
Non-Blocking Synchronization in Operating Systems
Fabian Bläse

Friedrich-Alexander University Erlangen-Nurnberg (FAU)
fabian.blaese@fau.de

ABSTRACT
Synchronizing shared objects using blocking techniques can come
with significant performance and reliability issues, like deadlocks.
Non-blocking algorithms can offer a solution for these problems by
allowing multiple threads to modify shared data structures concur-
rently and atomically committing the result. However, despite this
obvious advantage, their use in modern operating systems is quite
rare. Still, quite a bit of research has gone into using non-blocking
data structures in operating systems. This paper presents concepts
for using non-blocking algorithms in the context of operating sys-
tems and discusses their advantages and disadvantages. Both a
straightforward methodology for wait-free locking with helping
and a cooperative non-blocking scheduler are covered.

1 INTRODUCTION
A big contributor to the complexity of operating system develop-
ment is the correct and performant synchronization of shared data
structures. Typically, blocking synchronization is used to prevent
multiple threads from simultaneously accessing these data struc-
tures. While synchronizing using locks might seem straightforward
at first, a lot of well-known problems arise from blocking synchro-
nization. The most common problems are deadlocks, livelocks, and
starvation, which can be hard to identify, especially with a high
level of parallelism. Apart from that, blocking synchronization al-
lows only a single thread to make progress. All other threads have
to wait until the lock is released. Depending on the granularity of
the lock, this can hurt the performance of algorithms significantly.

Non-blocking algorithms try to solve many of these problems
by implementing algorithms in a way that does not require threads
to block when accessing shared data structures. In the late 1990s
and early 2000s, a lot of research went into non-blocking data struc-
tures. Many frequently used data structures have been designed
and implemented in a non-blocking fashion.

However, even today, their use in operating systems is quite rare,
despite seemingly having many clear advantages over the currently
used synchronization mechanisms. One of the problems of non-
blocking synchronization is the relatively high complexity of the
actual algorithm compared to blocking synchronization. A lot of
effort is required to correctly design non-blocking data structures
while also not sacrificing too much performance. Also, many of the
already existing implementations require instructions for updating
multiple memory locations atomically, which are not available on
prevalent architectures like x86.

In this paper, I want to explore a few of the non-blocking concepts
that have been researched in the context of operating systems. First,
I introduce the basic concepts and different types of non-blocking
synchronization, including a short summary of the common ABA
problem. Also, I shortly introduce fundamentals necessary for im-
plementing and evaluating specific non-blocking algorithms. After
that, I describe three different concepts of non-blocking operating

systems, which have already been researched. The actual imple-
mentation of these concepts of the respective authors is discussed
afterwards. Finally, I evaluate different aspects of the discussed
concepts. This includes evaluation of performance, portability, and
applicability, and focuses on the advantages and disadvantages
compared to blocking algorithms.

2 BASIC CONCEPTS
It is necessary to be familiar with a few basic concepts for im-
plementing non-blocking algorithms before the actual ideas of
non-blocking operating systems can be discussed, so I shortly intro-
duce them. First, I summarize two different types of non-blocking
synchronization: lock-free synchronization and wait-free synchro-
nization. After that, I introduce cooperative scheduling. Also, the
problem of priority inversion is briefly addressed.

2.1 Non-Blocking Synchronization
Non-blocking synchronization comprises techniques to synchro-
nize parallel procedures without having to block other threads
accessing the same data structures. There are different kinds of
algorithms, which can be separated into the following three cate-
gories: non-blocking synchronization, lock-free synchronization,
and wait-free synchronization. Lock-free and wait-free synchro-
nization are both subsets of non-blocking synchronization. The
following differentiation is inspired by [5].

