Virtual Machines for Dynamic Languages
Ausgewahlte Kapitel der Systemsoftwaretechnik, WS2021

Mark Deutel
Friedrich-Alexander-University Erlangen-Niirnberg (FAU)
Erlangen, Germany
mark.deutel@fau.de

ABSTRACT

A common approach to execute dynamic languages is inside a vir-
tual machine (VM), usually implemented in a low level system
language like C. Such VMs have to support the often complex
syntax and semantics of the dynamic languages they are hosting.
Additionally, some properties of dynamic language code can only
be inferred at runtime making the optimization of code execution
another challenging task. Therefore, it is hardly possible to provide
general purpose implementations that support a large range of
different dynamic languages. Furthermore, many commonly used
dynamic languages such as Python or Javascript are still evolving
which means that their VMs have to adapt constantly. This implies
that it is necessary to write and maintain a sufficiently elaborated
code base for every single dynamic language. As a result, there is
a significant development overhead when creating efficient, well
optimized, and feature complete dynamic language VMs which
often stands in contrast to time and resource limitations. Tack-
ling this problem, research has focused on techniques to lower
the development effort required to create VMs while increasing
their maintainability. Simultaneously, emphasis was placed on op-
timization strategies that enable efficient code execution despite
dynamically inferred runtime properties. The goal of this work is
to give an overview over techniques for writing dynamic language
VMs proposed during the last 20 years and to evaluate them.

1 INTRODUCTION

Dynamic programming languages have become extremely popu-
lar among software developers over the last years. Looking at the
TIOBE index which ranks programming languages by popularity
based on search engine queries, one can find several dynamic lan-
guages which have entered the top ten of the ranking during the last
years [21]. This includes JavaScript at currently sixth and Python at
third place only beaten by Java and C. Both of these two dynamic
languages have gained massive popularity among computer scien-
tists. Python has become a staple in the data science and artificial
intelligence community driving two of their most popular machine
learning frameworks PyTorch and Tensorflow while JavaScript has
become the de-facto standard for dynamic website programming.
Therefore, reliable and fast runtime environments to execute
dynamic languages are more important than ever. The traditional
approach to provide such an environment is by writing an inter-
preter in a low level system language like C. Usually, the interpreter
implementation is then extended into a full-fledged virtual machine
(VM). The interpreter part implements the syntax and semantics
of the dynamic language generally by using some form of inter-
mediate representation while the VM part provides infrastructure
and runtime services like automatic memory management or a

threading model. It is common that once a dynamic language has
grown popular enough the interpreter is extended by a just-in-time
(JIT) compiler to more efficiently execute interpreted code.

However this approach does not come without problems. The
effort required to write a complete virtual machine from scratch
is huge. It also forces the language implementer to deal with plat-
form or target architecture specific details. This makes implement-
ing a VM time consuming, error prone, and complicated to port
to other systems. Additionally, modern dynamic languages like
Python, Ruby or JavaScript evolve rapidly and have complex syn-
tax and semantics. This not only makes it hard to represent the
language properly in low level code, but makes maintenance of
existing VM implementations a complicated task as well.

Looking at the development of dynamic language VMs during
the last 20 years, one can identify two main issues authors tried to
address with their work. The first issue is the high initial develop-
ment effort necessary to implement an efficient low level VM. This
is usually followed by tedious maintenance due to the often rapid
advance of dynamic languages. Section 2 of this work presents two
ideas that can help to reduce the development overhead and to
speed up the creation and upkeeping of dynamic language VMs.
The second issue is related to the execution of dynamic language
programs. Compared to static languages where all properties of
a source code fragment are inferred offline by a compiler, this is
done online at runtime in dynamic languages. This makes them
more difficult to interpret and execute efficiently in a virtualized
environment. Section 3 has a look at two optimizations to improve
execution speed of dynamic language programs.

2 WORKLOAD EFFICIENT VM
IMPLEMENTATION

The following section of this work presents two main techniques
that can be used to reduce the amount of work necessary to write a
dynamic language VM. A straight forward idea is to hierarchically
layer several VMs inside one another. Based on the principle of
"divide and conquerer" the problem of providing a dynamic lan-
guage runtime environment is split into several parts which can
be handled by different VMs. The topic is discussed in detail in
section 2.1. Another option is the usage of metaprogramming tech-
niques. The idea is based on having a transformation toolchain
which can automatically translate a high level implementation of a
dynamic language interpreter into compilable low level VM code.
This means that most of the target architecture specific code can
be reused for several dynamic languages and only the interpreter
has to be reimplemented for each language. A closer look at this
approach is taken in section 2.2.

