
Persistent State Service Specification

September 2002
Version 2.0

formal/02-09-06

An Adopted Specification of the Object Management Group, Inc.

Copyright © 1999, FUJITSU LIMITED
Copyright © 1999, INPRISE Corporation
Copyright © 1999, IONA Technologies PLC
Copyright © 1999, Objectivity Inc.
Copyright © 1999, Oracle Corporation
Copyright © 1999, Persistence Software Inc.
Copyright © 1999, Secant Technologies Inc.
Copyright © 1999, Sun Microsystems Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . v

1. Service Description . 1-1
1.1 Fundamental Concepts . 1-2

1.2 Datastore Model . 1-3

1.3 Specifying Storage Objects and Storage Homes 1-4

1.4 Implementing Storage Objects and Storage Homes 1-5

1.5 Creating Sessions and Session Pools 1-6

1.6 Transactions . 1-6

1.7 Persistent CORBA Objects . 1-7

1.8 Relationship to CORBA Components 1-8

2. Accessing Storage Objects . 2-1
2.1 Introduction . 2-1

2.2 Catalogs . 2-1

2.3 Connector . 2-3

2.4 Explicit Session Management . 2-5
2.4.1 Overview . 2-5
2.4.2 Session Local Interface 2-6
2.4.3 Transactional Sessions 2-6
2.4.4 EndOfAssociationCallback 2-9

2.5 Implicit Session Management . 2-10
2.5.1 SessionPool . 2-10

2.6 IThread Safety . 2-11
September 2002 Persistent State Service i

Contents
3. Defining Storage Objects . 3-1

3.1 Introduction . 3-1

3.2 PSDL Syntax and Semantics . 3-2
3.2.1 Overview . 3-2
3.2.2 Keywords . 3-3
3.2.3 PSDL Grammar . 3-3
3.2.4 PSDL Type Id . 3-6
3.2.5 Specifying Storage Objects and Storage Homes 3-6
3.2.6 Implementing Storage Objects and

Storage Homes . 3-12

3.3 Transparent Persistence . 3-17
3.3.1 Overview . 3-17
3.3.2 Java . 3-17
3.3.3 C++ . 3-20

4. PSDL Language Mappings . 4-1

4.1 Introduction . 4-1

4.2 Java Mapping . 4-3
4.2.1 Abstract Storagetypes 4-3
4.2.2 Arrays and Sequences 4-3
4.2.3 State Members . 4-3
4.2.4 Storagetype Operations 4-5
4.2.5 Abstract Storagehomes 4-5
4.2.6 Storagehome Operations 4-6
4.2.7 Storagetype . 4-6
4.2.8 Factory Native Types . 4-8

4.3 C++ Mapping . 4-8
4.3.1 Abstract Storagetypes 4-8
4.3.2 Ref_var Classes . 4-12
4.3.3 Arrays and Sequences 4-12
4.3.4 State Members . 4-12
4.3.5 Storagetype Operations 4-14
4.3.6 Abstract Storagehomes 4-15
4.3.7 Storagehome Operations 4-15
4.3.8 Storagetype . 4-15
4.3.9 Storagehomes . 4-17
4.3.10 Factory Native Types . 4-18
ii Persistent State Service September 2002

Contents
Appendix A - CosPersistentState Module A-1

Appendix B - Example: An Implementation of the
Naming Service . B-1

Appendix C - Relationship to Other Services C-1

Appendix D - Conformance Requirements D-1

Appendix E - References . E-1

Index. 1

Reference Sheet . 1
September 2002 Persistent State Service iii

Contents
iv Persistent State Service September 2002

Preface
About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
September 2002 Persistent State Service, v2.0 v

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Need
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is helpful
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which consists
of the following components:

• Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.
vi Persistent State Service, v2.0 September 2002

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains.

• Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.

The Object Request Broker, then, is the core of the Reference Model. Nevertheless, an
Object Request Broker alone cannot enable interoperability at the application semantic
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication between
subscribers. Meaningful, productive communication depends on additional interfaces,
protocols, and policies that are agreed upon outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Object
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is the
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model. The
OMG Object Model is based on objects, operations, types, and subtyping. It provides a
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services, a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities, a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.
September 2002 Persistent State Service: Associated OMG Documents vii

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized object-
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important application
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

You may contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue
Needham, MA 02494

USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve, and specialize functionality

Other related principles that the designs adhere to include:
viii Persistent State Service, v2.0 September 2002

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use of
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as they
need to be. Individual services are by themselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interesting and powerful
ways.

For example, the event and life cycle services, plus a future relationship service, may
play together to support graphs of objects. Object graphs commonly occur in the real
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the event
channel interfaces accept event data of any type. Clients of the service can dynamically
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces that
can be accessed locally or remotely and which can have local library or remote server
styles of implementations. This allows considerable flexibility as regards the location
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approaches
depending on the quality of service required in a particular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfaces
to the event channel are the same for all implementations and all clients. Because rules
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other components.
September 2002 Persistent State Service: Service Design Principles ix

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide different
views for different kinds of clients of the service. For example, the Event Service is
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.

A particular service implementation can support the constituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference to
communicate with each distinct service function. Conceptually, these “internal” objects
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implements
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Using
the event service again as an example, when an event consumer is connected with an
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then request
events by invoking the appropriate operation on the new “supplier” object. Because
each client uses a different object reference to interact with the event channel, the event
channel can keep track of and manage multiple simultaneous clients. An event channel
as a collection of objects conspiring to manage multiple simultaneous consumer
clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously to a
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operation
invocation (object reference) mechanisms.
x Persistent State Service, v2.0 September 2002

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some context.
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique within
its scope but should not make any other assumption.

Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These services
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured as
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated to be
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate iteration
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a parameter
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client code
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clients
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted and/or supported parts of this specification:
September 2002 Persistent State Service: Interface Style Consistency xi

• Ardent Software Inc.

• FUJITSU LIMITED

• IBM Corporation

• INPRISE Corporation

• IONA Technologies PLC

• Objectivity Inc.

• Object Design Inc.

• Oracle Corporation

• Persistence Software Inc.

• Secant Technologies Inc.

• Sun Microsystems Inc.

• Versant Object Technology Corporation
xii Persistent State Service, v2.0 September 2002

Service Description 1
Contents

This chapter contains the following sections.

The Persistent State Service provides a service to programmers (‘you’) who develop
CORBA object implementations. A client has no way to tell if the implementation of
an object uses this service.

Section Title Page

“Fundamental Concepts” 1-2

“Datastore Model” 1-3

“Specifying Storage Objects and Storage Homes” 1-4

“Implementing Storage Objects and Storage Homes” 1-5

“Creating Sessions and Session Pools” 1-6

“Transactions” 1-7

“Persistent CORBA Objects” 1-7

“Relationship to CORBA Components” 1-8
September 2002 Persistent State Service, v2.0 1-1

1

Figure 1-1 External and internal interfaces of a CORBA server

Figure 1-1 shows a computational context that hosts one or more object
implementations — or CORBA server for short. This server provides an external
interface that represents the interfaces supported by the object implementations it
contains; these interfaces are described using IDL interface constructs. Servants in
this server access a datastore (or several datastores) through an internal interface.

This specification focuses on the definition of this internal interface.

1.1 Fundamental Concepts

The Persistent State Service presents persistent information as storage objects stored in
storage homes. Storage homes are themselves stored in datastores. A datastore is an
entity that manages data, for example a database, a set of files, a schema in a relational
database.

In order to manipulate a storage object, you need a programming-language object that
represents it in your program. In Java and C++, this programming language object is an
instance of a class: therefore we call it a storage object instance.

A storage object instance may be bound to a storage object in the datastore, and
provides direct access to the state of this storage object: updating the instance updates
the storage object in the datastore. Such a connected instance is called a storage object
incarnation.

Likewise, to use a storage home, you need a programming language object called a
storage home instance. Storage home instances themselves are provided by catalogs.

ORB domain Datastore domain

Servants

external interface internal interface
1-2 Persistent State Service, v2.0 September 2002

1

To access a storage object, you need a logical connection between your process and the
datastore that contains the storage home of this storage object. This logical connection,
called session, can give access to more than one datastore.

The management of sessions is either explicit (you create and manage sessions
yourself) or implicit (you create one or more session pools that manage sessions for
you). Sessions and session pools are the two kinds of catalogs defined by this
specification.

Figure 1-2 Fundamental Concepts

1.2 Datastore Model

Conceptually, a datastore is a set of storage homes. Each storage home has a type.
Within a datastore, a storage home is a singleton: there is at most one storage home of
a given type in this datastore.

A storage home contains storage objects. Each storage object has an ID unique within
its storage home (its short-pid) and a global ID (its pid). The scope of the pid is all
storage objects that can be accessed through the same catalog.

Each storage object has a type, which defines the state members and operations (also
known as stored methods) of instances of this type. A storage object type can derive
from another storage object type.

Storage
 objects

Storage
 homes

Datastore

Storage object
incarnations

Storage home instanceProcess A

Process B

Sessions

Catalogs

Catalog
September 2002 Persistent State Service: Datastore Model 1-3

1

A storage home can only contain storage objects of a given type. The type of a storage
home defines this storage object type, plus operations and keys (defined below). A
storage home type can derive from another storage home type: the storage object type
of the base storage home type must be a base of the storage object type of the derived
storage home type.

Within a datastore, a storage home manages its own storage objects and the storage
objects of all derived storage homes. A storage home and all its derived storage homes
is called a storage home family.

A storage home can ensure that a list of state members of its storage object type forms
a unique identifier for the storage objects it manages. Such a list of state members is
called a key. A storage home can have any number of keys.

1.3 Specifying Storage Objects and Storage Homes

When developing an application with the Persistent State Service, you are responsible
to specify the kind of storage objects and storage homes you need.

The Persistent State Service provides two ways to define the datastore schema and the
application programming interface of storage object instances in a datastore with this
schema:

• Using the Persistent State Definition Language (PSDL)

• Directly in your favorite programming language; this is known as Transparent
Persistence.

PSDL is a superset of OMG IDL, with four new constructs: storagetype, storagehome,
abstract storagetype and abstract storagehome.

The PSDL type model is very similar to Java: a PSDL storage type (comparable to a
Java class) can implement any number of abstract storage types (comparable to Java
interfaces), and can inherit from at most one other storage type. Likewise, a PSDL
storage home type can implement any number of abstract storage homes and inherit
from at most one other storage home type.

You provide PSDL definitions in a .psdl file. For example:

// In file People.psdl

abstract storagetype Person {
readonly state long social_security_number;
state string full_name;
state string phone_number;

};
abstract storagehome PersonHome of Person {

Person create(in long ssn, in string full_name, in string phone);
};
1-4 Persistent State Service, v2.0 September 2002

1

A tool provided by your Persistent State Service implementation will process this file
and generate code in your target programming language. For example, if your target
programming language is Java, the tool will generate a Java interface for each
abstract storagetype and abstract storagehome.

An abstract storagetype can have state members and operations.

To locate or create a storage object, you call operations on the storage home where this
object is stored (or will be stored). An abstract storagehome can define arbitrary
operations.

A PSS implementation that supports transparent persistence allows you to specify your
storage objects directly in your programming language of choice. For example, you
could define a JPerson Java interface as follows:

// Java
public interface JPerson {

public long socialSecurityNumber();
public String fullName();
public void fullName(String newName);
public String phoneNumber()
public void phoneNumber(String newNumber);

}

1.4 Implementing Storage Objects and Storage Homes

A PSS implementation will typically offer several ways to define the storage types and
storage home types that implement the storage object and storage home specifications
you have specified in PSDL. For example, a graphical tool can let you map state
members to relational columns, and abstract storagehomes to relational tables.

Storage types and storage homes can also be defined in a .psdl file, using the
storagetype and storagehome constructs. A compliant PSS implementation must
understand these storage type and storage home definitions and must be able to
generate a full (default) implementation from these definitions alone.

For example:

// In file PeopleImpl.psdl

#include <People.psdl>
storagetype PersonImpl implements Person {};
storagehome PersonHomeImpl of PersonImpl implements PersonHome{};

A tool provided by your Persistent State Service implementation will process this file
and generate code in your target programming language. For example, if your target
programming language is Java, this tool will generate concrete Java classes for both
PersonImpl and PersonStoreImpl.

With transparent persistence, you can define storage object implementations directly
with regular programming language constructs. For example:
September 2002 Persistent State Service: Implementing Storage Objects and Storage Homes 1-5

1

// Java
public class JPersonImpl implements JPerson {

private long _ssn;
private String _name;
private String _phoneNumber;
public long socialSecurityNumber() { return _ssn }
// etc.

}

With transparent persistence, however, you cannot define application-specific storage
homes: default storage homes with no keys and no operations are implicitly defined.
The type hierarchy of these default storage homes parallels the type hierarchy of the
corresponding storage objects. For example JPersonImpl’s associated storage home
type derives from java.lang.Object’s associated storage home type. As a result, with
transparent persistence, you can only define a single storage home family in each
datastore.

1.5 Creating Sessions and Session Pools

Each PSS implementation provides a local connector object that you use to create
sessions and session pools. To get a reference to a connector object, use the
find_connector operation on the connector registry. The connector registry is a
per-ORB instance singleton obtained by calling resolve_initial_references
(“PSS”) on the ORB pseudo-interface. For example, the following Java code retrieves
the default PSS connector associated with the ORB myOrb, creates a session, and then
finds a storage home and inserts a new person in this storage home.

import org.omg.*;
CORBA.ORB myOrb = CORBA.ORB.init();
CosPersistentState.ConnectorRegistry connectorRegistry

= CosPersistentState.ConnectorRegistryHelper.narrow(
myOrb.resolve_initial_references(“PSS”)

);
CosPersistentState.Connector connector

= connectorRegistry.find_connector(“”);
// create session
CosPersistentState.Session mySession

= connector.create_basic_session(
org.omg.CosPersistentState.READ_WRITE,
“”,
parameters

);
// find person home
// (personHome is a storage home instance)
PersonHome personHome = (PersonHome)

mySession.find_storage_home(“PSDL:PersonHomeImpl:1.0”);

// create person Joe Bloggs
Person joe = personHome.create(12345678, “Joe Bloggs”,

“(617) 949-9000”);
1-6 Persistent State Service, v2.0 September 2002

1

1.6 Transactions

Storage objects can be accessed in the context of transactions managed by the OMG
Transaction Service.

When you manage sessions explicitly, a storage object incarnation and a transaction are
linked through a transactional session:

• The storage object incarnation is managed by a storage home incarnation, which is
itself managed by a transactional session.

• A resource object, which represents a datastore transaction, is registered with the
OTS transaction.

• The transactional session is associated with the resource (datastore transaction).

A normal application developer does not tell the PSS implementation when it needs to
create and register resources, or how and when it associates transactions and sessions;
this is typically done by a third-party vendor, such as an implementation of the
SessionPool by the PSS Vendor, or a CORBA Components container vendor.

