Concurrent Systems

Nebenläufige Systeme

I. Introduction

Wolfgang Schröder-Preikschat, Timo Hönig

October 17, 2017

Agenda

Preface

Contents

Organisation

Summary

Outline

Preface

Contents

Organisation

Summary

meaning of the lecture labelling in linguistic terms [6]: con·cur·rent (lat.) concurrens: preposition of concurrere

sys·tems plural of (gr.) systēmas: to place together

- meaning of the lecture labelling in linguistic terms [6]: con·cur·rent (lat.) concurrens: preposition of concurrere
 - 1. occurring at the same time; existing together
 - 2. meeting in or going toward the same point; converging
 - 3. acting together; cooperating
 - 4. in agreement; harmonious
 - 5. exercised equally over the same area

meaning of the lecture labelling in linguistic terms [6]:

sys·tems plural of (gr.) systēmas: to place together

- 1. a set of arrangements of things so related or connected as to form a unity or organic whole
- 2. a set of facts, principles, rules, etc. classified or arranged in a regularly, orderly form so as to show a logical plan linking the various parts
- 3. a method or plan of classification or arrangement

in terms of computer science: a system of several computations which are executing simultaneously, potentially interacting with each other

- meaning of the lecture labelling in linguistic terms [6]: con·cur·rent (lat.) concurrens: preposition of concurrere
 - 1. occurring at the same time; existing together
 - 2. meeting in or going toward the same point; converging
 - 3. acting together; cooperating
 - 4. in agreement; harmonious
 - 5. exercised equally over the same area
 - sys·tems plural of (gr.) systēmas: to place together
 - 1. a set of arrangements of things so related or connected as to form a unity or organic whole
 - 2. a set of facts, principles, rules, etc. classified or arranged in a regularly, orderly form so as to show a logical plan linking the various parts
 - 3. a method or plan of classification or arrangement
- in terms of computer science: a system of several computations which are executing simultaneously, potentially interacting with each other

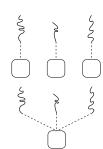
- simultaneous execution of potentially interacting computations
 - with the latter being logical (cooperating) or incidental (contending)

- simultaneous execution of potentially interacting computations
 - with the latter being logical (cooperating) or incidental (contending)
- concurrence in the program flow is due to:

multiplication of processing units

- real parallelism
- instruction set architecture level
- partitioning in space

- simultaneous execution of potentially interacting computations
 - with the latter being logical (cooperating) or incidental (contending)
- concurrence in the program flow is due to:

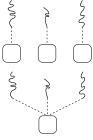

multiplication of processing units, but also

- real parallelism
- instruction set architecture level
- partitioning in space

© wosch, thoenig

multiplexing (partial virtualisation [2])

- pseudo-parallelism
- operating-system machine level
- partitioning in time

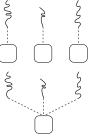

- simultaneous execution of potentially interacting computations
 - with the latter being logical (cooperating) or incidental (contending)
- concurrence in the program flow is due to:

multiplication of processing units, but also

- real parallelism
- instruction set architecture level
- partitioning in space

multiplexing (partial virtualisation [2])

- pseudo-parallelism
- operating-system machine level
- partitioning in time
- functionally equal, but non-functionally unequal, characteristics
 - however, each of the two "concurrency dimensions" originates in different functions to coordinate/synchronise concurrent processes


- simultaneous execution of potentially interacting computations
 - with the latter being logical (cooperating) or incidental (contending)
- concurrence in the program flow is due to:

multiplication of processing units, but also

- real parallelism
- instruction set architecture level
- partitioning in space

multiplexing (partial virtualisation [2])

- pseudo-parallelism
- operating-system machine level
- partitioning in time
- functionally equal, but non-functionally unequal, characteristics
 - however, each of the two "concurrency dimensions" originates in different functions to coordinate/synchronise concurrent processes
- focus is on parallel processing of the same non-sequential program

© wosch, thoenig

8-29

9 - 29

- parallel-computer engineering is pervasive
 multi-core conventional characteristic
 - uni-core = rather unconventional, but rife
- by the way: multi-core ⊂ many-core
 - multi little tens ("handful") of cores many several tens of cores and more
 - my = several tens of cores and me
 - hundreds or even thousands
- exposure to parallelism is indispensable [7]
 - mandatory at least for operating systems