Lock-free synchronization describes algorithms where the
use of locks is completely avoided. Instead, modifications to shared
memory locations are made in parallel, but the result is only com-
mitted if the value has not been changed since it has been read and
modified. If the value has not changed, the result can be written to
the memory location. If a different routine has modified the value
concurrently, the operation is repeated using the new value. Be-
cause this test-and-write operation has to be done atomically, lock-
free algorithms require hardware that supports compare-and-swap
(CAS) instructions. While support for the simple CAS instruction
is widespread, more complex algorithms sometimes require atomic
modifications to multiple not necessarily contiguous memory lo-
cations. This requires double compare-and-swap (DCAS) or even
multi-word compare-and-swap (MWCAS) instructions, whose sup-
port is not nearly as widespread as CAS. While software simulation
of MWCAS instructions is possible using DCAS or even only unary
CAS [2, 3, 11], the use of DCAS and especially MWCAS should be
avoided, if performance on hardware that does not support DCAS
natively is of interest.

On the other hand, wait-free synchronization characterizes
algorithms that ensure that waiting is never required when entering
critical code sections. Instead, a thread helps the holder of the lock
to finish its work in the critical section. By lending the thread’s
priority to the currently working thread, the critical section can
be executed with the priority of the thread trying to acquire the

1



Fabian Bläse

lock, so the release of the lock is not dependent on a lower priority
thread. On top of the characteristics of lock-free synchronization,
Wait-free synchronization guarantees starvation-freedom.

2.2 ABA Problem
Non-blocking synchronization suffers from the so-called ABA-
problem. When a thread tries to update a memory location using
non-blocking algorithms, it usually first reads the current value
from memory into a local variable, and writes the updated value
back into the shared location if the shared location still has the
same value. Otherwise, the operation is repeated. However, it might
happen that the value of the shared variable is concurrently updated
multiple times during the update of the local copy, so in the end
it has the same values as before. When the thread now compares
the shared variable with its local copy, the concurrent update goes
unnoticed because their values are identical.

This is particularly likely to happen with algorithms where the
shared variable is a pointer to a memory location, which might
be reused [10]. If multi-word CAS instructions are available, this
problem can be solved by additionally incrementing a modification
counter [10, 14]. However, hardware implementations of DCAS are
not very widespread and software simulated MWCAS has signifi-
cant performance disadvantages, as previously discussed.

2.3 Cooperative Scheduling
Task schedulers are a fundamental part of all operating systems.
With the appearance of multi-core processors, their algorithms
have got even more complex because concurrent access to shared
data must also be protected against concurrent access frommultiple
processing cores. Most modern operating systems implement task
scheduling using a preemptive mechanism, where timer interrupts
are used to regularly trigger switches between tasks. As a result,
tasks can be interrupted by the scheduler at any time. Contrary to
that, cooperative scheduling does not initiate task switches based on
elapsed time, but only when the scheduler is called explicitly. While
this has the advantage that threads cannot be preempted at any
time, it requires programs to reliably call the scheduler at regular
intervals, especially when executing loops or when encountering
anything that could halt execution indefinitely, like locks, because
otherwise monopolization of the processing unit is possible.

While this might sound like a significant disadvantage at first
glance, it also comes with clear advantages. First of all, it is possible
to use a scheduler like this on systems without support for time-
based interrupts, which are necessary for a preemptive scheduler.
Another advantage is that task switches only happen at distinct
positions, which are known at compile-time. This not only has the
advantage of very simple task switches, because it is not necessary
to save and restore the state of a processor core and the imple-
mentation of task switches requiring less platform-specific code,
but also allows for certain assumptions for other parts of the code,
where no task switches can occur [14]. These assumptions will be
discussed and used to our advantage later on.

