# **■** methodpark



## Contents





- Who is Method Park?
- Why do we need Safety Standards?
- Process and Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary

## Contents



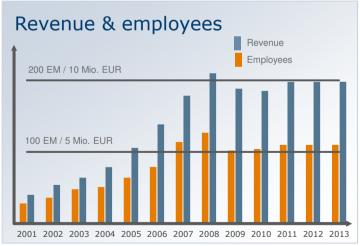


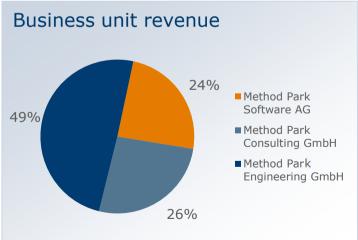
- Who is Method Park?
- Why do we need Safety Standards?
- Process and Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary

# Method Park - Facts and Figures



#### **Facts**


- Founded in 2001
- Locations:


Germany: Erlangen, Munich,

Stuttgart

USA: Detroit, Miami









#### **Product**



Solution for integrated process management

#### A #0.00.

Engineering

#### Areas:

- Project Coaching
- Software Development & Support
- On Site Support
- Off Site Projects
- Fixed Price Projects

#### Consulting/Coaching

#### Topics:

- CMMI®, SPICE, Automotive SPICE®
- Project Management & Agile Development
- Process Improvement & Quality Management
- Functional Safety (ISO 26262)
- Variant & Complexity Management
- Product Line Management (PLM)
- Application Lifecycle Management (ALM)
- Requirements Management
- System & Software Architecture & Design
- AUTOSAR
- System & Software Testing

#### **Training**

Wide range of seminars in the division systems and software engineering

Accredited by the following organizations: SEI, ISTQB, iSQI, iNTACS, IREB, iSAQB, ECQA

#### **Our Customers**



#### **Automotive**

- Audi
- Automotive Lighting
- Blaupunkt
- BMW
- Bosch
- Brose
- Continental
- Daimler
- Delphi
- ETAS
- HE System Elektronik
- Helbako
- Hella
- IAV
- Johnson Controls
- Knorr-Brakes
- Kostal
- Marquardt
- Peiker Acustic
- Preh
- Renesas
- Thales
- TRW
- Volkswagen
- Webasto
- Witte Automotive
- ZF
- Zollner

#### Engineering/ Automation

- 7 layers
- ABB
- BDT
- Carl Schenk
- EBM Papst
- Heidelberger
   Druckmaschinen
- Insta
- Kratzer Automation
- Magirus
- Mettler Toledo
- Mühlbauer Group
- Rohde&Schwarz
- Siemens Industries
- Wago

#### **Government/Public**

- Bundesagentur für Arbeit
- Curiavant
- Kassenärztliche Vereinigung Baden-Württemberg

#### Healthcare

- Carl Zeiss
- Siemens
- Fresenius
- Agfa
- Ziehm Imaging
- NewTec
- Innovations Software
- Technology

# IT/ Telecommunications

- GFT
- Intersoft
- Nash Technologies
- NEC
- Micronas
- Siemens
- Teleca

#### Defense

- Airbus Deutschland
- Diehl
- FADS
- Flbit
- Orbital
- Raytheon Anschütz
- KID

#### **Further**

- Bosch und Siemens Hausgeräte
- Deutsche Post
- GMC Software Technologies
- Kodak
- Landesbank Kiel
- Raab Karcher
- Giesecke & Devrient
- Thales Rail Signaling

## Contents





- Who is Method Park?
- Why do we need Safety Standards?
- Process and Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary

# Example – Ariane 5 (July 4th, 1996)

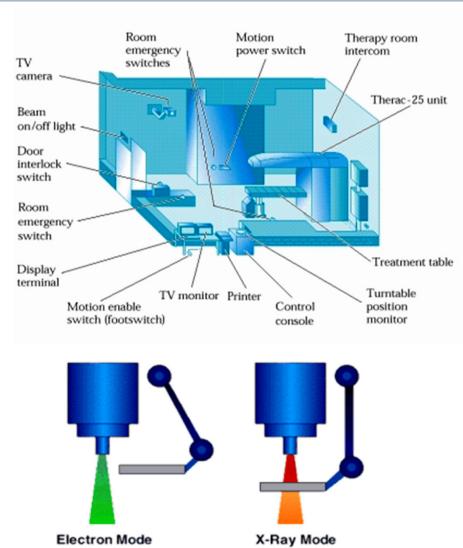




Detonation shortly after takeoff because of an error in the control software

Root cause: Insufficient tests of a reused "proven in use" software component




Source: ESA

Source: YouTube

Slide 8 of 75

# Example – Therac-25





Irradiation of patients with a lethal dose

Root cause: Insufficient safety functions

| PATIENT NAME : TEST<br>TREATMENT MODE : FIX | BEAM TYPE: X    | ENERGY (Me | V): 25      |
|---------------------------------------------|-----------------|------------|-------------|
|                                             | ACTUAL          | PRESCRIBED |             |
| UNIT RATE/MINUTE                            | 0               | 200        |             |
| MONITOR UNITS                               | 50 50           | 200        |             |
| TIME (MIN)                                  | 0.27            | 1.00       |             |
| GANTRY ROTATION (DEG)                       | 0.0             | 0          | VERIFIED    |
| COLLIMATOR ROTATION (DEG)                   | 359.2           | 359        | VERIFIED    |
| COLLIMATOR X (CM)                           | 14.2            | 14.3       | VERIFIED    |
| COLLIMATOR Y (CM)                           | 27.2            | 27.3       | VERIFIED    |
| WEDGE NUMBER                                | 1               | 1          | VERIFIED    |
| ACCESSORY NUMBER                            | 0               | 0          | VERIFIED    |
| DATE : 84-OCT-26 SYSTE                      | EM : BEAM READY | OP. MODE   | :TREAT AUTO |
| TIME : 12:55: 8 TREAT                       | T : TREAT PAUSE |            | X-RAY 17377 |
| OPR ID : T25V02-R03 REASO                   | ON : OPERATOR   | COMMAND    |             |



Application that can cause harm (a risk):

Airbag exploding when infant is sitting in front seat

Need to assess the risk

Infant getting injured – "not good at all"

Find a mitigation strategy, e.g. a safety function:

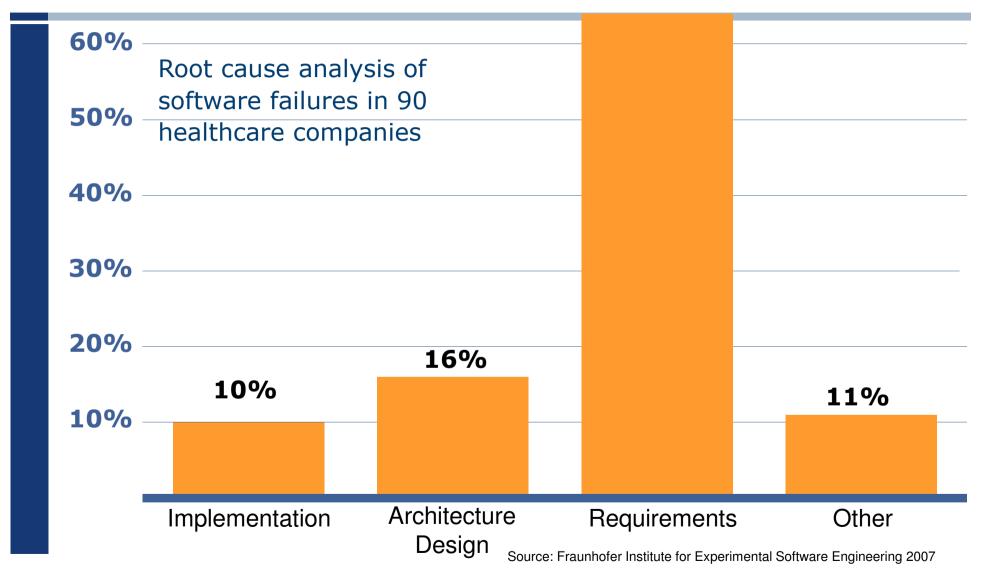
- Detecting infant in front seat and disabling airbag
  - a) sensor delivers signal to
  - b) software/hardware controlling an
  - c) actuator (disabler)


## Functional Safety is then:

 An infant in front seat is not exposed to an unacceptable (unreasonable) risk



Question: How to measure and agree on the measures?