28 cores, uniformly distributed across four tiles ©

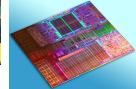
- parallel-computer engineering is pervasive multi-core conventional characteristic
 - uni-core rather unconventional, but rife
- by the way: multi-core ⊂ many-core
 - multi little tens ("handful") of cores many several tens of cores and more
 - - hundreds or even thousands
- exposure to parallelism is indispensable [7]
 - mandatory at least for operating systems

28 cores, uniformly distributed across four tiles ©

- many-core processors make core multiplexing almost superfluous
 - unless latency hiding becomes an issue within a parallel process

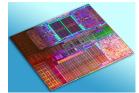
2 cores

2 cores 4 cores

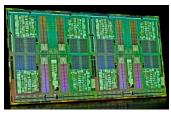

2 cores

4 cores

8 cores


2 cores

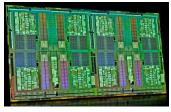
4 cores



16 cores

2 cores

4 cores

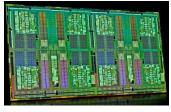


16 cores

32 cores


2 cores

4 cores

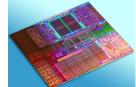


16 cores

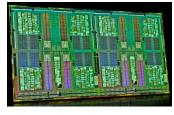
48 cores

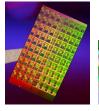
32 cores

11 - 29


2 cores

4 cores





16 cores

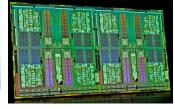
80 cores

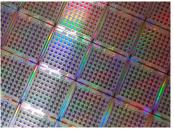
48 cores

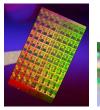
32 cores

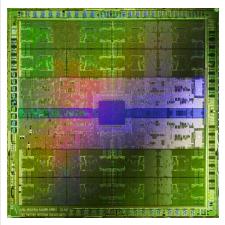
2 cores


4 cores



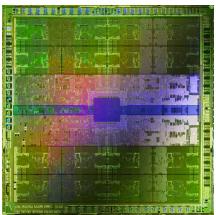


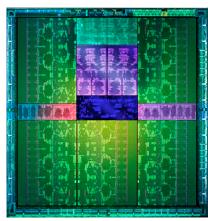




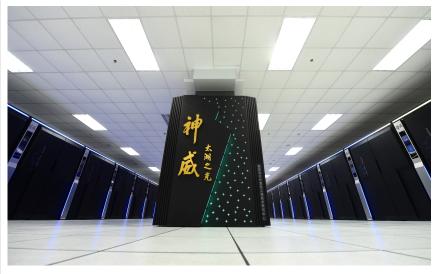
100 cores

80 cores


48 cores


32 cores

512 cores


512 cores 1536/3072 cores

 $3\,120\,000$ cores

10 649 600 cores

nature of the overall processor architecture

address-space organisation

cache coherency: memory property

memory (also: cache) **consistency**: memory *state*

Characteristic Parallel Systems

nature of the overall processor architecture

- homogeneous in functional terms: instruction set architecture (ISA)
 - but also non-functional: latency, clock speed, energy use
- heterogeneous different in at least one of those aspects

Characteristic

- address-space organisation
 - **shared** globally direct memory access: load/store operations
 - maybe partitioned global address space (PGAS)
 - distributed globally indirect memory access: message passing

Preface

cache **coherency**: memory *property*

coherent • any read evaluates to the last write to the same address

temporary (memory/cache) inconsistencies are tolerated

non-coherent ■ else

memory (also: cache) consistency: memory state

strict • all accesses are seen in order in which they were issued otherwise • loosened models, differentiate between read and write

sequential, processor, weak, entry, or release consistency

- **nature** of the overall processor architecture
 - homogeneous in functional terms: instruction set architecture (ISA)
 - but also non-functional: latency, clock speed, energy use
 - heterogeneous different in at least one of those aspects
- address-space organisation
 - shared globally direct memory access: load/store operations
 - maybe partitioned global address space (PGAS)
 - distributed globally indirect memory access: message passing
- cache coherency: memory property
 - **coherent** any read evaluates to the last write to the same address
 - temporary (memory/cache) inconsistencies are tolerated
 - non-coherent else
- memory (also: cache) consistency: memory state
 - strict all accesses are seen in order in which they were issued
 - otherwise loosened models, differentiate between read and write
 - sequential, processor, weak, entry, or release consistency

Outline

Preface

Contents

Organisation

Summary

Fundamentals

Introduction:

overview, organisation—today's lecture...