Often, in a given CORBA server, only one resource is registered with each transaction.
To retrieve the session associated with this resource, use the current_session
operation on the connector object. For example:

// get the ‘current’ session
org.omg.CosPersistentState.Session mySession =

connector.current_session();

In many cases, the management of sessions and their association of session with
transactions is not something you want to worry about. Further, some vendors offer
high performance transactional mapping and caching based on complex, highly
optimized session management. When you use session pools (implicit session
management), the implementation does everything for you. You have however no
programmatic control over transaction/session association, and you have to use implicit
transaction-context propagation. Each time you call a session pool in the context of a
transaction, the session pool implementation checks if it needs to register a resource
with this transaction, if it needs to create a new session, etc.

Note – Although everything is described in terms of Resources, the Persistent State
Service does not provide resource objects to its users. As a result a PSS
implementation does not need to use Resources to integrate with a Transaction Service
implementation.

1.7 Persistent CORBA Objects

The simplest way to associate a CORBA object with a storage object is to bind the
identity of the CORBA object (its oid, an octet sequence) with the identity of the
storage object.
September 2002 Persistent State Service: Transactions 1-7

1

For example, to make the storage objects stored in storage home PersonHomeImpl
remotely accessible, you can create for each person a CORBA object whose oid is the
person’s social security number.

To make such a common association easier to implement, each storage object provides
two external representations of its identity as octet sequences: the pid and the
short_pid.

1.8 Relationship to CORBA Components

This specification was designed to satisfy all the requirements defined by the CORBA
Components submitters. However, it does not depend on CORBA Components.

When developing a CORBA Component with container-managed persistence, a
programmer sees a simplified subset of the application programming interface defined
by this specification. In particular, when using container-managed persistence, a
Component developer does not have access to sessions or session pools. As a result, a
container vendor does not need a full Persistent State Service implementation to
provide container-managed persistence.
1-8 Persistent State Service, v2.0 September 2002

Accessing Storage Objects 2
Contents

This chapter contains the following sections.

2.1 Introduction

Storage object instances are managed by storage home instances that are themselves
managed by catalogs.

There are two kinds of catalogs: sessions and session pools. Sessions, unlike session
pools, provide a programmatic control over session-allocation and session-transaction
association.

Access to storage objects is also either transactional or non-transactional: this depends
if you use a transactional session or transactional session pool, or not. The
programming model with or without transactions is slightly different: with
transactions, the application must start and end units of work (transactions). Without
transactions, there is no need for demarcation.

Section Title Page

“Introduction” 2-1

“Catalogs” 2-2

“Connector” 2-4

“Explicit Session Management” 2-6

“Implicit Session Management” 2-10

“IThread Safety” 2-11
September 2002 Persistent State Service, v2.0 2-1

2

2.2 Catalogs

A catalog is a local object that implements the local interface
CosPersistentState::CatalogBase:

module CosPersistentState {

local interface StorageHomeBase;

exception NotFound {};

typedef short AccessMode;

const AccessMode READ_ONLY = 0;
const AccessMode READ_WRITE =1;

typedef CORBA::OctetSeq Pid;
typedef CORBA::OctetSeq ShortPid;

local interface CatalogBase {

readonly attribute AccessMode access_mode;

StorageHomeBase
find_storage_home(in string storage_home_id) raises (NotFound);

StorageObjectBase
find_by_pid(in Pid the_pid) raises (NotFound);

void flush();
void refresh();
void free_all();
void close();

};
};

The read-only attribute access_mode returns the access mode of this catalog. When
the access mode is READ_ONLY, the storage object incarnations obtained through
storage home instances provided by this catalog are read-only.

The find_storage_home operation can be used to obtain a storage home instance.
find_storage_home raises NotFound if it cannot find a storage home that matches
the given storage_home_id.

The format of the storage_home_id parameter is mostly implementation-defined.
The find_storage_home operation also understands storage_home_id that have
the form of a PSDL type id (such as “PSDL:com/acme/PersonStoreImpl:1.0”,
Section 3.2.4, “PSDL Type Id,” on page 3-6); find_storage_home looks up a PSDL-
defined storage home with this type id in the catalog’s default datastore. If the
2-2 Persistent State Service, v2.0 September 2002

2

storage_home_id parameter has the form “:datastore_name”, where datastore_name
is a string, find_storage_home returns a storage home instance for the storage home
associated with java.lang.Object (Java) or d_Object (C++) in this datastore.

The find_by_pid operation attempts to locate a storage object with the given PID in
the storage homes provided by the target catalog. The find_by_pid operation raises
NotFound if it cannot find a storage object with this pid; otherwise, it returns an
incarnation of this storage object.

Often, when an application creates a new storage object or updates a storage object, the
modification is not written directly to disk -- the PSS implementation can cache some
“dirty” data. The flush operation instructs the PSS implementation to write to disk any
cached modifications of storage object incarnations managed by this catalog.

In addition, a PSS implementation can cache data read from the datastore(s). The
refresh operation instructs the PSS implementation to refresh any cached storage
object incarnations accessed by this catalog. This operation can invalidate any direct
reference to a storage object incarnation’s data member.

For example:

// PSDL
abstract storagetype Person {

readonly state string full_name;
state CORBA::OctetSeq photo;

};

// Java
Person joe = // somehow locates

 // Joe Bloggs in catalog myCatalog
byte[] photo = joe.photo();
myCatalog.refresh();
// photo is now undefined (can be an out-of-data photo,
// random octets, anything)
// joe, however, is still valid.

Calling refresh is unusual: most applications will never use this operation.

In programming languages without garbage collection, such as C++, PSDL storage
object instances are reference-counted by the application. Further, when a PSDL
storage object A holds a reference to another PSDL storage object B, A’s instance owns
a reference count of B’s instance. When PSDL storage objects form a cyclic graph, the
corresponding instances own reference count of each other; even if the programmer
correctly releases all her reference counts, the cyclic graph will never be completely
released.

For example:

// PSDL
abstract storagetype Person {

readonly state string full_name;
September 2002 Persistent State Service: Catalogs 2-3

2

state ref<Person> spouse;
};

Once a couple is formed, each Person incarnation maintains the other Person’s
incarnation in memory.

The operation free_all deals with this issue: it instructs the catalog implementation to
set the reference count of all its PSDL storage object instances to 0.

The operation close terminates the catalog. When closed, the catalog is also flushed.
If the catalog is associated with one or more transactions (see below) when close is
called, these transactions are marked roll-back only.

2.3 Connector

Sessions and session pools are created by connectors. A connector is a local object that
represents a given PSS implementation.

Applications obtain connectors by calling the operation resolve_initial_references
on a CORBA::ORB object.The format of the ObjectId string passed to
resolve_initial_references is:

PSS[:vendor_id:implementation_id]

The [] denote optional parts in this string format.

The vendor-id is an id assigned by the OMG, and implementation-id is an
implementation-defined string.

module CosPersistentState {

local interface Connector;
local interface Session;
local interface TransactionalSession;
local interface SessionPool;

typedef short TransactionPolicy;
const TransactionPolicy NON_TRANSACTIONAL = 0;
const TransactionPolicy TRANSACTIONAL = 1;

struct Parameter {
string name;
any val;

};

typedef sequence<Parameter> ParameterList;
typedef sequence<TransactionalSession> TransactionalSessionList;

local interface Connector {
readonly attribute string implementation_id;
2-4 Persistent State Service, v2.0 September 2002

2

Session
create_basic_session(

in AccessMode access_mode,
in ParameterList additional_parameters

);

TransactionalSession
create_transactional_session(

in AccessMode access_mode,
in IsolationLevel default_isolation_level,
in EndOfAssociationCallback callback,
in ParameterList additional_parameters

);

TransactionalSession current_session();
TransactionalSessionList
sessions(

in CosTransactions::Coordinator transaction
);
SessionPool
create_session_pool(

in AccessMode access_mode,
in TransactionPolicy tx_policy,
in ParameterList additional_parameters

);

Pid get_pid(in StorageObjectBase obj);
ShortPid get_short_pid(in StorageObjectBase obj);

// ...
 };
};

The read-only attribute implementation_id returns the id of this implementation.

The create_basic_session operation creates a basic, non-transactional,
session.Typically the additional parameters will contain information such as file name,
database name, or authentication information. If the implementation cannot provide a
session with the desired access mode (or higher) it raises the standard exception
PERSIST_STORE.

The create_transactional_session operation creates a new transactional session. If
the implementation cannot provide the desired access mode (or higher) or the desired
default isolation level, it raises the standard exception PERSIST_STORE.

The create_session_pool operation creates a new session pool.

The operation sessions returns all the transactional sessions created by this connector
that are associated with resources registered with the given transaction.
September 2002 Persistent State Service: Connector 2-5

2

Very often sessions will return a single session. The operation current_session
logically calls sessions with the transaction associated with the calling thread; if a
single session is returned, current_session returns it, else it raises the standard
exception PERSIST_STORE.

The get_pid operation returns the pid of the given storage object. The get_short_pid
operation returns the short pid of the given storage object.

2.4 Explicit Session Management

2.4.1 Overview

A PSS session is a logical connection between a process and one or more datastores.
Security credentials are associated with each PSS session.

This specification defines two kinds of sessions: basic sessions for file-like access and
transactional sessions for transactional access.

2.4.2 Session Local Interface

A session is a local object that supports the local interface
CosPersistentState::Session:

module CosPersistentState {
local interface Session : CatalogBase {};

};

2.4.3 Transactional Sessions

A transactional session is a specialized session that provides transactional access to
storage objects. It supports the local interface
CosPersistentState::TransactionalSession:

module CosPersistentState {

typedef short IsolationLevel ;
const IsolationLevel READ_UNCOMMITTED = 0;
const IsolationLevel READ_COMMITTED = 1;
const IsolationLevel REPEATABLE_READ = 2;
const IsolationLevel SERIALIZABLE = 3;

local interface TransactionalSession : Session {

typedef short AssociationStatus;
2-6 Persistent State Service, v2.0 September 2002

2

const AssociationStatus NO_ASSOCIATION = 0;
const AssociationStatus ACTIVE = 1;
const AssociationStatus SUSPENDED = 2;
const AssociationStatus ENDING = 3;

readonly attribute IsolationLevel resource_isolation_level;

void start(in CosTransactions::Coordinator transaction);
void suspend(in CosTransactions::Coordinator transaction);
void end(

in CosTransactions::Coordinator transaction,
in boolean success

);

AssociationStatus get_association_status();
CosTransactions::Coordinator get_transaction();
IsolationLevel get_isolation_level_of_associated_resource();
};

};

At a given point in time, a transactional session can be associated with one resource
object (a datastore transaction), or with no resource at all. The session-resource
association can be active, suspended or ending. The state members of an incarnation
managed by a transactional session can be used only when this session has an active
association with a resource.

Typically, a resource is associated with a single session for its entire lifetime. However,
with some advanced database products, the same resource may be associated with
several sessions, possibly at the same time.

The start operation:

• re-activates a suspended (or ending) session-resource association, when the given
transaction matches the transaction of the suspended (or ending) association; if
there is a suspended (or ending) association but the transactions do not match, the
standard exception INVALID_TRANSACTION is raised.

• else, if a resource compatible with this session is already associated with the given
transaction, start associates this resource with this session, and makes the
association active.

• else the session creates a new resource and registers it with the given transaction; it
also associates itself with this resource and makes the association active.

Compatibility between resources and transactional sessions is implementation-defined.
At a minimum, a resource is compatible with the session that created it.

The behavior when several resources compatible with a given session are registered
with a coordinator given to start is implementation-defined.
September 2002 Persistent State Service: Explicit Session Management 2-7

2

The suspend operation suspends a session-resource association. The suspend
operation raises the standard exception PERSIST_STORE if there is no active
association, and INVALID_TRANSACTION if the given transaction does not match
the transaction of the resource actively associated with this session.

The end operation terminates a session-resource association. The end operation raises
the standard exception PERSIST_STORE if there is no associated resource, and
INVALID_TRANSACTION if the given transaction does not match the transaction of
the resource associated with this session. If the success parameter is FALSE, the
resource is rolled back immediately. Like refresh, end invalidates direct references to
incarnations’ data members.

Figure 2-3 Transactional Session State Diagram

A resource can be prepared or committed in one phase only when it is not actively
associated with any session. If asked to prepare or commit in one phase when still in
use, the resource will rollback. A resource (provided by the PSS implementation) ends
any session-resource association in which it is involved when it is prepared, committed
in one phase, or rolled back.

The get_association_status operation returns the status of the association (if any)
with this session.

The get_transaction operation returns the coordinator of the transaction with which
the resource associated with this session is registered. get_transaction returns a nil
object reference when the session is not associated with a resource.

When data is accessed through a transactional session actively associated with a
resource, a number of undesirable phenomena may occur:

ACTIVE SUSPENDED

INACTIVEcreation

start

ENDING

end
start

destruction

suspend

end

start
2-8 Persistent State Service, v2.0 September 2002

2

• Dirty Reads. A dirty read occurs when a resource is used to read the uncommitted
state of a storage object. For example, suppose a storage object is updated using
resource 1. The updated storage object’s state is read using resource 2 before
resource 1 is committed. If resource 1 is rolled back, the data read with resource 2
is considered never to have existed.

• Nonrepeatable Reads. A nonrepeatable read occurs when a resource is used to read
the same data twice but different data is returned by each read. For example,
suppose resource 1 is used to read the state of a storage object. Resource 2 is used
to update the state of this storage object and resource 2 is committed. If resource 1
is used to reread the storage object’s state, different data is returned.

Depending on the isolation level of the resource used, the application is or is not
protected from these phenomena:

• when a resource has the READ_UNCOMMITTED isolation level, its user may
experience the dirty reads and the nonrepeatable reads phenomena.

• when a resource has the READ_COMMITTED isolation level, its user may
experience the nonrepeatable reads phenomenon, but not the dirty reads
phenomenon.

• when a resource has the SERIALIZABLE isolation level, its user is protected from
these two phenomena.

The REPEATABLE_READ isolation level is reserved for future use.

The get_isolation_level_of_associated_resource operation returns the isolation
level of the resource associated with this session. If no resource is associated with this
session, get_isolation_level_of_associated_resource raises the standard
exception PERSIST_STORE.

The read-only attribute resource_isolation_level returns the isolation level of the
resources created by this session.

Note that this section uses resources to describe the interaction between the
Transaction Service and the Persistent State Service. The application developer,
however, cannot get an object reference to such resources. This allows PSS
implementations to take advantage of the non-standard direct XA integrations provided
by some Transaction Service implementations.

In XA terms:

• start corresponds to xa_start() with either the TMNOFLAGS, TMJOIN, or TMRESUME
flag.

• end corresponds to xa_end() with the TMSUCCESS or the TMFAIL flag.