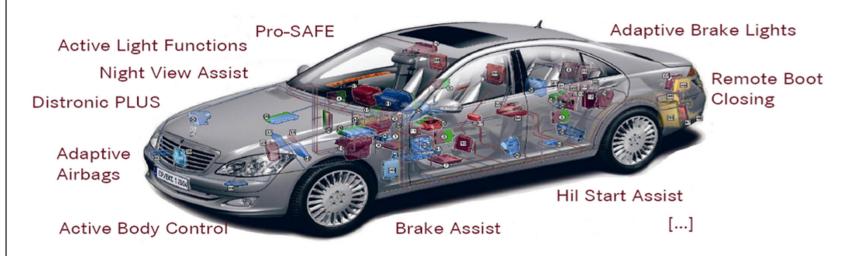





Question:
Do we dare putting
software in direct
control of people's life?

## Reasons for Failures

# 63% ■ methodpark






DAIMLER Functional Safety

# Current Situation Trends in Automotive Electric/Electronics (E/E)

- · Increasing functionality and complexity of software-based car functions
- · Increasing risks from systematic faults and random hardware faults
- · Most of the new car functions are safety-related



Source: © Courtesy of Daimler; Presentation given at Automotive Electronics and Electrical Systems Forum 2008, May 6, 2008, Stuttgart, Germany

#### Extract from German law



#### § 823 Abs. 1 BGB:

"Anyone who injures intentionally or negligently the life, body, health, liberty, property or any other right of another person, is obliged to compensate for the resulting damages."

#### § 1 Abs. 1 ProdhaftG:

"If someone is killed, his body or health injured or an item damaged by a defect in a product, the manufacturer of the product is obliged to replace the resulting damages."

## Contents



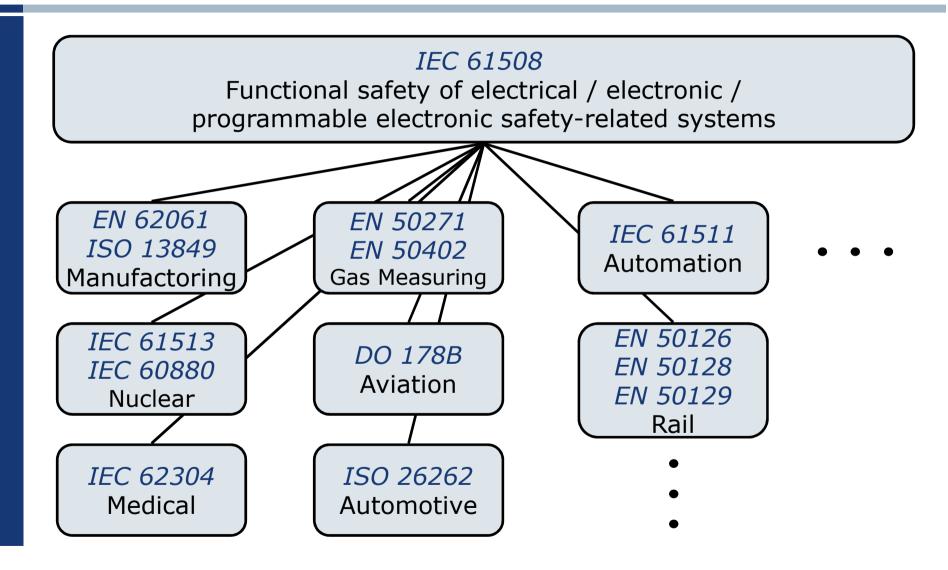


- Who is Method Park?
- Why do we need Safety Standards?
- Process & Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary



## Safety

... is the absence of unacceptable (unreasonable) risks that can cause harm achieved through a planned strategy


## **Functional Safety**

- ... is part of the overall safety that depends on a system or equipment operating correctly in response to its inputs.
- ... is achieved when every specified safety function is carried out and the level of performance required of each safety function is met
- ... is **not** to provide the perfect car, but a safe car.

## **Functional Safety Management**

... is the management (plan, do, act, check) of all activities necessary to reach functional safety.

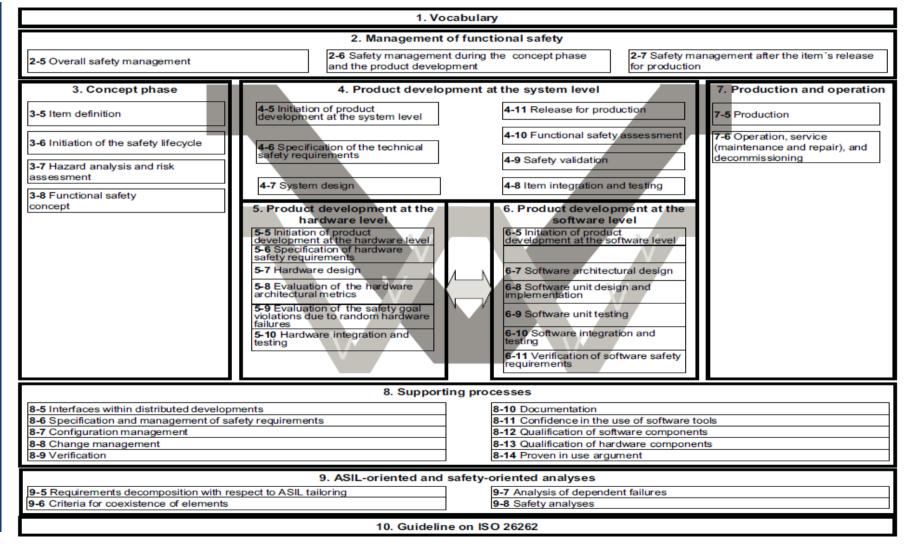






## Why not using IEC 61508?

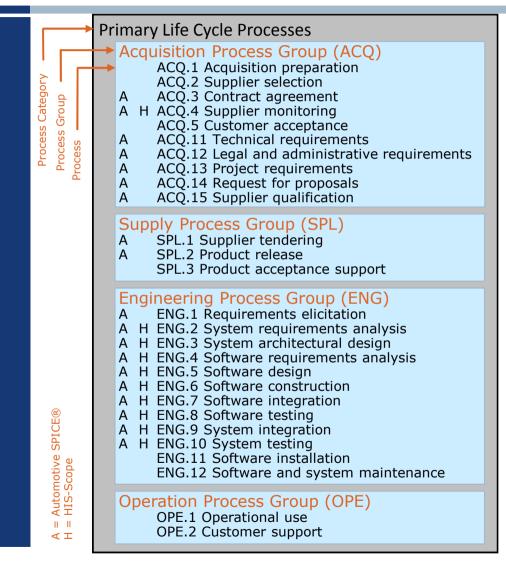
Lessons learnt from application of IEC 61508 in automotive industry:


- Not adapted to real-time and integrated embedded systems
- Not adapted to automotive development and life cycles
- No requirements for manufacturer / supplier relationship
- No 'consumer-goods' orientation
- ...

