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ABSTRACT

Automated Garbage Collection (GC) is desired for many applications
due to difficulties with manual memory management. Conventional
tracing garbage collectors require a complete halt of the program
while unreachable objects are detected and reclaimed. However, the
resulting increased latency is not always tolerable. This paper gives
an introduction into GC fundamentals before thoroughly explaining
and discussing the mostly concurrent mark-and-sweep algorithm
presented in [8]. The approach is based on the principle of combin-
ing a concurrent marking phase with a short stop-the-world pause
to process modifications which occurred simultaneously. Addition-
ally, the influence of this concept on modern garbage collectors on
the Java Virtual Machine is reviewed.

1 INTRODUCTION

Manual memory management in a large software system often is
a significant cause of subtle bugs and security vulnerabilities [29],
thus leading to increased development costs. For example, forgotten
deallocations of no longer needed heap objects can lead to ever-
increasing memory footprint during program execution. While
potentially tolerable for short-lived programs, wasteful heap usage
is an important problem for long-running server applications and
may result in a crash. Contrarily, when freeing an in-use object, its
memory location can be reused by a subsequently allocated object,
provoking possibly unnoticed data corruption.

Consequently, automatic memory management, which reliefs
the programmer from the task of deallocating no longer used ob-
jects, is highly demanded. Such Garbage Collection (GC) is deeply
intertwined with heap management and often integrated into a
run-time environment. In the context of this paper, an object is the
unit of memory allocation and is represented by a struct, object (as
in object-oriented programming), array, or similar construct.

One common flavour of garbage collection is reference counting,
in which each object includes a counter for all references that are
directed to it [25, 29]. When a reference is created or copied, the
counter is increased. Conversely, it is decremented on reference
deletion. Thus, when the counter amounts zero, the associated
object can be safely deallocated because it is no longer reachable.
The drawbacks of reference counting include increased work when
creating, deleting or copying references as well as the inability to
reclaim unreachable cycles of objects.

In contrast, tracing garbage collectors do not need individual
reference counters per object: When invoked, they try to find all
reachable objects by recursively traversing the object graph, start-
ing from a known set of reachable references. After finishing this
marking process, all objects not included in the constructed set are
considered unreachable and can be reclaimed by the allocator [21].

For performing an accurate reachability analysis, program execu-
tion is usually halted during garbage collection, which is called a
stop-the-world (STW) approach.

Consequently, as this process requires to scan large portions of
the heap, application latency can significantly increase due to long
pauses. In particular for interactive applications, web services, or
real-time constrained programs, this may not be tolerable [8, 13, 27].
Hence, alternatives to the STW method are often desired.

In Section 2, different approaches to tracing garbage collectors
are presented. Section 3 explains and discusses a particular algo-
rithm for mostly concurrent GC [8] proposed by Boehm et al., which
combines a short stop-the-world phase with longer, concurrently
executed marking operations. Given the historic significance, its in-
fluence on some contemporary GC algorithms for the popular Java
Virtual Machine (JVM) is reviewed in Section 4. Finally, Section 5
concludes the paper.

2 FUNDAMENTALS OF TRACING GARBAGE
COLLECTION

Generally, the process of garbage collection can be split into two
conceptional phases: Garbage detection, during which unreachable
objects are enumerated, and garbage reclamation, which actually
frees heap space by deallocating the previously identified objects.
However, the distinction between both stages can be blurry as they
are often interleaved in practice [29].

For detecting garbage efficiently, correct identification of point-
ers is a key requirement. Otherwise, references cannot reliably be
followed. Often, pointer identification is realised through compiler
and/or run-time support with approaches such as pointer tagging
or “magic numbers” in object headers [9].

Furthermore, a starting set of known reachable references has to
be chosen. From this root set, which consists of references found
on the stack and in the registers in addition to statically allocated
objects [6], pointers to other objects are recursively traced.

Within the subdomain of tracing garbage collectors, a variety of
approaches can be found in the literature and in practical use [29].
Nonetheless, some underlying key concepts can be identified, which
are addressed in the following.

