Energiebewusste Rechensysteme

I. Introduction

Timo Hönig

2018-10-17

Agenda

Preface

Motivation

Contents

Organization

Summary

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

aware (old en.) gewær

 $com \cdot put \cdot ing$ (lat.) computare: com (together) + putare (to settle)

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- 1. capacity for the exertion of power
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system aware (old en.) *gewær*

```
com \cdot put \cdot ing (lat.) computare: com (together) + putare (to settle)
```


meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- 1. capacity for the exertion of power
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system

aware (old en.) gewær

- 1. having or showing realization, perception, or knowledge
- 2. state of being conscious of something

com·put·ing (lat.) computare: com (together) + putare (to settle)

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- 1. capacity for the exertion of power
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system

aware (old en.) gewær

- 1. having or showing realization, perception, or knowledge
- 2. state of being conscious of something

com·put·ing (lat.) computare: com (together) + putare (to settle)

- 1. task of making a calculation
- 2. to use a computer

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- 1. capacity for the exertion of power
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system

aware (old en.) gewær

- 1. having or showing realization, perception, or knowledge
- 2. state of being conscious of something

com·put·ing (lat.) computare: com (together) + putare (to settle)

- 1. task of making a calculation
- 2. to use a computer

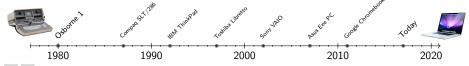
sys·tems plural of (gr.) systēmas: to place together

- 1. a regularly interacting or interdependent group of items forming a unified whole
- 2. a group of devices (...) or an organization forming a network especially for distributing something or serving a common purpose

3 - 23

1980s

2010s



1980s

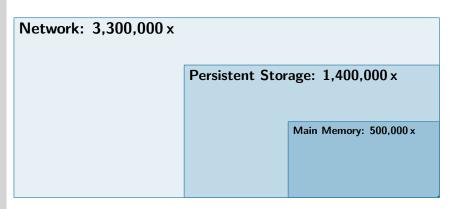
2010s

Network: 3,300,000 x

Transmission speed improved by a factor of approx. 3.3 million

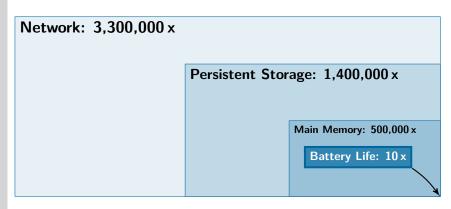
300 bit/s vs. 1 gigabit/s

Network: 3,300,000 x


Persistent Storage: 1,400,000 x

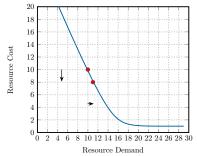
Storage capacity increased by a factor of approx. 1.4 million

● 360 KiB vs. 500 GiB


Memory capacity improved by a factor of approx. 0.5 million

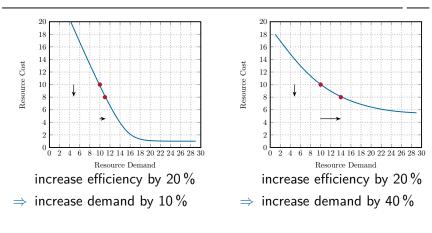
4 KiB vs. 2 GiB

Battery life improved by a factor of **10** (0.00001 Mio.)


1 h vs. 10 h

5 - 23

Jevons Paradox



- increase efficiency by 20 %
- \Rightarrow increase demand by 10 %
- improve efficiency by reducing costs
- Jevons paradox: efficiency gain ⇒ increase of demand

Motivation

Jevons Paradox

- improve efficiency by reducing costs
- Jevons paradox: efficiency gain ⇒ increase of demand
- rebound effect: increase of demand outweighs efficiency gain

Electrical Energy: Basic Operating Resource

• electrical energy is *the* basic operating resource of today's computers

embedded —— laptop/desktop —— cluster

Electrical Energy: Basic Operating Resource

electrical energy is the basic operating resource of today's computers

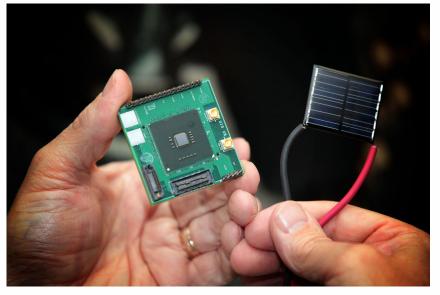
embedded —— laptop/desktop —— cluster

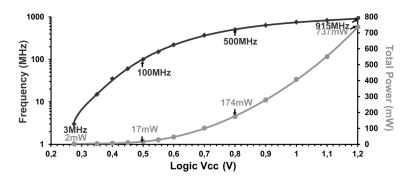
but: excessive power dissipation leads to uncontrollable situations