Companies had to solve these issues themselves until introduction of



#### Structure of ISO 26262






Source: ISO 26262:2011

## ISO 15504 & Automotive SPICE®





#### **Supporting Life Cycle Processes**

#### Support Process Group (SUP)

A H SUP.1 Quality assurance

SUP.2 Verification SUP.3 Validation

SUP.4 Joint review

SUP.5 Audit

SUP.6 Product evaluation

SUP.7 Documentation

A H SUP.8 Configuration management

A H SUP.9 Problem resolution management

A H SUP.10 Change request management

#### Organizational Life Cycle Processes

#### Management Process Group (MAN)

MAN.1 Organizational alignment

MAN.2 Organizational management

A H MAN.3 Project management

MAN.4 Quality management

MAN.5 Risk management

MAN.6 Measurement Α

#### Process Improvement Process Group (PIM)

PIM.1 Process establishment

PIM.2 Process assessment

PIM.3 Process improvement

#### Resource & Infrastructure Process Group (RIN)

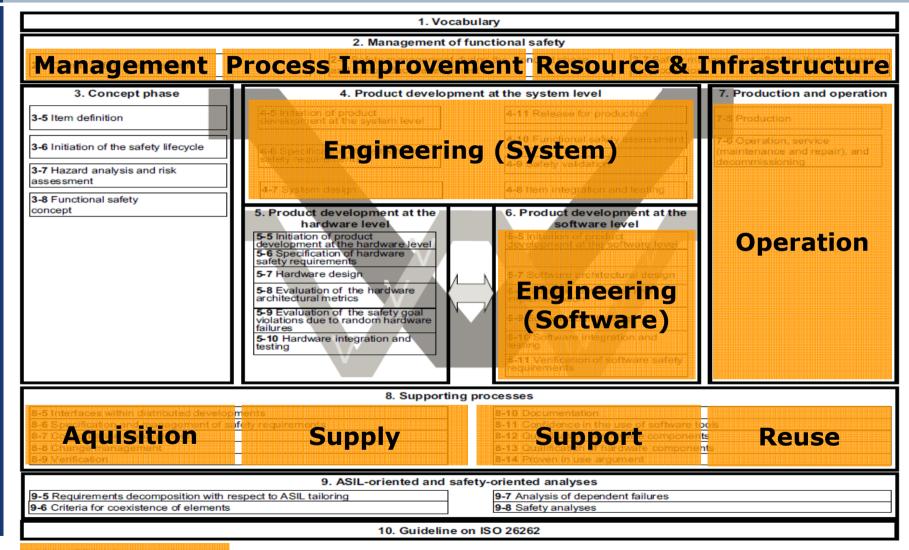
RIN.1 Human resource management

RIN.2 Training

RIN.3 Knowledge management

RIN.4 Infrastructure

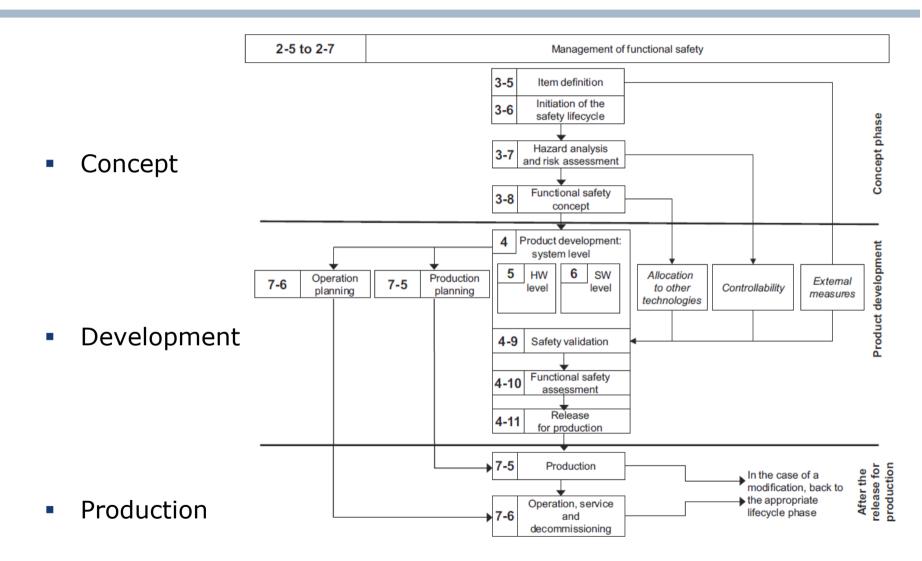
#### Reuse Process Group (REU)