2.4 Priority Inversion
In an operating system using priority-based scheduling, priority
inversion can occur when a higher priority thread has to wait

Thread C

Thread A

Pr
io

ri
ty

lock() unlock()

lock()

Thread B

unlock()

Figure 1: Example for priority inversion. Progress of the
high priority thread A is hindered by the medium priority
thread B, which has a higher priority than thread C (cur-
rently in possession of the lock).

for resources, which a lower priority thread currently owns. This
can happen, for example, if a semaphore is used to protect data
structures which are in use by both high and low priority threads.
While a lower priority thread is in possession of the semaphore,
a higher priority thread trying to acquire the same semaphore
is effectively prevented from being scheduled because it has to
wait for the semaphore to become free. The significance of this
issue gets a lot clearer if a medium priority thread is added. Be-
cause medium priority threads can prevent low priority threads
from getting execution time, a high priority thread waiting for the
semaphore currently blocked by the low priority thread is unable
to proceed, even though it has a higher priority than all currently
executed threads. In Figure 1, this issue is shown with three threads
of different priorities. In the beginning, the low priority thread C
is executed. After it enters a critical section by acquiring a lock, it
is interrupted by the high priority thread A, which then also tries
to acquire the lock. Because thread A no has to wait for the lock
to become free, thread C is scheduled again. However, thread B
launches and interrupts the execution due to its higher priority,
even though the high priority thread A still tries to acquire the lock.
The execution of thread A might be delayed indefinitely, as long as
the medium priority thread B is executed.

3 NON-BLOCKING OPERATING SYSTEM
CONCEPTS

Research has been made to solve the issues associated with blocking
data structures in operating systems. Next, I want to introduce three
of the resulting non-blocking concepts. First, I will address wait-free
locking with helping proposed by Hohmuth and Härtig, which is a
non-blocking mechanism to prevent priority inversion. Afterwards,
implicit cooperative non-blocking scheduling and the resulting
simplifications of lock-free implementations discovered by Negele
et al. will be discussed.

3.1 Wait-Free Locking with Helping
Hohmuth and Härtig propose a wait-free scheduler methodology,
which avoids the issue of priority inversion while still allowing
the use of locks [5]. The main idea is that instead of blocking until
a resource is available, the thread trying to acquire it passes the
CPU to the thread which currently occupies the resource. Hence,

2



Non-Blocking Synchronization in Operating Systems

Thread C

Thread A

Pr
io

ri
ty

lock() unlock()

lock()

Thread B

unlock()

Figure 2: Priority inheritance using wait-free locking with
helping. ThreadA lends its priority to threadCuntil the lock
is freed. Therefore, the medium priority thread B can not
interrupt the low-priority thread C until the critical section
is left.

the thread in possession of the resource can continue its work and
free the lock as fast as possible, even though it might have a low
priority. As soon as the lock is not required anymore, the thread
frees the lock and passes the CPU back to the helper thread. An
additional data structure to remember which threads are currently
trying to acquire the lock is necessary, so the CPU can be passed
back to the thread with the highest priority. To ensure that this
helping mechanism is actually wait-free, a thread is not allowed to
sleep or wait as long as it holds a lock. Otherwise, the release of
the lock might be delayed indefinitely.

Implementing this helping scheme has one major advantage
to blocking and passing the CPU to the scheduler: Because the
critical section of the thread in possession of the lock is effectively
executed with the priority of the thread trying to acquire the lock,
priority inversion is avoided. To ensure that the CPU is passed
back to the thread with the highest priority, a stack is used. If a
thread is only preempted by other threads with a higher priority,
the items on the stack are ordered by their priority, so the thread
with the highest priority always is on top of the stack. Therefore,
the highest priority thread gets the lock first, which makes this
methodology an implementation of priority-inheritance [15]. It is
noteworthy that this assumption is only true for single-threaded
CPUs, as Hohmuth points out, because on multithreaded CPUs,
lower priority threads might get scheduled on a different processor
core. In that case, either a different data structure like a priority
queue is necessary, or the thread trying to acquire the lock has to be
migrated to the same processing core as the lock owner, to ensure
correct ordering on the stack.

Figure 2 shows how this mechanism solves the problem of prior-
ity inversion compared to Figure 1. When the high priority thread
A tries to acquire the lock, it passes the CPU to thread C, which cur-
rently holds the lock, so the critical section of thread C is executed
with the higher priority of thread A. Therefore, the medium priority
thread B cannot preempt the execution of the critical section. After
releasing the lock, the CPU is passed back to thread A because it is
on top of the helper stack.