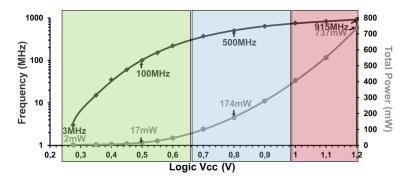
Electrical Energy: Basic Operating Resource

• electrical energy is *the* basic operating resource of today's computers

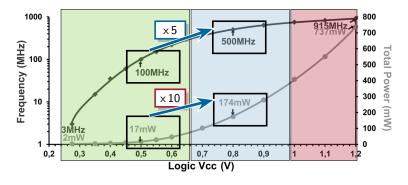
embedded —— laptop/desktop —— cluster


but: excessive power dissipation leads to uncontrollable situations

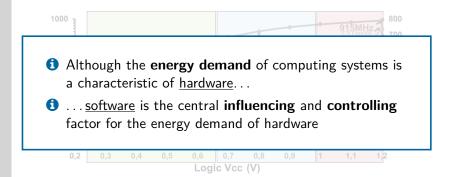

Motivation



- energy demand as an important non-functional system property
 - energy-efficient systems require adjustable computing processes



- energy demand as an important non-functional system property
- energy-efficient systems require adjustable computing processes



- energy demand as an important non-functional system property
- energy-efficient systems require adjustable computing processes

energy demand as an important non-functional system property energy-efficient systems require adjustable computing processes

Energy Demand as a System Property

 energy demand is a physical property of integrated transistor circuits that construct hardware components

type ■ static energy demand

dynamic energy demand

form ■ effective energy → maximize

 $lue{}$ energy loss ightarrow minimize

Energy Demand as a System Property

 energy demand is a physical property of integrated transistor circuits that construct hardware components

type • static energy demand

dynamic energy demand

form ■ effective energy → maximize

 $lue{}$ energy loss ightarrow minimize

- duality and principle of causality: software and hardware activities
 - software activities ⇒ hardware activities
 - hardware activities ⇒ software activities

Energy Demand as a System Property

 energy demand is a physical property of integrated transistor circuits that construct hardware components

type static energy demand

dynamic energy demand

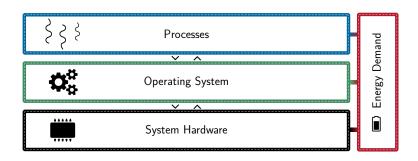
form ■ effective energy → maximize

lacktriangledown energy loss ightarrow minimize

- duality and principle of causality: software and hardware activities
 - software activities ⇒ hardware activities
 - hardware activities ⇒ software activities
- software: two dimensions of influence
 - quantitative amount of energy demand
 - control system: energy demand must be under strict governance

- non-functional system properties as quality criteria
 - resource demand (e.g. electrical power)
 - performance (e.g. execution time)

Motivation


- non-functional system properties as quality criteria
 - resource demand (e.g. electrical power)
 - performance (e.g. execution time)
- events and effects: chronology of system-level activities
 - synchronicity of events activity time
 - activity frequency
 - asynchronicity of **effects** logical activity trigger

 - activity delay

- non-functional system properties as quality criteria
 - resource demand (e.g. electrical power)
 - performance (e.g. execution time)
- events and effects: chronology of system-level activities
 - synchronicity of **events activity** time
 - activity frequency
 - asynchronicity of effects logical activity trigger
 - activity delay
- design and structure of energy-aware system software
 - interfaces for higher-level abstractions (upwards towards applications)
 - controlling of system-level activities to enforce system strategies (downwards towards the hardware)

- design and structure of energy-aware system software
 - interfaces for higher-level abstractions (upwards towards applications)
 - controlling of system-level activities to enforce system strategies (downwards towards the hardware)

© thoenig

Fundamentals

Introduction:

Overview, Organization Lecture 1

©thoenig

Fundamentals

Introduction:

Lecture 1 Overview, Organization

General Topics and Basic Principles:

Lecture 2 Principles of Energy-Aware Computing Systems

- terminology, metrics
- assessing of power and energy demand

Lecture 3 Energy Demand Analysis

- awareness of energy demand at system level
- physical and logical means to determine energy demand

Lecture 4 Energy Management

- hardware power and energy management
- energy accounting at operating-system level

Systems

Energy-Aware Components, Subsystems, and Systems:

- Lecture 5 Components and Subsystems
 - energy-aware system components (e.g., memory, caches)
 - subsystems to integrate energy-aware components
- Lecture 6 Cyber-Physical Systems
 - energy-constraint systems from the embedded domain
 - energy-aware sensors and actuator in control systems
- Lecture 7 Cluster Systems
 - resource allocation in cluster computing environments
 - assessment of remote execution

Software Systems

Energy-Aware System Software:

