Energy-Aware Computing Systems

Energiebewusste Rechensysteme

II. Principles

Timo Hönig

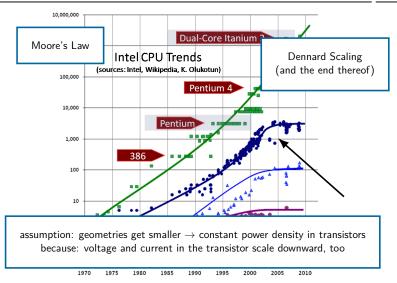
May 7, 2020

Agenda

Preface

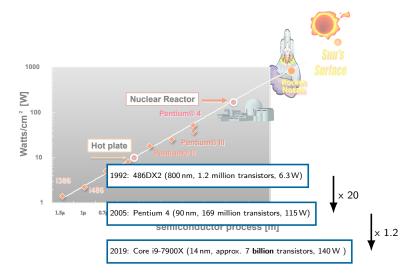
Terminology

System Entities and Properties Switching Circuits Power and Energy Demand


Interlude: Dark Silicon

System Characterization
Basic Metrics
Extended and Composite Metrics

Summary


Preface: The Free Lunch is Over

Sutter '05 [7]

Preface: The Power Wall

Disambiguation: Energy-Aware Computing Systems

recap: meaning of the lecture labelling in linguistic terms:

- en·er·gy (gr.) energeia: word based upon ergon, meaning work
 - 1. capacity for the exertion of power
 - 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system
- aware (old en.) gewær
 - 1. having or showing realization, perception, or knowledge
 - 2. state of being conscious of something
- com·put·ing (lat.) computare: com (together) + putare (to settle)
 - 1. task of making a calculation
 - 2. to use a computer
- sys·tems plural of (gr.) systēmas: to place together
 - 1. a regularly interacting or interdependent group of items forming a unified whole
 - 2. a group of devices (...) or an organization forming a network especially for distributing something or serving a common purpose

Disambiguation: Energy-Aware Computing Systems

dissecting the terminology

energy	aware	computing	systems
energy	efficient	computing	systems
power	aware	computing	systems
power	efficient	computing	systems

energy vs. power

energy : capacity to do work
power : rate of doing work

to be aware as a prerequisite to be efficient

aware : perception and sensing \rightarrow e.g., measure ground truth

efficient : retrospective, current, and predictive \rightarrow e.g., \uparrow results, \downarrow efforts

also consider and reflect on: efficient vs. effective

efficient : useful work per quantity of energy invested

effective : degree of reaching a pursued goal

Energy-Aware Computing Systems

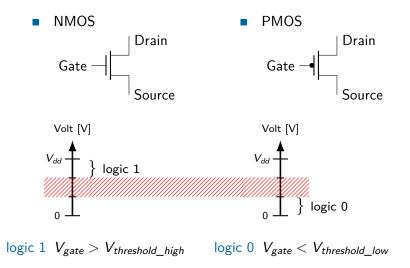
- leading questions → system constraints
 - lacktriangledown what is the average or maximum power demand? ightarrow supply requirements
 - ullet which limits (e.g., thermal) must be adhered to? o demand limit
 - \blacksquare is there a maximum energy demand? \rightarrow extend system service duration

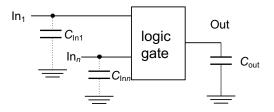
metrics

- what are the correct metrics to answer the leading questions?
- what correlation towards other (non-functional) system properties must be respected?
- what are the influencing factors and variables?

methods

- what are the correct methods to answer the leading questions?
- how to determine the relevant base data (e.g., power and energy demand)?
- \blacksquare what is the correct momentum of analysis? \to a priori / at runtime / a posteriori


- switch: a device for making and breaking the connection in an electric circuit
- basic components in CMOS technology
 - transistors (imperfect switches)
 - wires (interconnect)
- transistor types
 - NMOS (n-type transistor)
 - PMOS (p-type transistor)


Basic System Components: Transistors

Logic Gates

- NMOS and PMOS transistors
 - ...implement logic gates
 - ...switch capacitances

- charges move into and out of capacitors
 - input capacitances (e.g., gate capacitances)
 - lacktriangle output capacitances (e.g., wire length, fanout o # driven gates)

Recap: Base Units in Electric Circuits¹

- Current I
 - flow of electric charge
 - Ampere, unit: A
- Voltage V
 - potential between two points (e.g., ground and V_{dd})
 - Volt, unit: V
- Power P
 - rate at which electrical energy is transferred by an electric circuit ⇒ power: rate of doing work