While this idea still uses locks, still suffers from all problems
associated with them and, depending on the definition of non-
blocking algorithms, is not strictly wait-free, it ensures progress

of the critical section when acquiring the locks, at least if critical
sections do not sleep or wait, so priority inversion is avoided and
system-wide throughput is guaranteed.

3.2 Implicit Cooperative Non-Blocking
Scheduling

A concept introduced by Negele, Friedrich, Oh, and Egger is implicit
cooperative non-blocking scheduling [14]. As previously discussed
in Section 2.3, cooperative scheduling, in contrast to preemptive
scheduling, has the advantage of not requiring any special hard-
ware support. Instead, cooperative scheduling mechanisms can be
implemented entirely software-driven in a high-level programming
language. However, for it to work as expected, all programs must
call the scheduler in regular intervals to prevent monopolization of
the CPU. This means that correct scheduling behavior is dependent
on the correct implementation of user-space programs.

To solve this issue, Negele et al. propose a special compiler fea-
ture, which inserts the calls to the scheduler at appropriate positions
automatically. By this, the cooperativeness of programs can be en-
sured [1]. To be able to control the frequency of scheduler calls,
especially around tight loops, a mechanism to determine how much
time has passed is necessary. Negele et al. decided to use a software
instrumented instruction counter for this, mainly to stay portable
and keep the added overhead as small as possible. In addition to
scheduler calls, instructions are inserted to decrement a counter
called quantum by the number of instructions emitted and therefore
executed since the last scheduler call. The scheduler is only called
if this counter reaches zero. By this, the amount of instructions
executed before the scheduler is called can be defined. When the
scheduler switches to a thread, the quantum is initialized with the
maximum amount of instructions a thread is allowed to execute
before it has to call the scheduler. By reserving a hardware reg-
ister for this quantum, the footprint of those instructions can be
kept minimal. It has been shown that the overhead of software
instrumented instruction counters is acceptable [9]. Of course, by
counting instructions, the actual time passed until the scheduler is
called is dependent on the target. Especially with modern architec-
tures, the time required to execute complex instructions is nearly
impossible to predict reliably.

By using cooperative scheduling, all points at which context
switches can happen are known at compile time. This not only
simplifies context switches, but also allows for certain optimizations
to lock-free algorithms, one of which will be discussed in the next
section.

3.3 Unbounded Lock-Free Scheduler Queue
Unbounded queues are required for a scheduler to store the pro-
cesses, which are ready to be scheduled. As the scheduler is a very
critical part of the operating system and is executed quite often, it
makes sense to implement these queues in a lock-free fashion. An
approach for this is made by Negele et al. [14].

Because unbounded queues can contain arbitrary amounts of
items, they require some form of memory allocation. This is typ-
ically done by allocating memory for every element which shall
be stored in the queue. When implemented naively, new memory
is allocated on every insertion and deallocated on every removal,

3



Fabian Bläse

which has an undesirable performance disadvantage. To speed up
insertion and removal of elements, Negele et al. tried to make the
reuse of already allocated list elements possible. However, the reuse
of memory allocations significantly increases the likelihood of the
ABA problem discussed in Section 2.2 because identical pointer val-
ues are used for different queue elements. Negele et al. point out that
this might also happen after multiple memory allocations and deal-
locations because previously deallocated memory can be reused by
the allocator. According to their work, even pointer tagging, which
uses parts of the pointer value to store a tag, so pointers to identical
memory locations can be differentiated, does not completely avoid
the ABA problem.

A solution for this problem called "Hazard pointers" has been
introduced by Maged Michael [10]. These pointers store references
that are currently in use by a thread doing a queue operation. There-
fore, memory locations which are pointed to by hazard pointers are
not safe to reuse. This can happen, for example, when one thread
tries to modify the tail element to enqueue a new element. If the
tail element gets dequeued, reused, and enqueued while the current
thread tries to insert its own element, the CAS operation might suc-
ceed even though the tail element has since been modified because
the same memory location is stored in the tail pointer. This problem
is solved by storing the current value of the pointer, which shall
later be used in the CAS operation. Other threads trying to reuse
the allocation first have to check if no hazard pointers reference it.