Fundamentals

Introduction:

1. overview, organisation—today's lecture. . .

General topics and basic principles:

- 2. notion of "concurrency" against the background of resource sharing
 - causality ("cause and effect"), synchronisation, indivisibility
- notion of "process" and difference to "program"
 - sequential, non-sequential, concurrent, interacting
- 4. critical (program) sections and their typical patterns
 - race conditions/hazards: lost update, lost wakeup
- 5. elementary operations and other hardware aspects
 - TAS, CAS, and LL/SC versus caches, coherence, and interference

Classic and folklore:

- 6. lock algorithms
 - contention, backoff, ticket, interference
- semaphore
 - binary (vs. "mutex"), general/counting, bolt, set
- monitor and condition variable
 - signalling semantics: Hansen, Hoare, Mesa, Java
- 9. deadlock and livelock
 - prevention, avoidance and detection & resolution

Avant-garde and other:

- 10. algorithms based on indivisible memory-write instructions
 - assuming vertical (stack-like) overlapping
 - interrupt-transparent synchronisation
- 11. algorithms based on dedicated machine instructions
 - assuming horizontal (congeneric) overlapping
 - compare and swap (CAS), load linked (LL) and store conditional (SC)
- 12. transactional memory
 - AMD's advanced synchronisation facility (ASF)
 - Intel's transactional synchronisation extensions (TSX)
- 13. progress guarantees
 - obstruction-, lock- and wait-free behaviour
 - constructive (favoured) and analytical (neglected) approaches

Contents

Pickings

State of the art and recapitulation:

- 14. current research work and advances in modern operating systems
 - remote-core locking [4], unlocking energy [3]
 - read-copy update [5], big kernel lock
- 15. wrap-up and words in a personal matter
 - retrospection and lessons learned
 - research projects on these topics at the chair
 - perspectives for advanced training: bachelor, master, doctoral thesis

Pickings

State of the art and recapitulation:

- 14. current research work and advances in modern operating systems
 - remote-core locking [4], unlocking energy [3]
 - read-copy update [5], big kernel lock
- 15. wrap-up and words in a personal matter
 - retrospection and lessons learned
 - research projects on these topics at the chair
 - perspectives for advanced training: bachelor, master, doctoral thesis

Hint (Lecture)

Main objective is to impart knowledge on concurrent systems from the **system programming point of view**. Wide emphasis is on the internals of synchronisation concepts and primitives as well as the implications of the respective implementations. Application of these methods for parallel programming takes a back seat.

Outline

Organisation

depends on the German linguistic abilities of the participants

- depends on the German linguistic abilities of the participants
 - English preferred working language
 - strict choice if at least one attendee does not agree on German
 - German in case of doubt or missing answer, German is fallback position¹

¹Studying abroad also means *living* abroad—and to take part and share in Franconian social life. The latter *soft skills* cannot be overestimated.

- depends on the German linguistic abilities of the participants
 - English preferred working language
 - strict choice if at least one attendee does not agree on German
 - German in case of doubt or missing answer, German is fallback position¹
- written material (slides or handouts, resp.) will be English
 - with technical terms also stated in German, where applicable

¹Studying abroad also means *living* abroad—and to take part and share in Franconian social life. The latter *soft skills* cannot be overestimated.

acquire new knowledge

relate it with previous knowledges

Lecture Meaningful Learning

- acquire new knowledge
 - prepare next reading on ones own initiative
 - attend presentation, listen, and discuss topics treated
 - reinforce learning matter, reflect

Lecture

Meaningful Learning

relate it with previous knowledgesparallel programming (PFP)

computer architecture (GRA)	13
system programming (SP, SPiC, GSPiC)	14
operating systems (BS), operating-systems engineering (BST)	14
■ real-time systems (EZS)	14