REU.1 Asset management

REU.2 Reuse program management

REU.3 Domain engineering

## Structure of ISO 26262

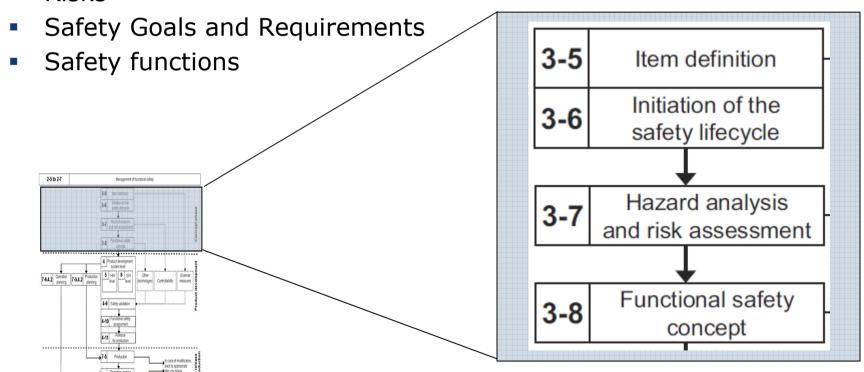





ISO 15504 Process Groups

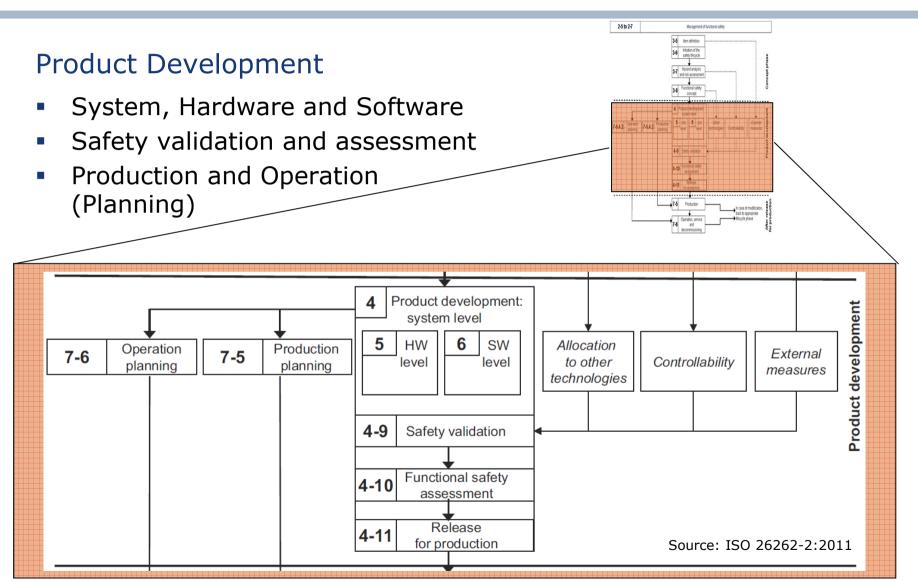
Source: ISO 26262:2011





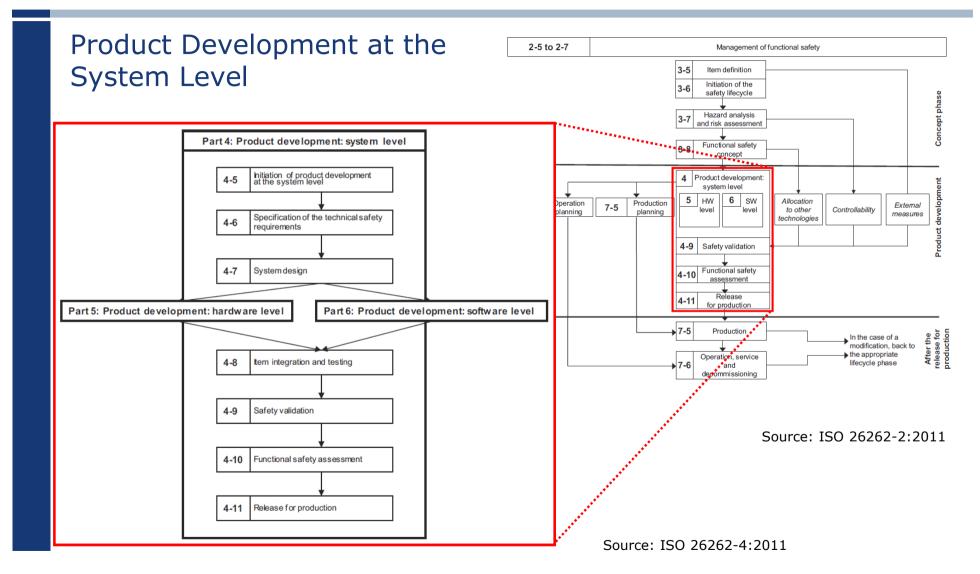

Source: ISO 26262-2:2011




## **Concept Phase**

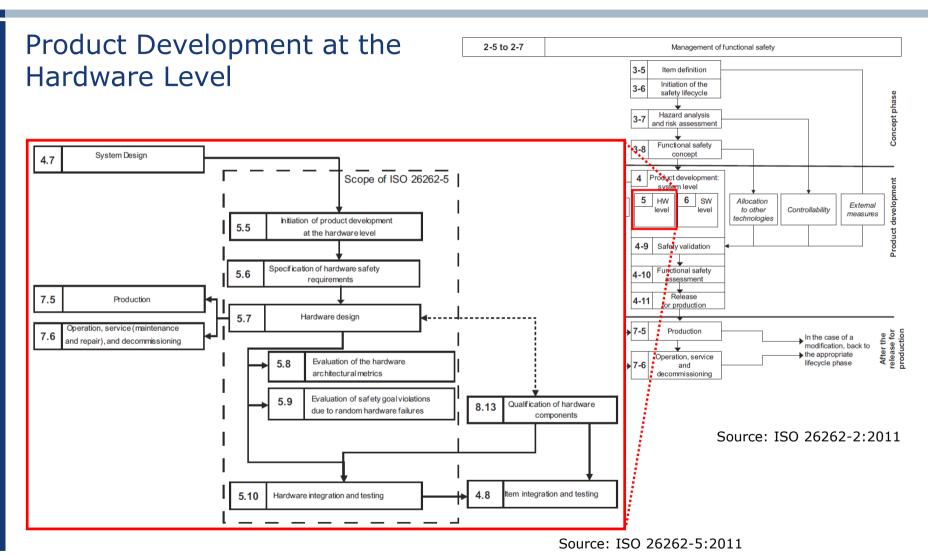
- Focus on entire system
- Risks




Source: ISO 26262-2:2011

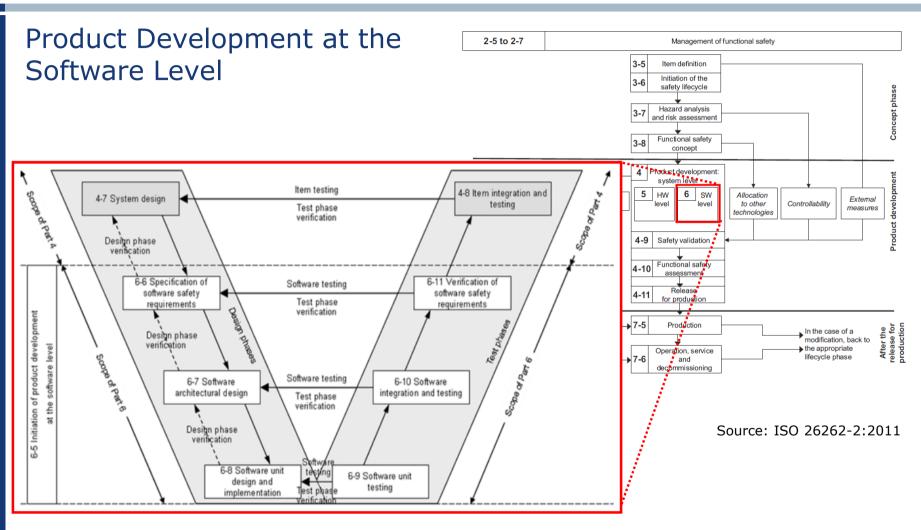





# **Product Development**






# **Product Development**






# **Product Development**





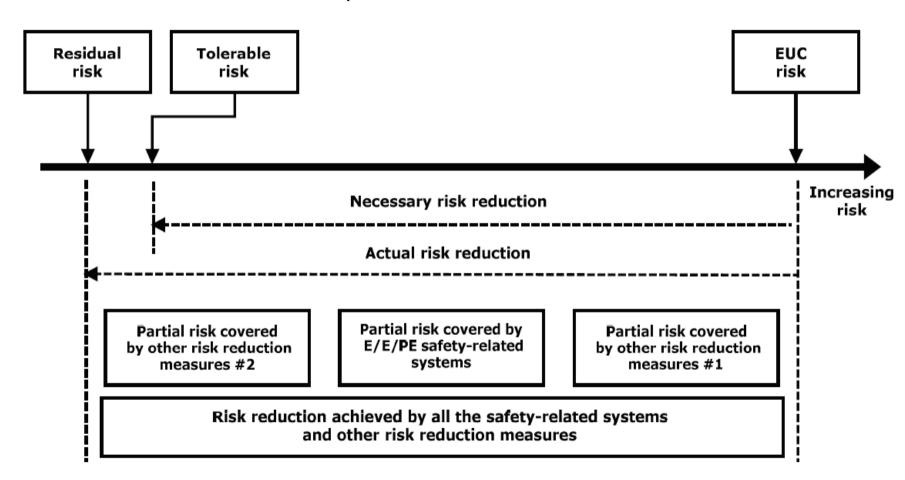
Source: ISO 26262-6:2011





Source: ISO 26262-2:2011

## Contents






- Who is Method Park?
- Why do we need Safety Standards?
- Process and Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary

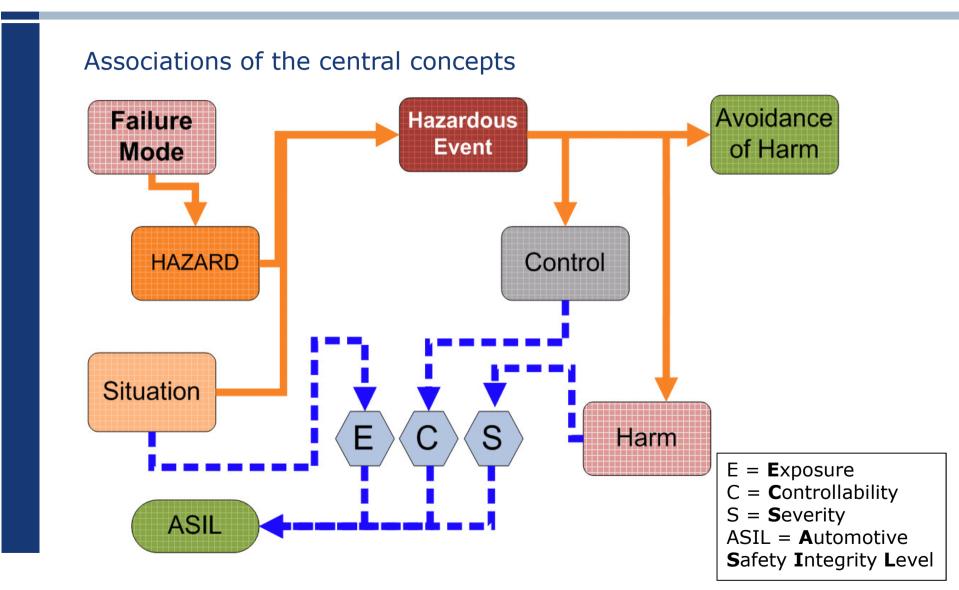


## Risk reduction to an acceptable level



Source: IEC 61508-5:2010




## Situation analysis and hazard identification

- List of driving and operating situations
   → Estimation of the probability of Exposure
- Detailing failure modes leading to hazards in specific situations
  - → Estimation of Controllability
- Evaluating consequences of the hazards
  - → Estimation of potential **S**everity
- → Respect only the plain item (do not take risk-reducing measures into account!)
- → Involve persons with good knowledge and domain experience











## **Exposure**

State of being in an operational situation that can be hazardous if coincident with the failure mode under analysis

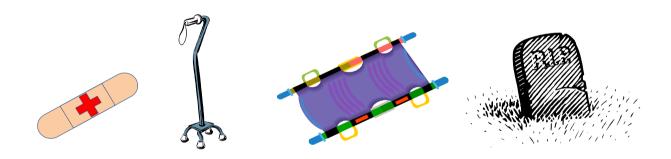
| Class       | E0         | E1                                                                                  | E2                                                                         | E3                                                                     | E4                                                                         |
|-------------|------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Description | Incredible | Very low probability                                                                | Low<br>probability                                                         | Medium probability                                                     | High probability                                                           |
| Time        |            | Not specified                                                                       | Less than 1% of average operating time                                     | 1% - 10% of average operating time                                     | > 10% of average operating time                                            |
| Event       |            | Situations that occur less often than once a year for the great majority of drivers | Situations that occur a few times a year for the great majority of drivers | Situations that occur once a month or more often for an average driver | All situations<br>that occur<br>during almost<br>every drive on<br>average |