However, hazard pointers are required for every task that might
still use the allocation. Without any additional restrictions, this
means that hazard pointers are required for every thread of an
operating system. Because every thread could be executing a task
switch, hazard pointers must be stored in a thread-local storage.
The number of hazard pointers to which reused memory locations
have to be compared to, is therefore not limited. Because a pointer
first has to be compared against all hazard pointers, the amount
of comparisons and therefore the execution time of the scheduler
would be dependent on the number of currently running threads.
Negele et al. discovered that it is possible to take advantage of
characteristics of cooperative scheduling to solve this problem.
By guaranteeing that the queueing operation of a task switch is
uncooperative, the maximum amount of task switches that can be
executed in parallel is limited by the amount of processor cores.
As a result, hazard pointers can be stored in a processor-local data
structure with a fixed size, and the amount of comparisons remains
unchanged during the execution.

4 IMPLEMENTATIONS
The non-blocking concepts just introduced have been utilized in op-
erating system implementations by their respective authors. These
implementations and their particularities will be examined in the
following section.

4.1 Fiasco Kernel
The Fiasco Kernel is a microkernel introduced by Michael Hohmuth
and Hermann Härtig for the DROPS operating system, which imple-
ments non-blocking synchronization concepts [5]. The microkernel
shall be a drop-in replacement for the previously used L4 micro-
kernel and therefore must implement the L4 microkernel interface

[8]. One of the reasons for implementing a new microkernel has
been the suboptimal real-time properties of the L4 microkernel,
which only uses interrupt disabling for synchronization [7]. One
of the main design goals has been that higher priority threads can-
not be blocked by lower priority threads, so priority inversion is
impossible [4]. Fiasco uses a preemptive scheduler, so user-space
applications are not required to take care of the scheduler calls. At
the time of release, Fisco had no support for multithreading, but it
was added later on [6].

Hohmuth and Härtig considered local and global state objects
separately. On the one hand, local state objects are only used by
threads belonging together. These objects are generally synchro-
nized using the wait-free locking mechanism introduced in Section
3.1, but with some exceptions due to IPC-performance reasons.
These exceptions are instead synchronized with lock-free algo-
rithms using CAS instructions. Because DCAS is not available on
the intended target platform, software simulated MWCAS is used
where necessary.

On the other hand, global state objects, which are shared between
unrelated threads, are primarily synchronized using lock-free syn-
chronization. The performance of this synchronization mechanism
is crucial, as it influences the properties of real-time threads. Like
with local state objects, lock-free algorithms were implemented
using simple CAS instructions, with one notable exception: The
double-linked present and ready lists require multi-word CAS for
lock-free synchronization, which the target platform does not sup-
port, so simulated MWCAS with interrupt disabling was used in-
stead. Hohmuth and Härtig point out that this does not pose a
problem when multi-processor support is added because the ready
list is processor-local, and the present list is only accessed rarely.
As a simplification, kernel allocators for pages and mapping trees
have been implemented using the wait-free locking mechanism.
Hohmuth and Härtig argue that this is not a problem for real-time
threads, as they do not allocate memory or resize mapping trees, so
access to these shared resources is not nesessary once the thread
has been initialized.

4.2 Scheduler of the Native Kernel
A different approach for the implementation of non-blocking syn-
chronization in operating systems is presented by Negele et al..
The scheduler of their "Native" kernel is implemented using only
lock-free synchronization. Their main goal was to reduce complex-
ity and platform-specific code to improve portability, which has
been achieved by using implicit cooperative multitasking and com-
pletely avoiding the use of locks. Using lock-free synchronization
also has the benefit of avoiding problems associated with blocking
synchronization like deadlocks, starvation, and others.

