
3 Exercise #3: Locks

For this exercise you will implement different (busy) lock types. You will measure their performance in contended
and uncontended cases.

3.1 Special Instruction Locks

Implement the following locks based on special CPU instructions. To use these special instructions, you can
write assembly code or use intrinsic functions of your compiler1.

• The most simple spinlock that uses an unconditional swap instruction to gain exclusive access to a critical
section. The lock should perform this atomic swap as long as it does not succeed. On x86 the respective
instruction is called xchg and is always atomic (also without a lock prefix).

• A read-spinlock that is very similar to the previous lock but reads the lock variable in a loop and only
performs the atomic swap operation if the previous read suggests a possible success.

• Ticket spinlocks guarantee starvation-freedom for the threads contending on the lock. A FIFO order of
the threads is ensured. Experiment by placing member variables of this lock on different cache lines.

• Ticket spinlocks are well suited for backoff strategies, as each thread can calculate how many threads
acquire the lock before it can succeed. Create another version of the ticket spinlock with at least one
backoff strategy of your choice.

Feel free to implement more variations and combinations as you like.

3.2 Atomic Read/Write Locks

Read/write locks just assume atomic read and write access to variables to implement exclusive access, but
require a previously known maximum number of threads. Be aware that especially for these type of locks
unwanted reordering by the compiler and CPU may happen. Implement at least two the following algorithms
for a configurable number N ≥ 2 of threads:

• Dekker’s algorithm (found in “Dijkstra: Cooperating Sequential Processes”)

• Peterson’s algorithm

• Kessels’ algorithm

• Lamport’s bakery algorithm

You will find all related papers in the materials to this assignment. Again if you find other algorithms feel free
to implement them.

3.3 Test and Measure

For testing and measuring the implementations, use the SimpleQueue provided for the previous assignment.
Synchronize its enqueue and dequeue operations with the locks you implemented. We will implement a non-
blocking variant of this queue in the last exercise and compare it to the locked variants.
Write a test program that enqueues and dequeues in parallel with multiple threads. Verify that no item was
lost or dequeued twice.
Write a benchmark for the contended case, increase the number of threads step by step and measure the execution
time of the whole benchmark run. Pin (see remarks) the participating threads to CPUs in round robin fashion to
see effects of the caching and memory hardware (especially interesting on faui49big01). Allocate all necessary
memory before you start measuring time, else you most probably measure the performance of your memory
allocator instead of the locking algorithms.
For the uncontended case just measure the time a successful lock-unlock pair takes. For this purpose an
implementation that uses the x86 time stamp counter (TSC) will be provided in the materials. Do not forget
to pin the thread that performs this measurement because the TSC is CPU local. Remember to do multiple
measurements to compensate for fluctuations. You can filter out very large values that may come from an
operating-system context-switch.
Plot interesting results and submit these plots in a single PDF file.

1https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/_005f_005fsync-Builtins.html

Concurrent Systems - Exercises Friedrich-Alexander University Erlangen-Nuremberg
Chair of Distributed Systems and Operating Systems

https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/_005f_005fsync-Builtins.html

3.4 Submit

Submit your solutions by creating the directory /proj/i4cs/students/your login/assignment3/ All files in this
folder will be collected after the submission deadline. The file comments.txt will be created in this directory
and contains comments from the tutors. Please create a file group.txt with your and your partner’s login if
you do your assignments in a group of 2 people.

Remarks:

• For pinning threads to CPUs see the manpages: sched setaffinity and CPU SET. To determine the
number of CPUs you can use sysconf(SC NPROCESSORS ONLN).

• You can also measure the performance of pthread mutex in your benchmarks.

• Intel suggests placing a pause instruction in busy loops to mark them as such (for the instruction fetch of
the CPU pipeline). You can also experiment with this instruction, use: asm volatile("pause\n\t");.

Submit until: 2014-12-09

Concurrent Systems - Exercises Friedrich-Alexander University Erlangen-Nuremberg
Chair of Distributed Systems and Operating Systems

	Exercise #3: Locks
	Special Instruction Locks
	Atomic Read/Write Locks
	Test and Measure
	Submit

