Energy-Aware Computing Systems

Energiebewusste Rechensysteme

VIII. System Software

Timo Hönig

2018-12-12

Agenda

Preface

Terminology

Accounting and Management Abstracting Energy Demand Operational Concerns

Energy-Aware Operating Systems
Currentcy and ECOSystem
Cinder Operating System
Linux Energy-Aware Scheduling (EAS)

Summary

Preface: Higher-Level Energy Management

- motivation and origin
 - lack of feedback on design decisions regarding energy demand
 - gap between vision of energy control and reality
 - \rightarrow Milly Watt Project
- use case: Hiker's Buddy [3]
 - energy-constraint operations (e.g., GPS)
 - functional design ↔ power state model

Carla Schlatter Ellis

The Case for Higher-Level Power Management

Proceedings of the Seventh Workshop on Hot Topics in Operating Systems (HotOS'99), 1999.

Preface: Higher-Level Energy Management

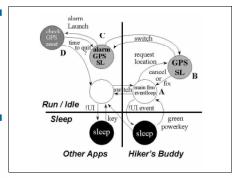


Figure 1. Power State Model

Carla Schlatter Ellis

The Case for Higher-Level Power Management

Proceedings of the Seventh Workshop on Hot Topics in Operating Systems (HotOS'99), 1999.

Preface: Higher-Level Energy Management

- lower-level building blocks
 - energy-management features at the hardware level (i.e., non-blocking energy management methods)
 - firmware interfaces for system controls (i.e., blocking energy management methods)
- higher-level abstractions
 - energy accounting with energy models and measurements
 - resource management
 - policies and rights management
 → conflict of interests

Abstract Concept: System Software

system software

- operating system
 - program or a set of programs that support (other) programs or applications to facilitate the programming or operation of a computer system
 - monitor and control the execution of programs
 - operate the computer system in a specific manner for a particular application
 - implement an abstract machine
- interlocking with low-level user-space programs (i.e. system deamons)

resource management

- {de,}allocation of resources by the system software
- accounting and enforcement

Abstracting Energy Demand: Resource Peculiarities

software resources as to be used by programs

reusable

code • critical section/region

data • variable, placeholder

consumable

signal • notice

message • packet, stream

hardware resources as to be managed by an operating system

reusable

processor • CPU, FPU, GPU; MMU

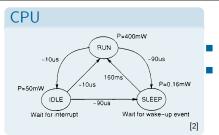
memory • RAM, scratch pad, flash

peripheral • input, output, storage

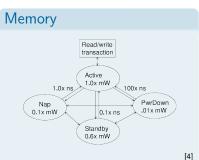
consumable

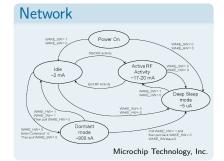
signal • IRQ, NMI, trap

- energy as a basic operating-system resource required to provide hardware and software resources
 - \blacksquare software resources \rightarrow hardware resources \rightarrow energy demand
 - energy accounting and management (i.e. resource allocation vs. residual resources)


Abstracting Energy Demand: Accounting

- energy accounting at operating system level
 - map resource demand by processes to energy demand
 - \blacksquare exclusive use vs. shared use of resources \to attribution of proportions
- capturing and tracking energy demand during run-time
 - apply models
 - tracking of state and time → device states
 - discrete, logic events \rightarrow performance counter events
 - ..
 - apply measurements
- appropriate metrics for individual capturing methods
 - basic metrics and composite metrics
 - use-case specific granularity (i.e. μW vs. MW)


Abstracting Energy Demand: Accounting


- consideration of power states
- transition delays

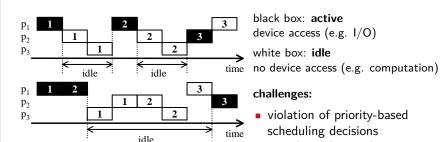
in isolation...

...and in cooperation.