2.1 Hierarchical Layering of VMs

Hierarchical layering of VMs inside one another is based on the idea
of decreasing implementation efforts by introducing modulariza-
tion. All VMs generally have to provide implementations for similar
problems like an efficient JIT compiler or memory management.
However, for most dynamic language VMs a standard solution for
these problems is sufficient. This allows for the creation of general
purpose implementations which are deployed as modules and can
be structured in layers. This layer abstraction not only allows to
reuse own systems in several dynamic language implementations
but also the integration of standard third party general purpose
VMs like the Java Virtual Machine (JVM).

An implementation of this idea is provided by Yermolovich et al.
in combination with a trace based JIT compiler [26]. A reiteration
can be found in the work of Wiirthinger et al. who deployed the
layering approach in combination with type specialization in the
compiler infrastructure of their language implementation frame-
work "Truffle" [23, 24]. Traced based JIT compilation as well as
type specialization are described in greater detail in section 3. Both
Yermolovich and Wiirthinger use a similar layered system architec-
ture based on a well known general purpose VM implementation.
Namely, Wiirthinger et al. use the Java Virtual Machine (JVM) imple-
mentation provided by the OpenJDK project [18] while Yermolovich
et al. use Adobe’s (now Mozilla’s discontinued) Tamarin-Tracing
VM [17]. A visualization of their system architecture can be seen
in figure 1. Inside of the general purpose host VM another guest
VM is executed which interprets and runs dynamic language pro-
grams inside the scope of the hosting VM. The main benefit of this
idea is that the implementation of the guest VM does not have to
be done on a low system level. Instead, the higher level managed
language and runtime environment provided by the host VM can
be used. For Yermolovich and Wiirthinger this mainly includes
access to advanced services like automatic memory management
and an optimized JIT compiler, both services which are tedious and
error prone to implement manually in a low level system setting.
Another aspect of the technique is, that a dynamic language VM
implemented into another VM automatically becomes available on
all architectures the host VM has been ported to. This implies that
with one consistent code base it is possible to cover a potentially
wide range of different target platforms.

However, the technique comes not without a cost: a major issue
with layering VMs inside one another is that it can lead to subpar
performance. This is noted by Yermolovich et al. who state that
compared to their Lua interpreter on top of the Tamarin-Tracing
VM "the native version of Lua is orders of magnitude faster for some
benchmarks" [26]. In general, the reason for this observation is that
general purpose VMs are almost always heavily optimized to run
code written in their own managed language very well. This starts
with aspects of the simulated system architecture like memory
access, MMU behavior, or handling of interrupts and exceptions
and continues with implementation specific optimizations applied
by the VM’s JIT compiler. To make programs executed by a guest
VM inside of a hosting VM run fast, the byte code generated by the
guest needs to match all "good case" criterions of the managed host
language as close as possible. This requires a deep understanding

Mark Deutel

Written in

Dynamic guest

Guest Language Application language

Managed host

Guest VM (dynamic language interpreter) language

Managed host
language or
unmanaged language

Host VM (general purpose VM)

Unmanaged
language (typicaly
Cor C++)

Operating System orHypervisor

Figure 1: Generalized layered system architecture used both
in Yermolovich’s [26] and Wiirthinger’s [24] work

of the host VM’s architecture as well as a dynamic language with
semantic patterns related to the ones of the managed host language.

Gaikwad et al. demonstrated a significant variation in perfor-
mance when executing different dynamic guest language implemen-
tations on the same JVM instance using the "Truffle" framework [9].
Other insight on the performance of dynamic language programs
running on the JVM is provided by Li et al. [13] and Sarimbekov
et al. [20]. Both studies use a similar setup and heavily focus on
runtime behavior using static code analysis as well as dynamic
analysis of benchmark programs executed on different guest VMs.
Metrics collected in both studies include method size, stack depth,
method and basic block hotness, object lifetime and size, call-site
polymorphism, immutability, and unnecessary zeroing. Their re-
sults show that there are noticeable differences in runtime behavior
of regular Java byte code and byte code generated by dynamic
language guest VMs. These differences can impact the guest pro-
gram’s performance when executed. Dynamic languages tend to
use a significant amount of immutable objects. Objects are allocated
more rapidly, are generally smaller and have a shorter lifetime com-
pared to objects generated from Java code. The high number of
short lived immutable objects allocated by dynamic language pro-
grams also leads to a high number of unnecessary zeroing. Finally,
despite a high number of possibly polymorphic call-sites in dy-
namic language programs most actual method invocations happen
at sites only targeting a single method. Worth mentioning is that
regardless of all of these aberrations Li et al. [13] state that they
did not find any major differences in method or block hotness in
their evaluation.