While most operating systems nowadays use preemptive mul-
titasking, Native uses cooperative multitasking. Modifications to
the compiler of the operating system have been made to allow
automatic insertion of scheduler calls, as discussed in Section 3.2,
so the scheduler calls are entirely transparent to the application
developer. Using a cooperative scheduler not only has the advan-
tage of requiring less platform-specific code, as timer interrupts do
not have to handle context switches at arbitrary locations, but also
allows clever optimization of lock-free algorithms by preventing

4



Non-Blocking Synchronization in Operating Systems

task switches during their execution, which has been discussed
in Section 3.3. Native makes use of this optimization to achieve a
lock-free implementation of the scheduling queue with constant
time and space overhead using only simple CAS instructions.

5 EVALUATION
Now that the concepts and implementations have been discussed,
their authors evaluated the approaches for their respective perfor-
mance, portability and simplicity, and applicability.

5.1 Performance
First, I will take a look at the performance of the presented ap-
proaches. For the Fiasco kernel, especially real-time characteristics
have been a focus. To evaluate the latency of interrupt handling,
Hohmuth and Härtig measured the lateness of a user-level interrupt
handler [5]. This was done by triggering a hardware interrupt every
250 µs, which is handled by a high-priority handler thread, while
concurrently running a cache-flooding application and multi-user
benchmarks. The time difference between handlers is measured.
The results are compared to Liedtke’s L4 kernel [8] and RTLinux
[16]. The test was run on a 200 MHz Pentium Pro machine with
interrupts being generated by the build-in local APIC. The results
of this test can be seen in Table 1. While these are no real-time
constraints, the maximum lateness using the Fiasco kernel is a lot
smaller than using the L4 kernel, which uses interrupt disabling
to synchronize access to shared data structures. The Fiasco kernel
is very close to the maximum lateness of RTLinux, which is quite
impressive, considering that the handler is run in kernel mode on
RTLinux, whereas Fiasco handlers require a task switch.

The Native kernel, on the other hand, is primarily designed to
improve simplicity and portability and to avoid problems associ-
ated with blocking synchronization. Performance has not been the
primary focus but still is important. Therefore, Negele et al. ran
a few benchmarks and compared their performance to Windows
Server 2008 R2 and Linux 2.6.32 on a 64-core x86_64 machine [14].
First, a microbenchmark was run to evaluate the time required to
create, schedule, and destroy a thread. Figure 3 shows the average
time required for the creation of a thread with an empty body. Due
to the lightweight implementation of threads, which is possible
due to cooperative scheduling, Native has a clear advantage in this
respect. Figure 4 shows the average time required for a task switch.
The threads only call the scheduler in a loop in this benchmark.
Context switches in Native are quite a lot slower than in Linux.
Negele et al. state that this is due to the single global ready queue,
which causes significant contention.

System Max. lateness
Fiasco µ-Kernel / L4Linux 65 µs
L4/x86 / L4Linux 541 µs
RTLinux 58 µs

Table 1: Maximum lateness of the handler for a periodic
250µs interrupt on a 200 MHz Pentium Pro machine. The
handler is executed in user mode on Fiasco and L4/x86.
Taken from [5].

Figure 3: Average creation time of an empty thread. Taken
from [14].

Figure 4: Average context switch time of empty tasks. Taken
from [14].

Apart from these microbenchmarks, Negele et al. measured the
performance of a few real-world applications, which is especially
interesting, as these also show the impact of the software instruc-
tion counter. For this, a matrix multiplication benchmark is used.
The absolute runtime of this benchmark using one thread was
14.7s for Native and 12.5s for Linux. According to Negele et al.,
this difference is mostly caused by the quantum checks. However,
the compiler does not contain any optimizations. However, they
expect this performance difference to get insignificant when using
compiler optimizations.

5.2 Portability and Simplicity
A very interesting aspect of non-blocking operating systems is
portability and simplicity. As already described in Section 2.1, non-
blocking algorithms are, apart from generally requiring CAS in-
structions, hardware independent. Hence, much more code, like the
scheduler, can completely be written in a high-level programming
language. This means that operating system code can be much
simpler and shorter, and porting the kernel to a new architecture
requires less code modification.