2.1 Mark-and-Sweep GC

One of the fundamental schemes are mark-and-sweep collectors, as
devised in the original proposition of garbage collection [21]:

Starting from the root set, all identified pointers are followed
to their referenced objects, which are then marked accordingly,
as shown in Figure 1. Examples of such marking include toggling
one bit in a field of the object itself or in a global table. Likewise,
pointers from these objects are followed recursively.
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(a) Initial state before GC invocation

(b) Heap state after the mark phase

(c) Heap state after sweep phase

Figure 1: During program execution, the memory allocator of the mark-and-sweep GC tracks allocated objects in a list. In the
mark phase, the GC recursively follows all pointers from the root set (statically allocated object G, registers R 1 and R 2) and
marKks visited objects. After a full graph traversal, all reachable objects are marked. Consequently, unmarked objects are no
longer needed and can be reclaimed for subsequent memory allocations, while all mark bits are cleared again.

Once this graph traversal is finished, all objects are scanned
for mark bits, e.g. by iterating over an object list provided by the
memory allocator. The unmarked objects are deemed unreachable
and can be safely deallocated. Finally, all mark bits are reset and
the program execution continues.

Such a garbage collector could be invoked periodically, based
on the allocation rate, or only when the available heap space is
insufficient to allocate new objects.

While mark-and-sweep garbage collectors are able to reclaim
memory, two major problems remain [29]: Firstly, after multiple
cycles of object allocation and deallocation, the heap can be highly
fragmented. While a sufficient amount of free memory exists for
allocating a large object in total, the largest contiguous area may be
smaller and allocation fails. Secondly, the spatial locality between
surviving, still-needed objects is low. Hence, accesses to those can
lead to considerable paging overhead or suboptimal cache usage.

2.2 Mark-and-Compact GC

Nonetheless, a different class of GC algorithms can resolve both
issues through heap compaction: During memory reclamation, sur-
viving objects are moved to the front of the heap [3]. Consequently,
all live objects are located on fewer pages and the remaining heap
space is a large contiguous region. Furthermore, memory-allocation
complexity is reduced to simply adjusting a pointer.

For these mark-and-compact garbage collectors, exact pointer
identification is strictly required because all references to live ob-
jects have to be corrected after compaction. Otherwise, there are
two potential problems: Firstly, the target of unidentified, dangling
pointers may be overwritten by subsequent allocations, leading to
corruption. Secondly, data that is incorrectly identified as a pointer,
is altered by a flawed pointer update.

In general, pauses potentially can be long because multiple passes
over the managed objects are required [29]. Thus, pause durations
are one of the most severe problems for mark-and-compact GCs.

Contrary to its name, no actual garbage is collected in mark-
and-compact GC: Instead, the non-garbage is collected and moved;
the remaining heap is implicitly considered garbage and, therefore,
discarded. This insight forms the foundation of the more general
notion of copying garbage collectors.

2.3 Copying GC

Instead of moving live objects in the same conceptional heap, a com-
mon implementation of copying garbage collectors partitions the
heap into two distinct regions named from space and to space [15].
Only one region is used at a time in such a semi-space collector.

During garbage collection, the object graph in from space is
traversed and reached objects are instantly copied to the to space. In
the original memory location, a forwarding pointer, which contains
the new address of the copy, is placed. It can be used to avoid
copying the same object multiple times if it is reached through
different paths [11]. After a complete graph walk, to space contains
only live objects and the contents of from space can be discarded.
Then, the remaining references are updated to point to fo space, the
regions’ roles are swapped, and the program continues.

In comparison to mark-and-compact GC, less passes are required
because live objects can be enumerated and copied at the same
time. A second pass is only necessary for updating references. As a
consequence of the described semi-space approach, only a part of
the heap size is actually available to an application.

2.4 Generational GC

A key insight of memory management is that many objects have
a relatively short lifetime, and can be reclaimed soon after alloca-
tion [19]. The objects remaining after a few collections are likely
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Figure 2: In a copying semi-space collector, only one half of
the heap is used at a time. During collection, all reachable ob-
jects are copied and compacted breadth-first from from space
to to space to reclaim memory and reduce fragmentation.
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to be reachable for a much longer time. However, copying GCs still
move them in every collection, with little chance of reclamation.

Consequently, the total set of objects can be split into multiple
generations, separating young from old objects [19, 27]. For each
generation, a different collection strategy can be applied. In particu-
lar for the old generation, a significantly lower collection frequency
can be chosen to avoid excessive copying [19, 27, 29].

