
O

O S E

E

Tal — Modularization and Hierarchy

Operating-System Engineering

Thread Abstraction Layer — Tal

• develop the functional hierarchy of system abstractions to support threading:

– flyweight threads . 3
– featherweight threads . 6
– lightweight threads . 16

• provide an experimental feasibility study of selected system functions

– by breaking down possible approaches for implementation
– by means of C-like code and its mapping to assembly-language level

• design the minimal subset of thread functions as a program family

Operating-System Engineering — Tal — Modularization and Hierarchy 1

The First Step is the Hardest

• support inline instantiation of and switching between the threads:

instantiation should mean to proceed program execution with the side-effect
of having activated a different runtime stack “on the fly”.

switching should mean to finish and resume program execution without saving
or restoring the processor state of the involved threads.

• as a by-product, the instantiation primitive will be entered once and left twice

– invoked by the spawner (i.e., the creating thread)
– finished by the spawnee (i.e., the spawned thread) and the spawner

• the switching primitive’s solely task is to swap the stack pointer’s contents

Operating-System Engineering — Tal — Modularization and Hierarchy 2

Level 1 Flyweight Threads

split performs the instantiation of a new thread of control, i.e., it (1) freezes the
resumption address of the current thread of control and (2) fades in a runtime
stack different from the currently used one. Execution continues in place with
the instructions immediately following.

latch performs the termination of the current thread of control, i.e., it resumes
the execution of another thread without leaving any resumption address behind.
Execution of the resumed thread continues at the “frozen” resumption address.

label delivers a bit pattern which is unique to the current thread of control and
serves as a handle for the resumption of thread execution. Typically, that bit
pattern represents a runtime-stack address.

Operating-System Engineering — Tal — Modularization and Hierarchy 3

Flyweight Threads (C-like)

slot = label(); // remember current thread of control

split(flux); // spawn additional thread of control

if (slot != label()) { // did a runtime-stack switch occur?

... // yes, spawnee started execution

latch(slot); // spawnee finishes and resumes spawner

} // spawnee never returns to here

... // no, spawner resumed execution

Operating-System Engineering — Tal — Modularization and Hierarchy 4

Flyweight Threads (x86)

leal -4(%esp),%edx # slot = label()

pushl $1f # split(flux)

movl flux,%esp # " now spawnee!!

1: # resumption address

leal -4(%esp),%eax # = label()

cmpl %eax,%edx # if (slot == ...)

je 2f # goto 2

... # ...

movl %edx,%esp # latch(slot)

ret # " resume spawner

2: ... # ...

Operating-System Engineering — Tal — Modularization and Hierarchy 5

Level 2 Featherweight Threads

spawn instantiates a new thread by exploiting label and split. Two threads will
return from this function, at first the spawnee (non-zero return value) and then
the spawner (zero return value). For the spawnee, the non-zero return value is
the handle to later resume spawner execution.

shift transfers control to a thread different from the currently executing thread.
The address of the stack location containing the resumption address of the
control releasing thread will be saved for later purposes to resume that thread.
Control transfer is been done by exploiting latch.

Operating-System Engineering — Tal — Modularization and Hierarchy 6

Control-Transfer of Featherweight Threads

• goal is to let the implementation of shift become independent of the CPU

– but not necessarily independent of an abstract “C/C++ processor”, e.g.

• an in-depth analysis of shift reveals three fundamental steps of execution:

1. deliver and store the reference to the saved resumption address
– introducing check to encapsulate the assembly-language CPU instructions

2. latch execution of the next thread
√

3. provide a measure to support the generation of the resumption address
– introducing badge to produce an assembly-language label (i.e., symbol)

• the goal can be met by assisting level 2 with (lower-level) support functions

Operating-System Engineering — Tal — Modularization and Hierarchy 7

Featherweight Threads (C-like)

spawn (flux) {
slot = label(); // freeze spawner

split(flux); // instantiate spawnee

return slot != label() ? slot : 0; // generate result

}

shift (self, next) {
self = check(); // freeze this thread

latch(next); // resume next thread

badge(); // resumption point

}

Operating-System Engineering — Tal — Modularization and Hierarchy 8

Featherweight-Threads Instantiation (x86)

spawn (flux) {
leal -4(%esp),%ecx # slot = label()

pushl $1f # split(flux)

movl flux,%esp # " now spawnee!!