Nevertheless, due to the general simplicity of the approach there
is still a wide range of guest VM implementations available hosting
dynamic languages like Python, Ruby or JavaScript.

2.2 Metaprogramming Techniques

Another approach which has been well discussed by the scientific
community is the usage of metaprogramming techniques to sig-
nificantly cut down the workload required to create a dynamic
language VM. In a literal sense a metaprogram can be understood

Ausgewihlte Kapitel der Systemsoftwaretechnik, WS2021

as a computer program about another computer program. A more
practical definition is given by Lilis et al. in their survey about
metaprogramming languages [14]. They state that the main char-
acteristic of metaprograms is that they treat other programs as
data, enabling them to analyze or transform them. By doing so they
can either modify existing programs or generate new programs
from existing ones. Metaprogramming is a key concept in computer
science and is deeply embedded in existing software development
workflows. Any existing language compiler falls into the definition
of a metaprogram as it manipulates higher level code to generate
low level assembly language or machine code from it.

The way metaprogramming is used to reduce the development
effort of writing a dynamic language VM is in form of a parser gener-
ator. The idea is to implement an interpreter for a dynamic language
in a high level language and then use a translation toolchain to
automatically generate low level VM code from it. The metapro-
gramming part of this technique can be found in the translation
toolchain.

Bolz et al. go into more detail about the benefits of this approach
in their paper called "How to not write VMs for dynamic languages
[7]". Their main argument is that VMs can be generated automat-
ically using a high level interpreter implementation which acts
as a language specification. They argue that this technique not
only has the same advantages as described in section 2.1 which
was about using general purpose VMs as a base platform, but also
brings additional benefits in terms of flexibility. Specifically, they
state three major points: First, using a metaprogramming transla-
tion toolchain helps to keep one single code base for a dynamic
language. From this code base, standalone VMs as well as guest
modules for hosting VMs can be generated automatically. Second,
the translation toolchain helps to introduce modularization and
separation of concerns. This is especially useful later on because
it generally makes maintenance easier than having to deal with
monolithic software constructs. Third, since platform specific low
level implementations are the concern of the translation toolchain,
writing the interpreter module becomes easier. Together with the
fact that the interpreter can be written in a dynamic language this
leads to an increase in flexibility. As a result experimental features
and techniques can be implemented and tested more easily without
extensive code changes outside the interpreter module. However,
Bolz et al. state some downsides as well [7]: First, moving low level
functionality into the translation toolchain does not remove the
necessity to deal with it at all but only defers it. The real benefit
comes from having to do it only once and the ability to reuse it,
rather than from not having to do it at all. For example, Bolz et
al. state that they still had trouble to implement efficient garbage
collection for their metaprogramming translation toolchain "PyPy"
[7]. Second, generating a VM using the toolchain can take some
time. For "PyPy" Rigo et al. note compile times up to ten minutes
for the generation of a Python VM [19]. This reduces flexibility
when testing new features. Third, VMs created with a translation
toolchain generally perform worse then handwritten reference im-
plementations. In the case of "PyPy", generated Python VMs ran
up to 10 times slower than the reference CPython implementation
when executing the Pystone benchmark program [19].

Still, there are many implementations available applying the idea
of metaprogramming translation toolchains in practice: Some of

the earliest examples date back to 1997, where Ingalls et al. [12]
presented "Squeak”, their Smalltalk implementation, whose virtual
machine is entirely written in Smalltalk and to 2000, where Alpern
et al. [1] published an article about their virtual machine for Java
servers "Jalapefio” which is completely written in the Java language.
A more recent example is the already mentioned "PyPy" toolchain
by Rigo et al. [19].

3 PERFORMANCE EFFICIENT VM
IMPLEMENTATION

The following section shifts its focus towards implementing run-
time environments that can execute dynamic language programs
efficiently, rather than having low implementation efforts. In gen-
eral executing a dynamic language programs is done in two steps:

First, the program’s source code is interpreted. A common way
to interpret a dynamic language program is by transforming the
program’s logic written in lines of code into an intermediate tree
or graph like representation. This representation can then easily
be evaluated by recursively traversing its nodes. Second, the inter-
preted code is executed on the host hardware. A widely applied
strategy to efficiently execute code in a VM setting is by implement-
ing a just-in-time compiler (JIT). The idea is based around dynamic
code generation at runtime. Interpreted guest code is cached in
blocks which can later be reused if required. This way the same
code does not have to be interpreted several times.