Conceptually, a counter is associated with each object, tracking
the number of survived collections. When a certain threshold is
exceeded, the object is promoted to an older generation.

Ideally, a young generation is collectible independently of other,
older generations. However, pointers from the old generation into
the younger complicate this process, as these pointers would have
to be used as additional tracing roots. Simply adding the old gener-
ation to the root set would nullify the advantages of generational
collection. Consequently, more advanced approaches are required.
One solution are write barriers, e.g. compiler-inserted instructions
or dirty-page-based tracking, for each write of a pointer. If the
pointer is inter-generational, its target is added to a table, whose
entries are used as roots for a young-generation collection.

While generational GC is often used in copying collectors, it
can be used in non-copying algorithms, too. As an example, the
algorithm examined in Section 3 is both generational and in place.

2.5 Concurrent/Parallel GC

In an orthogonal fashion, GC-induced pauses of program execu-
tion can be reduced by running concurrently with the application
instead of lowering the total collection work. While some schemes
run on the same processor in serial and are interleaved with normal
program execution [3], others can run fully parallel on a dedicated
processor [1, 14, 25]. In both cases, the program is usually named
mutator because—from the GC’s point of view—it changes the mem-
ory state. Often, explicit cooperation from the mutator is required
to keep all references consistent and valid [13, 16].

3 “MOSTLY-PARALLEL GARBAGE
COLLECTION” BY BOEHM ET AL.

Motivated by demands of interactive environments, Boehm et al.
proposed a generational mark-and-sweep GC algorithm designed
for short GC pauses [8]. It splits the marking process into a concur-
rently running tracing section and a short STW correction phase,
which is necessary to incorporate potential writes by the mutator.
For detecting these modifications, the Memory Management Unit
(MMU) is used. In particular, they suggest that most tracing STW
GCs can be adapted to their mostly concurrent scheme. Notably, the
algorithm is even usable without any explicit compiler or run-time
cooperation, thus tolerating unreliable pointer identification.

In the following, the overall idea behind this algorithm is ex-
plained and several design choices are examined. Furthermore,
adapting the scheme to copying GCs is reviewed and, finally, their
technique is compared with other approaches.

3.1 Allocation and Sweeping

As reclaiming unreachable objects is not required to happen in an
STW pause, Boehm et al. integrate the sweeping process into the

memory allocator. Thus, the heap is incrementally swept whenever
the mutator requests new heap elements.

Overall, the allocator splits the heap into distinct regions with
each containing same-sized objects. In particular, every region is at
least as large as a virtual memory page. For each page, a bitmap of
mark bits for all object slots is created. Additionally, the allocator
manages two lists for each object size: One for sweepable pages,
and one for free slots on any page. At the end of the STW marking
phase, processed pages are queued in the sweepable list.

On allocation requests, the first element in the free list of the
corresponding size is selected. If the free list is empty, the allocator
sweeps pages from the list of sweepable pages: Slots with a cleared
mark bit are garbage and, thus, added to the free list. For objects
larger than the page size, multiple pages are swept at the same time.

Thus, the allocation delay depends on how many pages need
to be swept until a free slot is found. Usually, this time period is
negligible and significant application pauses can only occur due to
the marking process, which is addressed in detail in the following.

3.2 Tracking Concurrent Mutator Writes

To detect objects concurrently changed by the mutator, Boehm et al.
employ dirty-page bits: When a page of virtual memory is modified,
a bit is set for that page. Thus, modified pages are quickly identified.
While modern processors with a MMU provide such a facility
in hardware, it has to be accessible by ordinary user programs [6].
Often, access to memory-management hardware is restricted to
the Operating System (OS). Then, the feature can be emulated by
write-protecting all pages: When a write occurs, the OS invokes
a GC-provided handler function, in which the access is registered.
Due to high costs for these handlers, many GC algorithms could
benefit from first-class dirty-bit support by the OS [1, 2, 6, 12].

3.3 Marking

While Boehm et al. propose a rather general scheme with several
variations and implementations, their generational GC algorithm
described in the following is the most instructive.

When reusing the mark bit for tracking object age, all marked
objects are considered part of the old generation, thus only re-
claimable in a full collection. Unmarked ones, on the other hand,
are considered young and may be recovered in a partial collection.

