zum letzten aktiven Fenster

Ctrl+a <num> Springe zu Fenster <num>
Ctrl+a k SchlieBe aktuelles Fenster
Ctrl+a \ SchlieBe alle Fenster und beende Screen-Instanz

Achtung: Die Kommandos gelten fiir CIP-Pool-Rechner, weichen vom
Standard ab und konnen sich auf anderen Systemen unterscheiden.

VS-Ubung (SS14) Zuverlissige Gruppenkommunikation — Ubungsaufgabe 5 8-25

	Zuverlässige Gruppenkommunikation
	Grundlagen
	Zustellungsgarantien bei Multicast
	JGroups
	Übungsaufgabe 5

