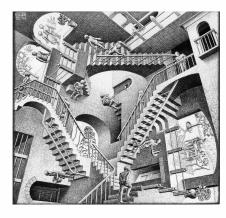
Energy-Aware Computing Systems

Energiebewusste Rechensysteme

VII. Cluster Systems

Timo Hönig

June 25, 2020


) — —

©thoenig EASY (ST 2020, Lecture 7) Preface

3-26

Preface: Changing the Perspective

- small individual problems that are processed to jointly provide a overall solution
 - deeply embedded systems, wireless sensor nodes in cyber-physical systems
 - bottom up approach: build (nested) control loops with self-contained solo systems
 - heterogeneous tasks across concerned systems

Agenda

Preface

Terminology

Composition and Strategies
Compound Structure
Provisioning and Load Control

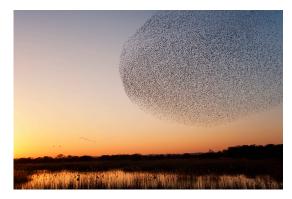
Cluster Systems

Energy Proportionality Energy-efficient Cluster Architecture Thermal Awareness and Control

Summary

Preface: Changing the Perspective

- large problems that are split down to small problems, that contribute to a overall solution
 - clustered networked systems in a compound structure with manageable dynamicity
 - top down approach: divide and conquer; consider local and global energy demand
 - homogeneous (sub-)tasks across concerned systems



Abstract Concept: Cluster Systems

cluster systems

- a number of things of the same kind, growing or held together
- a bunch
- swarm
 - old English swearm
 - multitude, cluster
- cluster composition
 - heterogeneous nodes
 - homogeneous nodes
- cluster linkage
 - wired links
 - wireless links

nationalgeographic.org/

©thoenig EASY (ST 2020, Lecture 7) Terminology

7-26

Compound Structure

cluster systems

- energy-efficient cluster architecture with homogeneous high-performance nodes
- powerful hardware......with complex wiring and administration
- mining cluster
 - energy-efficient special purpose hardware (e.g., GPUs)
 - yet, large clusters have an energy demand that exceeds the one of entire cities

O

Compound Structure

cluster systems

- energy-efficient cluster architecture with homogeneous low-power nodes
- cheap hardware......but sensitive to errors
- RPi cluster
 - 1350 systems
 - 5 400 cores
 - < 4 kW (idle)
 - > 13 kW (active)
 - small area requirements

©thoenig EASY (ST 2020, Lecture 7) Composition and Strategies - Compound Structure

9 - 26

Compound Structure

cluster systems

- energy-efficient cluster architecture
 with heterogeneous low-power and high-performance nodes
- heterogeneous hardware components...
 ...enable an appropriate mapping of software requirements to

hardware offerings

- mixed cluster
 - address heterogeneity of software requirements
 - highly dynamic → power and energy proportionality

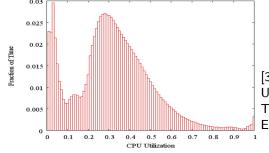
Provisioning and Load Control

- provisioning and load control at level of the system software
- workload distribution [4]
 - software characterization \rightarrow (available) hardware components
 - node assignment strategies → avoid under- and overload
- scheduling
 - ullet thermal-awareness [2] ightarrow cluster locality and deferred execution
 - exploit parallelism where possible
- distributed run-time power management
 - cluster power cap [5]
 - steer progress speed of distributed tasks

©thoenig EASY (ST 2020, Lecture 7) Composition and Strategies-Provisioning and Load Control

13 - 26

Energy-efficient Cluster Architecture


- David G. Andersen et al.: fast array of wimpy nodes (FAWN) [1]
 - cluster architecture that is composed of homogeneous low-power nodes ("wimpy nodes")
 - FAWN nodes and cluster have drastically different characteristics compared

to server systems that employ so-called "beefy nodes"

Energy Proportionality

- considerations on warehouse-scale computers
 - the datacenter as a computer
 - ullet provisioning of hardware components o impact on cost efficiency
 - ullet operation of hardware components o impact on cost efficiency, too
- utilization/workload vs. power demand
 - depending on the workload of systems, the power demand must scale
 - lacktriangle best case: no power when idle ightarrow reasoning between blocking and non-blocking energy management control methods

U. Hölzle and LA. Barroso: The Case for Energy-Proportional Computing (2007)

© thoenig EASY (ST 2020, Lecture 7) Cluster Systems - Energy Proportionality

15 - 26

Energy-efficient Cluster Architecture

- David G. Andersen et al.: fast array of wimpy nodes (FAWN) [1]
 - goal: efficient execution of I/O bound, computationally light workloads
 - multi-layered architecture: frontend node passes requests to responsible backend nodes \rightarrow identified by hashes
 - joint hardware/software architecture
 - custom key-value store
 - low memory nodes
 - partitioning

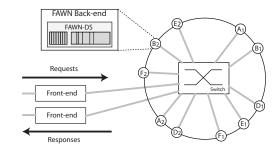


Figure 1: FAWN-KV Architecture.