Firstly, a full collection discards all age information and is visu-
alised in Figure 3 for a devised example:

(1) Clear all mark and dirty bits.

(2) Mark all root-set objects and recursively trace from them.
(3) Stop the world, i.e. the application.

(4) Trace from registers and all marked objects on dirty pages.
(5) Clear all dirty bits and restart the world.

Consequently, the stop-the-world duration depends on how many
pages were modified by the mutator during concurrent marking.

It has to be noted that some garbage may not be collected in this
cycle when the last pointer to an already marked object is changed.
However, these objects are correctly identified as unreachable in
the next full collection and subsequently reclaimed.

Secondly, a partial collection retains all marking information and
can only reclaim young objects allocated since the last collection:

(1) Atomically retrieve and clear dirty bits of all pages.
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Figure 3: Before the full collection is started in Boehm et al.’s algorithm, all dirty and mark bits are cleared. While the GC
traverses the object graph concurrently, the mutator can allocate new objects (H and I) and change pointers. In the STW
correction phase, marking consequently is resumed from the registers (R1, R2) and the marked objects on dirty pages (A, B, C)
to guarantee that no required object remains unmarked. Finally, all dirty bits are reset, and heap space can be reclaimed.

(2) Trace from all marked objects on the retrieved dirty pages.
(3) Stop the world.

(4) Trace from registers and all marked objects on dirty pages.
(5) Clear all dirty bits and restart the world.

Notably, the stop-the-world pause can be shortened through re-
peated executions of steps (1) and (2) before stopping the mutator.

3.4 Pointer Identification in the Absence of
Compiler Assistance

For non-copying GCs, unreliable pointer identification is tolera-
ble as long as an over-approximation is found [9, 12]. If arbitrary
data, e.g. integers, can be falsely identified as pointers, not all un-
reachable objects may be reclaimed. However, no actual pointer
is miscategorised and not followed. Thus, all actually reachable
objects are also reachable for the GC; they are not mistakenly deal-
located. Consequently, provided the GC does not move objects, data
and pointer integrity stays intact after collection.

The most naive approach is to interpret all pointer-sized bit
patterns as pointers. However, improving this very rudimentary
estimation can reduce both tracing work and floating garbage. Some
typical characteristics of pointers can be exploited to distinguish
arbitrary data more reliably: Firstly, if only aligned pointers are
allowed, all non-aligned values can be safely dismissed [6]. Secondly,
valid pointer values can only be found in the interval between the
lowest and the highest heap address [9].

Usually, for every reachable object, a pointer to its beginning
exists. However, when using optimising compilers, this invariant
does not always hold [6, 7, 9]: Pointers could be calculated by using
a base address and some offset. Thus, the actual reference is not
known to the GC. Similarly, an application could keep pointers only
to the middle of an object [9, 12].

Overall, sufficiently accurate pointer identification is possible
with a non-assisting but non-adversary compiler and some caution
by the programmer [6, 7, 9, 12].

3.5 Adaption to Copying Garbage Collectors

The notion of mostly concurrent garbage collection is not restricted
to mark-and-sweep algorithms, but is also adaptable to copying
GCs. In this case, an auxiliary forward-pointer field is associated
with each object in addition to dirty-page information.

Initially, all dirty bits and forward fields are cleared. During
concurrent tracing, reachable objects are copied from from space
to to space in an exhaustive graph traversal [11]. After copying an
object, the address of the duplicate is stored in the forward field.
However, the mutator always sees objects in from space.

Then, in a stop-the-world phase, potential mutator changes have
to be incorporated: Only objects on dirty pages require correction,
as those on clean pages could not have been modified by the mutator.
Similarly to the non-copying case, the root set is always dirty.

Thus, for each reachable object on a dirty page in from space,
not-yet-copied referenced objects are recursively copied to to space.
Also, pointers to from space are corrected with the respective values
from the forward field. Additionally, the object has to be copied from
from state to to state again due to possible changes in non-reference
fields of the object. Finally, all forward fields and dirty-page bits
are reset, and the mutator can resume execution.

