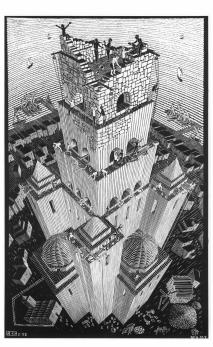
Energy-Aware Computing Systems

Energiebewusste Rechensysteme

VI. Cyber-Physical Systems


Timo Hönig

June 18, 2020

Preface: Pluralism of Systems

- broader perspective
 - introversive perspectives at the level of **individual systems**
 - holistic perspective at a higher level of compound systems
- dependence and cooperation
 - individual systems specialize in specific tasks of the compound system
 - cooperation between individual systems to form a (even) greater "whole"

Agenda

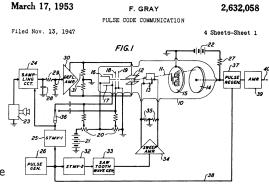
Preface

Terminology

Dynamic System Structure Partitioning Cross-System Control

Cyber-Physical Systems Resource Demand Communication Control

Summary

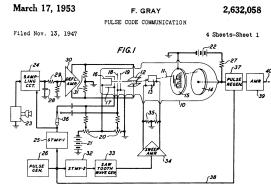


©thoenig EASY (ST 2020, Lecture 6) Preface

3 – 43

Abstract Concept: Cyber-Physical Systems

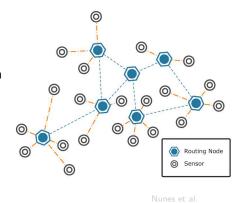
- cyber-physical systems
 - digital operations that interface with the physical world
 - computation
 - sensing of data
 - ightarrow pre-processing
 - processing of data
 - communication
 - transformation of data
 - data transmission
 - uni- and bidirectional
 - control
 - control loops
 - several levels of abstraction (i.e., cruise control, machine control, injection control)



Abstract Concept: Cyber-Physical Systems

- cyber-**physical** systems
 - physical operations that interface with the digital world
 - natural systems
 - hydrologic cycle
 - solar system
 - human-made systems
 - mechanical systems → mechanical energy
 - optical systems \hookrightarrow light energy
 - electrical systems \hookrightarrow electrical energy

tools, instruments etc.



©thoenig EASY (ST 2020, Lecture 6) Terminology

7-43

Dynamic Structures

- composition of system is dynamic
- variable system structure depends on time and location
 - spontaneous joining and resignation of devices
 - overload and breakdown detection
- heterogeneous network links
 - wired and wireless links with variable channel conditions \rightarrow propagation, delay loss
 - impact of (physical) system components on link quality

Abstract Concept: Cyber-Physical Systems

- cyber-physical systems
 - systems that interlock cyber systems with physical systems

March 17, 1953

Filed Nov. 13, 1947

- integrate systems
 - combine physical systems and processes
 - incorporate with networked computing infrastructure
- enhance functionalities
 - augment features of physical systems
 - new capabilities due to computing and communications
- broad range

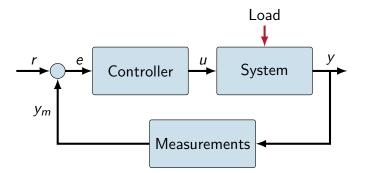
F GRAY

PULSE CODE COMMUNICATION

- deeply embedded systems (i.e., pace maker)
- large scale industry facilities (i.e., power plant)

©thoenig EASY (ST 2020, Lecture 6) Terminology

8-43


2,632,058

4 Sheets-Sheet 1

Control Theory and Practice

Recap

measurement-based analysis with a feedback control system

- controller operates system: **closed control loop** ⇒ feedback control
- **control:** control variable *u* measure: process variable y

Cyber-Physical System Control

- cyber-physical control systems: use hardware "in a loop"
 - information on physical environment ← sensors
 - sample-and-hold-circuits and analog-to-digital (A/D) converters: digital representation of physical aspects
 - $lue{}$ compute and control ightarrow actuators

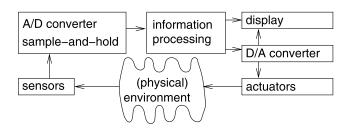


Figure 3.2. Hardware in the loop

P. Marwedel: Embedded System Design [3]

©thoenig EASY (ST 2020, Lecture 6) Dynamic System Structure – Cross-System Control

13-43

Resource Demand

- energy as a basic operating resource of embedded systems that constitute main parts of a cyber-physical system
- computation
 - general purpose CPUs
 - (re{configur,programm}able) application-specific integrated circuits
- communication
 - transmission power for (wireless) network links \rightarrow tail state analysis
 - (periodic) duty cycles
- control
 - actuators
 - cross-layer operations → cyber-physical networking

Nested Cyber-Physical System

- nested controls that operate jointly in a broader context
 - control: actuator controls physical plant
 - sense/feedback: physical interface towards sensors

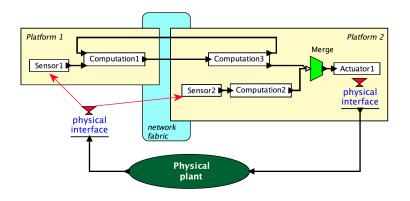
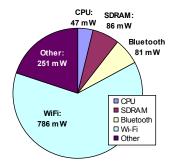


Figure 1.1: Example structure of a cyber-physical system.