• suspend corresponds to xa_end() with the TMSUSPEND or TMSUSPEND |
TMMIGRATE flag.
September 2002 Persistent State Service: Explicit Session Management 2-9

2

2.4.4 EndOfAssociationCallback

When a session-resource association is ended, the session may not become available
immediately. For example, if the session is implemented using an ODBC or JDBC
connection, the PSS implementation will need this connection until the resource
(ODBC/JDBC transaction) is committed or rolled back.

A session pooling mechanism may want to be notified when a session is released by
the PSS implementation; this is achieved by passing an EndOfAssociationCallback
local object to the Connector::create_transactional_session operation.

module CosPersistentState {
local interface EndOfAssociationCallback {

void released(in TransactionalSession session);
};

};

2.5 Implicit Session Management

2.5.1 SessionPool

A session pool is a local object that implements the local interface
CosPersistentState:: SessionPool:

module CosPersistentState {
typedef sequence<Pid> PidList;

local interface SessionPool : CatalogBase {
void flush_by_pids(in PidList pids);
void refresh_by_pids(in PidList pids);

readonly attribute TransactionPolicy transaction_policy;
};

};

If the transaction policy of the session pool is NON_TRANSACTIONAL, the
flush_by_pids operation makes durable all of the modifications to active incarnations
whose PIDs are contained in the pids parameter, regardless of the transactional
context of the calling thread.

If the transaction policy of the target session pool is TRANSACTIONAL,
flush_by_pids behaves as follows:

• If the invoking thread is associated with a transaction context, flush_by_pids
makes durable all state modifications made in the current transactional scope for
incarnations whose PIDs are contained in the pids parameter, flushing them to the
underlying datastore.

• If the invoking thread is not associated with a transactional context, the standard
exception TRANSACTION_REQUIRED is raised.
2-10 Persistent State Service, v2.0 September 2002

2

If the session pool implementation is unable to reconcile the changes and make them
durable, then the PERSIST_STORE standard exception is raised.

If the current transaction policy of the session pool is TRANSACTIONAL and the
invoking thread is associated with a transactional context, refresh_by_pids causes
the following behavior:

• All incarnations involved in the current transaction context, and associated with the
given pids, are refreshed.

• If any of the given PIDs are associated with incarnations which are themselves not
associated with the current transaction, the INVALID_TRANSACTION standard
exception is raised.

If the transaction policy of the session pool is TRANSACTIONAL and the invoking
thread is not associated with a transactional context, the standard exception
TRANSACTION_REQUIRED is raised.

If the session pool implementation is unable to refresh the appropriate incarnations, the
PERSIST_STORE standard exception is raised.

Note – Short pids will not be passed to flush_by_pids and refresh_by_pids.

flush and refresh, inherited from CatalogBase, behave as flush_by_pids and
refresh_by_pids applied to all storage object incarnations cached by the target
session pool in the same context (whether transactional or not).

2.6 IThread Safety

A catalog (session or session pool) can be either thread-safe or thread-unsafe. A
compliant implementation does not need to provide thread-safe catalogs.

All objects provided directly or indirectly by a thread-unsafe catalog are thread-unsafe
- the application must serialize access to any of these objects, typically by using a
single thread.

A storage object incarnation provided by a thread-safe catalog is like a struct:
concurrent reads are safe and do not require any locking by the application; concurrent
writes (or a concurrent read and a concurrent write) are not thread-safe - the
application must ensure mutual exclusion to avoid problems. Flushing a storage object
is like reading this object. ‘Refreshing’ a storage object is like updating it.

Further, the following Session operations are not thread safe (for a given session): they
are not supposed to be called concurrently, and no thread should be using the target
session (or anything in the target session, such as an incarnation or a storage home)
when they are called:

Session::free_all

Session::refresh

Session::close
September 2002 Persistent State Service: IThread Safety 2-11

2

TransactionalSession::start

TransactionalSession::suspend

TransactionalSession::end

OTS operations are however safe; for example one thread can call
tx_current->rollback() while another thread calls start, suspend, or end on a session
involved in this transaction, or while a thread is using storage objects managed by that
session.

Rationale

1. Concurrent writes (or a read and a write) within the same transaction is extremely
rare -- if PSS implementations were to provide mutual exclusion, we would
penalize the common usage (single-threaded access or maybe concurrent reads) for
this unusual usage.

2. Since calling these operations concurrently is wrong or at least dubious, we can
avoid some locking in the PSS implementation by declaring them not thread-safe.
2-12 Persistent State Service, v2.0 September 2002

Defining Storage Objects 3
Contents

This chapter contains the following sections.

3.1 Introduction

The Persistent State Service provides two ways to specify datastore structures, or
schemas, and the programming-language representation of storage objects and storage
homes:

• with programming-language independent PSDL constructs

• directly in Java or C++

All storage object instances whether defined in PSDL or directly in Java or C++ are
derived from a common base, CosPersistentState::StorageObjectBase. Similarly,
all storage home instances implement the local interface
CosPersistentState::StorageHomeBase:

module CosPersistentState {
local interface CatalogBase;
exception NotFound {};
native StorageObjectBase;

local interface StorageHomeBase {

Section Title Page

“Introduction” 3-1

“PSDL Syntax and Semantics” 3-2

“Transparent Persistence” 3-18
September 2002 Persistent State Service, v2.0 3-1

3

StorageObjectBase
find_by_short_pid(

in ShortPid short_pid
) raises (NotFound);

CatalogBase get_catalog();
};

};

StorageObjectBase maps to java.lang.Object in Java, and to CosPersis-
tentState::StorageObjectBase in C++:

namespace CosPersistentState {

class StorageObjectBase {
protected:

virtual ~StorageObjectBase() {}
};

}

The find_by_short_pid operation looks for a storage object with the given short pid
in the target storage home. If such an object is not found, find_by_short_pid, raises
the CosPersistentState::NotFound exception.

The get_catalog operation returns the catalog that manages the target storage home
instance.

3.2 PSDL Syntax and Semantics

3.2.1 Overview

Storage objects and storage object homes can be defined using the Persistent State
Definition Language (PSDL).

PSDL is a superset of OMG IDL v2.4: storage objects can have state members and
operations parameters of any IDL type. PSDL, like IDL, is a declarative language, not
a programming language.

The mapping of PSDL constructs to several programming languages is specified in the
“PSDL Language Mappings” chapter.

PSDL obeys the same lexical rules as IDL (except that it adds new keywords); its
grammar is an extended IDL grammar, with new constructs to define storage objects
and storage homes.

A PSDL specification can contain any IDL construct; further, local operations (on local
interface, values, storage objects and storage homes) can accept parameters of PSDL
types, such as a sequence of storage object references.
3-2 Persistent State Service, v2.0 September 2002

3

A source file containing PSDL constructs must have a “.psdl” extension. The file
CosPersistentState.psdl contains PSDL type definitions and is implicitly included in
any PSDL specification.

The description of the PSDL grammar uses the same notation as the CORBA
specification:

3.2.2 Keywords

Both OMG IDL keywords and the identifiers listed in Table 3-2 are reserved for use as
PSDL keywords and may not be used otherwise.

PSDL also uses the IDL keywords factory and const in productions unlike the IDL
productions in which they are used.

Table 3-1 PSDL EBNF

Symbol Meaning
::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time

Table 3-2 PSDL Keywords

as

factory

implements

key

of

primary

ref

scope

state

storagehome

storagetype

stores

strong
September 2002 Persistent State Service: PSDL Syntax and Semantics 3-3

3

3.2.3 PSDL Grammar

The PSDL grammar is the IDL grammar plus the following productions. Productions
shown in italics are defined in the CORBA specification.

(1) <psdl_specification> ::= <psdl_definition>+

(2) <psdl_definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <psdl_module> “;”
| <storagehome> “;”
| <abstract_storagehome> “;”
| <storagetype> “;”
| <abstract_storagetype> “;”
| <value> “;”

(3) <psdl_module> ::= “module” <identifier>
“{“ <psdl_definition>+ “}”

(4) <abstract_storagehome_name> ::= <scoped_name>
(5) <abstract_storagetype> ::= <abstract_storagetype_dcl>

| <abstract_storagetype_fwd_dcl>
(6) <abstract_storagetype_dcl>::= <abstract_storagetype_header>

“{” <abstract_storagetype_body> “}”
(7)<abstract_storagetype_fwd_dcl>::= “abstract storagetype” <identifier>
(8)<abstract_storagetype_header>::=“abstract storagetype” <identifier>

[<abstract_storagetype_inh_spec>]
(9)<abstract_storagetype_body>::= <abstract_storagetype_member>*

(10)<abstract_storagetype_member>::= <psdl_state_dcl> “;”
| <storagetype_local_op_dcl> “;”

(11)<abstract_storagetype_inh_spec>::=“:” <abstract_storagetype_name>
{ “,” <abstract_storagetype_name> }*

(12)<abstract_storagetype_name>::=<scoped_name>
(13) <psdl_state_dcl> ::= [“readonly”] “state” <psdl_state_type_spec>

<simple_declarator>
{ “,” <simple_declarator>}*

(14) <psdl_state_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <abstract_storagetype_ref_type>
| <scoped_name>

(15)<abstract_storagetype_ref_type>::= [“strong”] “ref” “<“
<abstract_storagetype_name> “>”

(16) <abstract_storagehome> ::= <abstract_storagehome_dcl>
| <abstract_storagehome_fwd_dcl>

(17)<abstract_storagehome_fwd_dcl>::=“abstract storagehome” <identifier>
(18)<abstract_storagehome_dcl>::=<abstract_storagehome_header>

“{” <abstract_storagehome_body> “}”
3-4 Persistent State Service, v2.0 September 2002

3

(19)<abstract_storagehome_header>::=“abstract_storagehome” <identifier> “of”
<abstract_storagetype_name>
[<abstract_storagehome_inh_spec>]

(20)<abstract_storagehome_body>::=<storagehome_member>*

(21)<storagehome_member::= <local_op_dcl> “;”
| <key_dcl> “;”
| <psdl_factory_dcl> “;”

(22)<abstract_storagehome_inh_spec>::=“:” <abstract_storagehome_name>
{ “,” <abstract_storagehome_name> }*

(23)<storagetype_local_op_dcl>::= <op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>] [“const”]

(24) <local_op_dcl> ::= <op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>]

(25) <key_dcl> ::= “key” <identifier>
[“(“ <simple_declarator>
{ “,” <simple_declarator> }* “)”]

(26) <storagetype> ::= <storagetype_dcl>
| <storagetype_fwd_dcl>

(27) <storagetype_dcl> ::= <storagetype_header>
{“ <storagetype_body> “}”

(28) <storagetype_fwd_dcl> ::= “storagetype” <identifier>
(29) <storagetype_header> ::= “storagetype” <identifier>

[<storagetype_inh_spec>]
[<storagetype_impl_spec>]
[<ref_rep_directive>]

(30) <storagetype_body> ::= <storagetype_member>*

(31) <storagetype_member> ::= <psdl_state_dcl> “;”
| <store_directive> “;”
| <storagetype_local_op_dcl> “;”

(32) <storagetype_inh_spec> ::= “:” <storagetype_name>
(33) <storagetype_name> ::= <scoped_name>
(34) <storagetype_impl_spec> ::= “implements” <abstract_storagetype_name>

{ “,” <abstract_storagetype_name> }*

(35) <storagetype_ref_type> ::= “ref” “<“ <storagetype_name> “>”
(36) <storagehome_scope> ::= “scope” <storagehome_name>
(37) <store_directive> ::= “stores” <simple_declarator> “as”

<psdl_concrete_state_type>
[<storagehome_scope>]

(38)<psdl_concrete_state_type>::= <storagetype_name>
| <storagetype_ref_type>

(39) <ref_rep_directive> ::= “ref” “(“ <simple_declarator>
{ “,” <simple_declatator> }* “)”

(40) <storagehome> ::= <storagehome_header>
“{” <storagehome_body> “}”

(41) <storagehome_header> ::= “storagehome” <identifier> “of”
<storagetype_name>
[<storagehome_inh_spec>]
September 2002 Persistent State Service: PSDL Syntax and Semantics 3-5

3

[<storagehome_impl_spec>]
[<primary_key_dcl>]

(42) <storagehome_body> ::= <storagehome_member>*

(43)<storagehome_inh_spec> ::= “:” <storagehome_name>
(44) <storagehome_name> ::= <scoped_name>
(45)<storagehome_impl_spec> ::= “implements” <abstract storagehome_name>

{ “,” <abstract storagehome_name> }*

(46) <primary_key_dcl> ::= “primary” “key” <identifier>
| “primary” “key” “ref”

(47) <psdl_factory_dcl> ::= “factory” <identifier> <factory_parameters>
(48) <factory_parameters> ::= "(" <simple_declarator> [{ ","

<simple_declarator> }*] ")"
| "(" ")"

A PSDL specification is like an IDL specification that could also contain abstract
storagetype, abstract storagehome, storagetype, and storagehome definitions. The
syntax is:

<psdl_specification> ::= <psdl_definition>+

<psdl_definition>: := <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <psdl_module> “;”
| <storagehome> “;”
| <abstract_storagehome> “;”
| <storagetype> “;”
| <abstract_storagetype> “;”
| <value> “;”

<psdl_module> ::= “module” <identifier>
“{“ <psdl_definition>+ “}”

3.2.4 PSDL Type Id

module CosPersistentState {
typedef string TypeId;

};

A PSDL type id is a string that identifies a PSDL type. The format of PSDL type id is
the same as the IDL format of repository ids, except that the prefix is “PSDL,” not
“IDL.”

The pragmas prefix and version apply to PSDL type ids in the same way as they apply
to repository ids in the IDL format (see the CORBA specification).
3-6 Persistent State Service, v2.0 September 2002

3

3.2.5 Specifying Storage Objects and Storage Homes

A storage object can have both state and behavior. The visible part of its state is
described by state members. Similarly, its behavior is described by operations.

For simplicity, a storage home does not have its own state, but it can have behavior.
The behavior of a storage home is described by operations on its abstract or concrete
storage home type(s). An abstract or concrete storagehome can also define any number
of keys; each key declaration implicitly declares a pair of finder operations.

Abstract storagetypes and abstract storagehomes are abstract specifications -- like IDL
interfaces. Like IDL interfaces, they support multiple inheritance, including “diamond
shape” inheritance (“diamond” shape inheritance is defined in Chapter 3 of the CORBA
specification).

3.2.5.1 Abstract Storagetype

An abstract storagetype definition satisfies the following syntax. This is almost the
same syntax as an IDL interface; however, unlike an interface, an abstract storagetype
cannot contain constants, or type definitions.