Section 3.1 of this chapter takes a closer look at a technique
generally referred to as type specialization which can help increase
performance during language interpretation. After that, section 3.2
focusses on an optimization of the basic JIT idea called trace based
JIT compilation.

3.1 Type Specialization

Tree or graph based representations are a common way to make
interpreting or compiling language code easier. An according inter-
mediate data structure is usually generated by analyzing a given
program’s source code using a set of syntax rules defined by a
language. The main advantage of the technique is that arbitrarily
complex syntactic constructs can be described in a simple recursive
manner. Furthermore, semantic evaluation of a created intermediate
tree or graph representation can often be achieved with standard
node visiting traversal strategies.

In the context of dynamic language execution using an inter-
mediate data structure is considered a viable solution for code
interpretation. However, due to the recursive nature of tree and
graph traversal algorithms, using such a representation can cause
a relatively high overhead. Since code interpretation of dynamic
languages is performed at runtime, using a tree or graph based
data structure can impact the execution performance of a dynamic
language VM significantly. Therefore, there has been some work
made to improve the performance of intermediate data structure
based interpreters over the last years.

Williams et al. introduced a dynamic intermediate representation
(DIR) based on a flow graph [22]. The representation allows them to
perform type specialized interpretation of Lua programs. Each node
in their DIR encodes the opcode of a specialized instruction while
edges between them encode control-flow or type-flow. Type-flow

edges allow to keep track of a variable’s data type during program
execution. Edges encoding the correct type are selected by so called
"type-directed" nodes which include a table of possible targets for
every of the nine data types provided by the Lua language. The
decision which one to choose is based on the resulting data type of
the "type-directed” node’s operation. This allows the interpreter to
dynamically pick the correct path to continue its traversal through
the DIR. Once visited, the chosen specialized node does not have
to care about type checking of operands and can instead immedi-
ately perform its operation. The DIR also propagates types through
method calls while keeping track of the most recently used param-
eter types to implement a caching mechanism comparable to other
inline caches used to speed up runtime method binding for poly-
morphic call sites. Even though the dispatch overhead of the DIR
interpreter is larger than the bytecode dispatch of the standard Lua
interpreter, it can still achieve an average speedup of 1.3x according
to Williams et al. [22].

Another technique to incorporate type specialization has been
proposed by Wiirthinger et al. [25]. Their idea is based around a
tree based intermediate representation called abstract syntax tree
(AST). Every node of an AST represents an operation which uses
its children as input operands. The node’s children can again be
operations with their own set of child operand nodes. This means
that every inner node of an AST is an operand and an operation
at the same time while leaf nodes are only operands. Wiirthinger
et al. propose rewriting of AST nodes into more specialized ver-
sions during execution to dynamically incorporate available type
feedback and profiling information from previous and current node
operands. At the beginning of an AST’s execution every node starts
in an uninitialized state. This initial state does not provide any
functional implementation which means that for each node type
at least one generic implementation has to be defined. The generic
implementation can be applied in any case and is used as a fall-
back. However, depending on the type of operation represented
by a node additional specialized implementations can be provided.
These specialized implementations make assumptions about their
input operands, for example assuming a certain type. This usually
allows them to execute faster but they lose their abstract nature and
cannot handle all cases anymore. Based on the runtime properties
of input operands the interpreter can rewrite a node dynamically to
any matching specialized version. This decision is done optimisti-
cally, assuming that types stay stable in possible future executions.
Still, if necessary, the interpreter can change a node’s specialization
at any time during execution. A simple example for this to happen
is a node performing an arithmetical operation on two integers.
The specialization of the node to use integer arithmetic changes in
case one or both of the operands switches its type to floating point
during program execution. A visualization of a transition model
between type specialized versions of an AST node performing an
addition can be seen in figure 2.

Wiirthinger et al. implemented an interpreter for JavaScript
in Java which uses their tree rewriting technique. Furthermore,
they added some optimization which utilizes the static typing and
primitive types of Java to avoid the cost of having to use boxed data
types. To evaluate their implementation they compared themselves
to the JavaScript Rhino VM [16]. With tree rewriting enabled they
were able to achieve a 4x speedup over the Rhino interpreter only.

Mark Deutel

Uninitialized Integer

Double

Generic

Figure 2: Transition model between different type spe-
cialized versions of an addition node as described by
Wiirthinger et al. [25].