 $V \times I$

 $\sqrt{P \times R}$

watts amps

 $\sqrt{P \div R}$

- Watt, unit: $W \rightarrow V \cdot A$...or: J / s
- Energy E
 - energy that is transmitted by electricity or stored in electrical fields
 energy: ability to do work
 - Joule, unit: $J \rightarrow V \cdot A \cdot s$...or: $W \cdot s$

Power and Energy Demand of Systems

Definition (Energy Demand)

The energy demand E of a system is measured in joules (J) and is determined by the integral of power demand over time.

$$E_{\rm op} = \int_{t_0}^{t_1} p(t) \cdot dt$$

Example

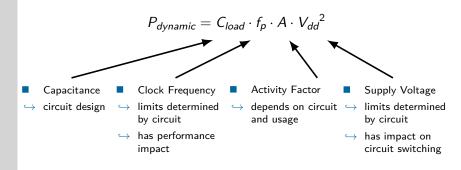
The energy demand $E_{\rm op}$ that is required to execute an operation is calculated by integrating the time function of the power demand p(t) over the time $t_{op} = t_1 - t_0$ required to run the operation.

Power and Energy Demand of Systems

Definition (Power Demand)

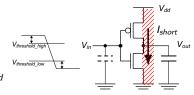
The power demand P of a system is measured in joules per second (J/s). One joule per second equals one watt (W).

$$P_{total} = \underbrace{\left(C_{load} \cdot f_{p} \cdot A \cdot V_{dd}^{2}\right)}_{P_{dynamic}} + \underbrace{\left(I_{short} \cdot V_{dd}\right)}_{P_{short-circuit}} + \underbrace{\left(I_{leak} \cdot V_{dd}\right)}_{P_{static}}$$


Components of Power Demand

The instantaneous power demand of a circuit is split into three components: **dynamic**, **short-circuit**, and **static** power demand. Dynamic and static power demand commonly dominate.

Dynamic Power Demand


- Dynamic Power Demand
 - Capacitance $C_{load} \rightarrow \{gate, diffusion, wire\}$ capacitance
 - Operating Frequency $f_p \rightarrow \operatorname{clock}$ frequency
 - Activity Factor $A \rightarrow$ fraction of clock frequency, $\{0...1\}$
 - ullet Supply Voltage $V_{dd} o ({\sf dynamic})$ voltage that is required for operation

Short Circuit and Static Power Demand

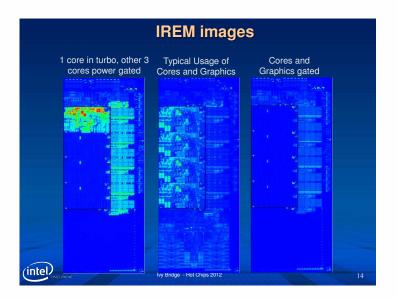
- Short-Circuit Power Demand
 - finite rise and fall times of voltages
 - NMOS/PMOS transistors conduct simultaneously $\Rightarrow P_{short} = I_{short} \cdot V_{dd}$

- Static Power Demand (Leakage)
 - gate leakage
 - sub-threshold current
 - drain junction leakage

Trends

- ullet capacitances decrease o less power is required to drive the capacitance
- lower supply voltages → lower leakage current
- lacktriangle but: lower threshold voltages ightarrow higher leakage
- gap between voltage scaling and transistor scaling results in higher power density and dark silicon...

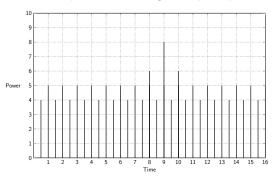
- technology trend, state of the art
 - 2019: Core i9-7900X (14 nm, approx. 7 billion transistors, 140 W)
 - chip area unchanged $\Rightarrow \uparrow$ density of transistors $\Rightarrow \uparrow$ power density
 - result: violation of power constraints as to thermal limits
 - effect: hitting the utilization wall [8] leads to unpowered areas


Dark Silicon [2] and its impact...

Although cores fit onto die as to shrinking semiconductor scaling, they can't be powered simultaneously due to power constraints^a

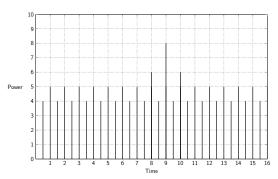
- effective (and unbeloved) counter-measures
 - switch off cores
 - run cores with reduced clock speed
 - reschedule activities

^aat least not at with highest clock speed


Dennard Scaling Revisited: Dark Silicon

- impact of dark silicon
 - future generation systems increasingly interweave design processes of hardware and software components
 - impose challenges for operating systems
 - strict focus on energy-awareness
 - energy-aware system designs require...
 - comparison of systems with regards to different properties
 - power demand
 - energy demand
 - performance
 - latency
 - ullet design criteria (static) o hardware and software
 - system planning (dynamic) \rightarrow hardware and software
- metrics and methods for system characterization