1: # badge()

leal -4(%esp),%edx # = label()

xorl %eax,%eax # zero aux

cmpl %edx,%ecx # slot == ?

sete %al # aux = 0 | 1

decl %eax # aux = -1 | 0

andl %ecx,%eax # aux = slot | 0

}

Operating-System Engineering — Tal — Modularization and Hierarchy 9

Featherweight-Threads Resumption (x86)

shift (self, next) {
pushl $1f # = check()

movl %esp,(self) # self =

movl next,%esp # latch(next)

ret # " resume

1: # badge()

}

Operating-System Engineering — Tal — Modularization and Hierarchy 10

Featherweight-Threads Exploitation (C-like)

...

if (dad = spawn(flux)) { // instantiate/run spawnee

shift(son, dad); // transfer control to spawner

latch(dad); // resume spawner, terminate

}
shift(dad, son); // transfer control to spawnee

...

Operating-System Engineering — Tal — Modularization and Hierarchy 11

Support Functions

• a further analysis of split and check reveals the following commonality:

– generation and saving of the resumption address of the current thread

• this functional commonality is worth to be abstracted by a dedicated function

– introducing setup to encapsulate the assembly-language CPU instructions

• setup and badge share common knowledge about the resumption address

– higher-level (i.e., level 1 and 2) functions depend on this knowledge

• both functions thus will constitute the (new) lowest level in the hierarchy

Operating-System Engineering — Tal — Modularization and Hierarchy 12

Support Functions Level 1

2

setup generates a resumption address and places the computed value on the
runtime stack of the executing thread. The address is generated from a symbol
left behind by badge.

badge leaves a symbol (i.e., label) behind in the (assembly-language) code to
symbolically encode the thread’s resumption address. This symbol is to be
exploited by setup.

Support Function Level 1

check performs setup and delivers the address of the runtime-stack location to
where the resumption address of the current thread of control was saved.

Operating-System Engineering — Tal — Modularization and Hierarchy 13

Support Functions (C-like/x86)

setup() {
pushl $1f

} /* x86 */

badge() {
1:

}

check() {
setup();

return cpu->sp;

}

It seems as if there is a good chance

that only setup (in addition to latch)

becomes dependent on the CPU, i.e.,

needs to be hand-coded using assembly-

language CPU instructions.

Operating-System Engineering — Tal — Modularization and Hierarchy 14

Support Functions (ppc, m68k, sparc)

setup() {
addi 1,1,-4

lis 3,1f@ha

la 3,1f@l(3)

stw 3,0(1)

} /* ppc */

setup() {
movl #1f,a7@-

} /* m68k */

setup() {
add %sp,-4,%sp

sethi %hi(1f),%o0

or %o0,%lo(1f),%o0

st %o0,[%sp]

} /* sparc */

Operating-System Engineering — Tal — Modularization and Hierarchy 15

Level 3 Runtime-Stack Exploitation

store saves the contents of CPU registers onto the runtime stack of the currently
executing thread. The stack will be extended by the amount of registers stored.

clear restores the contents of CPU registers from the runtime stack of the
currently executing thread. The stack will be cut back by the amount of
registered cleared.

top returns the initial value of the contents of the stack-pointer register given the
base address and size of a stack segment, taking care of alignment restrictions.

Depending on whether the registers of the abstract or the concrete processor are
concerned, store and clear need to be realized in different versions.

