
Überblick

Zuverlässige Gruppenkommunikation
Grundlagen
Zustellungsgarantien bei Multicast
JGroups
Übungsaufgabe 5

VS-Übung (SS14) Zuverlässige Gruppenkommunikation 8 – 1

Motivation

,,Das Ganze ist mehr als die Summe seiner Teile.”

Aristoteles

Problemstellungen gilt es oft im Verbund zu bearbeiten
Zusammenschluss einzelner Knoten (Rechner, Prozesse) zu Gruppen
Einheitliches Kommunikationsmittel innerhalb der Gruppe

VS-Übung (SS14) Zuverlässige Gruppenkommunikation –Grundlagen 8 – 2

Zusammenschlüsse in verteilten Systemen

Gruppe: Zusammenschluss von Knoten in einem verteilten System

Limitierte Anzahl der Knoten
Gemeinsamer (globaler) Zustand notwendig

Szenarien, Anwendungs- und Einsatzgebiete

Replikation
Instant Messaging
Virtuelle Konferenzen
Netzwerkanwendungen und -spiele

Abgrenzung

Client-Server-System
Peer-to-Peer-System (P2P)

→ In vielen Systemen sind die Grenzen jedoch fließend

VS-Übung (SS14) Zuverlässige Gruppenkommunikation –Grundlagen 8 – 3

Client-Server- und Peer-to-Peer-Systeme

Client-Server-System

Arbeitsteilung
→ Client: Lokale Bereitstellung eines Dienstes
→ Server: Diensterbringer
Clients sind unabhängig voneinander
Kommunikation ist nicht gleichberechtigt

Peer-to-Peer-System (P2P)

Knoten sind Client und Server zugleich
Jeder Konten besitzt nur eine partielle Sicht
auf das Gesamtsystem
Auf sehr große Anzahlen von Knoten ausgelegt

VS-Übung (SS14) Zuverlässige Gruppenkommunikation –Grundlagen 8 – 4

Virtuelle Synchronität (Virtual Synchrony)

Probleme im Gruppenverbund

Kein gemeinsamer Speicher
Keine gemeinsame Uhr
Zusammensetzung der Gruppe ist oftmals dynamisch

Knoten treten ihr bei oder verlassen sie
Ausfall von Knoten
Abbruch von Verbindungen

Lösungsansatz: Virtuelle Synchronität (Virtual Synchrony)

Knoten einigen sich auf Liste aller aktiven Gruppenmitglieder
→ Gemeinsame Sicht auf das Gesamtsystem (View)
Erneutes Aushandeln der View bei Änderung der Zusammensetzung
→ Abfolge von Views dient als gemeinsame logische Zeitbasis
Nachrichten sind nur für eine View gültig

Kenneth P. Birman and Thomas A. Joseph
Exploiting Virtual Synchrony in Distributed Systems
Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles (SOSP), pages 123–138, 1987.

VS-Übung (SS14) Zuverlässige Gruppenkommunikation –Grundlagen 8 – 5

Überblick

Zuverlässige Gruppenkommunikation
Grundlagen
Zustellungsgarantien bei Multicast
JGroups
Übungsaufgabe 5

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Zustellungsgarantien bei Multicast 8 – 6

Zuverlässigkeit

Best-Effort Multicast

Versendet ein korrekter Knoten eine Nachricht, wird sie letztendlich von
jedem korrekten Knoten ausgeliefert (Gültigkeit)

Keine Nachricht wird mehrmals ausgeliefert (keine Verdopplung)

Nur zuvor erstellte und versendete Nachrichten werden ausgeliefert
(keine Erschaffung)

Zuverlässiger Multicast

Liefert ein korrekter Knoten eine Nachricht aus, wird sie letztendlich von
jedem korrekten Knoten ausgeliefert (Einigkeit)

Ansonsten wie Best-Effort Multicast

Uniformer Multicast

Liefert ein beliebiger Knoten eine Nachricht aus, wird sie letztendlich von
jedem korrekten Knoten ausgeliefert (Uniforme Einigkeit)

Ansonsten wie zuverlässiger Multicast

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Zustellungsgarantien bei Multicast 8 – 7

Ordnung

Keine Ordnung

Nachrichten werden in keiner festen Reihenfolge ausgeliefert

First-In-First-Out-Ordnung (FIFO-Ordnung)