Thermal Awareness and Control

- Jeonghwan Choi et al.: thermal-aware task scheduling [2]
 - goal: hot spot mitigation to reduce thermal stress
 - avoid performance loss as to overheating
 - reduce cooling efforts
 - core hopping vs. task deferral
 - spatial hot spot mitigation
 - temporal mitigation of overheating

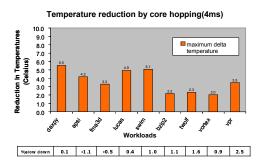
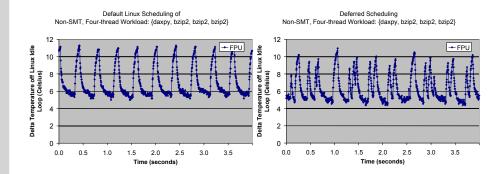


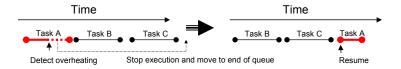
Figure 1: Core hopping reduces on-chip temperatures with small performance impact



©thoenig EASY (ST 2020, Lecture 7) Cluster Systems – Thermal Awareness and Control

20-26

Thermal Awareness and Control


- Jeonghwan Choi et al.: thermal-aware task scheduling [2]
 - task deferral
 - reschedule hot-running tasks to be last in run queue
 - cool down ahead of (resumed) execution

Thermal Awareness and Control

- Jeonghwan Choi et al.: thermal-aware task scheduling [2]
 - task deferral
 - reschedule hot-running tasks to be last in run queue
 - cool down ahead of (resumed) execution

© thoenig EASY (ST 2020, Lecture 7) Cluster Systems – Thermal Awareness and Control

21 - 26

Considerations and Caveats

- cluster systems
 - compound systems consisting large number of nodes
 - suitable mapping of software requirements to hardware offerings
- energy demand depends on system software
 - workload distribution and node assignment
 - scheduling
 - run-time controls (i.e. distributed powerful management)
- power and energy proportionality
 - as to varying workloads, power demand must scale
 - consider blocking and non-blocking energy management methods

Paper Discussion

- paper discussion
 - ► Andrew Krioukov et al.

NapSAC: Design and Implementation of a Power-Proportional Web Cluster

Proceedings of the Workshop on Green Networking (GreenNet'10), 2010.

©thoenig EASY (ST 2020, Lecture 7) Cluster Systems – Thermal Awareness and Control

23-26

Reference List I

[1] Andersen, D. G.; Franklin, J.; Kaminsky, M.; Phanishayee, A.; Tan, L.; Vasudevan, V.:

 $\label{eq:FAWN: A Fast Array of Wimpy Nodes.}$

In: Proceedings of the 22nd ACM SIGOPS Symposium on Operating Systems Principles, 2009, S. 1–14

[2] CHOI, J.; CHER, C.-Y.; FRANKE, H.; HAMANN, H.; WEGER, A.; BOSE, P.: Thermal-aware Task Scheduling at the System Software Level. In: Proceedings of the 2007 International Symposium on Low Power Electronics and Design (ISLPED'07), 2007, S. 213–218

[3] HÖLZLE, U.; BARROSO, L. A.: The Case for Energy-Proportional Computing. In: Computer 40 (2007), 12, S. 33–37

[4] SRIKANTAIAH, S.; KANSAL, A.; ZHAO, F.: Energy Aware Consolidation for Cloud Computing. In: Proceedings of the 2008 Workshop on Power Aware Computing and Systems (HotPower'08), 2008

Subject Matter

- cluster systems consist of homogeneous or heterogeneous nodes that cooperatively work on a solution for a large problem (e.g., scientific computing, number crunching)
- consider overall energy demand at cluster and local energy demand at node level to improve energy proportionality
- reading list for Lecture 8:
 - ► Rolf Neugebauer and Derek McAuley

 Energy is just another resource: Energy accounting and

 energy pricing in the Nemesis OS

 Proceedings of the 8th Workshop on Hot Topics in Operating

©thoenig EASY (ST 2020, Lecture 7) Summary

Systems (HotOS'01), 2001.

24 - 26

Reference List II

[5] ZHANG, H.; HOFFMANN, H.: Performance & Energy Tradeoffs for Dependent Distributed Applications Under System-wide Power Caps. In: Proceedings of the 47th International Conference on Parallel Processing

(ICPP'18), 2018