<abstract_storagetype> ::= <abstract_storagetype_dcl>
| <abstract_storagetype_fwd_dcl>

 <abstract_storagetype_dcl> ::= <abstract_storagetype_header>
“{” <abstract_storagetype_body> “}”

<abstract_storagetype_fwd_dcl>::= “abstract storagetype” <identifier>

<abstract_storagetype_header>::= “abstract storagetype” <identifier>
[<abstract_storagetype_inh_spec>]

<abstract_storagetype_body> ::= <abstract_storagetype_member>*

<abstract_storagetype_member>::= <abstract_storagetype_state_dcl> “;”
| <storagetype_local_op_dcl> “;”

<abstract_storagetype_inh_spec>::= “:” <abstract_storagetype_name>
{ “,” <abstract_storagetype_name> }*

<abstract_storagetype_name>::= <scoped_name>

Each <abstract_storagetype_name> in a <abstract_storagetype_inh_spec>
must denote a previously defined abstract storagetype.

Abstract storagetype inheritance rules are like the rules for interface inheritance: an
abstract storagetype may inherit from any number of base abstract storagetypes, an
abstract storagetype may not be specified as a direct abstract storagetype base more
than once, it is not legal to inherit two operations or state members (or an operation
and an state member) with the same name, but “diamond” shape inheritance is
September 2002 Persistent State Service: PSDL Syntax and Semantics 3-7

3

supported. Any abstract storagetype without a base abstract storagetype, except
CosPersistentState::StorageObject, implicitly inherits from
CosPersistentState::StorageObject.

An abstract storagetype forward declaration declares the name of an abstract
storagetype without defining it. This permits the definition of abstract storagetypes and
abstract storagehomes that refer to each other. The actual definition must follow later
in the PSDL specification. Multiple forward declarations of the same abstract
storagetype name are legal.

3.2.5.2 Abstract Storagetype State Members

The abstract state of a storage object is described using state members. The syntax is:

<psdl_state_dcl> ::= [“readonly”] “state”
 <psdl_state_type_spec>
<simple_declarator>
{ “,” <simple_declarator>}*

<psdl_state_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <abstract_storagetype_ref_type>
| <scoped_name>

For each state member, a language mapping must provide a way to retrieve the state
member’s value and a way to set the state member’s value. The optional readonly
keyword indicates that the state member’s value can only be read.

<scoped_name> must denote a previously declared [abstract or local] interface,
struct, union, type, [abstract] valuetype, or a previously defined abstract storagetype.

<psdl_state_type_spec> will not be, contain, or refer to a native type.

Value state members, unlike value data members of structs or valuetypes, do not
support sharing semantics: when you set a state member whose type is a valuetype or
an abstract valuetype, it is really a copy of the value truncated to the formal state
member type which is stored.

3.2.5.3 Embedded Storage Objects and References

Like a struct can contain other structs, a storage object can contain other storage
objects: such contained storage objects are said to be embedded. The lifetime of an
embedded storage object is the same as the lifetime of the containing object; the
embedded object does not have an identity and cannot be referenced directly.

Like a value can contain references to other values, a storage object can contain
references to other storage objects. These references, like value references, support
NULL and sharing semantics. The syntax for a reference to an abstract storagetype is
the following:
3-8 Persistent State Service, v2.0 September 2002

3

<abstract_storagetype_ref_type>::=[“strong”] “ref” “<“
<abstract_storagetype_name> “>”

<abstract_storagetype_name> must denote a previously declared abstract storage-
type.

The default value of a reference state member is NULL.

The optional strong keyword indicates that the referenced storage object is destroyed
when the storage object holding this reference is destroyed.

3.2.5.4 Local Operations

The syntax of a local operation on an (abstract or concrete) storage home is:

<local_op_dcl> ::= <op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>]

The syntax of a local operation on an (abstract or concrete) storage type is:

<storagetype_local_op_dcl> ::= <op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>]
[“const”]

A “const” operation does not update any state member of the target storage object.

In a PSDL specification, each parameter of a local operation can be of a valid IDL
parameter type, or of an abstract PSDL type.

3.2.5.5 StorageObject

The CosPersistentState module defines the abstract storagetype StorageObject as
follows:

abstract storagetype StorageObject {

void destroy_object();

boolean object_exists();

Pid get_pid();
ShortPid get_short_pid();

StorageHomeBase get_storage_home();

};

When called on an incarnation, the destroy_object operation destroys the associated
storage object (but does not destroy any of its incarnation).

When called on an incarnation, the object_exists operation returnsTRUE if the target
incarnation represents an actual storage object, FALSE if it does not.
September 2002 Persistent State Service: PSDL Syntax and Semantics 3-9

3

When called on an incarnation, the get_pid and get_short_pid operations return the
pid, resp. the short pid, of the associated storage object.

The standard exception PERSIST_STORE is raised when destroy_object, get_pid,
or get_short_pid is called on the instance of an embedded storage object.

The get_storage_home operation returns the storage home instance that manages
the target storage object instance.

3.2.5.6 Abstract Storagehome

An abstract storagehome definition satisfies the following syntax:

<abstract_storagehome>: := <abstract_storagehome_dcl>
| <abstract_storagehome_fwd_dcl>

<abstract_storagehome_fwd_dcl>::= “abstract_storagehome” <identifier>

<abstract_storagehome_dcl> ::= <abstract_storagehome_header>
“{” <abstract_storagehome_body>“}”

<abstract_storagehome_header>::= “abstract”“storagehome” <identifier>
“of” <abstract_storagetype_name>
[<abstract storagehome_inh_spec>]

<abstract_storagehome_body>::= <storagehome_member>*

<storagehome_member ::= <local_op_dcl> “;”
| <key_dcl> “;”
| <psdl_factory_dcl> “;”

The <abstract_storagetype_name> in an <abstract_storagehome_header>
must denote a previously defined abstract storagetype.

An abstract storagehome forward declaration declares the name of an abstract
storagehome without defining it. This permits the definition of abstract storagetypes
and abstract storagehomes that refer to each other. The actual definition must follow
later in the PSDL specification. Multiple forward declarations of the same abstract
storagehome name are legal.

3.2.5.7 Keys

A key is a named list of one of more state members, that satisfies the following syntax:

<key_dcl> ::= “key” <identifier>
[“(“ <simple_declarator> { “,” <simple_declarator> }* “)”]

“key” <identifier> is just a shortcut notation for “key” <identifier>
“(“<identifier>”)”.

Each <simple_declarator> must be the name of a state member of the abstract
storagehome’s abstract storagetype (including inherited state members). For keys
defined on storage homes, each <simple_declarator> must be the name of a state
member of the storagehome’s storagetype (including inherited state members).
3-10 Persistent State Service, v2.0 September 2002

3

All <simple_declarator> in a key declaration must be distinct.

The following types are said to be comparable:

• integral types (octet, short, unsigned short, long, unsigned long, long
long, unsigned long long)

• fixed types

• char, wchar, string, and wstring

• sequence<octet>

• struct with only comparable members

• valuetype with only public non-valuetype comparable state members

The types of all the state members used in the definition of a key must be comparable.

A value of this list of state members uniquely identifies at most one storage object in a
storage home.

With respect to language mappings, the declaration of a key key_name is equivalent to
the declaration of the following finder operations:

S find_by_key_name(<parameter_list>)
 raises (CosPersistentState::NotFound);
ref<S> find_ref_by_key_name(<parameter_list>);

where S is the abstract storagehome’s abstract storagetype (or concrete storagehome’s
storage type), and <parameter_list> are in parameters corresponding to each state
member in the key declaration, in the same order. Each finder operation attempts to
locate a storage object with the given key among the storage objects managed directly
or indirectly by the target storage home. If a storage object with the given key is found,
find_by_key_name returns an incarnation of this storage object, and
find_ref_by_key_name returns a reference to this storage object. The storage home
incarnation that manages the returned incarnation or reference may be the target
storage home instance, or an instance of a derived storage home in the same session. If
a storage object with the given key is not found, find_by_key_name raises the
CosPersistentState::NotFound exception, and find_ref_by_key_name returns a
NULL reference.

For example:

abstract storagetype Account {
state string accno;
state float balance;

};

abstract storagehome Bank of Account {
key accno(accno);
// in the language mappings, it’s like:
// Account find_by_accno(in string accno)
// raises (CosPersistentState::NotFound);
// ref<Account> find_ref_by_accno(in string accno);
September 2002 Persistent State Service: PSDL Syntax and Semantics 3-11

3

};

3.2.5.8 Factory Operations

A factory operation satisfies the following syntax:

<psdl_factory_dcl>::=“factory” <identifier> <factory_parameters>

<factory_parameters> ::= “(“ <simple_declarator>
[{ “,” <simple_declarator> }*] “)”

| “(” “)”

Each <simple_declarator> must be the name of a state member of the abstract
storagehome’s abstract storagetype (including inherited state members). For factories
defined on concrete storage homes, each <simple_declarator> must be the name of
a state member of the storagehome’s storagetype (including inherited state members).

All <simple_declarator> in a factory declaration must be distinct.

With respect to language mappings, the definition of a factory operation factory_name
is equivalent to the definition of the following operation:

S factory_name(<parameter_list>);

where S is the abstract storagehome’s abstract storagetype (resp. storagehome’s
storagetype), and <parameter_list> are in parameters corresponding to each state
member in the factory operation declaration, in the same order. For example:

abstract storagetype Account {
state string accno;
state float balance;

};

abstract storagehome Bank of Account {
factory create(accno);
// in the language mappings, it’s like:
// Account create(in string accno) ;

};

3.2.5.9 Abstract Storagehome Inheritance

An abstract storagehome may inherit from any number of abstract storagehomes, with
the following syntax:

<abstract_storagehome_inh_spec>::=“:” <abstract_storagehome_name>
{ “,” <abstract_storagehome_name>

}*

<abstract_storagehome_name>::= <scoped_name>
3-12 Persistent State Service, v2.0 September 2002

3

Each <abstract_storagehome_name> in an
<abstract_storagehome_inh_spec> must denote a previously defined abstract
storagehome. Further, the abstract storagetype of any base abstract storagehome must
be a base abstract storagetype of the abstract storagehome’s abstract storagetype, or the
abstract storagehome’s abstract storagetype itself.

“diamond” shape inheritance is supported. Like IDL interfaces and PSDL abstract
storagetypes, an abstract storagehome cannot inherit two operations with the same
name; as a result, it cannot inherit two keys with the same name.

3.2.5.10 Sequences and Arrays

The IDL typedef construct can be used to define sequences and arrays of abstract
storagetype, and sequences and arrays of reference to abstract storagetype. Anonymous
sequences and arrays are not supported.

For example:

abstract storagetype Account { /* ... */};
typedef sequence<ref<Account>> AccountList;
typedef Account AccountArray[4];

3.2.6 Implementing Storage Objects and Storage Homes

This specification provides two constructs sufficient to define default implementations
for storage objects and storage homes: storagetype and storagehome. Everything is
implemented except operations; in particular, the PSS implementation must generate
complete implementations for all state members and keys. If the stored storage type
has a reference representation, only factory operations whose parameters contain all
the reference representation members are generated automatically.

Of course, an implementation generated from standard PSDL definitions is unlikely to
be as efficient as an implementation defined and tuned for a particular datastore.

To allow the generation of reasonably efficient default implementations for relational
and relational-like datastores, PSDL storagetypes and storagehomes borrow a number
of features from SQL3 user defined types and tables:

• Reference representation - Some systems, in particular many relational systems, do
not have storage object identifiers, such as row ids: a storage object id is actually
the value of a state member or of a list of state members. With this kind of system,
it is useful to define on the storagetype itself the structure of persistent ids, rather
than later in a storage home specification or definition.

• Scope for references - When a state member of a storage object is a reference to
another storage object, a priori, this reference can point to a storage object stored in
any storage home. PSDL, like SQL3, let you specify a scope for this reference (i.e.,
a storage home where the referenced storage object must be stored). This also
allows some code generators to produce smaller data members for storagetypes that
contain scoped references to other storagetypes.
September 2002 Persistent State Service: PSDL Syntax and Semantics 3-13

3

• Primary key - A primary key is just a distinguished key, like in relational systems.

• Storage home inheritance - The rules and semantics for PSDL storage home
inheritance were designed to be the same as SQL3 table inheritance rules.

3.2.6.1 Storagetype

A storagetype definition satisfies the following syntax:

<storagetype> ::= <storagetype_dcl>
| <storagetype_fwd_dcl>

<storagetype_dcl> ::= <storagetype_header>
“{“ <storagetype_body> “}”

<storagetype_fwd_dcl> ::= “storagetype” <identifier>

<storagetype_header> ::= “storagetype” <identifier>
[<storagetype_inh_spec>]
[<storagetype_impl_spec>]
[<ref_rep_directive>]

<storagetype_body> ::= <storagetype_member>*

<storagetype_member> ::= <psdl_state_attr_dcl> “;”
| <store_directive> “;”
| <local_op_decl>;

A storagetype may inherit from another storagetype. The syntax is:

<storagetype_inh_spec> ::= “:” <storagetype_name>

<storagetype_name> ::= <scoped_name>

<storagetype_name> must denote a previously defined storagetype.

A storagetype may implement any number of abstract storagetypes:

<storagetype_impl_spec> ::= “implements”
 <abstract_storagetype_name>

{ “,” <abstract_storagetype_name> }*

<abstract_storagetype_name> must denote a previously defined abstract
storagetype. The same abstract storagetype cannot appear twice in a
<storagetype_impl_spec>. However, an abstract storagetype can appear more than
once in the ‘implements’ graph of a storagetype. For example:

abstract storagetype A {/* ... */ };
abstract storagetype B : A {/* ... */ };
storagetype AImpl implements A {/* ... */};
storagetype BImpl : AImpl implements B {/* ... */};

The first storagetype that implements an abstract storagetype in a storagetype
inheritance tree is said to implement directly this abstract storagetype. In the example
above, AImpl implements A directly; however, BImpl does not implement A directly.
3-14 Persistent State Service, v2.0 September 2002

3

3.2.6.2 Store Directive

A store directive defines how a state member is stored.

A storagetype that directly implements an abstract storagetype that declares a state
member whose type is an abstract storagetype or an array or a sequence of abstract
storagetypes must provide a store directive for this state member.

A storagetype that directly implements an abstract storagetype that declares a state
member whose type is an abstract storagetype reference, or an array or sequence of
abstract storagetype references, may provide a store directive for this state member.

The syntax is:

<store_directive> ::= “stores” <simple_declarator> “as”
<psdl_concrete_attr_type>
[<storagehome_scope>]

<psdl_concrete_attr_type> ::= <storagetype_name>
| <storagetype_ref_type>

<storagehome_scope> ::= “scope” <storagehome_name>

<simple_declarator> must be the name of a state member declared in this
storagetype or in one of the abstract storagetype it implements.

• If <psdl_concrete_attr_type> denotes a storagetype S, then the type of the state
member must be an abstract storagetype S’ or a sequence/array of an abstract
storagetype S’, S must implement directly or indirectly S’, and
<storagehome_scope> shall not be specified.