Lecture Meaningful Learning

acquire new knowled	dge
---------------------------------------	-----

- prepare next reading on ones own initiative
- attend presentation, listen, and discuss topics treated
- reinforce learning matter, reflect
- relate it with previous knowledges
 - parallel programming (PFP)
 - = paramet programming (TTT)
 - computer architecture (GRA)
 - system programming (SP, SPiC, GSPiC)
 - operating systems (BS), operating-systems engineering (BST)
 - real-time systems (EZS)
- teaching material presented in the lecture room:
 - follow "Lehre" (Eng. teaching) at https://www4.cs.fau.de
 - copies of the slides are made available as handouts free of charge
 - supplemented by secondary literature as and when required
 - see the bibliography at the bottom of each handout
 - glossary of terms at https://www4.cs.fau.de/~wosch/glossar.pdf

12

13

14

14

14

Exercise

deepen knowledge by means of direct experience

Acquisition of virtuous behaviour and operational ability is less a matter of easy instruction but rather functional copy, practise, and use. (Aristotle [1])

deepen knowledge by means of direct experience

Acquisition of virtuous behaviour and operational ability is less a matter of easy instruction but rather functional copy, practise, and use. (Aristotle [1])

- discussion of assignments, outline of approaches
- consolidation of the lecture, clarification of open questions

deepen knowledge by means of direct experience

Acquisition of virtuous behaviour and operational ability is less a matter of easy instruction but rather functional copy, practise, and use. (Aristotle [1])

- discussion of assignments, outline of approaches
- consolidation of the lecture, clarification of open questions
- **blackboard practice** under guidance of an exercise instructor
 - registration through WAFFEL² (URL see CS web page)
 - assignments are to be processed in teamwork: discretionary clause
 - depending on the number of participants

²abbr. for (Ger.) Webanmeldefrickelformular Enterprise Logic

deepen knowledge by means of direct experience

Acquisition of virtuous behaviour and operational ability is less a matter of easy instruction but rather functional copy, practise, and use. (Aristotle [1])

- discussion of assignments, outline of approaches
- consolidation of the lecture, clarification of open questions
- blackboard practice under guidance of an exercise instructor
 - registration through WAFFEL² (URL see CS web page)
 - assignments are to be processed in teamwork: discretionary clause
 - depending on the number of participants
- **computer work** under individual responsibility
 - registration is not scheduled, reserved workplaces are available
 - in case of questions, a CS exercise instructor is available

²abbr. for (Ger.) Webanmeldefrickelformular Enterprise Logic

Requirements

- hard skills (computer-science expertise)
 - mandatory
 - structured computer organisation
 - algorithm design and development
 - principles of programming in C or C++

 - optional

- assembly language (absolute) programming
- system programming
- operating systems
- → as appropriate, knowledge gaps will be closed on demand by the instructors

Requirements

- hard skills (computer-science expertise)
 - mandatory
 - structured computer organisation
 - algorithm design and development
 - principles of programming in C or C++

 - optional
 - assembly language (absolute) programming
 - system programming
 - operating systems
 - → as appropriate, knowledge gaps will be closed on demand by the instructors
- soft (personal, social, methodical) skills
 - staying power, capacity of teamwork, structured problem solving

- achievable credit points
 - 5 ECTS (European Credit Transfer System)

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS³ (i.e., 2.5 ECTS) each

³abbr. for (Ger.) Semesterwochenstunden

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS³ (i.e., 2.5 ECTS) each
- German or English (cf. p. 46) oral examination
 - date by arrangement: send e-mail to wosch@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule. . .

³abbr. for (Ger.) Semesterwochenstunden

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS³ (i.e., 2.5 ECTS) each
- German or English (cf. p. 46) oral examination
 - date by arrangement: send e-mail to wosch@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule. . .
- examination subjects
 - topics of lecture, blackboard practice, but also computer work
 - brought up in the manner of an "expert talk"
 - major goal is to find out the degree of understanding of inter-relations

³abbr. for (Ger.) Semesterwochenstunden

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS³ (i.e., 2.5 ECTS) each
- German or English (cf. p. 46) oral examination
 - date by arrangement: send e-mail to wosch@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule. . .
- examination subjects
 - topics of lecture, blackboard practice, but also computer work
 - brought up in the manner of an "expert talk"
 - major goal is to find out the degree of understanding of inter-relations
- registration through "mein campus": https://www.campus.fau.de

Outline

Summary

- - between interacting (i.e., control- or data-flow dependent) processes
 - with emphasis on explicit synchronisation
- - vertical overlapped execution at operating-system machine level
 - process preemption (partial virtualisation)
 - horizontal overlapped execution at instruction set architecture level
 - processor (core) multiplication
- - advanced studies to the range of topics on system programming
 - basic studies to concurrent (i.e., non sequential) programming
- - blocking versus non-blocking synchronisation
 - where is what paradigm mandatory, optional, beneficial, or adversely...