Nachrichten werden von allen korrekten Knoten in der Reihenfolge
ausgeliefert, in der sie versendet wurden

Von verschiedenen Knoten gesendete Nachrichten werden in keiner festen
Reihenfolge ausgeliefert

Totale Ordnung

Nachrichten werden von allen korrekten Knoten in der gleichen
Reihenfolge ausgeliefert

Totale Ordnung ist orthogonal zur FIFO-Ordnung

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Zustellungsgarantien bei Multicast 8 – 8

http://www.cs.cornell.edu/home/rvr/sys/p123-birman.pdf

Überblick

Zuverlässige Gruppenkommunikation
Grundlagen
Zustellungsgarantien bei Multicast
JGroups
Übungsaufgabe 5

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – JGroups 8 – 9

JGroups (Kurze Zusammenfassung)

JGroups

Bibliothek und Framework für zuverlässige Gruppenkommunikation

→ Virtual Synchrony, Zustandstransfer, Zustellungsgarantie

Durch modularen Aufbau über Konfiguration an bestehende
Erfordernisse anpassbar

Verwendung

Knoten verbinden sich mittels eines org.jgroups.JChannel-Objekts
Nachrichten (org.jgroups.Message) können per Unicast oder Multicast
versendet werden
Auslieferung von Nachrichten erfolgt asynchron
(org.jgroups.MessageListener)

Benachrichtigung über Gruppenzusammensetzung (org.jgroups.View)
sind ebenfalls asynchron (org.jgroups.MembershipListener)

Siehe Folien zu Übungsaufgabe 4 (Replikation)

API-Dokumentation: http://jgroups.org/javadoc/index.html

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – JGroups 8 – 10

Protokoll-Stack

Protokoll-Stack von JGroups ist konfigurier- und erweiterbar

JChannel A

TCP
TCPPING
MERGE2
FD_SOCK

FD
NAKACK
UNICAST

GMS
SEQUENCER

JChannel B

TCP
TCPPING
MERGE2
FD_SOCK

FD
NAKACK
UNICAST

GMS
SEQUENCER

org.jgroups.Message

org.jgroups.stack.ProtocolStack

org.jgroups.Header

org.jgroups.stack.
Protocol

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – JGroups 8 – 11

Protokolle

Bestehende Protokolle (Auswahl)
SEQUENCER

Realisiert eine totale Ordnung auf Basis von NAKACK
GMS (Group Membership Service)

Protokoll für Gruppenmitgliedschaft und Sichten (Views)
NAKACK (Not Acknowledge, Acknowledge)

Implementiert FIFO-Multicast
FD (Failure Detection)

Heartbeat-Protokoll für Ausfallerkennung
TCP/UDP

Transportprotokolle

Vollständige Liste: jg-protocol-ids.xml (→ JGroups Quellcode)
Implementierung eigener Protokolle möglich

Protokolle leiten von der Klasse org.jgroups.stack.Protocol ab
Registrierung mittels XML-Datei oder zur Laufzeit

ClassConfigurator.addProtocol(short id, Class protocol);

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – JGroups 8 – 12

http://jgroups.org/javadoc/index.html

Ereignisse

Empfang und Versand von Nachrichten sowie Statusänderungen
werden als Ereignisse im Protokoll-Stack propagiert

Zugehörige Methoden der Klasse Protocol

Object down(Event evt); // Aufruf durch hoehere Schicht

Object up(Event evt); // Aufruf durch untere Schicht

Rückgabe von Ergebnis der unteren (super.down(evt);) oder höheren
Schichten (super.up(evt);) bzw. null, wenn Ereignis verworfen wurde

Klasse org.jgroups.Event

int getType(); // Typ des Ereignisses

Object getArg(); // Mitgeliefertes Argument

Typ (Event.*) Beschreibung Argument

MSG Versand (down) oder Empfang (up) org.jgroups.Message

einer Nachricht
VIEW CHANGE Änderung der aktuellen Sicht org.jgroups.View

(up und down)
SET LOCAL ADDRESS Setzen der lokalen Adresse (down) org.jgroups.Address

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – JGroups 8 – 13

Protokoll-Header

Protokolle tauschen über Header interne Daten zwischen Knoten aus

Header leiten von org.jgroups.Header ab
Müssen vergleichbar zu Protokollen registriert werden
ClassConfigurator.add(short id, Class header);

