Concurrent Systems

Nebenläufige Systeme

XIV. Pickings

Wolfgang Schröder-Preikschat

January 29, 2015
Agenda

Recapitulation
 Concurrent Systems

Perspectives
 Parallel Systems
 Computing Equipment
 Further Education
Recapitulation

Concurrent Systems

Perspectives

Parallel Systems
Computing Equipment
Further Education
Content of Teaching and Cross-References

- Transactional memory
- Elementary operations
- Critical sections
- Simultaneous (concurrent/interacting) processes
- Concurrency

- Lock
- Semaphore
- Monitor
- Deadlock embrace
- Guarded sections
- Non-blocking synchronisation
- Transactional memory
- Progress guarantee

© wosch CS (WS 2015, LEC 14) Recapitulation – Concurrent Systems
Outline

Recapitulation
Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment
Further Education
Main Research at the Chair

- **composability** and **configurability**
 - application-oriented (varying, type-safe) system software

- **specialisation**
 - dedicated operating systems: integrated, adaptive, parallel

- **reliability**
 - gentle fault and intrusion tolerance

- **thriftiness**
 - resource-aware operation of computing systems

- **timeliness**
 - migration paths between time- and event-triggered real-time systems

- **concurrency**
 - coordination of cooperation and competition between processes

“concurrent systems” is more or less **cross-cutting** thereto...
Latency Awareness in Operating Systems

- **latency prevention**
 - lock- and wait-free synchronisation
 - integrated generator-based approach

- **latency avoidance**
 - interference protection
 - race-conflict containment

- **latency hiding**
 - operating-system server cores
 - asynchronous remote system operation

- Experiments with different **operating-system architectures**
 - process-/event-based and hardware-centric operating-system kernels
 - LAKE, Sloth

- DFG: 2 doctoral researchers, 2 student assistants

1. [http://univis.uni-erlangen.de → Research projects → LAOS](http://univis.uni-erlangen.de)
Coherency Kernel

- **event-based minimal kernel**
 - cache-aware main-memory footprint
 - hyper-threading of latent actions

- **featherweight agreement protocols**
 - overall kernel-level synchronisation
 - familie of consistency kernels

- **problem-oriented consistency**
 - sequential, entry, release consistency
 - functional hierarchy of consistency domains
 - memory domains for NUMA architectures

- Implementation as to different **processor architectures**
 - partial or total, resp. {in,}coherent shared memory

- DFG: 2 doctoral researchers (1 FAU, 1 BTU)

\(^2\)http://univis.uni-erlangen.de → Research projects → COKE
Heterogeneous Resource-Aware Multi-Processing

- **GPU-centric resource management**
 - timely predictable run-time system
 - run-to-completion kernel
 - priorisation and isolation of GPU tasks
 - scheduling according to execution costs
 - trade-off handling as to throughput and response time

- **RAM-centric run-time executive** for heterogeneous processors
 - application-specific and problem-orientied memory management
 - run-time adaptation and relocation of dynamic data structures

- **tailor-made system software** for heterogeneous image systems
 - support of an incremental improvement of visual quality
 - patterns for adaptive detail adaptation of geometry or textures

- DFG: 1 doctoral researcher, 1 student assistant

³http://univis.uni-erlangen.de → Research projects → RAMP
Run-Time Support System for Invasive Computing

Octo

borrowed from the designation of a creature that:

i. is highly parallel in its actions and
ii. excellently can adapt oneself to its environment

the kraken (species Octopoda)

- can operate in parallel by virtue of its eight tentacles
- is able to do customisation through camouflage and deimatic displays and
- comes with a highly developed nervous system
 - in order to attune to dynamic ambient conditions and effects

POS

abbrv. for parallel operating system

- an operating system that not only supports parallel processes
- but that also functions inherently parallel thereby

DFG: 2.5 doctoral researchers, 1 research/3 student assistants
Power-Aware Critical Sections

- Scalable synchronisation on the basis of agile critical sections infrastructure
 - Load-dependent and self-organised change of protection against race conditions

- Linguistic support
 - Preparation, characterisation, and capturing of declared critical sections

- Automated extraction of critical sections
 - Notation language for critical sections
 - Program analysis and LLVM integration/adaptation

- Power-aware system programming
 - Mutual exclusion, guarded sections, transactions
 - Dynamic dispatch of synchronisation protocols or critical sections, resp.

- Tamper-proof power-consumption measuring
 - Instruction survey and statistics based on real and virtual machines
 - Energy-consumption prediction or estimation, resp.

DFG: 2 doctoral researchers, 2 student assistants

http://univis.uni-erlangen.de → Research projects → PAX

© wosch CS (WS 2015, LEC 14) Perspectives – Parallel Systems 11–13
Multi/Many-Core Processor Pool

<table>
<thead>
<tr>
<th>faui4*</th>
<th>clock</th>
<th>cores per domain</th>
<th>domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>physical</td>
<td>logical</td>
</tr>
<tr>
<td>8e</td>
<td>2.9 GHz</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>8f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9big01</td>
<td>2.5 GHz</td>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>9big02</td>
<td>2.2 GHz</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>9phi01</td>
<td>1.2 GHz</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.1 GHz</td>
<td>57</td>
<td>228</td>
</tr>
<tr>
<td>scc</td>
<td>1.5 GHz</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>800 MHz</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>InvasIC</td>
<td>3.5 GHz</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>25 MHz</td>
<td>4</td>
<td>–</td>
</tr>
</tbody>
</table>

Budgeted acquisition: further n-core systems, transactional memory

OctoPOS $n \geq 64$, in 2015

PAX $n \geq 16$, in 2016, plus several multi-core micro-controllers
Bachelor, Master, or Doctoral Thesis