Operational Concerns: Energy Management

- accounting √
- 2. **allocating** energy (e.g. epoch-based)
 - implicit → process analysis (i.e. based on periodicity)
 - explicit → provisioning based on requests
 - avoid overbooking that would conflict with global goal, prevent:
 - thermal breakdown (i.e. by exceed maximum power)
 - too short operating time (i.e. imbalance of power supply and demand)
- 3. administering residual energy (for next epoch)
 - use residual energy as feedback information
 - amount of residual energy depends on accuracy of energy models and measurements, respectively
 - redistribution and reallocation strategies
 - exhaustion control
 - over-provisioning controls

...but OS integration comes with pitfalls...


Operational Concerns: Energy Management

- basic functional requirements
 - accounting
 - allocating
 - administering √
- integration causes conflicts of interest: process scheduling
 - upon exhaustion of allocated resources
 - reordering of events
 - · ...
- pitfalls as to entering sovereign territory of the process scheduler
 - priority inversion
 - data dependencies
 - ...

Operational Concerns: Energy Management

- Requester-Aware Power Reduction [5]
 - track requests and how they are generated (i.e. by which processes)
 - interaction between processes and power management facilities at operating system level
 - reordering of requests to reduce overhead and energy demand

interdependencies between individual processes

Overview

Currentcy [9] and ECOSystem [8]

Heng Zeng et al.

ECOSystem: managing energy as a first class operating system resource Proceedings of the 2002 Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '02), 2002.

Cinder Operating System [6]

A. Roy et al.

Energy Management in Mobile Devices with the Cinder Operating System

Proceedings of the 2011 ACM European Conference on Computer Systems (EuroSys'11), 2003.

Linux Energy-Aware Scheduling (EAS)

Currentcy and ECOSystem

- Currentcy: A Unifying Abstraction for Expressing Energy Management Policies
 - lacktriangle Current o amount of energy that an application can spend
 - Currency \rightarrow cf. money as unified abstraction for buying commodities
 - abstract energy model (1 unit of currentcy is valued at 0.01 mJ)
- currentcy is used for...
 - ...energy accounting and allocation across components and processes
 - ...capturing interactions among energy users in the system

Heng Zeng et al.

Currentcy: A Unifying Abstraction for Expressing Energy Management Policies

Proceedings of the 2003 USENIX Annual Technical Conference (ATC'03), 2003.

Currentcy and ECOSystem

ECOSystem:

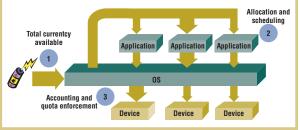
managing energy as a first-class operating system resource

- Energy-Centric Operating System
- motivation: change primary goal of the OS to energy-efficiency rather than (speed-based) performance
- primary goal: user-defined battery life → determines amount of currentcy that can be spent in each epoch
- adaptation of resource containers [1]

Heng Zeng et al.

ECOSystem: managing energy as a first class operating system resource

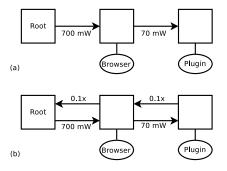
Proceedings of the 2002 Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '02), 2002.



Currentcy and ECOSystem

- 1. query **smart battery** (\rightarrow state of charge) prepare for fair allocation of currentcy among processes
- 2. allocate and schedule
 - → block processes on currentcy depletion
 - → processes may decide not to spend their currentcy share during an epoch
- 3. accounting

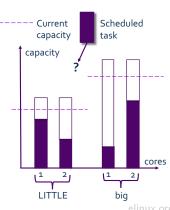
accumulation of unspent currency is bounded (max. 10x of currentcy per


epoch)

Cinder Operating System

- Energy Management in Mobile Devices with the Cinder Operating System
 - exokernel-based operating system built on top HiStar OS
 - concept of reserves and taps
 - reserve (energy) → available energy resources
 - taps (power) → connection between (hierarchic) reserves

A. Roy et al.


Energy Management in Mobile Devices with the Cinder Operating System

Proceedings of the 2011 ACM European Conference on Computer Systems (EuroSys'11), 2003.