Header sind Teil von Nachrichten und werden mit diesen übertragen
Zugehörige Methoden der Klasse org.jgroups.Message

Hinzufügen eines Header an Nachricht

void putHeader(short id, Header hdr);

Rückgabe des Header einer Nachricht oder null, wenn nicht vorhanden

Header getHeader(short id);

Beispiel:

Message msg = new Message(...);

VSTotalOrderHeader hdr = VSTotalOrderHeader.createMulticast(msgid);

msg.putHeader(id, hdr); // id: Attribut aus Oberklasse

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – JGroups 8 – 14

Serialisierung

JGroups verwendet eigene Mechanismen zur Serialisierung und
Deserialisierung zum Beispiel von Headers

Schnittstelle org.jgroups.util.Streamable

void writeTo(DataOutputStream out); // Serialisierung

void readFrom(DataInputStream in); // Deserialisierung

Klassen müssen über XML-Datei oder zur Laufzeit registriert werden
(siehe Registrierung von Headers)

Hilfsmethoden in Klasse org.jgroups.util.Util

byte[] objectToByteBuffer(Object obj);

Object objectFromByteBuffer(byte[] buf, int off, int len);

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – JGroups 8 – 15

Überblick

Zuverlässige Gruppenkommunikation
Grundlagen
Zustellungsgarantien bei Multicast
JGroups
Übungsaufgabe 5

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 16

Aufgabenstellung

Implementierung eines eigenen Sequencers als
JGroups-Protokoll ,,VSTotalOrder”

Naive Implementierung

VSTotalOrder setzt auf NAKACK auf, das FIFO implementiert
Umleitung aller Multicast-Nachrichten zu einem ausgewählten Knoten,
dem Leader
Leader versendet Nachrichten

→ Ein einziger Knoten sendet Multicasts + FIFO = totale Ordnung

Optimierte Implementierung

Knoten versenden Multicasts selbst
Leader sendet extra Nachricht mit Ordnung
Nachrichten werden erst ausgeliefert, wenn Ordnung bekannt

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 17

Hinweise zu Teilaufgabe 5.1

Behandeln von Statusänderungen innerhalb der Gruppe

Speichern der lokalen Adresse des Knotens bei Event.SET LOCAL ADDRESS

Speichern der aktuellen Sicht und bestimmen des Leader bei
Event.VIEW CHANGE

View besteht aus geordneter Liste der Adressen aller Mitglieder

Vector<Address> view.getMembers()

Erstes Mitglied der aktuellen Sicht ist Leader
Zusammen mit lokaler Adresse kann bestimmt werden,
ob ein Knoten der Leader ist

Klasse VSTotalOrder (im Pub-Verzeichnis) soll als Grundlage dienen

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 18

Hinweise zu Teilaufgabe 5.2 (1/2)

Umleiten aller Multicasts zu Leader (Naive Implementierung)
Überprüfen, ob zu versendende Nachricht außerhalb der Ordnung liegt:

msg.isFlagSet(Message.NO_TOTAL_ORDER) ||

msg.getDest() != null && !msg.getDest().isMulticastAddress()

In diesem Fall Ereignis unbehandelt an untere Schicht weiterreichen:
super.down(...);

Initialisierung des Versenders der Nachricht mit lokaler Adresse, falls
nicht anders festgelegt:
msg.getSrc();

msg.setSrc(...);

Einpacken der Originalnachricht (Serialisierung)
Neues Nachrichtenobjekt mit Leader als Empfänger erzeugen, anhängen
der Originalnachricht, Header hinzufügen

Versenden der Nachricht vom Leader
Wiederum neues Nachrichtenobjekt erzeugen
new Message(null, <local>, msg.getRawBuffer(),

msg.getOffset(), msg.getLength());

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 19

Hinweise zu Teilaufgabe 5.2 (2/2)

Nachricht weiterreichen

Nachricht vom Leader entgegennehmen

Originalnachricht auspacken

Originalnachricht an höhere Schicht weiterreichen

Vorgegebene Klassen
VSMsgID

NachrichtenID; bekommt jede Originalnachricht

VSTotalOrderMsgType

Typ der Nachricht, bisher: REROUTING (,,Ein Knoten an Leader”) und
MULTICAST (,,Leader an alle Knoten”)