3.6 Discussion

One deficiency of mostly parallel GCs is their inadequacy for hard
real-time constraints because the STW pause in both generational
and full collections cannot be bounded by a constant. Nonetheless,
pauses can be sufficiently short in many use cases [8].

Due to its autonomy of compiler and run-time assistance, the
proposed algorithm can be utilised for whole-system garbage collec-
tion across multiple programs. Notably, the same GC can be used for
various programming languages and run-time environments [28].

However, such independence comes at the cost of worse recla-
mation rates due to pointer misidentification. Furthermore, locality-
improving measures, such as compaction, are not possible.

Additionally, determining the root set of an application is some-
times challenging: Especially in large, sparsely populated heaps
with relocatable libraries, finding all valid references is not trivial
without dedicated OS support [6].

If more compiler assistance than precise pointer identification is
available, cooperation with the mutator enables other parallel GC
approaches. In particular, compiler-inserted checks can be used to
detect or prevent mutator changes to the traversed object graph.

Based on write barriers, Dijkstra et al. propose a parallel mark-
and-sweep algorithm [14]: After the GC starts tracing from the root
set, all pointer stores have to be examined. If a pointer is stored
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in an already marked object, the target has to be traced as well;
otherwise no special handling is required. A similar scheme [25]
supports compaction as well.

Another approach is Baker’s algorithm for fully parallel copying
GC [3]: To prevent the mutator from accessing any object in from
space, the semi-space collector intercepts all pointer dereferences
with read barriers. If the target is not yet in fo space, it is copied there
and then used by the mutator. Similarly, a non-copying version was
proposed [4], both can satisfy real-time constraints.

Especially if the cost of acquiring a list of dirty memory pages
is high, mutator cooperation can significantly reduce GC over-
head [17]. Besides, non-pointer writes do not unnecessarily taint
dirty-bit information with fine-grained write detection.

While the algorithm itself proposed in [8] may not be competi-
tive with more advanced, contemporary copying GCs, the overall
scheme of parallel tracing and short stop-the-world correction is
highly desired, especially on many- and multi-core CPUs [13, 16].

4 COMPARISON WITH GC ALGORITHMS ON
THE JAVA VIRTUAL MACHINE

The domain of garbage collection remains a highly relevant and
active field of research [13, 16] over 60 years after its inception [21].
In particular, increases in both computing capacity and demands
have provided shifting challenges and possibilities: Garbage col-
lection and its associated pause times are essential to keep latency
in managed programming languages, such as Java, control- and
tolerable even with increasing heap sizes.

As GC demands often depend on the executed application, the
reference Java implementation OPENJDK’s JVM provides a variety
of GC algorithms for different needs [18, 26]. In the following,
the Concurrent Mark-Sweep (CMS) and Garbage-First GC (G1GC)
algorithms are reviewed and compared with Boehm et al.’s concept
of mostly concurrent garbage collection.

4.1 Concurrent Mark-Sweep GC

Like most GCs on the JVM, the CMS GC [23] is using a generational
approach [26]. It explicitly builds on the mostly concurrent algo-
rithm introduced by Boehm et al. for collecting the old generation.

As mutator cooperation is already required for tracking pointers
from the old into the young generation, the existing compiler-
inserted write barrier is adapted for recording pointers changed
during the concurrent marking phase. For full collections including
the old generation, two short serialising phases are needed: One
for determining the root set, and the other one for fixing mutations
incurred during the concurrent tracing phase. In their implemen-
tation, only one thread is used for marking and sweeping. If the
garbage collector falls behind too far, and the old generation fills
up before a concurrent marking phase completes, the mutator is
paused completely until the collection finishes [22]. Essentially, the
algorithm then degrades to a serial scheme. Potential improvements
include parallelising the GC work on multiple threads.

In the young generation, a copying semi-space collector is com-
bined with a dedicated eden memory space for freshly allocated
objects [26]. While GC is performed on several threads, the whole
task must be carried out in a stop-the-world fashion.

CMS significantly reduces average and maximum pause times
compared to serial GC [23], but multi-second pauses are still possi-
ble for large real-world applications [10, 30]. Especially for server
programs, the client experience can be seriously impacted. Conse-
quently, CMS is deprecated as of Java 9 [20] and was subsequently
removed in Java 14 [24].