- Lecture 8 External Lecture, Excursion
 - TBA
- Lecture 9 System Software
 - energy-aware operating systems
 - accounting and enforcement of energy demand
- Lecture 10 Energy-Aware Programming
 - constructive approaches towards energy-aware software
 - software design and restructuring for low energy
- Lecture 11 Research Lecture, In-Depth Paper Review
 - TBA

State of the Art and Advanced Topics

Tie Points, Industry Experience, and Remarks

- Lecture 12 Infrastructure
 - impact of renewable energy, electricity-grid evolution
 - supplementary, fact-related research areas
- Lecture 13 Industry Lecture
 - TRA
- Lecture 14 Research Projects
 - current DFG funded projects at the chair
 - Bachelor's and Master's theses
- Lecture 15 Remarks
 - retrospection and lessons learned
 - wrap-up and perspectives

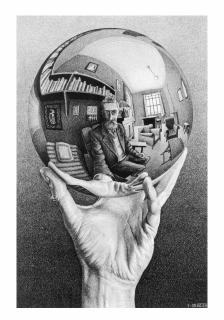
- language of instruction for the lecture
 - English primary working language

German ■ in case of doubt, German is the fall-back position

- language of instruction for the lecture
 - English primary working language

German ■ in case of doubt, German is the fall-back position

- written material (slides or handouts, resp.) will be English
 - with technical terms also stated in German, where applicable



Meaningful Learning

1. learn \rightarrow new information

2. relate \rightarrow to existing knowledge

3. reflect

Lecture Meaningful Learning

- acquire new knowledge
 - prepare next reading on one's own initiative
 - attend presentation, listen, and discuss topics treated
 - reading and discussing research papers on a regular basis
 - jointly with the exercises discussed papers transfer theory to practice
 - reinforce learning matter, reflect
- relate it with previous knowledges
- - computer architecture (GRA)
 - system programming (SP, SPiC, GSPiC)
 - operating systems (BS), operating-systems engineering (BST) 14
 - modeling, optimization and simulation of energy systems (MOSES) 17

13

14

Lecture Meaningful Learning

- acquire new knowledge
 - prepare next reading on one's own initiative
 - attend presentation, listen, and discuss topics treated
 - reading and discussing research papers on a regular basis
 - jointly with the exercises discussed papers transfer theory to practice
 - reinforce learning matter, reflect
- relate it with previous knowledges
- computer architecture (GRA)
 - system programming (SP, SPiC, GSPiC)
 - operating systems (BS), operating-systems engineering (BST)
 - modeling, optimization and simulation of energy systems (MOSES)
- teaching material presented in the lecture room:
 - follow "Lehre" (Eng. teaching) at https://www4.cs.fau.de
 - copies of the slides are made available as handouts free of charge
 - supplemented by secondary literature as and when required

13

14

14

17

Exercise

Experimental Learning

deepen knowledge by means of direct experience: "learning by doing"

behavior and operational ability is less a matter of easy instruction but rather functional copy, practice, and use. (Aristotle [1])

© thoenig

deepen knowledge by means of direct experience: "learning by doing"

behavior and operational ability is less a matter of easy instruction but rather functional copy, practice, and use. (Aristotle [1])

- deepen technical discussion of research papers
- consolidation of the lecture and discussion of assignments

deepen knowledge by means of direct experience: "learning by doing"

behavior and operational ability is less a matter of easy instruction but rather functional copy, practice, and use. (Aristotle [1])

- deepen technical discussion of research papers
- consolidation of the lecture and discussion of assignments
- **blackboard practice** under guidance of an exercise instructor
 - registration through WAFFEL¹, URL see web page: https://www4.cs.fau.de/Lehre/WS18/V_EASY/
 - assignments are to be processed in teamwork: discretionary clause
 - depending on the number of participants

¹abbr. for (Ger.) Webanmeldefrickelformular Enterprise Logic

deepen knowledge by means of direct experience: "learning by doing"

behavior and operational ability is less a matter of easy instruction but rather functional copy, practice, and use. (Aristotle [1])

- deepen technical discussion of research papers
- consolidation of the lecture and discussion of assignments
- **blackboard practice** under guidance of an exercise instructor
 - registration through WAFFEL¹, URL see web page: https://www4.cs.fau.de/Lehre/WS18/V_EASY/
 - assignments are to be processed in teamwork: discretionary clause
 - depending on the number of participants
- **computer work** under individual responsibility
 - registration is not scheduled, reserved workplaces are available
 - in case of questions, a exercise instructor is available

¹abbr. for (Ger.) Webanmeldefrickelformular Enterprise Logic

Requirements

Exercises

- hard skills (computer-science expertise)
 - mandatory
 - structured computer organization
 - algorithm design and development
 - principles of programming in C \rightarrow V_SP, V_SPiC, V_BS, V_BST, V_CS
 - utilization of GNU/Linux \rightarrow V_SP, V_BS, V_BST, V_CS, P_PASST
 - → knowledge gaps will not be closed actively: no extra tuition