- coordination of cooperation and concurrency
 - between interacting (i.e., control- or data-flow dependent) processes
 - with emphasis on explicit synchronisation
 - - vertical overlapped execution at operating-system machine level
 - process preemption (partial virtualisation)
 - horizontal overlapped execution at instruction set architecture level
 - processor (core) multiplication
- - advanced studies to the range of topics on system programming
 - basic studies to concurrent (i.e., non sequential) programming
- - blocking versus non-blocking synchronisation
 - where is what paradigm mandatory, optional, beneficial, or adversely...

- coordination of cooperation and concurrency
 - between interacting (i.e., control- or data-flow dependent) processes
 - with emphasis on explicit synchronisation
- against the background of two dimensions of concurrency

 - vertical overlapped execution at operating-system machine level
 - process preemption (partial virtualisation)

 - horizontal overlapped execution at instruction set architecture level
 - processor (core) multiplication
- - advanced studies to the range of topics on system programming
 - basic studies to concurrent (i.e., non sequential) programming
- - blocking versus non-blocking synchronisation
 - where is what paradigm mandatory, optional, beneficial, or adversely...

- coordination of cooperation and concurrency
 - between interacting (i.e., control- or data-flow dependent) processes
 - with emphasis on explicit synchronisation
- against the background of two dimensions of concurrency

 - vertical overlapped execution at operating-system machine level
 - process preemption (partial virtualisation)

 - horizontal overlapped execution at instruction set architecture level
 - processor (core) multiplication
- in-depth study of approaches suitable (not only) for operating systems
 - advanced studies to the range of topics on system programming
 - basic studies to concurrent (i.e., non sequential) programming
- - blocking versus non-blocking synchronisation
 - where is what paradigm mandatory, optional, beneficial, or adversely...

- coordination of cooperation and concurrency
 - between interacting (i.e., control- or data-flow dependent) processes
 - with emphasis on explicit synchronisation
- against the background of two dimensions of concurrency

 - vertical overlapped execution at operating-system machine level
 - process preemption (partial virtualisation)

 - horizontal overlapped execution at instruction set architecture level
 - processor (core) multiplication
- in-depth study of approaches suitable (not only) for operating systems
 - advanced studies to the range of topics on system programming
 - basic studies to concurrent (i.e., non sequential) programming
- fundamental understanding of different synchronisation paradigms
 - blocking versus non-blocking synchronisation
 - where is what paradigm mandatory, optional, beneficial, or adversely...

Reference List

[1] Aristotle:

Nicomachean Ethics.

c. 334 BC

[2] CORBATÓ, F. J.; MERWIN-DAGGETT, M.; DALEY, R. C.:

An Experimental Time-Sharing System.

In: Proceedings of the AIEE-IRE'62 Spring Joint Computer Conference, ACM, 1962, S. 335-344

[3] FALSAFI, B.; GUERRAOUI, R.; PICOREL, J.; TRIGONAKIS, V.: Unlocking energy.

In: Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC '16), 2016, S. 393-406

[4] Lozi, J.-P.; David, F.; Thomas, G.; Lawall, J. L.; Muller, G.:

Remote core locking: migrating critical-section execution to improve the performance of multithreaded applications.

In: Proceedings of the 2012 USENIX Annual Technical Conference (USENIX ATC '12), 2012, S. 65-76

[5] McKenney, P. E.: Slingwine, J. D.:

Read-copy update: Using execution history to solve concurrency problems.

In: Proceedings of the International Conference on Parallel and Distributed Computing and Systems (PDCS '98), 1998, S. 509–518

[6] NEUFELDT, V. (Hrsg.); GURALNIK, D. A. (Hrsg.): Webster's New World Dictionary.

vvedster s ivew vvolid Dictiona

Simon & Schuster, Inc., 1988

[7] SUTTER, H. :

The Free Lunch is Over: A Fundamental Turn Toward Concurrency in Software.

In: Dr. Dobb's Journal 30 (2005), Nr. 3, S. 202-210