5



Fabian Bläse

Component Lines Ratio
Interrupt Handling 299 75%
Memory Management 357 20%
Modules 82 17%
Multiprocessing 215 37%
Runtime Support 174 12%
Scheduler 547 37%
Total 1674 27%

Table 2: Code lines of Native in comparison to A2. Taken
from [13].

In his doctoral thesis [13], Negele compared the number of code
lines of the Native kernel to the A2 kernel, which has been an earlier
multiprocessor kernel approach of the Native Systems Group at
ETH Zurich [12]. The results of this comparison are shown in
Table 2. The lock-free scheduler of Native discussed in Section 4.2
comprises only 547 lines of code, which is a significant improvement
being only 37% as much as the scheduler implementation of A2.
Also, Negele states that only six functions had to be rewritten to
port Native to a new platform. This is an important advantage
over traditional operating systems with blocking synchronization,
where, more often than not, significant changes to essential parts
of the operating systems have to be made.

5.3 Applicability
With those clear advantages regarding portability and simplicity,
one might be curious why non-blocking operating systems are not
ubiquitous. To answer this question, the applicability of operating
systems using non-blocking synchronization has to be evaluated.

First, I will consider Native’s cooperative scheduling approach,
which is required to implement the scheduler queue efficiently.
While Negele et al. have shown that the necessary explicit sched-
uler calls can be hidden from the programmer by using a special
compiler, which makes cooperative scheduling behave mostly like
preemptive scheduling, it is still necessary to compile all programs
using this special compiler, so the source code has to be available.
Also, system stability is fully dependent on the correctness of the
compiler of all user-space programs. This makes a cooperative ap-
proach unsuitable for operating systems, where the developer is
not under full control of all software. Furthermore, without the
guarantees made by cooperative scheduling, the implementation of
an unbounded lock-free queue is a lot more difficult, especially with-
out the availability of DCAS instructions. However, this approach
still is very suitable for certain embedded systems, especially con-
sidering its portability and simplicity, which have been discussed
before.

On the other hand, Hohmuth and Härtig’s approach using pre-
emptive scheduling does not suffer from the same issues arising
from the cooperative scheduler used in Native. Nevertheless, the im-
plementation still requires locks for certain data structures, which
can be implemented wait-free, but still suffer from some of the
issues associated with locking synchronization. Other than that,
the approach is promising because it has relevant advantages over
operating systems using blocking synchronization.

6 CONCLUSION
Non-blocking synchronization can have significant advantages over
traditional synchronization techniques. It has been shown that their
use in an operating system is not only possible but also comes with
some notable advantages. Especially real-time applications and op-
erating systems with hard priorities can benefit from the improve-
ments made. Still, the actual implementation is quite challenging,
even though for many common data structures, non-blocking al-
gorithms already exist, because these have requirements, which
are hard to fulfill. Despite that, the use of non-blocking synchro-
nization in operating systems should be considered due to its clear
advantages.

REFERENCES
[1] Melvin E. Conway. 1963. Design of a Separable Transition-Diagram Compiler.

Commun. ACM 6, 7 (July 1963), 396–408. https://doi.org/10.1145/366663.366704
[2] Michael Greenwald. 1999. Non-Blocking Synchronization and System Design.

Ph.D. Dissertation. Stanford, CA, USA.
[3] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-Word

Compare-and-Swap Operation. In Proceedings of the 16th International Confer-
ence on Distributed Computing (DISC ’02). Springer-Verlag, Berlin, Heidelberg,
265–279.

[4] Michael Hohmuth. 1998. The Fiasco Kernel: Requirements Definition. Available
at http://os.inf.tu-dresden.de/papers_ps/fiasco-spec.ps.gz.

[5] Michael Hohmuth and Hermann Härtig. 2001. Pragmatic Nonblocking Synchro-
nization for Real-Time Systems. In Proceedings of the General Track: 2001 USENIX
Annual Technical Conference. USENIX Association, USA, 217–230.