Source: ISO 26262-3:2011



## **Controllability**

Avoidance of the specified harm or damage through the timely reactions of the persons involved


| Class       | CO                      | C1                                                                                                  | C2                                                                                                  | C3                                                                                                                     |
|-------------|-------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Description | Controllable in general | Simply controllable                                                                                 | Normally controllable                                                                               | Difficult to control or uncontrollable                                                                                 |
| Definition  | Controllable in general | 99% or more of all drivers or other traffic participants are usually able to avoid a specific harm. | 90% or more of all drivers or other traffic participants are usually able to avoid a specific harm. | Less than 90% of all drivers or other traffic participants are usually able, or barely able, to avoid a specific harm. |

Source: ISO 26262-3:2011



## **Severity**

Measure of the extent of harm to an individual in a specific situation



| Class       | S0             | S1                          | <b>S2</b>                                                       | <b>S3</b>                                                      |
|-------------|----------------|-----------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|
| Description | No<br>injuries | Light and moderate injuries | Severe and life-<br>threatening injuries<br>(survival probable) | Life-threatening injuries (survival uncertain), fatal injuries |

Source: ISO 26262-3:2011



Combinations of Severity, Exposure and Controllability result in the applicable ASIL.

The ASIL's influence the development process of the items.

QM = Quality Management No specific ISO 26262 requirement has to be observed

If S0 or E0 or C0 is set, no ASIL is required (QM).

|    |    | C1 | C2 | C3 |
|----|----|----|----|----|
| S1 | E1 | QМ | QM | QM |
|    | E2 | QM | QM | QM |
|    | E3 | QM | QM | Α  |
|    | E4 | QM | Α  | В  |
| S2 | E1 | QМ | QM | QM |
|    | E2 | QM | QM | Α  |
|    | E3 | QM | Α  | В  |
|    | E4 | Α  | В  | С  |
| S3 | E1 | QM | QM | Α  |
|    | E2 | QM | Α  | В  |
|    | E3 | Α  | В  | _  |
|    | E4 | В  | С  | D  |

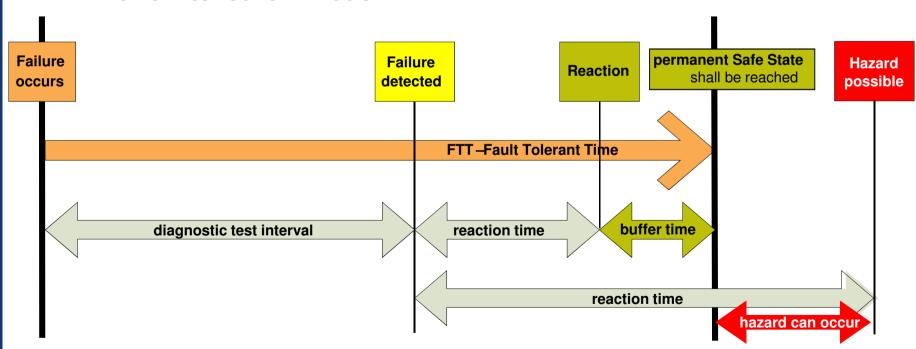
Source: ISO 26262-3:2011

Slide 36 of 75



#### **Safety Goals**

- top-level safety requirements as a result of the hazard analysis and risk assessment
- assigned to each identified hazard rated with an ASIL A-D
- lead to item characteristics needed to avert hazards or to reduce risks associated with the hazards to an acceptable level
- are assigned to a safe state that must be reached in case of appearance
- indicate the maximum fault tolerance time within the safe state must be reached


fault tolerance time = fault recognition time + fault reaction time

#### Hazard Analysis and Risk Assessment



**Safe State** – Operating mode of an item without an unreasonable level of risk

 Example: intended operating mode, degraded operating mode or switched-off mode



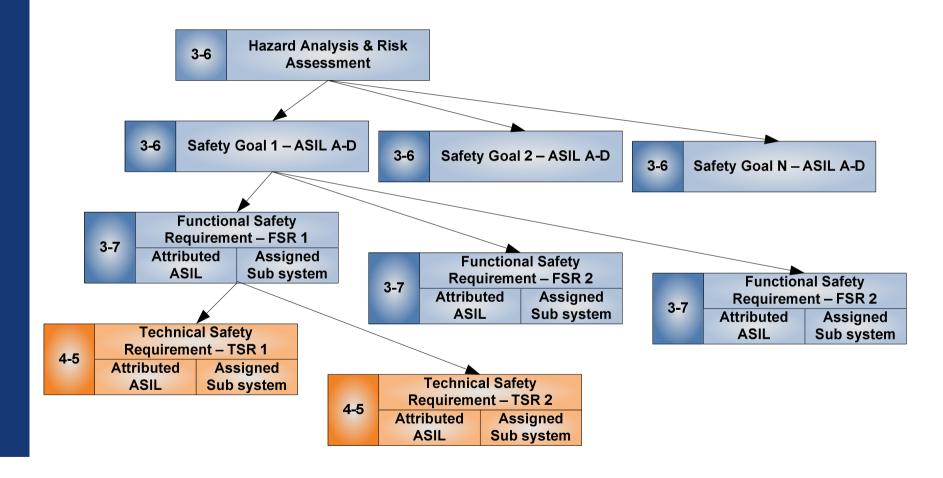


#### Example for Safety Goals: Park Brake System

| ID | Safety Goal                                                                                                                    | ASIL | Safe<br>State     | FTT       |
|----|--------------------------------------------------------------------------------------------------------------------------------|------|-------------------|-----------|
| G1 | Avoidance of unintended maximum brake force build up at one or several wheels during drive and in all environmental conditions | D    | Brake<br>released | 50<br>ms  |
| G2 | Guarantee the specified parking brake function in use case situation "parking on slope" in all environmental conditions        | А    | Brake<br>closed   | 500<br>ms |
| G3 | Avoidance of unintended release of the parking brake in use case situation "parking on slope" in all environmental conditions  | С    | Brake<br>closed   | 500<br>ms |

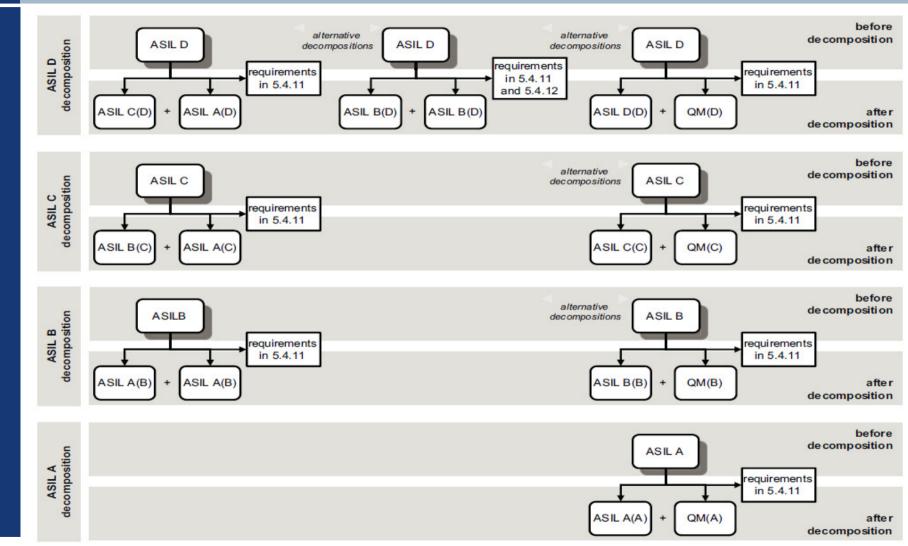
#### Contents



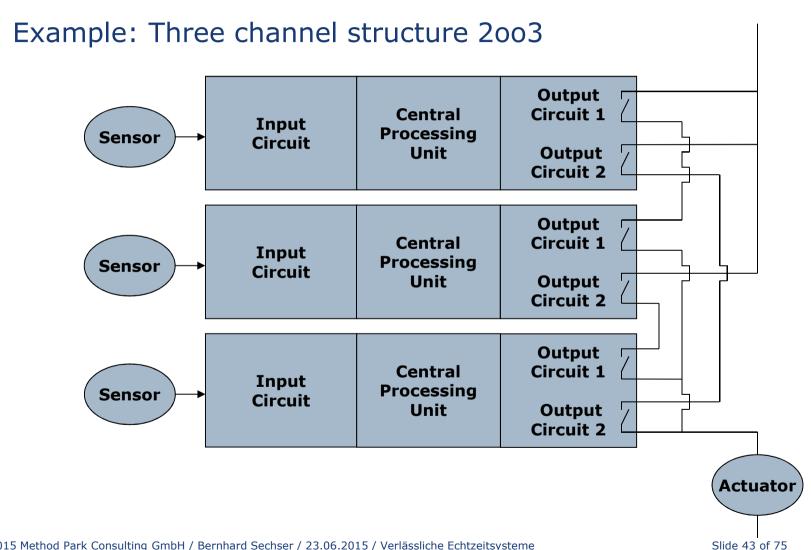



- Who is Method Park?
- Why do we need Safety Standards?
- Process and Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary

#### **Functional Safety Concept**




#### Safety Goals and Functional Safety Requirements




#### **ASIL** Decomposition



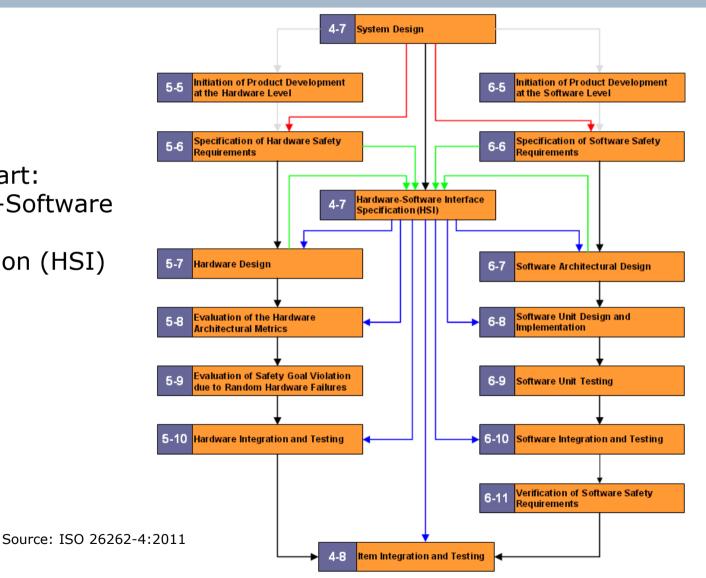






#### Contents



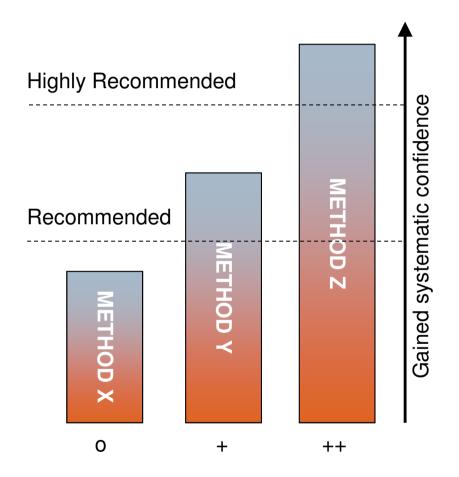



- Who is Method Park?
- Why do we need Safety Standards?
- Process and Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary

# Product Development at Hardware & Software Level



Important part:
Hardware-Software
Interface
Specification (HSI)




#### How to understand the standard tables



For each method, the degree of recommendation to use corresponding methods depends on the ASIL and is categorized as follows:

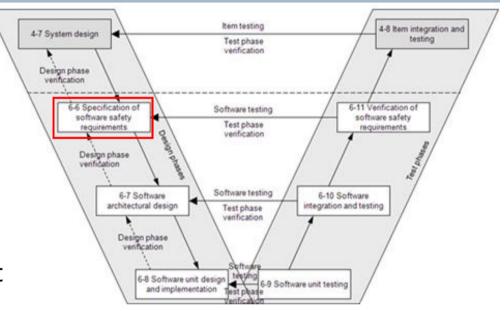
- "++" The method is highly recommended for this ASIL
- "+" The method is recommended for this ASIL
- "o" The method has no recommendation for or against its usage for this ASIL



# Initiation of Product Development at the Software Level



#### Topics to be covered by modeling and coding guidelines


|            | Tonice                                      |    | ASIL |    |    |  |  |
|------------|---------------------------------------------|----|------|----|----|--|--|
|            | Topics                                      | A  | В    | С  | D  |  |  |
| 1a         | Enforcement of low complexity               | ++ | ++   | ++ | ++ |  |  |
| <b>1</b> b | Use of language subsets                     | ++ | ++   | ++ | ++ |  |  |
| 1c         | Enforcement of strong typing                | ++ | ++   | ++ | ++ |  |  |
| <b>1</b> d | Use of defensive implementation techniques  | 0  | +    | ++ | ++ |  |  |
| 1e         | Use of established design principles        | +  | +    | +  | ++ |  |  |
| <b>1</b> f | Use of unambiguous graphical representation | +  | ++   | ++ | ++ |  |  |
| 1g         | Use of style guides                         | +  | ++   | ++ | ++ |  |  |
| 1h         | Use of naming conventions                   | ++ | ++   | ++ | ++ |  |  |

# Specification of Software Safety Requirements



#### Goals

- Derive Software Safety Requirements from and ensure consistency with
  - System Design
  - Technical Safety Concept
- Detail the hardwaresoftware interface requirements



# Specification of Software Safety Requirements



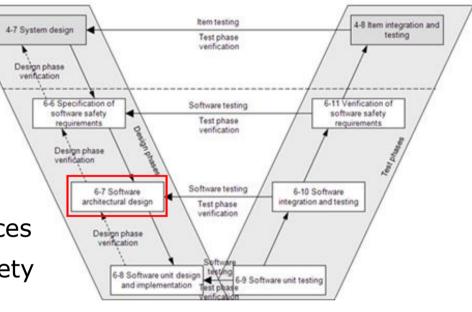
#### Methods for specifying Safety Requirements

- Safety requirements shall be specified by an appropriate combination of natural language and methods listed in the table
- For higher level safety requirements (e.g. functional and technical safety requirements) natural language is more appropriate while for lower level safety requirements (e.g. software and hardware safety requirements) notations listed in the table are more appropriate

|            |                                                      | ASIL |    |    |    |
|------------|------------------------------------------------------|------|----|----|----|
|            | Methods                                              | A    | В  | С  | D  |
| <b>1</b> a | Informal notations for requirements specification    | ++   | ++ | +  | +  |
| 1b         | Semi-formal notations for requirements specification | +    | +  | ++ | ++ |
| 1c         | Formal notations for requirements specification      | +    | +  | +  | +  |

# Specification of Software Safety Requirements




#### Methods for the verification of Safety Requirements

|            |                                                   | ASIL |    |    |    |
|------------|---------------------------------------------------|------|----|----|----|
|            | Methods                                           | A    | В  | С  | D  |
| <b>1</b> a | Verification by walk-through                      | ++   | +  | 0  | 0  |
| 1b         | Verification by inspection                        | +    | ++ | ++ | ++ |
| 1c         | Semi-formal verification (e.g. executable models) | +    | +  | ++ | ++ |
| 1d         | Formal verification                               | 0    | +  | +  | +  |



#### Goals

- Develop an Architecture that implements the Software Safety Requirements
  - Static and dynamic interfaces
  - Safety-related and non safety related requirements



- Verify the Software Architecture
  - Compliance with the requirements
  - Compatibility with hardware
  - Respect of design principles and standards



## Principles for software architectural design

|            | Methods                                         |    | ASIL |    |    |  |  |  |
|------------|-------------------------------------------------|----|------|----|----|--|--|--|
|            |                                                 |    | В    | С  | D  |  |  |  |
| 1a         | Hierarchical structure of software components   | ++ | ++   | ++ | ++ |  |  |  |
| 1b         | Restricted size of software components          | ++ | ++   | ++ | ++ |  |  |  |
| 1c         | Restricted size of interfaces                   | +  | +    | +  | +  |  |  |  |
| 1d         | High cohesion within each software component    | +  | ++   | ++ | ++ |  |  |  |
| 1e         | Restricted coupling between software components | +  | ++   | ++ | ++ |  |  |  |
| <b>1</b> f | Appropriate scheduling properties               | ++ | ++   | ++ | ++ |  |  |  |
| <b>1</b> g | Restricted use of interrupts                    | +  | +    | +  | ++ |  |  |  |