• If <psdl_concrete_attr_type> denotes a storagetype reference ref<S>, then the
type of the state member must be an abstract storagetype reference ref<S’> or a
sequence/array of ref<S’> and S must implement directly or indirectly S’.

The storage home scope optional clause defines in which storage home referenced
objects are stored. The referenced storage home must be in the same datastore as the
storage object that holds this reference. <storagehome_name> must denote a
previously defined storage home. If no <storagehome_scope> is specified,
referenced storage objects can be stored in any storage home.

3.2.6.3 Reference Representation

A storagetype without any base storagetype can define its reference representation. The
syntax is:

<ref_rep_directive>: ::= “ref” “(“ <simple_declarator>
{ “,” <simple_declatator> }* “)”

<simple_declarator> must denote a state member directly declared in this
storagetype or in one of the abstract storagetypes directly implemented by this
storagetype. The same <simple_declarator> shall not be repeated. A storagetype has
at most one reference representation.
September 2002 Persistent State Service: PSDL Syntax and Semantics 3-15

3

The state members that form the reference representation of a storagetype are read-
only. If any of these state members is not declared read-only, the corresponding
modifier and read-write accessor will always raise the standard exception
PERSIST_STORE.

A reference representation also defines this list of state members as a unique identifier
for the storage objects in a storage home of this storagetype.

3.2.6.4 Storagehome

A storage home definition satisfies the following syntax:

<storagehome> ::= <storagehome_header>
| “{” <storagehome_body> “}”

<storagehome_header>::= “storagehome” <identifier> “of”
<storagetype_name>
[<storagehome_inh_spec>]
[<storagehome_impl_spec>]

<storagehome_body> ::= <storagehome_member>*

<storagehome_member::= <key_dcl> “;”
| <local_op_dcl>;
| <factory_dcl>;

<storagetype_name> must denote a previously defined storagetype.

A storage home may inherit from another storage home:
<storagehome_inh_spec>::= “:” <storagehome_name>

<storagehome_name> must denote a previously defined storagehome. The
storagetype of a base storagehome must be a base of <storagetype_name>. Further,
two storagehomes in a storagehome inheritance tree cannot have the same storagetype.
For example, the following specification is not legal:

storagetype A {/* ... */};
storagetype B : A {/* ... */};
storagehome H of A {};
storagehome H2 of B : H {};
storagehome H3 of B : H {}; // error -- B is already the storagetype
 // of another sub-storage-home of H.

A storagehome may implement any number of abstract storagehomes:

<storagehome_impl_spec> ::= “implements”
 <abstract_storagehome_name>
{ “,” <abstract_storagehome_name>}*

<abstract_storagehome_name> must denote a previously defined abstract
storagehome. The same abstract storagehome cannot appear more than once in a
<storagehome_impl_spec>. However, an abstract storagehome can appear more
than once in the ‘implements’ graph of a storagehome.
3-16 Persistent State Service, v2.0 September 2002

3

The storagehome’s storagetype must implement the abstract storagetype of each of the
implemented abstract storagehomes.

A storagehome is said to directly implement an abstract storagehome when it is the
first storagehome in its inheritance tree to implement this abstract storagehome.

A storagehome is said to directly implement a storagetype when it is the first home to
implement this storage type in its inheritance tree.

A storagehome is said to directly implement a state member when it directly
implements a storagetype that contains the definition of this state member or that
directly implements the abstract storagetype in which this state member is declared.

Each key declared on the abstract storagehomes implemented directly by a
storagehome must use at least one state member implemented by this storagehome. For
example:

abstract storagetype AS {
state string name;

};

abstract storagehome ASHome {
key name;

};

storagetype A implements AS {};
storagetype B : A {};
storagehome H of A {};
storagehome H2 of B : H implements ASHome {

 // error -- too late, name is implemented by H.
};

3.2.6.5 Primary Key

A storage home without any base storage home can define a key as the primary key of
its storage home family:

<primary_key_dcl> ::= “primary” “key” <identifier>
| “primary” “key” “ref”

<identifier> must denote a key declared in one of the implemented abstract
storagehomes.

primary key ref tells the PSS implementation to use the state members of the
reference representation as the primary key.
September 2002 Persistent State Service: PSDL Syntax and Semantics 3-17

3

3.3 Transparent Persistence

3.3.1 Overview

A PSS implementation that supports the definition of storage objects directly in Java or
C++ is said to support transparent persistence. With this capability, there is no need for
a separate PSDL specification of the schema. The transparent persistence mechanism
also attempts to allow any Java class to be made persistent, although there are a few
restrictions which are mentioned in the following sections.

The most visible benefit is that state members may be directly represented with fields
(or member variables) rather than requiring accessor and modifier methods that make
calls to the PSS implementation. To provide this benefit, PSS implementations that
provide transparent persistence need to make sure that an object's incarnation is loaded
before the program tries to access a state member from it. It also needs to be able to
determine which objects have changed and need to be committed. The approaches used
to accomplish these tasks dictate some of the restrictions this standard makes on the
classes that can be made persistent.

Because both schema definition and data manipulation are accomplished directly in
Java or C++, the majority of the description of transparent persistence is in terms of
each of these languages.

3.3.2 Java

In Java, there are four techniques that are likely to be used by a PSS implementation
that provides transparent persistence:

• a Java pre-processor inserts Java code to fetch objects from the database before
every read of persistent-capable class fields, and code to mark objects dirty before
every write to these fields;

• a special Java compiler makes these same kinds of modifications;

• a post-processor makes similar modifications, but to the bytecode that is generated
by the Java compiler, rather than to source;

• a special Java virtual machine uses non-standard hooks for fetching and dirtying
objects when they are read or modified.

The first two approaches require that source code be available for any class that is to be
made persistent-capable, the third requires that the bytecode files (e.g., ".class" files)
be available. This leads to the following specification:

A PSS implementation that supports transparent persistent must be able to make any
class persistent-capable that:

• it has Java source code for;

• inherits from nothing or inherits from a class that can be made persistent-capable;

• has only fields that are one of the following:

• a primitive data type
3-18 Persistent State Service, v2.0 September 2002

3

• a persistent-capable class

• of type Object

• an Array

• one of the following immutable classes:
String, Character, Boolean, Byte, Short, Integer, Long, Float, or Double.

Note, in particular, that there is no requirement that a class must inherit from an
incarnation base class in order to be persistent-capable.

Object identity is not necessarily maintained for objects of the immutable classes listed
above. So, for example, two String fields that refer to the same String object in one
transaction may refer to different objects in another; or, two String fields that refer to
different String objects with the same values in one transaction, may refer to the same
String object in a later transaction.

IDL types can be used for fields by using the corresponding Java constructs from the
CORBA IDL to Java mapping standard. References to CORBA objects can be stored
in persistent objects as their string representations (use the CORBA.object_to_string
method). The application then has to explicitly convert back from a string to an object
reference, and should deal with the contingencies that the object is no longer available.

Static fields and transient fields may be included in persistent capable classes, although
they are not made persistent.

PSS implementations need not guarantee that incarnations are correctly loaded when
an incarnation's fields are accessed through the reflection API or through JNI.

The following is an example of Java classes that can be used to define the storage
object types Bank and Account:

// Java
public class Bank {
 public String name;
}
public class Account {
 public long id;
 public Bank myBank;
 public float balance;
}

The fields of the Bank and Account instances are automatically fetched and stored by
the PSS implementation; that is, they are transparently persistent.

3.3.2.1 Making Objects Persist

In Java, storage homes for transparent persistent objects implement the Java interface
org.omg.CosPersistentState.JStorageHome:

package CosPersistentState;
public interface JStorageHome extends StorageHomeBase {

public void persist(Object obj);
September 2002 Persistent State Service: Transparent Persistence 3-19

3

}

An instance of a persistent-capable class can be made persistent by calling the
persist method on an instance of a storage home. The persist method records
the association between the object and the family of this storage home.

When the transaction is committed, every field of every persistent incarnation must be
either:

• a primitive value,

• null,

• a reference to a persistent incarnation associated with the same catalog as the
referring object,

• or reference to an object of one of the immutable classes listed above.

If there is a reference to a transient object, the behavior is implementation-defined.
Some vendors may choose to automatically migrate the referred object to become
persistent in the same database as the referring object. Other vendors may choose to
raise an exception.

A new transaction must acquire its first incarnation by using some known pid with the
find_by_pid operation on CatalogBase, or with the find_by_short_pid operation
on StorageHomeBase (see Section 3.2.1, “Overview,” on page 3-2). Subsequent
incarnations can then be acquired through navigation, or by additional calls to
find_by_pid (or find_by_short_pid).

When an incarnation is used outside of the transaction in which it was either fetched or
created, either the incarnation will hold the current valid contents of the storage object,
or the incarnation will have old data, but attempting to commit changes made after
reading such an out-of-date object will cause the transaction to abort. Valid data for all
incarnations can be guaranteed by calling CatalogBase::refresh.

3.3.3 C++

A PSS implementation that provides transparent persistence for C++ must implement
the Object Data Management Group (ODMG) version 2.0 standard for C++ ([ODMG]
chapter 5), with the following modification: d_Object inherits (with public virtual
inheritance) from CosPersistentState::StorageObjectBase.

The ODMG C++ standard uses a smart pointer class (d_Ref) for determining which
objects need to be fetched into application memory and requires an explicit call to a
mark_modified() member function for determining which objects have changed.

ODMG defines a d_Transaction class for handling transaction semantics. In PSS,
transactions are handled entirely through the Transaction Service; therefore, the
d_Transaction class should not be used in conjunction with PSS.

Also [ODMG] uses the term database for datastore.
3-20 Persistent State Service, v2.0 September 2002

PSDL Language Mappings 4
Contents

This chapter contains the following sections.

4.1 Introduction

Application code that uses the Persistent State Service interacts with abstract
storagetypes, abstract storagehomes and types defined in the CosPersistentState
module. Such code can be completely shielded from PSS-implementation
dependencies: in C++ and Java, it should not be necessary to recompile this application
code when switching from one PSS implementation to another one. To make this
possible, each language mapping must fully specify the mapping for abstract
storagetypes, abstract storagehomes, and the types defined by the
CosPersistentState module.

On the other hand, storagetypes and storagehomes are mapped to concrete
programming language constructs with implementation-dependent parts (such as C++
members, Java fields and methods). Language mappings should avoid to put
restrictions on these concrete constructs.

Of course, each PSDL language mapping should try to be as consistent as possible
with the IDL mapping. In particular, the mapping for PSDL modules in a given
programming language shall be the same as the mapping for IDL modules in this
language. The mapping for PSDL abstract storagetypes and abstract storagehomes

Section Title Page

“Introduction” 4-1

“Java Mapping” 4-3

“C++ Mapping” 4-8
September 2002 Persistent State Service, v2.0 4-1

4

should be similar to the mapping for IDL structs or abstract valuetypes; the mapping
for storagetypes and storagehomes should be similar to the mapping for IDL structs or
valuetypes.

Implementations of PSDL operations declared on abstract storagetype and abstract
storagehomes are typically provided in classes derived from classes generated by the
PSDL compiler. The PSS implementation needs factories in order to create instances of
such user-defined classes. Factories for storage object instances are represented by the
native type CosPersistentState::StorageObjectFactory, factories for storage
home instances are represented by the native type
CosPersistentState::StorageHomeFactory, factories for session instances are
represented by the native type CosPersistentState::SessionFactory, and factories
for session-pools are represented by the native type
CosPersistentState::SessionPoolFactory. The connector of a PSS
implementation provides an operation to register storage object factories,
register_storage_object_factory, an operation to register storage home factories,
register_storage_factory, an operation to register session factories,
register_session_factory, and an operation to register session pool factories,
register_session_pool_factory:

module CosPersistentState {
native StorageObjectFactory;
native StorageHomeFactory;
native SessionFactory;
native SessionPoolFactory;

interface Connector {

StorageObjectFactory
register_storage_object_factory(

in TypeId storage_type_name,
in StorageObjectFactory factory

);

StorageHomeFactory
register_storage_home_factory(

in TypeId storage_home_type_name,
in StorageHomeFactory factory

);

// ...
};

};

Each register_ operation returns the factory previously registered with the given
name; they return NULL when there is no previously registered factory.

The CosPersistentState module also defines two enumeration types:

• YieldRef, which can be used to define overloaded functions or methods that return
incarnations and references.
4-2 Persistent State Service, v2.0 September 2002

4

• ForUpdate, which can be used to define overloaded accessor function/method
which will update the state member.

module CosPersistentState {
enum YieldRef { YIELD_REF };
enum ForUpdate { FOR_UPDATE };

};

4.2 Java Mapping

4.2.1 Abstract Storagetypes

An abstract storagetype definition is mapped to a public Java interface with the same
name and the definition of the associated Holder class.

Refs are mapped to pids (byte[]) in Java.

The mapped Java interface extends the mapped interfaces of all the abstract
storagetype inherited by this abstract storagetype.

For example:

// PSDL
abstract storagetype A {}; // implicitly inherits
 // CosPersistentState::StorageObject
abstract storagetype B : A {};

is mapped to:

// Java
public interface A

extends CosPersistentState.StorageObject {}

public interface B extends A {}

The forward declaration of an abstract storagetype is mapped to the forward
declaration of its mapped interface and the associated Holder class.

4.2.2 Arrays and Sequences

Like arrays and sequences of IDL types, arrays and sequences of abstract storagetypes
and reference to abstract storagetype are mapped to Java arrays. For example:

// PSDL
abstract storagetype A {};
typedef sequence <ref<A>> ASeq;

ASeq is mapped to ARef[].

Holder classes are also generated, like for IDL types.
September 2002 Persistent State Service: Java Mapping 4-3

4

4.2.3 State Members

Each state member is mapped to a number of overloaded accessor and modifier
methods, with the same name as the state member. These methods can raise any
CORBA standard exception.

A state member whose mapped Java type is immutable is simply mapped to a pair of
accessor and modifier methods. There is no modifier method if the state member is
read-only.

For example:

// PSDL
abstract storagetype Person {

state string name;
};

is mapped to

// Java
public interface Person extends StorageObject {

public String name();
public void name(String s);

};

A state member whose type is a abstract storagetype is also mapped to a pair of
accessor and modifier methods, or just an accessor method when the state member is
read-only.