[6] Michael Hohmuth and Michael Peter. 2001. Helping in a Multiprocessor Environ-
ment. Technical Report.

[7] Hermann Härtig, Michael Hohmuth, and Jean Wolter. 1998. Taming Linux. In In
Proceedings of the 5th Annual Australasian Conference on Parallel And Real-Time
Systems (PART ’98). 49–56.

[8] J. Liedtke. 1995. On micro-kernel construction. ACM SIGOPS Operating Systems
Review 29 (12 1995), 237–250. https://doi.org/10.1145/224056.224075

[9] J. M. Mellor-Crummey and T. J. LeBlanc. 1989. A Software Instruction Counter.
In Proceedings of the Third International Conference on Architectural Support for
Programming Languages and Operating Systems (Boston, Massachusetts, USA)
(ASPLOS III). Association for Computing Machinery, New York, NY, USA, 78–86.
https://doi.org/10.1145/70082.68189

[10] Maged Michael. 2004. Hazard pointers: Safe memory reclamation for lock-free
objects. Parallel and Distributed Systems, IEEE Transactions on 15 (07 2004), 491 –
504. https://doi.org/10.1109/TPDS.2004.8

[11] Mark Moir. 1997. Transparent Support for Wait-Free Transactions. In Proceed-
ings of the 11th International Workshop on Distributed Algorithms (WDAG ’97).
Springer-Verlag, Berlin, Heidelberg, 305–319.

[12] Pieter Johannes Muller. 2002. The active object system design and multiprocessor
implementation. Ph.D. Dissertation. ETH Zurich, Zürich. https://doi.org/10.
3929/ethz-a-004453415 Diss., Technische Wissenschaften ETH Zürich, Nr. 14755,
2002.

[13] Florian Negele. 2014. Combining Lock-Free Programming with Cooperative
Multitasking for a Portable Multiprocessor Runtime System. Ph.D. Dissertation.
https://doi.org/10.3929/ETHZ-A-010335528

[14] Florian Negele, Felix Friedrich, Suwon Oh, and Bernhard Egger. 2017. On the
Design and Implementation of an Efficient Lock-Free Scheduler. 22–45. https:
//doi.org/10.1007/978-3-319-61756-5_2

[15] L. Sha, R. Rajkumar, and J. P. Lehoczky. 1990. Priority inheritance protocols:
an approach to real-time synchronization. IEEE Trans. Comput. 39, 9 (1990),
1175–1185. https://doi.org/10.1109/12.57058

[16] Victor Yodaiken and Michael Barabanov. 1997. A real-time Linux. In Proceedings
of the Linux Applications Development and Deployment Conference (USELINUX).
USENIX Assocication, Anaheim, CA.

6

https://doi.org/10.1145/366663.366704
http://os.inf.tu-dresden.de/papers_ps/fiasco-spec.ps.gz
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/70082.68189
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.3929/ethz-a-004453415
https://doi.org/10.3929/ethz-a-004453415
https://doi.org/10.3929/ETHZ-A-010335528
https://doi.org/10.1007/978-3-319-61756-5_2
https://doi.org/10.1007/978-3-319-61756-5_2
https://doi.org/10.1109/12.57058

	Abstract
	1 Introduction
	2 Basic Concepts
	2.1 Non-Blocking Synchronization
	2.2 ABA Problem
	2.3 Cooperative Scheduling
	2.4 Priority Inversion

	3 Non-Blocking Operating System Concepts
	3.1 Wait-Free Locking with Helping
	3.2 Implicit Cooperative Non-Blocking Scheduling
	3.3 Unbounded Lock-Free Scheduler Queue

	4 Implementations
	4.1 Fiasco Kernel
	4.2 Scheduler of the Native Kernel

	5 Evaluation
	5.1 Performance
	5.2 Portability and Simplicity
	5.3 Applicability

	6 Conclusion
	References