Requirements

Exercises

- hard skills (computer-science expertise)
 - mandatory
 - structured computer organization
 - algorithm design and development
 - principles of programming in C \rightarrow V_SP, V_SPiC, V_BS, V_BST, V_CS
 - utilization of GNU/Linux \rightarrow V_SP, V_BS, V_BST, V_CS, P_PASST
 - beneficial
 - basic knowledge of at least one scripting language (e.g. shell, Python, Perl)
 → V SP. P PASST. V BS. V CS
 - basic knowledge of a version control system, (preferably) GIT or SVN \rightarrow V SP, V SPiC, V BS, V BST, P PASST

Requirements

Exercises

- hard skills (computer-science expertise)
 - mandatory
 - structured computer organization
 - algorithm design and development
 - principles of programming in C \rightarrow V_SP, V_SPiC, V_BS, V_BST, V_CS
 - utilization of GNU/Linux \rightarrow V_SP, V_BS, V_BST, V_CS, P_PASST
 - → knowledge gaps will not be closed actively: no extra tuition
 - beneficial
 - basic knowledge of at least one scripting language (e.g. shell, Python, Perl)
 → V SP. P PASST. V BS. V CS
 - basic knowledge of a version control system, (preferably) GIT or SVN
 → V_SP, V_SPiC, V_BS, V_BST, P_PASST
 - optional

© thoenig

- assembly language (absolute) programming
- $\,\hookrightarrow\,$ as appropriate, knowledge gaps will be closed on demand by the instructors

- hard skills (computer-science expertise)
 - mandatory
 - structured computer organization
 - algorithm design and development
 - principles of programming in C \rightarrow V_SP, V_SPiC, V_BS, V_BST, V_CS
 - utilization of GNU/Linux \rightarrow V_SP, V_BS, V_BST, V_CS, P_PASST
 - → knowledge gaps will not be closed actively: no extra tuition
 - beneficial
 - basic knowledge of at least one scripting language (e.g. shell, Python, Perl) \rightarrow V SP. P PASST, V BS. V CS
 - basic knowledge of a version control system, (preferably) GIT or SVN \rightarrow V_SP, V_SPiC, V_BS, V_BST, P_PASST
 - optional
 - assembly language (absolute) programming
 - $\,\hookrightarrow\,$ as appropriate, knowledge gaps will be closed on demand by the instructors
- soft (personal, social, methodical) skills
 - staying power, capacity of teamwork
 - structured problem solving

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with $2\,\text{SWS}^2$ (i.e., $2.5\,\text{ECTS}$) each

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS² (i.e., 2.5 ECTS) each
- German or English, thirty-minute oral examination
 - date by arrangement: send e-mail to thoenig@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule. . .

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS² (i.e., 2.5 ECTS) each
- German or English, thirty-minute oral examination
 - date by arrangement: send e-mail to thoenig@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule. . .
- examination subjects
 - topics of lecture, blackboard practice, but also computer work
 - brought up in the manner of an "expert talk"
 - major goal is to find out the degree of understanding of inter-relations

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with 2 SWS² (i.e., 2.5 ECTS) each
- German or English, thirty-minute oral examination
 - date by arrangement: send e-mail to thoenig@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule. . .
- examination subjects
 - topics of lecture, blackboard practice, but also computer work
 - brought up in the manner of an "expert talk"
 - major goal is to find out the degree of understanding of inter-relations
- registration through "mein campus": https://www.campus.fau.de

²abbr. for (Ger.) Semesterwochenstunden

Subject Matter

- energy-aware computing systems
 - fundamental understanding for analyzing and improving the energy demand of computing systems
 - comprehend factors and causality for energy demand that is exhibited by different computing systems

© thoenig

Subject Matter

- energy-aware computing systems
 - fundamental understanding for analyzing and improving the energy demand of computing systems
 - comprehend factors and causality for energy demand that is exhibited by different computing systems
- structured analysis of system designs
 - reading and understanding of subject-related research papers to gain knowledge and relate to own work on exercises and assignments
 - bridging the gap from theory to practice

Subject Matter

- energy-aware computing systems
 - fundamental understanding for analyzing and improving the energy demand of computing systems
 - comprehend factors and causality for energy demand that is exhibited by different computing systems
- structured analysis of system designs
 - reading and understanding of subject-related research papers to gain knowledge and relate to own work on exercises and assignments
 - bridging the gap from theory to practice
- reading list for Lecture 2:
 - ► Mark Horowitz et al.
 - Low-power Digital Design

Proceedings of IEEE Symposium on Low Power Electronics, 1994.

Reference List I

Aristotle: Nicomachean Ethics. c. 334 BC

©thoenig