Linux Energy-Aware Scheduling

- Linux Energy-Aware Scheduling (EAS)
 - \blacksquare motivation: exploit heterogeneity for peak performance but low average power \to software counterpart to ARM big.LITTLE architecture
 - energy-aware scheduling for heterogeneous multi-core systems
 - per-CPU energy model necessary
- EAS goals
 - process-dependent core pinning
 → reliable per-process predictions
 - adaptations of process scheduler
 - adapt to heterogeneous cores
 - energy-awareness
 - \rightarrow models + estimation
 - integration with DVFS subsystem
- Linux upstream: work in progress

Considerations and Caveats

system software

- abstraction of energy demand at operating-system level
- identify interrelationships from higher-level perspectives
- managing energy as a basic system resource
 - accounting, allocation, and administering
 - capture and track power states → processes and devices
 - reduce energy demand by reordering
- energy-aware operating systems
 - holistic, system-wide resource management
 - use lower-level building blocks (i.e. energy management functions)
 - challenging integration for legacy operating systems

Paper Discussion

- paper discussion
 - ► Rolf Neugebauer and Derek McAuley
 Energy is just another resource: Energy accounting and
 energy pricing in the Nemesis OS
 Proceedings of the 8th Workshop on Hot Topics in Operating
 Systems (HotOS'01), 2001.

Subject Matter

- system software is the pivotal element for the operation of energy-aware computing systems
- "energy is just another resource", its management is a challenging endeavour
- high-level perspectives are essential for holistic, system-wide energy management techniques
- reading list for Lecture 9:
 - R. Pereira et al.

Energy efficiency across programming languages: how do energy, time, and memory relate?

Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering (SLE'17), 2017.

Reference List I

- BANGA, G.; DRUSCHEL, P.; MOGUL, J. C.: Resource Containers: A New Facility for Resource Management in Server Systems. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation (OSDI'99), 1999, S. 45–58
- [2] BENINI, L.; BOGLIOLO, A.; MICHELI, G. D.: A survey of design techniques for system-level dynamic power management. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8 (2000), June, Nr. 3, S. 299–316
- [3] ELLIS, C. S.:
 The case for higher-level power management.
 In: Proceedings of the 1999 Workshop on Hot Topics in Operating Systems (HotOS '99) IEEE, 1999, S. 162–167
- [4] FAN, X.; ELLIS, C.; LEBECK, A.: Interaction of Power-aware Memory Systems and Processor Voltage Scaling. In: Proceedings of the 2003 Workshop on Power-Aware Computer Systems (PACS'03)

Reference List II

- [5] Lu, Y.-H.; Lu, Y.-H.; Lu, Y.-H.; Lu, Y.-H.; Benini, L.; De Micheli, G.; De Micheli, G.; De Micheli, G.: Requester-aware Power Reduction. In: Proceedings of the 13th International Symposium on System Synthesis (ISSS'00), 2000. S. 18–23
- [6] ROY, A.; RUMBLE, S. M.; STUTSMAN, R.; LEVIS, P.; MAZIÈRES, D.; ZELDOVICH, N.: Energy Management in Mobile Devices with the Cinder Operating System.
 - In: Proceedings of the 2011 ACM European Conference on Computer Systems (EuroSys'11), 2011, S. 139–152
- ZENG, H.; ELLIS, C. S.; LEBECK, A. R.: Experiences in managing energy with ecosystem.
 In: IEEE Pervasive Computing (2005), Nr. 1, S. 62–68
- [8] ZENG, H.; ELLIS, C. S.; LEBECK, A. R.; VAHDAT, A.: ECOSystem: managing energy as a first class operating system resource. In: Proceedings of the 2002 Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '02) ACM, 2002, S. 123–132

Reference List III

[9] ZENG, H.; ELLIS, C. S.; LEBECK, A. R.; VAHDAT, A.: Currentcy: A Unifying Abstraction for Expressing Energy Management Policies. In: Proceedings of the 2003 USENIX Annual Technical Conference (ATC'03), 2003, S. 43–56