A state member whose type is a reference to an abstract storagetype is mapped to two
accessors and two modifier methods. One of the accessor methods takes no parameter
and returns a storage object incarnation, the other takes a
CosPersistentState.YieldRef parameter and returns a reference. One of the
modifier methods takes an incarnation, the other one takes a reference. If the state
member is read-only, only the accessor methods are generated. For example:

abstract storagetype Bank;
abstract storagetype Account {

state long id;
state ref<Bank> my_bank;

};

is mapped to:

// Java
public interface Account

 extends CosPersistentState.StorageObject {
public long id();
public void id(long l);
public Bank my_bank();
public byte[] my_bank(CosPersistentState.YieldRef yr);
public void my_bank(Bank k);
4-4 Persistent State Service, v2.0 September 2002

4

public void my_bank(byte[] kr);
}

All other state members are mapped to two accessor methods (one read-only, one read-
write) and one modifier method. If such a state member is read-only, only the read-
only accessor is generated. For example:

abstract storagetype Person {
readonly state string name;
state CORBA::OctetSeq photo;

};

is mapped to:

// Java
public interface Person

 extends CosPersistentState.StorageObject {
public String name();
public byte[] photo();
public byte[] photo(CosPersistentState.ForUpdate fu);
public void photo(byte[] new_one);

}

4.2.4 Storagetype Operations

Const and non-const operations on abstract and concrete storagehomes are mapped to
public Java methods.

Table 4-1 shows the mapping for parameters of type S and ref<S> (where S is an
abstract storagetype) For IDL parameters, the regular IDL to Java mapping is used.

Table 4-1 Mapping for PSDL parameters

PSDL parameter Java parameter

in S param S param

inout S param SHolder param

out S param SHolder param

(return) S (return) S

in ref<S> param byte[] param

inout ref<S> param byte[] param

out ref<S> param byte[] param

(return) ref<S> (return) byte[]
September 2002 Persistent State Service: Java Mapping 4-5

4

4.2.5 Abstract Storagehomes

The mapping for PSDL abstract storagehomes is similar to the mapping for IDL local
interfaces.

An abstract storagehome definition is mapped to a public Java interface with the same
name. The mapped Java interface extends the mapped interfaces of all the abstract
storagehomes inherited by this abstract storagehome. If an abstract storagehome does
not extend any other abstract storagehome, its mapped interface extends the interface
org.omg.CosPersistentState.StorageHomeBase.

4.2.6 Storagehome Operations

Operations on abstract and concrete storagehomes are mapped like non-const
operations on storagetypes (seeSection 4.2.4, “Storagetype Operations,” on page 4-5).

Note that key and factory operations are mapped as equivalent regular operations, as
defined bySection 3.2.5, “Specifying Storage Objects and Storage Homes,” on
page 3-7.

4.2.7 Storagetype

A storagetype is mapped to a Java class with the same name. This class implements the
mapped interfaces of all the abstract storagetypes implemented by the storagetype, and
extends the mapped class of its base storagetype, if there is one. This class also
provides a public default constructor.

If any of the abstract storagetypes implemented by the storagetype declares an
operation, then the mapped class is abstract and public.

All state members implemented directly by the storagetype are mapped to public final
accessor and modifier methods. The PSS implementation must be able to implement
these methods without additional input from the developer.

For example:

abstract storagetype Dictionary {
readonly state string from_language;
readonly state string to_language;
void insert(in string word, in string translation);
string translate(in string word);

};

// a portable implementation:

struct Entry {
string from;
string to;

};
typedef sequence<Entry> EntryList;
4-6 Persistent State Service, v2.0 September 2002

4

storagetype PortableDictionary implements Dictionary {
state EntryList entries;

};

is mapped to:

// Java
public abstract class PortableDictionary

implements Dictionary /* ... */ {
public final string from_language() { /* ... */ }
public final string to_language() { /* ... */ }
public final Entry[] entries() { /* ... */}
public final Entry[] entries(ForUpdate fu) { /* ... */}
public final void entries(Entries e) { /* ... */}
public PortableDictionary() { /* ... */ }

 // ...
}

4.2.7.1 Storagehomes

A storage home is mapped to a Java class with the same name. This class implements
the mapped interfaces of all the abstract storagehomes implemented by the
storagehome, and extends the mapped class of its base storagehome, if there is one.
This class also provides a public default constructor.

If any of the abstract storagehomes implemented by the storagehome declares an
operation, then the mapped class is abstract and public.

A storagehome class implements all finder operations implicitly defined by abstract
storagehomes directly implemented by the storagehome.

The mapped Java class provides four public non-abstract _create() methods:

• one that takes a parameter for each of its storagetype’s state members and returns an
incarnation

• one that takes a parameter for each of its storagetype’s reference representation
member, or no parameter of its storagetype has no reference representation.

• one that takes a parameter for each of the its storagetype’s state members, plus a
CosPersistentState.YieldRef parameter and returns a reference.

• one that takes a parameter for each of its storagetype’s reference representation
member (nothing if its storagetype has no reference representation), plus a
CosPersistentState.YieldRef parameter and returns a reference.

The order of the _create() parameters is as follows: it begins with the base type of
the storage type, proceed with the leftmost implemented abstract storage type and end
with the state members defined in the storage type itself.

For example:
September 2002 Persistent State Service: Java Mapping 4-7

4

abstract storagetype Book {
readonly state string title;
state float price;

};
abstract storagehome BookStore of Book {};

storagetype PortableBook implements Book {};
storagehome PortableBookStore of PortableBook implements BookStore {};

maps to:

// Java
class PortableBookStore implements BookStore /* ... */ {

public PortableBook _create(String name, float price) {/*
... */ }

public PortableBook _create() {/* ... */}
public byte[] _create(

String name,
float price,
CosPersistentState.YieldRef yr

) {/* ... */}
public byte[] _create(CosPersistentState.YieldRef yr)

{/* ... */}

// ...
}

4.2.8 Factory Native Types

All the factory native types (StorageObjectFactory, StorageHomeFactory,
SessionFactory and SessionPoolFactory) are mapped to the Java class
java.lang.Class.

4.3 C++ Mapping

4.3.1 Abstract Storagetypes

An abstract storagetype definition is mapped to a C++ abstract base class with the
same name; an abstract storagetype definition also results in the declaration of a C++
concrete class with “Ref” appended to its name, and the definition of _var and
_out classes for memory management.

The mapped C++ class inherits (with public virtual inheritance) from the mapped
classes of all the abstract storagetype inherited by this abstract storagetype. It also
provides two public static member functions:

• _duplicate(): increases the reference count of the given parameter (if not null)
and then returns itself

• _downcast(): like _downcast() for valuetypes.
4-8 Persistent State Service, v2.0 September 2002

4

For example:

// PSDL
abstract storagetype A {}; // implicitly inherits
 // CosPersistentState::StorageObject
abstract storagetype B : A {};

is mapped to:

// C++
class A :

public virtual CosPersistentState::StorageObject {};
class ARef :

public virtual CosPersistentState::StorageObjectRef
{ /* ... */};
class A_var { /*... */};
class ARef_var {/* ... */};
class A_out { /*... */};
class ARef_out {/* ... */};

class B : public virtual A {};
class BRef {/*... */};
class B_var { /*... */};
class BRef_var {/* ... */};
class B_out { /*... */};
class BRef_out {/* ... */};

The forward declaration of a abstract storagetype is mapped to the forward declaration
of its mapped class and “Ref” class.

The Ref class is a concrete C++ class which provides:

• a public default constructor that creates a null reference.

• a non-explicit constructor which takes an incarnation of the target storage type.

• a public copy constructor.

• a public destructor.

• a public assignment operator.

• a public assignment operator which takes an incarnation of the target abstract
storage type.

• a public operator->() that dereferences this reference and returns the target object.
The caller is not supposed to release this incarnation.

• a public deref() function which behaves like operator->().

• a public release() function which releases this reference.

• a public destroy_object() function which destroys the target object.

• a public get_pid() function which returns the pid of the target object.

• a public get_short_pid() function which returns the short-pid of the target object.
September 2002 Persistent State Service: C++ Mapping 4-9

4

• a public is_null() function; it returns true if and only if this reference is null.

• a public get_storage_home() function which returns the storage home of the target
object. This function increases the reference count of the return storage home.

• a conversion operator for each abstract storage type from which the corresponding
abstract storage type derives directly or indirectly.

• a public typedef _target_type that type-defs the corresponding abstract storagetype.

• a public static _duplicate member function.

• a public static _downcast member function.

CosPersistentState::StorageObjectRef is a regular Ref class:

namespace CosPersistentState {
class StorageObjectRef
{

 public:
typedef StorageObject _target_type;

StorageObjectRef(
StorageObject* obj = 0

) throw();

StorageObjectRef(
const StorageObjectRef& ref

) throw();

StorageObjectRef&
operator=(

const StorageObjectRef& ref
) throw();

StorageObjectRef&
operator=(

StorageObject* obj
) throw();

void
release() throw();

StorageObject*
deref() throw (CORBA::SystemException);

StorageObject*
operator->() throw (CORBA::SystemException);
// not const!

void
destroy_object() throw (CORBA::SystemException);

4-10 Persistent State Service, v2.0 September 2002

4

Pid*
get_pid() const throw (CORBA::SystemException);

ShortPid*
get_short_pid() const throw (CORBA::SystemException);

CORBA::Boolean
is_null() const throw();

StorageHomeBase_ptr
get_storage_home() const
throw (CORBA::SystemException);

static StorageObjectRef
_duplicate(

StorageObjectRef ref
);

static StorageObjectRef
_downcast(

StorageObjectRef ref
);

// ...
};

}

Note – C++ namespaces are used in this specification to represent mapped IDL
modules. Depending on the target C++ compiler and ORB implementation, a module
can be mapped to a C++ namespace, a class or a prefix.

The class CosPersistentState::StorageObject declares two pure virtual
functions for reference counting, _add_ref() and _remove_ref(), and inherits
from CosPersistentState::StorageObjectBase:

namespace CosPersistentState {

class StorageObject : public virtual StorageObjectBase {
public:

virtual void _add_ref() = 0;
virtual void _remove_ref() = 0;

// normal mapping of PSDL operations:
virtual void destroy_object()

throw (SystemException) = 0;

virtual Boolean object_exists()
throw (SystemException) = 0;
September 2002 Persistent State Service: C++ Mapping 4-11

4

virtual Pid* get_pid() throw (SystemException) = 0;
virtual ShortPid* get_short_pid()

 throw (SystemException) = 0;

virtual StorageHomeBase* get_storage_home()
throw (SystemException) = 0;

static StorageObject*
_duplicate(StorageObject*);

static StorageObject*
_downcast(StorageObject*);

protected:
virtual ~StorageObject() {}

};
}

The CosPersistentState namespace also provides two overloaded release()
functions, one that takes a StorageObject* and releases a reference count if it is
not null, and one that takes a StorageObjectRef and releases a reference count if
it is not null.

4.3.2 Ref_var Classes

The _var class associated with a Ref class provides the same member functions as the
Ref class (operator->(), deref(), destroy_object(), get_pid(),
get_short_pid(), is_null(), and get_storage_home()) with the same
behavior, a constructor and an assignment operator that accepts a Ref object, a copy
constructor and an assignment operator that accepts a const Ref-var object reference, a
const in() member function that returns a Ref object, a non-const inout() member
function that returns a non-const Ref object reference, an out() member function that
returns a non-const Ref object reference, and a _retn() member function that returns
a Ref object, releasing the Ref held by this var object.

4.3.3 Arrays and Sequences

The C++ mapping for sequences and arrays of abstract storagetypes/references to
abstract storagetype is like the C++ mapping for sequences and arrays of IDL types.

4.3.4 State Members

Each state member is mapped to a number of overloaded public pure virtual accessor
and modifier functions, with the same name as the state member. These functions can
raise any CORBA standard exception.

A state member whose C++ type is a basic type is mapped like a value data member.
There is no modifier function if the state member is read-only.
4-12 Persistent State Service, v2.0 September 2002

4

For example:

// PSDL
abstract storagetype Person {

state string name;
};

is mapped to

// C++
class Person : public virtual StorageObject {
public:

virtual const char* name() const = 0;
virtual void name(const char* s) = 0; // copies
virtual void name(char* s) = 0; // adopts
virtual void name(String_var& s) = 0; // adopts

};

A state member whose type is an abstract storagetype is mapped to a read-only
accessor, a read-write accessor and a modifier, or just a read-only accessor when the
state member is read-only.

For example:

// PSDL
abstract storagetype A {};
abstract storagetype B {

state A embedded;
};

is mapped to:

// C++
class B : public virtual StorageObject {
public:

virtual const A& embedded() const = 0;
virtual A& embedded(CosPersistentState::ForUpdate) = 0;
virtual void embedded(const A&) = 0; // copies

};

A state member whose type is a reference to an abstract storagetype is mapped to two
accessors and one modifier functions. One of the accessor functions takes no parameter
and returns a storage object incarnation, the other takes a
CosPersistentState::YieldRef parameter and returns a reference. The
modifier function accepts a reference object. If the state member is read-only, only the
accessor functions are generated. For example:

abstract storagetype Bank;

abstract storagetype Account {
state long id;
state ref<Bank> my_bank;
September 2002 Persistent State Service: C++ Mapping 4-13

4

};

is mapped to:

// C++
class Account : public virtual StorageObject {
public:

virtual CORBA::Long id() = 0;
virtual void id(CORBA::Long l) = 0;
virtual Bank* my_bank() const= 0;
virtual BankRef my_bank(CosPersistentState::YieldRef yr)

const = 0;
virtual void my_bank(BankRef b) = 0;

};

All other state members are mapped to two accessor functions (one read-only, one
read-write) and one modifier function. If such a state member is read-only, only the
read-only accessor is generated. For example:

abstract storagetype Person {
readonly state string name;
state CORBA::OctetSeq photo;

};

is mapped to:

// C++
class Person : public virtual StorageObject {
public:

virtual const char* name() = 0;
virtual OctetSeq* photo() const = 0;
virtual OctetSeq* photo(CosPersistentState::ForUpdate fu)

 = 0;
virtual void photo(const OctetSeq& new_one) = 0;

};

4.3.5 Storagetype Operations

A const operation on an abstract or concrete storagetype is mapped to a const virtual
public member function; a non-const operation on an abstract or concrete storagetype
is mapped to a non const virtual public member function.
4-14 Persistent State Service, v2.0 September 2002

4

Table 4-2 shows the mapping for parameters of type S and ref<S> (where S is an
abstract storagetype). For IDL parameters, the regular IDL to C++ mapping is used .

References are always passed by value or reference (never through pointers).

4.3.6 Abstract Storagehomes

The mapping for PSDL abstract storagehomes is similar to the mapping for IDL local
interfaces.

An abstract storagehome definition is mapped to a C++ class with the same name. The
mapped C++ class inherits using public virtual interitance from the mapped classes of
all the abstract storagehomes inherited by this abstract storagehome. If an abstract
storagehome does not extend any other abstract storagehome, its mapped class inherits
(using public virtual inheritance) from
CosPersistentState::StorageHomeBase.

Like with local interfaces, the mapped class has associated _var and _out helper
classes.

4.3.7 Storagehome Operations

Operations on abstract and concrete storagehomes are mapped like non-const
operations on storagetypes (seeSection 4.3.5, “Storagetype Operations,” on page 4-14).

Note that key and factory operations are mapped as equivalent regular operations, as
defined bySection 3.2.5, “Specifying Storage Objects and Storage Homes,” on
page 3-7.