Based on the results of the safety analysis the mechanisms for error detection and error handling shall be applied

|            | Methods -                             |    | AS | SIL |    |
|------------|---------------------------------------|----|----|-----|----|
|            |                                       |    | В  | С   | D  |
| 1a         | Range checks of input and output data | ++ | ++ | ++  | ++ |
| 1b         | Plausibility check                    | +  | +  | +   | ++ |
| 1c         | Detection of data errors              | +  | +  | +   | +  |
| 1d         | External monitoring facility          | 0  | +  | +   | ++ |
| 1e         | Control flow<br>monitoring            | 0  | +  | ++  | ++ |
| <b>1</b> f | Diverse software<br>design            | 0  | o  | +   | ++ |

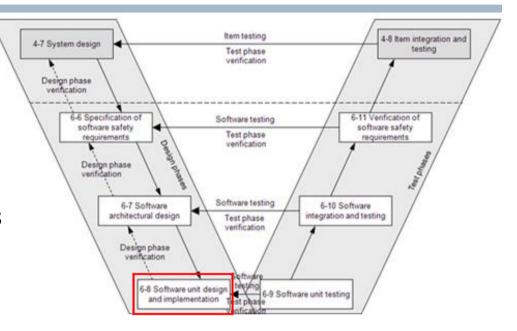
|            | Mathada                         |   | ASIL |    |    |  |  |  |
|------------|---------------------------------|---|------|----|----|--|--|--|
|            | Methods                         | A | В    | С  | D  |  |  |  |
| 1a         | Static recovery mechanism       | + | +    | +  | +  |  |  |  |
| <b>1</b> b | Graceful degradation            | + | +    | ++ | ++ |  |  |  |
| 1c         | Independent parallel redundancy | 0 | 0    | +  | ++ |  |  |  |
| 1d         | Correcting codes for data       | + | +    | +  | +  |  |  |  |

Error handling

Error detection



#### Methods for the verification of the software architectural design


|            |                                           |    | ASIL |    |    |  |  |
|------------|-------------------------------------------|----|------|----|----|--|--|
|            | Methods                                   | A  | В    | С  | D  |  |  |
| <b>1</b> a | Walk-through of the design                | ++ | +    | 0  | 0  |  |  |
| <b>1</b> b | Inspection of the design                  | +  | ++   | ++ | ++ |  |  |
| 1c         | Simulation of dynamic parts of the design | +  | +    | +  | ++ |  |  |
| 1d         | Prototype generation                      | 0  | 0    | +  | ++ |  |  |
| 1e         | Formal verification                       | 0  | 0    | +  | +  |  |  |
| 1f         | Control flow analysis                     | +  | +    | ++ | ++ |  |  |
| <b>1</b> g | Data flow analysis                        | +  | +    | ++ | ++ |  |  |

#### Software Unit Design and Implementation



#### Goals

- Specify SW Units based on:
  - SW Architecture
  - SW Safety Requirements
- Implement the SW Units
- Verify SW Units
  - Code reviews / inspections



# Software Unit Design and Implementation



## Design principles for software unit design and implementation

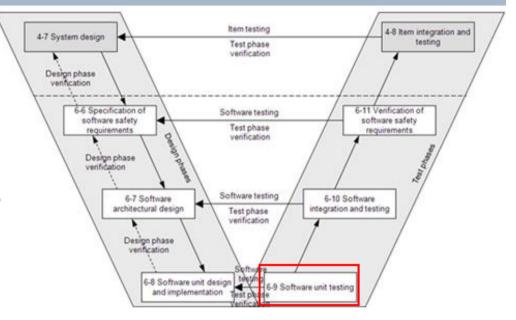
|            | Methods                                                                    |    | ASIL |    |    |  |  |
|------------|----------------------------------------------------------------------------|----|------|----|----|--|--|
|            |                                                                            |    | В    | С  | D  |  |  |
| 1a         | One entry and one exit point in subprograms and functions                  | ++ | ++   | ++ | ++ |  |  |
| 1b         | No dynamic objects or variables, or else online test during their creation | +  | ++   | ++ | ++ |  |  |
| 1c         | Initialization of variables                                                | ++ | ++   | ++ | ++ |  |  |
| <b>1</b> d | No multiple use of variable names                                          | +  | ++   | ++ | ++ |  |  |
| 1e         | Avoid global variables or else justify their usage                         | +  | +    | ++ | ++ |  |  |
| <b>1</b> f | Limited use of pointers                                                    | 0  | +    | +  | ++ |  |  |
| <b>1</b> g | No implicit type conversions                                               | +  | ++   | ++ | ++ |  |  |
| 1h         | No hidden data flow or control flow                                        | +  | ++   | ++ | ++ |  |  |
| 1i         | No unconditional jumps                                                     | ++ | ++   | ++ | ++ |  |  |
| 1j         | No recursions                                                              | +  | +    | ++ | ++ |  |  |

### Software Unit Design and Implementation



Example: MISRA C

- Programming standard developed by Motor Industry Software Reliability Association
- Avoidance of runtime errors due to unsafe C constructs
- The respect of MISRA C shall be demonstrated → static code analysis


Infos: www.misra.org

#### Software Unit Testing



#### Goals

- Demonstrate that the software units fulfil the Software Unit Specifications
- Verify absence of undesired functionalities



### Software Unit Testing



The software unit testing methods shall be applied to demonstrate that the software units achieve:

- Compliance with the software unit design specification
- Compliance with the specification of the hardwaresoftware interface
- Correct implementation of the functionality
- Absence of unintended functionality
- Robustness
- Sufficiency of the resources to support the functionality

|            | Madhada                                                                        |    | AS | IL |    |
|------------|--------------------------------------------------------------------------------|----|----|----|----|
|            | Methods                                                                        | A  | В  | С  | D  |
| 1a         | Requirements-<br>based test                                                    | ++ | ++ | ++ | ++ |
| <b>1</b> b | Interface test                                                                 | ++ | ++ | ++ | ++ |
| 1c         | Fault injection<br>test                                                        | +  | +  | +  | ++ |
| 1d         | Resource usage<br>test                                                         | +  | +  | +  | ++ |
| 1e         | Back-to-back<br>comparison test<br>between model<br>and code, if<br>applicable | +  | +  | ++ | ++ |



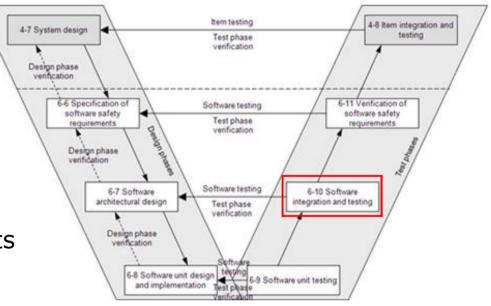
#### Methods for deriving test cases for software unit testing

|    | Methods                                        |    | ASIL |    |    |  |  |  |
|----|------------------------------------------------|----|------|----|----|--|--|--|
|    |                                                |    | В    | С  | D  |  |  |  |
| 1a | Analysis of requirements                       | ++ | ++   | ++ | ++ |  |  |  |
| 1b | Generation and analysis of equivalence classes | +  | ++   | ++ | ++ |  |  |  |
| 1c | Analysis of boundary values                    | +  | ++   | ++ | ++ |  |  |  |
| 1d | Error guessing                                 | +  | +    | +  | +  |  |  |  |



#### Structural coverage metrics at the software unit level

|    | Methods                                      |    | ASIL |    |    |  |  |
|----|----------------------------------------------|----|------|----|----|--|--|
|    |                                              |    | В    | С  | D  |  |  |
| 1a | Statement coverage                           | ++ | ++   | +  | +  |  |  |
| 1b | Branch coverage                              | +  | ++   | ++ | ++ |  |  |
| 1c | MC/DC (Modified Condition/Decision Coverage) | +  | +    | +  | ++ |  |  |


