Concurrent Systems

Nebenläufige Systeme

XIII. Pickings

Wolfgang Schröder-Preikschat

February 5, 2020

Outline

Recapitulation
Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment
Further Education
Latency Awareness in Operating Systems

- **latency prevention**
 - lock- and wait-free synchronisation
 - integrated generator-based approach
- **latency avoidance**
 - interference protection
 - race-conflict containment
- **latency hiding**
 - operating-system server cores
 - asynchronous remote system operation
- experiments with different operating-system architectures
 - process-/event-based and hardware-centric operating-system kernels
 - LAKE, Sloth
- DFG: 2 doctoral researchers, 2 student assistants

Coherency Kernel

- **event-based minimal kernel**
 - cache-aware main-memory footprint
 - hyper-threading of latent actions
- featherweight agreement protocols
 - overall kernel-level synchronisation
 - families of consistency kernels
- **problem-oriented consistency**
 - sequential, entry, release consistency
 - functional hierarchy of consistency domains
 - memory domains for NUMA architectures
- implementation as to different processor architectures
 - partial or total, resp. {in,}coherent shared memory
- DFG: 2 doctoral researchers (1 FAU, 1 BTU)
Run-Time Support System for Invasive Computing

Octo

- borrowed from the designation of a creature that:
 1. is highly parallel in its actions and
 2. excellently can adapt oneself to its environment

- the kraken (species Octopoda)
 1. can operate in parallel by virtue of its eight tentacle
 2. is able to do customisation through camouflage and deimatic displays and
 3. comes with a highly developed nervous system
 - in order to attune to dynamic ambient conditions and effects

POSS

- abbrv. for parallel operating system
 - an operating system that not only supports parallel processes
 - but that also functions inherently parallel thereby

- DFG: 2.5 doctoral researchers, 1 research/3 student assistants

Power-Aware Critical Sections

- scalable synchronisation on the basis of agile critical sections
 - infrastructure
 - load-dependent and self-organised change of protection against race conditions
 - linguistic support
 - preparation, characterisation, and capturing of declared critical sections
 - automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation
 - power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.
 - tamper-proof power-consumption measuring
 - instruction survey and statistics based on real and virtual machines
 - energy-consumption prediction or estimation, resp.

- DFG: 2 doctoral researchers, 2 student assistants

Latency- and Resilience-Aware Networking

- real-time capable network communication
 - transport channel for cyber-physical systems
 - predictable transmission latency
 - in a certain extent guaranteed quality criteria

- deterministic run-time support
 - Auffassung von der kausalen [Vor]bestimmtheit allen Geschehens bzw. Handelns (Duden)

 - latency-aware communication endpoints, optimised protocol stack
 - in time (phase 1) and energy (phase 2) respect

- DFG: doctoral researchers, 2 student assistants (1 FAU, 1 Uni SB)

Multi/Many-Core Processor Pool

<table>
<thead>
<tr>
<th>faui4*</th>
<th>clock</th>
<th>cores per domain</th>
<th>domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>physical</td>
<td>logical</td>
</tr>
<tr>
<td>8e</td>
<td>2.9 GHz</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>8f</td>
<td>2.9 GHz</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>9big01</td>
<td>2.5 GHz</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>9big02</td>
<td>2.2 GHz</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>9phi01</td>
<td>1.2 GHz</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.1 GHz</td>
<td>57</td>
<td>228</td>
</tr>
<tr>
<td>scc</td>
<td>1.5 GHz</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>800 MHz</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>InvasIC</td>
<td>3.5 GHz</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2 GHz</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>25 MHz</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© wosch, thoenig CS (WS 2019/20, LEC 13) Perspectives–Parallel Systems 9
© wosch, thoenig CS (WS 2019/20, LEC 13) Perspectives–Parallel Systems 10
© wosch, thoenig CS (WS 2019/20, LEC 13) Perspectives–Computing Equipment 12