Table 4-2 Mapping for PSDL parameters

PSDL parameter C++ parameter

in S param const S& param

inout S param S& param

out S param S_out param

(return) S (return) S*

in ref<S> param SRef param

inout ref<S> param SRef& param

out ref<S> param SRef_out param

(return) ref<S> (return) SRef
September 2002 Persistent State Service: C++ Mapping 4-15

4

4.3.8 Storagetype

A storagetype is mapped to a C++ class with the same name. This class inherits from
the mapped classes of all the abstract storagetypes implemented by the storagetype,
and from the mapped class of its base storagetype, if there is one. This class also
provides a public default constructor.

All state members implemented directly by the storagetype are implemented by the
mapped class, as public functions. The PSS implementation must be able to implement
these functions without additional input from the developer.

For example:

abstract storagetype Dictionary {
readonly state string from_language;
readonly state string to_language;
void insert(in string word, in string translation);
string translate(in string word);

};

// a portable implementation:

struct Entry {
string from;
string to;

};
typedef sequence<Entry> EntryList;

storagetype PortableDictionary implements Dictionary {
state EntryList entries;

};

is mapped to:

// C++
class PortableDictionary : public virtual Dictionary /* ... */ {
public:

const char* from_language() const;
const char* to_language() const;
EntryList* entries() const;
EntryList* entries(CosPersistentState::ForUpdate fu);
void entries(const EntryList&);
PortableDictionary();

 // ...
};

For each storagetype, a concrete “Ref” class is also generated. Like the Ref class
generated for an abstract storage type, it provides

• a public default constructor that creates a null reference.

• a non-explicit constructor that takes an incarnation of the target storage type.
4-16 Persistent State Service, v2.0 September 2002

4

• a public copy constructor.

• a public destructor.

• a public assignment operator.

• a public assignment operator that takes an incarnation of the target storage type.

• a public operator->() that dereferences this reference and returns the target object.
The caller is not supposed to release this incarnation.

• a public deref() function that behaves like operator->().

• a public release() function that releases this reference.

• a public destroy_object() function that destroys the target object.

• a public get_pid() function that returns the pid of the target object.

• a public get_short_pid() function that returns the short-pid of the target object.

• a public is_null() function; it returns true if and only if this reference is null.

• a public get_storage_home() function that returns the storage home of the target
object. This function increases the reference count of the return storage home.

• a conversion operator for each abstract storage type implemented by the
corresponding storage type (directly or indirectly).

• a conversion operator for each storage type implemented from which the
corresponding storage type derives (directly or indirectly).

• a public typedef _target_type that type-defs the corresponding storagetype.

• a public static _duplicate member function.

• a public static _downcast member function.

4.3.9 Storagehomes

A storagehome is mapped to a C++ class with the same name. This class inherits from
the mapped classes of all the abstract storagehomes implemented by the storagehome,
and from the mapped class of its base storagehome, if there is one. This class also
provides a public default constructor.

A storagehome class implements all finder operations implicitly defined by abstract
storagehomes directly implemented by the storagehome.

The mapped C++ class provides two public non-virtual _create() member
functions:

• one that takes a parameter for each of its storagetype’s state members and returns an
incarnation.

• one that takes a parameter for each of its storagetype’s state members, plus a
CosPersistentState::YieldRef parameter and returns a reference.

It also provides two public virtual _create() member functions:
September 2002 Persistent State Service: C++ Mapping 4-17

4

• one that takes a parameter for each of the its storagetype’s reference representation
members (no parameter if the storagetype has no reference representation) and
returns an incarnation.

• one that takes a parameter for each of its storagetype’s reference representation
members (nothing if the storagetype has no reference representation), plus a
CosPersistentState::YieldRef parameter and returns a reference.

The order of the _create() parameters is as follows: it begins with the base type of
the storage type, proceed with the leftmost implemented abstract storage type and end
with the state members defined in the storage type itself.

Like other mapped types, this class also provides a public static _duplicate() and
a public static _downcast() member function.

For example:

abstract storagetype Book {
readonly state string title;
state float price;

};
abstract storagehome BookStore of Book {};

storagetype PortableBook implements Book {};
storagehome PortableBookStore of PortableBook implements BookStore {};

maps to:

// C++
class PortableBookStore : public virtual BookStore /* ... */
{
public:

PortableBook* _create(const char* name, Float price);
PortableBook* _create();
PortableBookRef _create(

const char* name,
Float price,
CosPersistentState::YieldRef yr

);
PortableBookRef _create(

CosPersistentState::YieldRef yr
);

// ...
};

4.3.10 Factory Native Types

The native factory types StorageObjectFactory, StorageHomeFactory,
SessionFactory, and SessionPoolFactory map the C++ classes with the
same names, defined as follows:
4-18 Persistent State Service, v2.0 September 2002

4

namespace CosPersistentState {

template class<T>
class Factory {

public:
virtual T* create() throw (SystemException) = 0;
virtual void _add_ref() {}
virtual void _remove_ref() {}
virtual ~Factory() {}

};

typedef Factory<StorageObject> StorageObjectFactory;
typedef Factory<StorageHomeBase> StorageHomeFactory;
typedef Factory<Session> SessionFactory;
typedef Factory<SessionPool> SessionPoolFactory;

}

September 2002 Persistent State Service: C++ Mapping 4-19

4

4-20 Persistent State Service, v2.0 September 2002

 CosPersistentState Module A
A.1 Complete IDL

//File: CosPersistentState.psdl

// Copyright 1998-1999 by the Object Management Group.
// All Rights Reserved.

#ifndefCOS_PERSISTENT_STATE_PSDL_
#defineCOS_PERSISTENT_STATE_PSDL_

#include <orb.idl>
#include <CosTransactions.idl>

module CosPersistentState {
local interface CatalogBase;
local interface Connector;
local interface EndOfAssociationCallback;
local interface Session;
local interface SessionPool;
local interface StorageHomeBase;
local interface TransactionalSession;

native StorageObjectBase;
native StorageObjectFactory;
native StorageHomeFactory;
native SessionFactory;
native SessionPoolFactory;

exception NotFound {};

typedef string TypeId;
September 2002 Persistent State Service, v2.0 A-1

A

typedef CORBA::OctetSeq Pid;
typedef CORBA::OctetSeq ShortPid;

abstract storagetype StorageObject {
void destroy_object();
boolean object_exists();
Pid get_pid();
ShortPid get_short_pid();
StorageHomeBase get_storage_home();

};

enum YieldRef { YIELD_REF };
enum ForUpdate { FOR_UPDATE };

typedef short IsolationLevel;
const IsolationLevel READ_UNCOMMITTED = 0;
const IsolationLevel READ_COMMITTED = 1;
const IsolationLevel REPEATABLE_READ = 2;
const IsolationLevel SERIALIZABLE = 3;

typedef short TransactionPolicy;
const TransactionPolicy NON_TRANSACTIONAL = 0;
const TransactionPolicy TRANSACTIONAL = 1;

typedef short AccessMode;
const AccessMode READ_ONLY = 0;
const AccessMode READ_WRITE = 1;

struct Parameter {
string name;
any val;

};

typedef sequence<Parameter> ParameterList;
typedef sequence<TransactionalSession> TransactionalSessionList;

//---
// Connector
//---

local interface Connector {

readonly attribute string implementation_id;

Pid get_pid(in StorageObjectBase obj);
ShortPid get_short_pid(in StorageObjectBase obj);

Session
create_basic_session(

in AccessMode access_mode
A-2 Persistent State Service, v2.0 September 2002

A

in ParameterList additional_parameters
);

TransactionalSession
create_transactional_session(

in AccessMode access_mode,
in IsolationLevel default_isolation_level,
in EndOfAssociationCallback callback,
in ParameterList additional_parameters

);

SessionPool
create_session_pool(

in AccessMode access_mode,
in TransactionPolicy tx_policy,
in ParameterList additional_parameters

);

TransactionalSession current_session();

TransactionalSessionList
sessions(

in CosTransactions::Coordinator transaction
);

StorageObjectFactory
register_storage_object_factory(

in TypeId storage_type_name,
in StorageObjectFactory storage_object_factory

);

StorageHomeFactory
register_storage_home_factory(

in TypeId storage_home_type_name,
in StorageHomeFactory storage_home_factory

);

SessionFactory
register_session_factory(

in SessionFactory session_factory
);

SessionPoolFactory
register_session_pool_factory(

in SessionPoolFactory session_pool_factory
);

};
September 2002 Persistent State Service, v2.0: Complete IDL A-3

A

//---
// CatalogBase
//---

local interface CatalogBase {
readonly attribute AccessMode access_mode;

StorageHomeBase
find_storage_home(in string storage_home_id)

raises (NotFound);

StorageObjectBase
find_by_pid(in Pid the_pid) raises (NotFound);

void flush();
void refresh();

void free_all();

void close();
};

//---
// StorageHomeBase
//---

local interface StorageHomeBase {

StorageObjectBase
find_by_short_pid(in ShortPid short_pid)

raises (NotFound);

CatalogBase get_catalog();
};

//---
// Session
//---

local interface Session : CatalogBase {};

//---
// TransactionalSession
//---

local interface TransactionalSession : Session {
readonly attribute IsolationLevel default_isolation_level;
A-4 Persistent State Service, v2.0 September 2002

A

typedef short AssociationStatus;
const AssociationStatus NO_ASSOCIATION = 0;
const AssociationStatus ACTIVE = 1;
const AssociationStatus SUSPENDED = 2;
const AssociationStatus ENDING = 3;

void start(in CosTransactions::Coordinator transaction);
void suspend(in CosTransactions::Coordinator transaction);
void end(

in CosTransactions::Coordinator transaction,
in boolean success

);

AssociationStatus get_association_status();

CosTransactions::Coordinator transaction();
};

local interface EndOfAssociationCallback {
void released(in TransactionalSession session);

};

//---
// SessionPool
//---

typedef sequence<Pid> PidList;

local interface SessionPool : CatalogBase {
void flush_by_pids(in PidList pids);
void refresh_by_pids(in PidList pids);

readonly attribute TransactionPolicy transaction_policy;
};

};

#endif // _COS_PERSISTENT_STATE_PSDL_
September 2002 Persistent State Service, v2.0: Complete IDL A-5

A

A-6 Persistent State Service, v2.0 September 2002

 Example: An Implementation of the
Naming Service B
B.1 Introduction

This non-normative section presents a simple, portable implementation of the Naming
Service using the Persistent State Service.

The Naming Service defines only two IDL interfaces, NamingContext and
BindingIterator.

From the Naming Service chapter: “A name-to-object association is called a name
binding. A name binding is always defined relative to a naming context. A naming
context is an object that contains a set of name bindings in which each name is
unique.”

A naming context is typically a persistent CORBA object: its implementation outlives
the process that created it, by storing information (its state, or at least part of its state)
in a datastore.

A binding iterator is an object used to iterate over the content of a naming context;
binding iterators are transient objects created by naming contexts.

 B.1.1 Specifying Storage Objects

We choose to associate with each naming context a storage object that represents its
state. This state is a set of name bindings -- which can also be viewed as a name-to-
object-reference map; so we specify our naming context state storage objects as
follows:

// file NamingContextState.psdl
#include <CosNaming.idl>
abstract storagetype NamingContextState {
September 2002 Persistent State Service, v2.0 B-1

B

Object resolve(in CosNaming::NameComponent n)
raises(CosNaming::NotFound, CosNaming::CannotProceed,

CosNaming::InvalidName);
void bind(in CosNaming::NameComponent n, in Object obj)

raises(CosNaming::NotFound, CosNaming::CannotProceed,
CosNaming::InvalidName, CosNaming::AlreadyBound);

void rebind(in CosNaming::NameComponent n, in Object obj)
raises(CosNaming::NotFound, CosNaming::CannotProceed,

CosNaming::InvalidName);
void unbind(in CosNaming::NameComponent n, in Object obj)

raises(CosNaming::NotFound, CosNaming::CannotProceed,
CosNaming::InvalidName);

boolean is_empty();

CosNaming::BindingIterator create_iterator();
};

abstract storagehome NamingContextStateHome of NamingContextState {
factory create();

};

 B.1.2 Implementing NamingContext Servants

The implementation of a naming context servant is quite simple: most operations
simply “unwrap” a name by calling resolve to reduce its length to one. When the
name’s length is one, the implementation delegates the real work to its storage object.

To establish the association naming context object -- storage object, we choose to use
the storage object short pid as the naming context object’s object id. Further, for
simplicity (and scalability), we use a single servant to handle all requests to
NamingContext objects.

In this first cut, we use the same storage home instance (and hence catalog) to access
all storage objects.

// POA-based Java servant class

public class NamingContextImpl extends POA_NamingContext {

// fields
private NamingContextStateHome m_home;
private POA m_poa;

// helper methods

NamingContextState my_state() {
return (NamingContextState)

my_home().find_by_short_pid(_object_id());
}

B-2 Persistent State Service, v2.0 September 2002

B

NamingContextStateHome my_home() {
// first cut: all naming contexts use the same
// storage home instance
return m_home;

}

// Constructor

NamingContextImpl(
NamingContextStateHome home,
POA poa

)
{

m_home = home;
m_poa = poa;

}

// implementation of IDL operations

public CORBA.Object
resolve(NameComponent[] n) {

if (n.length == 1) {
return my_state().resolve(n[0]);

}
else {

NamingContext new_target = NamingContext.narrow(
my_state().resolve(n[n.length -1])

);
NameComponent[] rest_of_name

= new NameComponent[n.length - 1];
System.arraycopy(n,0,rest_of_name,0,n.length-1);
return new_target.resolve(rest_of_name);

}
}

// similar implementations for bind, unbind, rebind,
// bind_context, rebind_context

public NamingContext new_context() {
NamingContextState ref = my_home().create();
return NamingContext.narrow(

_poa().create_reference_with_id(
ref.short_pid(),
“IDL:omg.org/CosNaming/NamingContext:1.0”

)
);

}

// bind_new_context() simply creates a new context and
// binds it
September 2002 Persistent State Service, v2.0: Introduction B-3

B

public void destroy() throws NoEmpty {
if (my_state().is_empty()) {

my_state().destroy();
}
else {

throw new NotEmpty;
}

}

// list() ‘wraps’ my_state().create_iterator()

}

 B.1.3 Implementing Storage Objects

Depending on the PSS implementation, and the underlying datastore,
NamingContextState can be implemented in different ways.

