Ausgewählte Kapitel der Systemsoftware (AKSS)

Benchmarking Crimes (Gernot Heiser:

http://gernot-heiser.org/benchmarking-crimes.html)

09. Juni 2021

Phillip Raffeck, Tim Rheinfels, Simon Schuster, Peter Wägemann

Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg

Benchmarking Crimes – A Reality Check

Three Rules for Summarizing Results

- Philip J. Fleming & John J. Wallace: How Not To Lie With Statistics: The Correct Way To Summarize Benchmark Results
- Communications of the ACM, Volume 29 Issue 3, 1986, 218-221
- Three Rules
 - Do Not Use the Arithmetic Mean to Average Normalized Numbers
 - 2. Use the Geometric Mean to Average Normalized Numbers
 - 3. Use the Arithmetic Mean to Average Raw Results
- Arithmetic mean: $x_{arith} = \frac{1}{n} \sum_{i=1}^{N} x_i$
- Geometric mean: $x_{geom} = \sqrt[n]{\prod_{i=1}^{N} x_i}$

1st Crime: Selective Benchmarking

1st Crime: Selective Benchmarking

- 1. Not evaluating potential **performance degradation**
 - Progressive criterion: actual improvement
 - Conservative criterion: no degradation elsewhere
- 2. Cherry picking without justification
- 3. Selective data set hiding deficiencies

2nd Crime: Micro-Benchmarks vs. Macro-Benchmarks

2nd Crime:

Pretend μ -Benchmarks Represent Overall Performance

- Macro-benchmarks ~> realistic picture
- Examples exist for exception

3nd Crime: Overhead follows Throughput

3rd Crime:

Throughput degraded by $x \% \Rightarrow$ overhead is x %

- Throughput comparisons require accompanying comparisons of complete CPU load
- What determined throughput in baseline?
- I/O throughput: use **processing time per bit**

4th Crime: Downplaying Overheads

I HATE THE AMBIGUITY CREATED WHEN PEOPLE DON'T DISTINGUISH BETWEEN PERCENTAGES AND PERCENTAGE POINTS.

4th Crime: Downplaying Overheads

- 6 % to 13 % overhead \neq 7 % increase of overhead
- Percentage vs. percentage points

5th Crime: Same Data for Calibration & Validation

5th Crime: Same Data for Calibration & Validation

- Disjoint workloads for calibration & evaluation
- Predictions based on models

6th Crime: No Indication of Significance of Data

6th Crime: No Indication of Significance of Data

- Raw averages misleading
- All standard deviations must be below 1 %
- Doubts: use Student's **t-test**¹
- Fit lines: use regression coefficients

¹Student (William Sealy Gosset): The Probable Error of a Mean. Biometrika. 1908

7th Crime: Benchmarking of Simulated System

7th Crime: Benchmarking of Simulated System

- Simulation == model
- Correctness of model?
- Best model is reality

8th Crime: Inappropriate & Misleading Benchmarks

8th Crime: Inappropriate & Misleading Benchmarks

- Reader lured with misleading benchmarks
- Usage of relevant benchmarks
- Example: CPU-bound workload for evaluation of network stack

9th Crime: Relative Numbers Only

9th Crime: Relative Numbers Only

- Significance of results hidden
- State denominator

10th Crime: No Proper Baseline

10th Crime: No Proper Baseline

- Compare against state-of-the-art approach
- Existing implementations
- Theoretical optimal solution

11th Crime: Evaluate Against Yourself Only

11th Crime: Evaluate Against Yourself Only

- Compare against accepted standard
- Avoid using model to compare against

12th Crime: Unfair Benchmarking of Competitors

12th Crime: Unfair Benchmarking of Competitors

- Provide comparable common ground (e.g., configurations)
- Objectivity/fairness
- Direct evaluations against competitors must be performed extremely thoroughly

13th Crime: Arithmetic Mean for Normalized Numbers

- Arithmetic mean: $x_{arith} = \frac{1}{n} \sum_{i=1}^{N} x_i$
- Geometric mean: $x_{geom} = \sqrt[n]{\prod_{i=1}^{N} x_i}$

13th Crime: Arithmetic Mean for Normalized Numbers

- Normalized numbers ⇒ **geometric mean**
- Absolute numbers ⇒ arithmetic mean

References

- Benchmark Crimes: http://gernot-heiser.org/benchmarking-crimes.html
- Dilbert: dilbert.com/strip/2010-10-15
- Cherry Picking:

https://commons.wikimedia.org/wiki/File:Cherry_picking_(7848350200).jpg

- Eiffel Tower: https://commons.wikimedia.org/wiki/Commons: Photo_challenge/2014_-_September-October_-_Big_and_small
- Funnel: https://commons.wikimedia.org/wiki/File:Funnel_(PSF).png
- Percentage Points: http://imgs.xkcd.com/comics/percentage_points.png
- Disjoint Sets: https://commons.wikimedia.org/wiki/File:Disjunkte_Mengen.svg
- Standard deviation:

https://upload.wikimedia.org/wikipedia/commons/0/05/Alex_Dodge_2012_left.jpg

- Simulation: https://commons.wikimedia.org/wiki/File:Fahr-Simulation.jpg
- Misleading: https://de.wikipedia.org/wiki/Rotk%C3%A4ppchen
- Relative Numbers: https:

//upload.wikimedia.org/wikipedia/commons/6/68/Extrema_example_original.svg

- Baseline: https://www.pexels.com/photo/field-sport-ball-game-54330/
- Unfair Competitors: https://i.ytimg.com/vi/lXRl4gZdRYQ/maxresdefault.jpg