
EASY-Assignment #3: Energy-Related Optimisation

The topic of this assignment is energy optimisation at software and hardware level. Specifically, we
evaluate and optimise the influence of the compiler and the hardware configuration on the energy demand.

Goals of this assignment

• Energy-related optimisation of software

• Energy-related optimisation of the hardware configuration

3.1 Compiler Optimisation

Modern compilers provide a variety of different optimisations, mostly focusing on performance or code
size. However, these optimisations also influence the power and energy demand of a program. Goal of
this assignment is to analyse the impact of different compilers and optimisation passes on the power and
energy demand.

3.1.1 Compiler Flags

Compile the julia program with the following optimisation levels and measure the total energy de-
mand of the resulting binary for one run with the default julia parameters and stdout redirected to
/dev/null. The hardware configuration should be comparable for all measurements. Additionally, mea-
sure the execution time and calculate the average power demand during execution.

Optimisations levels: -O0, -O1, -O2, -O3, -Os, -Ofast

What differences in energy and power demand do you see? What happens when different compiler im-
plementations are used (gcc vs. clang).

Visualise your results.

3.1.2 Optimisation Identification

Each optimisation level of a compiler enables a whole set of optimisations passes1. The optimisation
passes enabled for a specific optimisation level of the gcc compiler can be determined with

gcc -Q -O<opt_level> --help=optimizers

Evaluate the individual influence on the energy demand (you do not need to compare power values) of
optimisation passes added at optimisation level O2 compared to optimisation level O1 of the gcc compiler.

Which optimisation pass is the most important one and for what reason? Calculate the sum of the energy
differences of the individual compiler flags. Is it equal to the total energy saving between the O1 and O2
optimisation levels that you have determined in Assignment 3.1.1?

1https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Exercises for EASY (SS 2020) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Department of Computer Science 4

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


3.2 CPU Frequency Scaling

You have discussed the PAST algorithm2 in the lecture. The goal is to implement it for Linux, in user-
space.

3.2.1 Implement the Algorithm

The kernel provides the relevant load statistics in the /proc/stat pseudo-file. Your algorithm should
periodically read this file, derive the current processor utilisation, and compute the optimal processor
speed.

You should load the intel_pstate driver which controls performance of modern Intel x86 processors
in the Linux kernel. Be aware that this driver utilises hardware pstates: The hardware can regulate its
performance internally, based on information that is not available to the OS. The driver therefore provides
an interface in the sysfs3 to configure the maximum and minimum processor speed.

3.2.2 Visualise the Algorithm

Your implementation of the PAST algorithm should create a log-file where it records the current load
and the performance decisions it makes. You should also write a script that visualises this log file.

3.2.3 Test the Algorithm

Write a small load generator to test your implementation of the PAST algorithm. Does the frequency
scaling algorithm improve the energy demand of the system?

3.2.4 Optimal Hardware Configuration for Julia

In Assignment 2.5, you have executed julia at various processor frequencies and measured the energy
demand. Utilize this information to find out whether the PAST algorithm selects the best possible fre-
quency for julia. Is PAST better than the intel_pstate driver? Furthermore, evaluate energy efficiency
with the EDP and ET2 metrics that were presented in the lecture.

Visualise your results.

Notes

• Material: the julia program

• Keep in mind that you have fixed the CPU frequency for Assignment 2.

• Deadline: 2020-07-30 12:00
2Mark Weiser et al.: Scheduling for Reduced CPU Energy. OSDI’94.
3/sys/devices/system/cpu/intel_pstate/{min,max}_perf_pct

Exercises for EASY (SS 2020) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Department of Computer Science 4


	Compiler Optimisation
	Compiler Flags
	Optimisation Identification

	CPU Frequency Scaling
	Implement the Algorithm
	Visualise the Algorithm
	Test the Algorithm
	Optimal Hardware Configuration for Julia