#### Software Integration and Testing



#### Goals

- Integrate SW components
  - Integration sequence
  - Testing of interfaces between components/units

 Verify correct implementation of the SW Architecture



### Software Integration and Testing



The software integration test methods shall be applied to demonstrate that both the software components and the embedded software achieve:

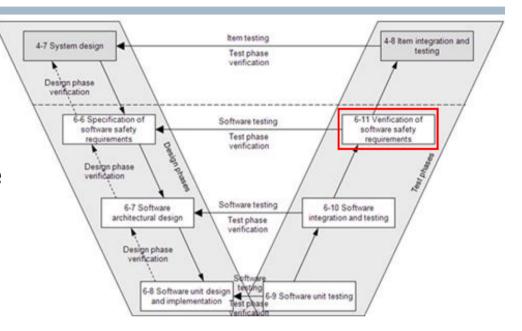
- Compliance with the software architectural design
- Compliance with the specification of the hardware-software interface
- Correct implementation of the functionality
- Robustness and sufficiency of the resources to support the functionality

| Methods |                                                                             | ASIL |    |    |    |  |  |
|---------|-----------------------------------------------------------------------------|------|----|----|----|--|--|
|         |                                                                             | A    | В  | С  | D  |  |  |
| 1a      | Requirements-based<br>test                                                  | ++   | ++ | ++ | ++ |  |  |
| 1b      | Interface test                                                              | ++   | ++ | ++ | ++ |  |  |
| 1c      | Fault injection test                                                        | +    | +  | ++ | ++ |  |  |
| 1d      | Resource usage test                                                         | +    | +  | +  | ++ |  |  |
| 1e      | Back-to-back<br>comparison test<br>between model and<br>code, if applicable | +    | +  | ++ | ++ |  |  |

## Software Integration and Testing



#### Structural coverage metrics at the software architectural level


| Methods |                   | ASIL |   |    |    |
|---------|-------------------|------|---|----|----|
|         |                   | Α    | В | С  | D  |
| 1a      | Function coverage | +    | + | ++ | ++ |
| 1b      | Call coverage     | +    | + | ++ | ++ |

## Verification of Software Safety Requirements

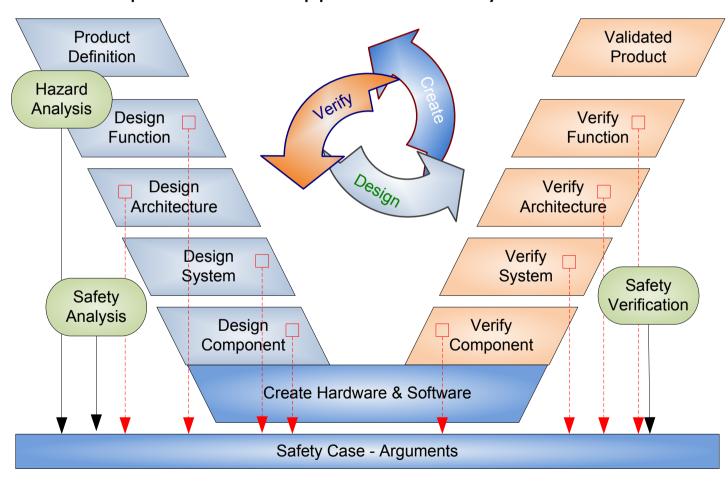


#### Goals

 Verify that the embedded software fulfils the Software Safety Requirements in the target environment



## Verification of Software Safety Requirements




- Verify that the embedded software fulfils the software safety requirements
- Verification of the software safety requirements shall be executed on the target hardware
- The results of the verification of the software safety requirements shall be evaluated in accordance with:
  - Compliance with the expected results
  - Coverage of the software safety requirements
  - A pass or fail criteria

| Methods |                                              | ASIL |    |    |    |  |  |
|---------|----------------------------------------------|------|----|----|----|--|--|
|         |                                              | A    | В  | С  | D  |  |  |
| 1a      | Hardware-in-the-<br>loop                     | +    | +  | ++ | ++ |  |  |
| 1b      | Electronic control unit network environments | ++   | ++ | ++ | ++ |  |  |
| 1c      | Vehicles                                     | ++   | ++ | ++ | ++ |  |  |



#### What shall be provided to support the Safety Case?



#### Contents





- Who is Method Park?
- Why do we need Safety Standards?
- Process and Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary

### **Qualification of Software Tools**



To determine the required level of confidence in a software tool, perform a use case analysis:

- Evaluate if a malfunctioning software tool and its erroneous output can lead to the violation of any safety requirement allocated to the safety-related item or element to be developed
- Establish probability of preventing or detecting such errors in its output
  - Considers measures internal to the software tool (e.g. monitoring)
  - Measures external to the software tool implemented in the development process for the safety-related item or element (e.g. guidelines, tests, reviews)



#### **Tool Impact (TI)**

Possibility that a safety requirement, allocated to the safetyrelated item or element, is violated if the software tool is malfunctioning or producing erroneous output

TI1 – no such possibility

TI2 - all other cases

#### **Tool error Detection (TD)**

Probability of preventing or detecting that the software tool is malfunctioning or producing erroneous output

TD1 – high degree of confidence for prevention or detection

TD2 – medium degree of confidence for prevention or detection

TD3 - all other cases



#### **Tool Confidence Level (TCL)**

Based on the values determined for the classes of TI and TD

|     | TD1  | TD2  | TD3  |
|-----|------|------|------|
| TI1 | TCL1 | TCL1 | TCL1 |
| TI2 | TCL1 | TCL2 | TCL3 |

# **Qualification of Software Tools**



#### Qualification methods:

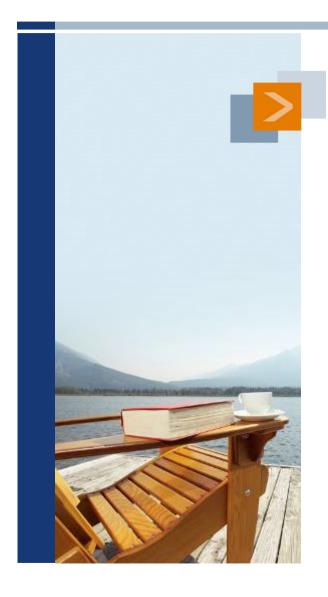
| Qualification methods of software tools classified TCL3 |                                                                           | ASIL |      |    |          |  |
|---------------------------------------------------------|---------------------------------------------------------------------------|------|------|----|----------|--|
|                                                         |                                                                           | A    | В    | С  | D        |  |
| <b>1</b> a                                              | Increased confidence from use                                             | ++   | ++   | +  | +        |  |
| 1b                                                      | Evaluation of the tool development process                                | ++   | ++   | +  | +        |  |
| 1c                                                      | Validation of the software tool                                           | +    | +    | ++ | ++       |  |
| 1d                                                      | Development in accordance with a safety standard                          | +    | +    | ++ | ++       |  |
| 0                                                       | Ouglification methods of software tools classified TCL2                   |      | ASIL |    |          |  |
| Qualification methods of software tools classified TCL2 |                                                                           |      |      |    |          |  |
|                                                         |                                                                           | A    | В    | С  | D        |  |
| 1a                                                      | Increased confidence from use                                             | ++   | ++   | ++ | <b>D</b> |  |
| 1a<br>1b                                                | Increased confidence from use  Evaluation of the tool development process |      |      |    |          |  |
|                                                         |                                                                           | ++   | ++   | ++ | +        |  |

#### Contents





- Who is Method Park?
- Why do we need Safety Standards?
- Process and Safety demands in Automotive
- Hazard Analysis and Risk Assessment
- Functional and Technical Development
- Software Process in detail
- Tool Qualification
- Summary


#### Summary



- Today's electronic systems are too complex to understand all potential hazards
- An approach for Functional Safety is needed to avoid severe injuries and damages in human lives and property
- A standardized way to show that your product is safe is needed – best practice yet not fully established – guidance needed







#### Thank you!

Bernhard Sechser
Principal Consultant SPICE & Safety

Method Park Consulting GmbH Wetterkreuz 19a 91058 Erlangen Germany

Phone: +49 9131 97206-427 Mobile: +49 173 3882055

Bernhard.Sechser@methodpark.com

http://www.xing.com/profile/Bernhard\_Sechser

http://www.methodpark.com