A PSS implementation for an ODMG system would probably provide a dictionary
type, as a proprietary extension. For example:

storagetype OdmgNCtxState implements NamingContextState {
state dictionary<CosNaming::ComponentName, Object> m_map;

};
storagehome OdmgNCtxStateHome of OdmgNCtxState implements

NamingContextStateHome {};

A PSS implementation for Oracle8 could provide a nested table type, since it is a
native Oracle8 feature. For example:

nestedtable BindingTable {
state CosNaming::ComponentName name;
state Object obj;
key name;

};
storagetype OracleNCtxState implements NamingContextState {

state BindingTable m_table;
};
storagehome OracleNCtxStateHome of OracleNCtxState implements

NamingContextStateHome {};

However, for some developers, portability is more important than performance. Such a
developer would use only standard PSDL to define his/her implementation,
PortableNamingContextState:

struct ListElement {
CosNaming::NameComponent name;
Object obj

};
typedef sequence<ListElement> List;
B-4 Persistent State Service, v2.0 September 2002

B

storagetype PortableNCtxState implements NamingContextState {
state List m_list;

};

storagehome PortableNCtxStateHome of PortableNCtxState
implements NamingContextStateHome

{};

// Java implementation

public class PortableNCtxStateImpl extends PortableNCtxState
{

public CORBA.Object resolve(NameComponent n)
throws NotFound, CannotProceed, InvalidName

{
for (int i = 0; i < m_list.length; i++)
{

if ((m_list[i].name.id == n.id)
&& (m_list[i].name.kind = n.kind))

 {
 return m_list[i].obj;
 }
 }
 }

public Boolean is_empty() {
return (m_list.length == 0);

 }

// etc.
}

public class PortableNCtxStateHomeImpl
extends PortableNCtxStateHome {

public NamingContextState create() {/* generated */)
}

 B.1.4 Completing the Naming Server

Now that our servants and storage objects are implemented, we need to create the
‘main’ of our naming server:

• Get the PSS connector, to register our incarnation and storage home incarnation
factories.

• Get the root POA, to create a child POA with the following policies: PERSISTENT,
USE_DEFAULT_SERVANT, USER_ID, MULTIPLE_ID, NON_RETAIN.

• Create a session and find the storage home that manages our storage objects.

• Create a servant with this ‘persistent’ POA and this storage home incarnation.
September 2002 Persistent State Service, v2.0: Introduction B-5

B

• If the server is run for the first time, create the root naming context and prints its
object reference.

public class NamingServer {
public static void main(String[] args) {

// initializes ORB
CORBA.ORB myOrb = CORBA.ORB.init(args);

// get connector registry
CosPersistentState.ConnectorRegistry registry

= CosPersistentState.ConnectorRegistryHelper.
narrow(

myOrb.resolve_initial_references(“PSS”)
);

// get connector
CosPersistentState.Connector connector =

registry.find_connector(“”);

// register storage object factory
connector.register_storage_object_factory(

“PortableNCtxState”,
Class.forName(“PSDL:PortableNCtxStateImpl:1.0”)

);

// register storage home factory
connector.register_storage_home_factory(

“PSDL:PortableNCtxStateHome:1.0”,
Class.forName(“PortableNCtxStateHomeImpl”)

);

// create session
CosPersistentState.Session mySession

= connector.create_basic_session(
org.omg.CosPersistentState.READ_WRITE,
“”,
parameters

);

// get storage home
NamingContextStateHome home = (NamingContextStateHome)

mySession.find_storage_home(
“PSDL:PortableNCtxStateHomeImpl:1.0”
);

// get root POA
PortableServer.POA rootPOA

= PortableServer.POAHelper.narrow(
myOrb.resolve_initial_references(“RootPOA”)

);
B-6 Persistent State Service, v2.0 September 2002

B

// create policies
CORBA.Policy policies[5];
policies[0] = rootPOA.create_lifespan_policy(

PortableServer.LifespanPolicyValue.PERSISTENT
);
policies[1] =rootPOA.create_request_processing_policy(

PortableServer.RequestProcessingPolicyValue.
USE_DEFAULT_SERVANT

);
policies[2] = rootPOA.create_id_uniqueness_policy(

PortableServer.IdUniquenessPolicyValue.MULTIPLE_ID
);
policies[3] = rootPOA.create_id_assignment_policy(

PortableServer.IdAssignmentPolicyValue.USER_ID
);
policies[4] = rootPOA.create_servant_retention_policy(

PortableServer.ServantRetentionPolicyValue.
NON_RETAIN

);

// create POA for naming contexts
PortableServer.POAManager poaMgr

= rootPOA.the_POAManager();
PortableServer.POA poa = rootPOA.create_POA(

“Naming”, null, policies
);

// the first time, create a root naming context
// and prints its IOR
if (firstTime) {

byte[] root_id = home.create().short_pid();
CORBA.Object root_naming_context =

 poa.create_reference_with_id(
root_id,
“IDL:omg.org/CosNaming/NamingContext:1.0”

);
System.out.println(

myOrb.object_to_string(root_naming_context)
);

}

// create and set servant
NamingContextImpl servant(home, poa);
poa.set_servant(servant);

// start server
poaMgr.activate();
myOrb.run();
mySession.close();

}

September 2002 Persistent State Service, v2.0: Introduction B-7

B

 B.1.5 A Transactional Naming Server

Our first naming server is non-transactional: we created a basic session, and used the
same storage home incarnation for all requests.

We can easily upgrade it to a transactional naming server, by updating the
my_home() method and the constructor of the NamingContextImpl servant class:

NamingContextStateHome my_home() {
return (NamingContextStateHome) m_connector.

current_session().find_storage_home(m_home_name);
}

NamingContextImpl(
String home_name,
POA poa

)
{

m_home_name = home_name;
m_poa = poa;

}

This also assumes that we have a mechanism that deals with the association between
OTS transactions and sessions. For example:

// The implementation of MySessionPool creates/manages
// transactional sessions; it registers a
// EndOfAssociationCallback to be notified when a session
// is released by the PSS implementation.

public interface MySessionPool {

TransactionalSession get_idle_session();
}

public class AssociationManager {

private CosTransactions.Current m_txcurrent;
private MySessionPool m_pool;

// Somehow called before the business logic of each
// operation
public void start_of_request() {

CosTransactions.Control control =
 m_txcurrent.get_control();

if (control != null) {
CosPersistentState.TransactionalSession

session = m_connector.current_session();
if (session == null){

session = m_pool.get_idle_session();
}

}

B-8 Persistent State Service, v2.0 September 2002

B

session.start(control.get_coordinator());
}

// Somehow called after the business logic of each
// operation
public void end_of_request() {

CosTransactions.Control control =
m_txcurrent.get_control();

if (control != null) {
m_connector.current_session().suspend(

control.get_coordinator()
);

}
}

}

September 2002 Persistent State Service, v2.0: Introduction B-9

B

B-10 Persistent State Service, v2.0 September 2002

 Relationship to Other Services C
C.1 Introduction

This appendix describes the relationship between the Persistent State Service and the
other Common Object Services defined by the OMG.

 C.1.1 Transaction Service

The Persistent State Service relies on the Transaction Service for transactions. The
relationship with this service is fully described in “Accessing Storage Objects”.

 C.1.2 Security Service

This section specifies how a Persistent State Service implementation fits into the
overall CORBA Security framework. The Security Service provides means to secure
interactions between CORBA clients and CORBA Objects; the Persistent State Service
provides a service to servant developers and is not directly involved in any CORBA
Object invocation. As a result, there is no overlap of functionality in these two
services.

Nonetheless, a Persistent State Service implementation can help application developers
take advantage of the security features provided by their datastore to implement secure
CORBA applications. Such a security-aware implementation shall support the general
model described below.

Model

Storage object provided by a Persistent State Service implementation, and CORBA
Objects managed by an ORB and a Security Service implementation are in different
security policy domains, and generally in different security technology domains.
September 2002 Persistent State Service, v2.0 C-1

C

Conceptually, the operations Connector::create_basic_session,
Connector::create_transactional_session and
Connector::create_session_pool perform a
SecurityLevel2::PrincipalAuthenticator::authenticate call. Some compliant
implementations may have drastic restrictions: for example, a simple file-system based
implementation can support only one principal per process with authentication
performed by the operating system.
C-2 Persistent State Service, v2.0 September 2002

 Conformance Requirements D
A compliant implementation must implement the CosPersistentState module
entirely in at least one programming language for which this specification defines a
mapping. It must also provide a tool that reads PSDL specifications and generate code
in this programming language.

There are two optional features: transaction support and transparent persistence.

The operation create_transactional_session on the connector of an
implementation that does not support transactions must raise the NO_IMPLEMENT
standard exception. The operation create_session_pool of an implementation that
does not support transactions must raise the NO_IMPLEMENT standard exception
when the transaction_policy parameter is TRANSACTIONAL. A compliant
implementation that supports transactions as specified in this specification can claim to
be “a compliant Persistent State Service implementation with transaction support”.

A compliant implementation that supports transparent persistence can claim to be “a
compliant Persistent State Service implementation with transparent persistence
support.”
September 2002 Persistent State Service, v2.0 D-1

D

D-2 Persistent State Service, v2.0 September 2002

 References E
[ODMG] Rick G. G. Cattell et al, The Object Database Standard: ODMG 2.0, The
Morgan Kaufmann Series in Data Management Systems, 1997

[SQL3] ISO Working Draft, Database Language SQL -- Part 2: Foundation
(SQL/Foundation), September 1998

[XA] Distributed Transaction Processing: The XA Specification, X/Open Document
C193, X/Open Company Ltd., Reading, U.K., ISBN 1-85912-057-1.
September 2002 Persistent State Service, v2.0 E-1

E

E-2 Persistent State Service, v2.0 September 2002

Index
Symbols
.psdl extension 3-3

A
abstract storagehome 1-5
abstract storagetype 1-5, 3-7, 4-3
Accessing Storage Objects 2-1

Catalogs 2-2
Connector 2-4

arrays 3-13, 4-12

C
C++ 3-20
callback interface

described x
catalogs 2-1
common facilities vii
compound object ix
concepts of viii
container-managed persistence 1-8
CORBA viii

contributors xi
documentation set vii

CORBA Components 1-8
Creating Sessions 1-6

D
datastore 1-3
Datastore Model 1-3
Defining Storage Objects 3-1
diamond shape inheritance 3-13
Dirty Reads 2-9

E
EndOfAssociationCallback 2-10
event channel ix, x
EventChannel interface x
exceptions

described xi
Explicit Session Management 2-6

Session Location Interface 2-6
Transactional Sessions 2-6

F
factory operation 4-15

G
global identifier xi

I
Implementation of the Naming Service

Implementing NamingContext Servants B-2
Implementing Storage Objects B-4
Specifying Storage Objects B-1

Implementing of the Naming Service
A Transactional Naming Server B-8
Completing the Naming Server B-5

Implementing Storage Objects 1-5
Implicit Session Management 2-10, 2-11

SessionPool 2-10
incarnation 1-2
instance 1-2

interface inheritance.see subtyping

J
Java 3-18

K
key operation 4-15

N
Nonrepeatable Reads 2-9

O
Object Management Group v

address of viii
object model vii
object request broker vi, vii
object service

context vi
specification defined vii

OMG IDL vii, ix
Operations 4-5

P
persistence 1-8
Persistent CORBA Objects 1-7
Persistent State Definition Language (PSDL) 1-4
Primary key 3-14
PSDL Language Mapping

C++ Mapping 4-8
PSDL Language Mappings 4-1

Java Mapping 4-3
PSDL Syntax and Semantics 3-2

Implementing Storage Objects and Storage Homes 3-13
Keywords 3-3
PSDL Definitions 3-6
PSDL Grammar 3-4
PSDL Type Id 3-6
Specifying Storage Objects, Storage Homes and Catatogs 3-7

PSDL type id 3-6
PullSupplier interface x
PushConsumer interface x

Q
quality of service ix

R
Ref_var Classes 4-12
reference model vi
Reference representation 3-13
reference representation 3-15

S
Scope for references 3-13
Security Service A-1, B-1, C-1, D-1, E-1
sequences 3-13, 4-12
session pool 2-10
Session Pools 1-6
session pools 1-6, 2-1
sessions 1-6, 2-1
Specifying Storage Objects, Storage Homes and Catalogs 1-4
state member 4-4
storage home 1-3
September 2002 Persistent State Service Index-1

Index
Storage home inheritance 3-14
Storage Homes 1-5
storage object 1-3
storage object homes 3-2
Storage objects 3-2
storagehomes 4-7
store directive 3-15
subtyping viii, xi

T
thread-safe 2-11

thread-unsafe 2-11
Transaction Service C-1
transactional session 1-7
Transactions 1-7
transactions 1-7
Transparent Persistance

C++ 3-20
Java 3-18

Transparent Persistence 3-18
transparent persistence 1-5, 3-18
Index-2 Persistent State Service September 2002

Persistent State Service, v2.0
Reference Sheet

OMG documents used to create this OMG formal specification:

• FTF report: ptc/01-12-01

• Convenience document: ptc/01-12-02
September 18, 2002 1

2 September 18, 2002

	Preface
	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Fundamental Concepts
	1.2 Datastore Model
	1.3 Specifying Storage Objects and Storage Homes
	1.4 Implementing Storage Objects and Storage Homes
	1.5 Creating Sessions and Session Pools
	1.6 Transactions
	1.7 Persistent CORBA Objects
	1.8 Relationship to CORBA Components

	2. Accessing Storage Objects
	2.1 Introduction
	2.2 Catalogs
	2.3 Connector
	2.4 Explicit Session Management
	2.4.1 Overview
	2.4.2 Session Local Interface
	2.4.3 Transactional Sessions
	2.4.4 EndOfAssociationCallback

	2.5 Implicit Session Management
	2.5.1 SessionPool

	2.6 IThread Safety

	3. Defining Storage Objects
	3.1 Introduction
	3.2 PSDL Syntax and Semantics
	3.2.1 Overview
	3.2.2 Keywords
	3.2.3 PSDL Grammar
	3.2.4 PSDL Type Id
	3.2.5 Specifying Storage Objects and Storage Homes
	3.2.6 Implementing Storage Objects and Storage Homes

	3.3 Transparent Persistence
	3.3.1 Overview
	3.3.2 Java
	3.3.3 C++

	4. PSDL Language Mappings
	4.1 Introduction
	4.2 Java Mapping
	4.2.1 Abstract Storagetypes
	4.2.2 Arrays and Sequences
	4.2.3 State Members
	4.2.4 Storagetype Operations
	4.2.5 Abstract Storagehomes
	4.2.6 Storagehome Operations
	4.2.7 Storagetype
	4.2.8 Factory Native Types

	4.3 C++ Mapping
	4.3.1 Abstract Storagetypes
	4.3.2 Ref_var Classes
	4.3.3 Arrays and Sequences
	4.3.4 State Members
	4.3.5 Storagetype Operations
	4.3.6 Abstract Storagehomes
	4.3.7 Storagehome Operations
	4.3.8 Storagetype
	4.3.9 Storagehomes
	4.3.10 Factory Native Types

	Appendix A - CosPersistentState Module
	Appendix B - Example: An Implementation of the Naming Service
	Appendix C - Relationship to Other Services
	Appendix D - Conformance Requirements
	Appendix E - References
	Index
	Reference Sheet