Basic Metrics: Power


- Power P (Watt, unit: W or J / s)
 - rate at which electrical energy is transferred by an electric circuit ⇒ power: rate of doing work
- Power is a suitable metric for...
 - power supply constraints, cooling facilities \rightarrow peak power
 - prediction of heat dissipation → average and peak power

Basic Metrics: Energy

- Energy E (Joule, unit: J or W · s)
 - energy that is transmitted by electricity or stored in electrical fields
 ⇒ energy: ability to do work
- Energy is a suitable metric for...
 - lacktriangle dimensioning of electricity supplies o battery life
 - energy bill

Basic Metrics: Power vs. Energy Revisited

- power and energy demand are insufficient metrics
- system characteristics may differ strongly even though power or energy characteristics are the same
 - ullet performance ightarrow execution time in systems
 - $lue{}$ latency ightarrow response time in networked systems
- extended metrics combine basic metrics (e.g., power, energy demand) with additional system properties (e.g., execution time)
- basic metrics are used to build different composite metrics
 - energy demand itself can be interpreted as a composite metric
 - $\qquad \text{power-delay* product (PDP):} \\ \text{power demand (in Watt)} \cdot \text{delay (in seconds)} \rightarrow \text{energy demand (in Joule)}$
- more complex metrics to be explored which consider and emphasize different system properties to varying degrees...

^{*}delay: time unit, i.e., measured in seconds

Extended and Composite Metrics

- **power-delay product (PDP):** $P_{avg} \cdot t$
 - average energy consumed per switching event
 - good for fixed voltage designs
- energy-delay product (EDP): $E \cdot t = P_{avg} \cdot t \cdot t$
 - equal weight for changes of energy demand and performance
 - Horowitz et al. [3]
 - \hookrightarrow metric is misleading for systems with dynamic voltage scaling \to ED 2 P
- energy-delay-squared product (ED²P)
 - metric good for fixed micro architecture with dynamic voltage scaling
 - Brooks et al. [1]
- energy-delay-cubed product (ED³P)
 - further emphasize on performance, used for high-performance scenarios
 - Srinivasan et al. [6]

Subject Matter

- power and utilization walls (dark silicon) forces drastic redesign of computing systems for energy awareness
- energy demand of computing systems must be seen in due consideration of other non-functional properties (e.g., performance)
- available metrics must be suitable for individual use
- reading list for Lecture 3:
 - Vivek Tiwari et al.

Power Analysis of Embedded Software: A First Step Towards Software Power Minimization

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1994.

Reference List I

- [1] BROOKS, D. M.; BOSE, P.; SCHUSTER, S. E.; JACOBSON, H.; KUDVA, P. N.; BUYUKTOSUNOGLU, A.; WELLMAN, J.; ZYUBAN, V.; GUPTA, M.; COOK, P. W.: Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors. In: IEEE Micro 20 (2000), Nov., Nr. 6, S. 26–44
- [2] ESMAEILZADEH, H.; BLEM, E.; AMANT, R. S.; SANKARALINGAM, K.; BURGER, D.
 - Dark silicon and the end of multicore scaling.
 - In: Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA), 2011, S. 365–376
- [3] HOROWITZ, M.; INDERMAUR, T.; GONZALEZ, R.:
 Low-power digital design.

 In: Proceedings of 1994 IEEE Symposium on Low Power Electronics, 1994, S. 8–11
- [4] JAHAGIRDAR, S.; GEORGE, V.; SODHI, I.; WELLS, R.:
 Power management of the third generation Intel Core micro architecture formerly codenamed Ivy Bridge.
 - In: Proceedings of the IEEE Hot Chips 24 Symposium (HCS), 2012, S. 1-49

Reference List II

[5] Pollack, F. J.:

New microarchitecture challenges in the coming generations of CMOS process technologies.

In: Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture, 1999

[6] SRINIVASAN, V.; BROOKS, D.; GSCHWIND, M.; BOSE, P.; ZYUBAN, V.; STRENSKI, P. N.; EMMA, P. G.:

Optimizing pipelines for power and performance.

In: Proceedings of the 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002, S. 333–344

- [7] SUTTER, H.: The free lunch is over: A fundamental turn toward concurrency in software. In: Dr. Dobb's journal 30 (2005), Nr. 3, S. 202–210
- [8] VENKATESH, G.; SAMPSON, J.; GOULDING, N.; GARCIA, S.; BRYKSIN, V.; LUGO-MARTINEZ, J.; SWANSON, S.; TAYLOR, M. B.: Conservation Cores: Reducing the energy of mature computations.

In: Proceedings of the 15th International Conference on Architectural Support for Programming Languages and Operating Systems, 2010, S. 205–218