Operating-System Engineering — Tal — Modularization and Hierarchy 16

Runtime-Stack Exploitation (x86)

store () {
pushal

}

clear () {
popal

}

Save and restore of all general-purpose

registers as defined by the programming

model of the CPU.

store () {
pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

}

clear () {
popl %edi

popl %esi

popl %ebp

popl %ebx

}

Save and restore of the non-volatile

general-purpose registers as defined by

the application binary interface (ABI)

of the compiler.

Operating-System Engineering — Tal — Modularization and Hierarchy 17

Level 4 Stack-Pointer {,De}Allocation

new allocates a stack pointer by exploiting top with base address and size (in
bytes) of a runtime-stack segment. The purpose is not to allocate memory but
rather to support the generation of a typed stack pointer that goes conform
with some user-defined data type.

delete deallocates a stack pointer virtually. Since new does not really result in
the allocation of a memory segment, the purpose of delete at this level of
abstraction is to trap the attempt to deallocate a stack segment referred to by
a stack pointer.

The typical implementation of both functions is (in C++) as overloaded
new/delete operators of a class used to model flyweight threads.

Operating-System Engineering — Tal — Modularization and Hierarchy 18

Stack-Pointer {,De}Allocation (C-like)

new (size, pool) {
return top(pool, size);

}

new[] (size, pool) {
return top(pool, size);

}

delete (item) {
assert(item == 0);

}

top (base, size) {
return base + size;

} /* x86 */

top (base, size) {
return base + size & ~(wordsize - 1);

} /* ppc */

top (base, size) {
return base; // stack grows upward!

} /* 80C51 */

Operating-System Engineering — Tal — Modularization and Hierarchy 19

Level 5 Lightweight Threads

yield transfers control to another thread by saving and restoring the contents of
all general-purpose registers as defined by the CPU’s programming model.

grant transfers control to another thread by saving and restoring the contents
of the non-volatile registers as defined by the compiler’s application binary

interface (ABI).

Both functions exploit shift to perform the control transfer and the respective
store and clear pair (→ p. 17) for saving and restoring the thread state
accordingly. A thread itself is responsible to save and restore its context.

There are as many control transfer functions as pairs of context-saving functions.

Operating-System Engineering — Tal — Modularization and Hierarchy 20

Lightweight Threads (C-like)

yield (next) {
store(); // save full register set

shift(self, next); // transfer control

clear(); // restore full register set

}

grant (next) {
store(); // save non-volatile registers

shift(self, next); // transfer control

clear(); // restore non-volatile registers

}

Operating-System Engineering — Tal — Modularization and Hierarchy 21

Lightweight Threads (x86) (1)

yield (self, next) {
pushal # store()

pushl $1f # shift(self, next)

movl %esp,(self) # "

movl next,%esp # "

ret # "

1: # "

popal # clear()

}

Operating-System Engineering — Tal — Modularization and Hierarchy 22 L
ig

h
tw

e
ig

h
t

T
h
re

a
d
s

(x
8
6
)

(2
)

g
r
a
n
t

(
s
e
l
f
,

n
e
x
t
)
{

m
o
v
l

s
e
l
f
,
%
e
d
x

m
o
v
l

n
e
x
t
,
%
e
a
x

p
u
s
h
l

%
e
b
x

#
s
t
o
r
e
(
)

p
u
s
h
l

%
e
b
p

#
"

p
u
s
h
l

%
e
s
i

#
"

p
u
s
h
l

%
e
d
i

#
"

p
u
s
h
l

$
1
f

#
s
h
i
f
t
(
s
e
l
f
,

n
e
x
t
)

m
o
v
l

%
e
s
p
,
(
%
e
d
x
)

#
"

m
o
v
l

%
e
a
x
,
%
e
s
p

#
"

r
e
t

#
"

1
:

#
"

p
o
p
l

%
e
d
i

#
c
l
e
a
r
(
)

p
o
p
l

%
e
s
i

#
"

p
o
p
l

%
e
b
p

#
"

p
o
p
l

%
e
b
x

#
"

r
e
t

}

O
p
er

at
in

g
-S

ys
te

m
E
n
g
in

ee
ri
n
g

—
T
a
l

—
M

o
d
u
la

ri
za

ti
o
n

an
d

H
ie

ra
rc

h
y

2
3

Level 5* User-Function Abstraction

• so far, users are concerned with all the peculiarities of the threading concept