4.2 Garbage-First GC

Among several other optimisations, the intended successor G1GC
tries to perform much tracing work in parallel on multiple threads [13].
It is a generational, copying GC intended to balance high through-
put and low pause times to meet soft real-time goals [5].

Contrarily to CMS, the heap is split into a large number of evenly
sized regions. Regions are categorised as either empty, eden, sur-
vivor, and old. In general, the eden regions contain freshly allocated
objects, while survivor regions are comprised of young, retained
objects. Together, both form the young generation. Sufficiently old
live survivor objects are in turn evacuated to old regions.

A major design goal in G1GC is collecting a region on its own,
without any dependencies on others. Therefore, remembered sets are
associated with each region for tracking the origin of inter-regional
pointers, and filled by pointer-write barriers.

In G1GC, there are three different kinds of collections: Firstly, in
a young collection, only eden and survivor regions are considered
for GC. In a stop-the-world fashion, the root set is calculated and
traced from. Notably, the remembered sets are used to account for
young objects only referenced from old regions. Hence, they are
not mistakenly identified as garbage. Live objects are copied into a
fresh survivor or—depending on object age—old region to improve
locality and reduce heap fragmentation.

Secondly, concurrent marking of the complete heap is performed
when the number of old and survivor regions exceeds a given thresh-
old. In this case, the root set is re-used from a young-collection
cycle. For tracking mutator changes, a snapshot-at-the-beginning
(SATB) algorithm [31] is employed: During concurrent heap traver-
sal, the old values of all pointer modifications are recorded with
a write barrier. Afterwards, these values are used as additional
roots for marking. This guarantees that all objects reachable at the
start of the marking phase are eventually traversed, even if over-
written by the mutator in the meantime. Hence, freshly allocated
objects are considered reachable. Furthermore, liveness information
is calculated on-the-fly per region.

Thirdly, the next young collection additionally sweeps some of
the previously marked old regions: During such a mixed collection,
live objects in old regions are compacted, finally reclaiming the
space of dead old objects. In particular, G1GC prioritises regions
with low liveness, which contain a large number of dead objects, to
merge as many regions as possible in a single collection cycle.

For all these phases, G1GC tracks the elapsed collection times.
Based on these records, a prediction of how many regions can be
collected within a user-defined pause interval is derived. As a result,
G1GC can meet soft real-time deadlines with a high probability.
However, no actual guarantees can be determined.

The old-generation collection in G1GC thus significantly differs
from the mostly concurrent algorithm of Boehm et al., especially
due to its usage of a SATB scheme. Furthermore, this approach



is much more involved and requires a large degree of mutator
cooperation.

In practice, G1GC’s design goal of providing high throughput
with short, predictable pauses cannot always be met. User-specified
pause times are sometimes exceeded significantly [10]. Furthermore,
pauses caused by full GC in big-data applications are reported to
be longer than those of CMS in some circumstances [30].

5 CONCLUSION

Due to the importance of garbage collection, various basic and
advanced approaches have been developed in the last sixty years. In
particular, the domain of tracing garbage collectors offers a diversity
of different algorithms. As a result of large heaps and required
short pause durations, plain stop-the-world algorithms offer no
adequate solutions for interactive programs and latency-sensitive
server applications. Thus, collecting garbage at least partially in
parallel with the application is a must.

One possible solution—in combination with a more general prin-
ciple for adapting STW collectors—was proposed in [8]. It combines
concurrent marking with a short full mutator pause for correct-
ing potentially changed objects. Additionally, the generational al-
gorithm supports partial collections of recently allocated objects,
which likely have a short lifespan. Along with other sophisticated
optimisations, that idea can still be witnessed in varying degrees in
contemporary GC algorithms on the JVM.

However, many modern GCs employ widely differing strategies
for each generation. Especially in programming languages and
run-time environments where significant cooperation between the
application and the GC is possible, many other optimisations can
be used. In particular, compiler-inserted barriers can reduce tracing
work during STW pauses, and heap compaction improves heap
fragmentation and can increase locality.

Overall, even with multi-core CPUs available in commodity hard-
ware, popular GCs are not fully concurrent and still require short
stop-the-world pauses. Hence, the general idea behind the pro-
posal in [8] has prevailed and is still highly relevant today, despite
different implementations being used in practice.
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