VSTotalOrderHeader

Header für internen Datenaustausch; enthält: Nachrichtentyp und -ID,
sowie ggf. Ordnung (ViewId und Sequenznummer)

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 20

Hinweise zu Teilaufgabe 5.3

Auslieferung von Nachrichten verzögern

Nachricht vom Leader entgegennehmen
Nachricht abspeichern ohne sie auszuliefern
ACK (neuer Nachrichtentyp) an alle Knoten versenden

Nachrichten nach Empfang von ACKs ausliefern

Versenden der Nachricht erst nach Eintreffen der Empfangsbestätigungen
von einer Mehrheit an Knoten
Trotz Verzögerung muss die totale Ordnung beachtet werden
ACKs können schon vor eigentlicher Nachricht eintreffen

Zwischenspeicherung in geeigneter Datenstruktur

Schrittweiser Empfang einzelner Teile der vollständigen Nachricht
Signatur einer vollständigen Nachricht (Zertifikat):
<Nachricht-ID, Nachricht, Anzahl erhaltener ACKs, Sequenznummer>

Auslieferung darf erst geschehen, sobald eine vollständige Nachricht die
geforderten Kriterien (z. B. ACKs, Sequenznummer) erfüllt

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 21

Hinweise zu Teilaufgabe 5.4

Versenden der Multicasts direkt vom Knoten selbst

Nachricht muss weder verpackt noch ausgepackt werden

Auslieferung der Nachricht ist zu verzögern bis Ordnung und
ACKs vorliegen

Herstellung der Reihenfolge

Leader versendet beim Eintreffen der Originalnachricht eine
Ordnungsnachricht (ohne abermaliges Versenden der Originalnachricht)

Anmerkung

Die Implementierung der ersten drei Teilaufgaben ist in geeigneter Weise
so weit wie möglich wiederzuverwenden

Die naive Implementierung sollte weiterhin lauffähig bleiben

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 22

Vereinfachungen in Übungsaufgabe 5

Änderungen der Gruppenzusammensetzung

Neuen Knoten fehlt die Nachrichtenhistorie
Leader-Wechsel muss bei totaler Ordnung berücksichtigt werden
Beides kann zur Verletzung von Zustellungsgarantien führen

→ Wechsel von Sichten wird nicht unterstützt

Bereinigen von Zwischenspeichern

Zwischenspeicher von Nachrichten, z. B. zum Verhindern von
Mehrfachauslieferungen, müssen irgendwann bereinigt werden

→ wird vernachlässigt

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 23

Allgemeine Hinweise

Synchronisation

Es ist davon auszugehen, dass auf Instanzen der Protokollklassen von
mehreren Threads parallel zugegriffen wird

Exceptions

Auftretende Exceptions sind zumindest auszugegeben

Testen der Implementierung

Das Skript distribute.sh erstellt mehrere entfernte Prozesse,
die anschließend die Testanwendung VSTestClient ausführen

Die Ergebnisse werden in Logs ausgegeben, die mittels des Skripts
checklogs.sh überprüft werden können.

Vor Aufruf von distribute.sh muss die Datei my hosts mit Hostnamen
von regulär erreichbaren CIP-Pool-Rechnern gefüllt werden

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 24

Effizientes Arbeiten mit Screen screen(1)

“Screen is a window manager that allows you to handle several
independent screens (UNIX ttys) on a single physical terminal;
each screen has its own set of processes connected to it (. . .)”

Posting von Christopher Laumann <net@tub.UUCP>
20. März 1987, Communications and Operating Systems Research Group, TU Berlin

Wichtige Screen-Kommandos:
Ctrl+a c Erstelle neues Fenster und wechsle zu diesem

Ctrl+a Ctrl+a Springe zum letzten aktiven Fenster

Ctrl+a <num> Springe zu Fenster <num>

Ctrl+a k Schließe aktuelles Fenster

Ctrl+a \ Schließe alle Fenster und beende Screen-Instanz

Achtung: Die Kommandos gelten für CIP-Pool-Rechner, weichen vom
Standard ab und können sich auf anderen Systemen unterscheiden.

VS-Übung (SS14) Zuverlässige Gruppenkommunikation – Übungsaufgabe 5 8 – 25

	Zuverlässige Gruppenkommunikation
	Grundlagen
	Zustellungsgarantien bei Multicast
	JGroups
	Übungsaufgabe 5