Lee & Sanjit: Introduction to Embedded Systems [2]


©thoenig EASY (ST 2020, Lecture 6) Dynamic System Structure - Cross-System Control

14 - 43

Network Links and Tail States

Communication

- network communication contributes significant shares to the overall energy demand
 - state-dependent power demand
 - activity tracking across different subsystems (i.e., application logic, network stack, hardware)

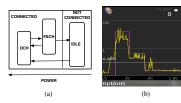
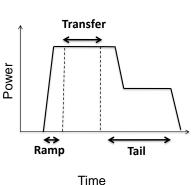


Figure 1: : (a) The radio resource control state machine for 3GPP networks consisting of three states: IDLE, DCH and FACH (b) Instantaneous power measurements for an example transfer over 3G showing the transition time between high to low power state



Balasubramanian et al. [1]

Working with Tail States: TailEnder

Communication

tracking of tail states to schedule the execution of requests (e.g., packet transmission)

TailEnder scheduler (t, r_i, d_i, a_i) :

- 1. Let Δ be the last deadline when a packet was transmitted (initialized to $-\infty$ and reset in Step 3(c)).
- 2. If $(t < d_i)$
 - (a) if $(\Delta + \rho \cdot T < a_i)$, transmit.
 - (b) else add the request to queue Q.
- 3. If $(t == d_i)$
 - (a) Transmit r_i
 - (b) Transmit all requests in Q and set Q = null
 - (c) Set $\Delta = d_i$

Figure 10: The TailEnder algorithm decides at time instant twhether to transmit a request r_i with arrival time a_i and deadline d_i . The parameter ρ is set to 0.62 in our implementation.

© thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems – Communication

19 - 43

Cyber-Physical Networking

Control

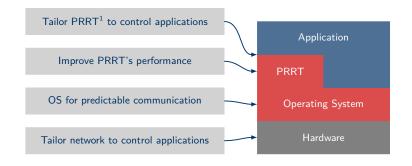
LARN: Context

- ▶ DFG Priority Programme Cyber-Physical Networking (SPP 1914)
 - ▶ focus: predictable latency and resilience in cyber-physical networks
 - interdisciplinary: computer science, electrical and control engineering
 - 11 individual projects, funding for six years (planned)
 - ▶ http://www.spp1914.de
- ► Target scenario: control applications
 - system control in industrial facilities (e.g. BMW etc.)
 - low-latency control loops for medical applications
 - wireless sensors and network transports
- ► Latency- and Resilience-Aware Networking (LARN)
 - operating system: System Software Group at FAU Erlangen-Nürnberg
 - transport protocol: Telecommunications Lab at Saarland University
 - ▶ http://larn.systems

Control Mechanisms in Cyber-Physical Systems

- Ptides: A Deterministic CPS Modeling Paradigm (UC Berkeley)
- system modeling assumptions
 - synchronized clocks with known bound on synchronization error
 - communication channels with known bounds on latency
 - computations impacting the physical world have known bounds
- Interlude: Latency and Resilience-aware Networking (LARN)
 - pragmatic approach for designing low-latency cyber-physical systems
 - suitable for control applications in cyber-physical systems
 - X-Lap: tool-based cross-layer analysis method

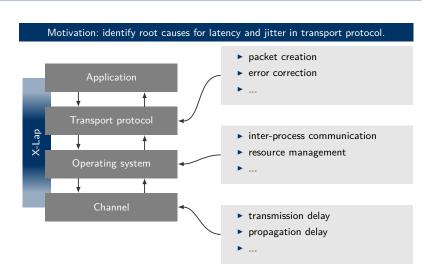
© thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems - Control


21 - 43

Cyber-Physical Networking

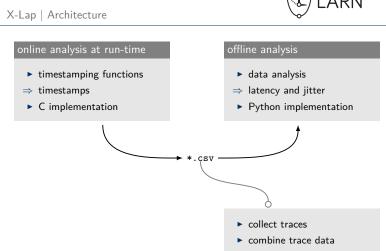
Control

LARN: Overview and Project Goals



¹predictably reliable real-time transport

X-Lap | Introduction


©thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems - Control

25-43

Control

Cyber-Physical Networking

X-Lap | Architecture

- timestamping functions
- ⇒ timestamps
- ▶ C implementation

► trace every packet

embedded into transport protocol code

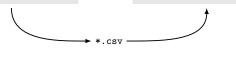
- ⇒ latency and jitter
- ▶ Python implementation

© thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems - Control

27 - 43

Cyber-Physical Networking

Control


X-Lap | Architecture

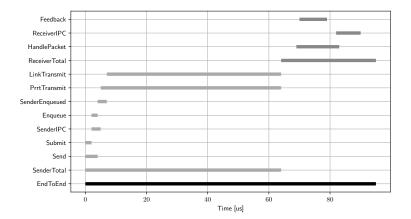
▶ timestamping functions

- ⇒ timestamps
- ► C implementation

data analysis ⇒ latency and jitter

▶ Python implementation

- ▶ single-packet traces
- ▶ jitter amongst packets
- outlier analysis
- correlation analysis


©thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems - Control

Cyber-Physical Networking

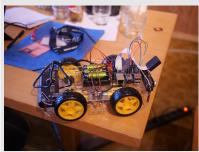
Control

X-Lap | Packet Trace

©thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems - Control

30 - 43

Cyber-Physical Networking


Control

Evaluation Platform

Autonomous Driving Car using RNAs

- ► Raspberry Pi 3 (w/ 802.11n)
- ► camera CCD
- ultrasonic sensors
- ► chassis and motor

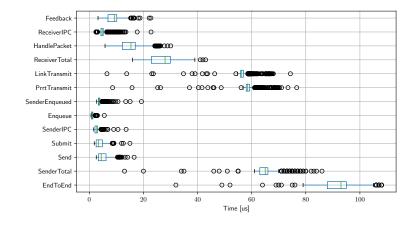
Autonomous Driving (line following)

- camera captures line and transmits video via PRRT
- edge controller extracts line, determines angle, and determines control outputs
- target speed transmitted back and applied on the motor

edge-to-car communication

Platooning (car following)

- ▶ first car follows line
- ▶ second car follows and keeps distance to first car


car-to-car communication

Cyber-Physical Networking

Control

X-Lap | Trace Jitter

© thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems - Control

31 - 43

Cyber-Physical Networking

Control

Results and Outlook

- ▶ Improve cross-cutting system properties
 - focus on energy efficiency: impact of runtime adaptations
 - ▶ non-functional properties of networked systems (i.e. RNAs)
 - system configuration of individual RNAs (i.e. local scope)

energy demand/latency of overall system (i.e. global scope)

- ▶ Identification and proactive avoidance of bottlenecks within system stack
 - ▶ build "strain reliefs" to avoid emergence of bottlenecks
 - proactively exploit a priori knowledge (i.e. system design)
 - cooperative system-analysis (i.e. ahead of runtime + at runtime)

Results and Outlook

CCNC 2019 Workshop

IEEE Workshop on Cyber-Physical Networking (CPN'19), January 2019, Las Vegas http://cpn2019.spp1914.de/

Publications

- Reif, Stefan; Schmidt, Andreas; Hönig, Timo; Herfet, Thorsten; Schröder-Preikschat, Wolfgang: "Differential Energy-Efficiency and Timing Analysis for Real-Time Networks", 16th International Workshop on Real-Time Networks (ECRTS RTN), Barcelona, Spain, July 2018
- Reif, Stefan; Hönig, Timo; Schröder-Preikschat, Wolfgang: "In the Heat of Conflict: On the Synchronisation of Critical Sections", IEEE International Symposium on Real-Time Distributed Computing (ISORC), Toronto, Canada, May 2017
- Reif, Stefan; Schmidt, Andreas; Hönig, Timo; Herfet, Thorsten; Schröder-Preikschat, Wolfgang: "X-Lap: A Systems Approach for Cross-Layer Profiling and Latency Analysis for Cyber-Physical Networks", 15th International Workshop on Real-Time Networks (ECRTS RTN), Dubrovnic, Croatia, June 2017

© thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems – Control

38-43

Subject Matter

- cyber-physical systems are a corner stone for large-scale control systems that connect digital with physical components
- single embedded systems are joining in a dynamic, networked compound to build an **(even)** greater "whole"
- energy demand considerations are pervasive → influence on other non-functional properties of the cyber-physical systems (i.e., reliability, resilience)
- reading list for Lecture 7:
 - Andrew Krioukov et al.

NapSAC: Design and Implementation of a Power-Proportional Web Cluster

Proceedings of the Workshop on Green Networking (GreenNet'10), 2010.

cyber-physical systems

- complex digital systems that interfere with physical world
- dynamic system structure
- embedded systems sense and actuate in a networked compound
- energy demand of cyber-physical systems
 - computation
 - ullet communication o consideration and active exploitation of tail states
 - ullet control o cross-layer analysis

©thoenig EASY (ST 2020, Lecture 6) Cyber-Physical Systems - Control

39 - 43

Reference List I

[1] BALASUBRAMANIAN, N.; BALASUBRAMANIAN, A.; VENKATARAMANI, A.: Energy Consumption in Mobile Phones: A Measurement Study and Implications for Network Applications.

In: Proceedings of the SIGCOMM Conference on Internet Measurement (IMC'09), 2009 (IMC '09), S. 280–293

[2] LEE, E. A.; SESHIA, S. A.: Introduction to Embedded Systems: A Cyber-Physical Systems Approach. The MIT Press, 2016. – ISBN 978–02–625–3381–2

[3] MARWEDEL, P. :

 $\label{thm:embedded} \textit{Embedded Systems Foundations of Cyber-Physical Systems}.$

Springer, 2011. – ISBN 978-94-007-0256-1