– they are enabled to develop highly efficient multithreaded programs +

– they are “obliged” to understand numerous design decisions −

• seperation of concerns implies to divide user code from threading code

i.e. to represent the user code e.g. as a

default function

pointer to function

pointer to member function

virtual method

• the actual representation depends on the programming paradigm involved

Operating-System Engineering — Tal — Modularization and Hierarchy 24

Level 6 Lightweight-Thread Instantiation

beget creates a new thread of control by exploiting (1) spawn to instantiate the
thread, (2) yield to inherit the contents of the spawner’s general-purpose CPU
registers to the spawnee, and (3) to assign user-defined code to the newly
created thread.

The user-defined code is represented by an appropriate user-function abstrac-

tion (UFA). There are as many beget variants as UFA variants.

The user-defined code starts execution after having been explicitly enabled by
the creator using either of the control-transfer functions latch, shift, yield, or
grant.

Operating-System Engineering — Tal — Modularization and Hierarchy 25

Lightweight-Thread Instantiation (C-like)

beget (this, hook) {
if (dad = spawn(flux)) {

yield(son, dad);

for (;;)

(*hook)(this);

}
} /* ptr. to function */

beget (this, hook) {
if (dad = spawn(flux)) {
yield(son, dad);

for (;;)

(this->*hook)();

}
} /* ptr. to member function */

Operating-System Engineering — Tal — Modularization and Hierarchy 26

Everlasting Lifespan

• by exploiting beget, the created thread is “condemned” to execute forever

– reason is the representation of the user-defined code as a procedure
∗ from the user’s viewpoint, thread termination equals procedure return
∗ from the system’s viewpoint, there is no idea to where to return to1

– the only way is to embed the procedure call inside an endless loop

• there are two possible options to overcome the thread-termination problem:

1. specialize and redefine beget once a scheduler has been designed, or
2. provide for a “system UFA” (i.e., “wrapper”) that solves the problem

• any way, the design decision on how to further proceed must be postponed

1Also note that at the level of abstraction beget is assigned to, a thread scheduler is still unknown. So there is

no way to automatically run another thread in case of thread termination.

Operating-System Engineering — Tal — Modularization and Hierarchy 27

Functional/Uses Hierarchy

yield

delete

clearstore store clear top

shiftspawn

latchchecksplitlabel

setupbadge

beget

grant

new

ufa

full non−volatile

1

2

3

4

5

5*

6

½

Operating-System Engineering — Tal — Modularization and Hierarchy 28

Minimal Subset of Interface Functions

• “laymans” may be concerned only with a minimal interface consisting of:

new to allocate a well-aligned stack pointer
beget to instantiate a (lightweight) thread
grant to transfer CPU control between the threads
UFA to represent the user-defined code to be executed by the thread

• however, “experts” may choose from a larger set of interface functions

– to benefit from a much more simpler and efficient threading concept...
– to better customize the thread concept to their individual needs

• the design put forward does not force users to pay for unneeded functions

Operating-System Engineering — Tal — Modularization and Hierarchy 29

Component View — Black-Box

grant new

shift

beget

expert

main

ufa
laym

an

TAL

Operating-System Engineering — Tal — Modularization and Hierarchy 30

Summary

• incremental system design relies on the postponement of design decisions

– the stepwise functional extension “smoothly” approaches applications
– if being in doubt of whether or not to include a feature, better exclude

• reflection of the design decisions met is an ongoing process during design

– not always are common functions considered “common” instantaneously
– a refinement of preceeded design decisions must always be kept in mind

• there is no alternative to fine-grain modularization in systems design

– structural complexity is reduced by (coarse-grained) open components
– with the coarse-grained building blocks being of fine-grained structure

Operating-System Engineering — Tal — Modularization and Hierarchy 31