However, with its bytecode generation feature enabled Rhino still
performed about 40% faster [25].

3.2 Tracing JIT Compilers

An efficient way of executing interpreted dynamic language code is
by using a just-in-time (JIT) compiler. However, other than in static
languages not all properties of a dynamic language program have
to stay constant at runtime. This means that the JIT has to perform
additional checks on cached code when reusing it to account for
dynamic properties that may have changed. While it is possible to
infer dynamic properties by, for example, using static analysis or
profiling on intermediate code representations this hurts the JIT’s
performance since in any case control has to be given back to the
interpreter. A way of keeping performance high and not having to
fall back to the interpreter all the time has been explored by adapting
trace based optimization strategies for dynamic languages.

Trace based optimization has a long history, although mostly
applied to native or typed language code. The technique, for exam-
pled was applied by Bal et al. as early as 1999 in their dynamic
optimization system Dynamo [2, 3]. The goal of the system is
to transparently improve the performance of native instruction
streams like they are used by regular JIT compilers. The units of
optimization at runtime are traces which are defined as a sequences
of consecutively executed instructions. Traces have a fixed start
and end address and may extend across several control structures
like branches or methods. Dynamo picks a hot trace by using a
speculative scheme based on the assumption that a program spends
most of its time in loops. Therefore, all addresses that are reached
via a backwards taken branch are considered a viable trace head.
Counters are associated with each of the heads which are incre-
mented every time their respective code address is executed. Once
the counter has met a certain threshold the respective trace head is
considered as "hot". Since only trace heads are monitored, another
statistical assumption has to be used to generate a complete trace
from a hot trace head: Blocks immediately executed after a hot trace
head are very likely hot as well. This means that all basic blocks
executed after a hot trace head has been identified are collected into
a history buffer. This is continued until an end-of-trace condition
is met. These can be conditions like the next block to be executed

Ausgewihlte Kapitel der Systemsoftwaretechnik, WS2021

is identical to the first block in the history buffer or the next in-
struction is a backwards taken branch. After a hot trace has been
identified the associated blocks are converted into a low-level in-
termediate representation and optimized using strategies like copy
and constant propagation, strength reduction, loop invariant code
motion and loop unrolling [2]. Finally the optimized representation
is converted to machine code and emitted into a managed cache.
The idea was extended by Gal et al. with the introduction of trace
trees in their Hotpath Java VM implementation [11]. While using
a similar algorithm for trace selection, the main difference is the
subsequent tree based trace recording mechanism. A trace tree is
defined to contain a set of basic blocks which are also called nodes
and a set of direct edges between these nodes describing control-
flow. After an appropriate trace head is found it is added to the trace
tree as the anchor node. A trace tree can only contain one anchor
node. Basic blocks are recorded until a cycle is found. The resulting
trace is then added to the tree. Afterwards, the tree structure looks
like a linked list where the anchor is the root of the tree and the last
block of the traced instruction cycle is the only leaf node. The tree
can subsequently be extend by side exits. Side exits are paths which
originate from a node in the trace tree but are not already covered
by it. To detect them during execution special guard instructions are
compiled into the trace’s bytecode as a replacement for the original
conditional instructions. Once such an exit is detected by a guard
during execution the new path is interpreted and recorded as a
new trace. Finally, the new trace is added to the trace tree. Gal et al.
integrated their tracing JIT compiler into JamVM [15]. Noteworthy
is the low number of lines of code by the JIT which is only 1800
and the small memory footprint of the implementation which is
around 128 KBytes. This makes their solution especially interesting
for embedded environments with strict resource limitations. For
highly regular programs they were able to achieve speedups up to
11x compared to pure interpretation. However, they note that for
irregular code their implementation may not be able to pick up any
traces at all and will yield no improvements in execution time [11].
In a later publication Gal et al. [10] use their trace based JIT
compilation technique in the context of a dynamic language VM.
Their implementation of a JavaScipt VM called TraceMonkey is
based on their work with the Hotpath Java VM earlier described
in this section. The main issue TraceMonkey has to solve when
applying trace based optimization to dynamic language code is
that type stability inside a found and compiled trace cannot be
guaranteed but can only be assumed. Therefore additional guards
checking the actual types of variables used in a compiled trace
have to be added. In case any of the guards fail during execution,
the corresponding trace has to exit and give control back to the
interpreter. However, similar to how side exits due to changing
control flow where handled by the Hotpath Java VM, TraceMonkey
immediately starts recording the new type invariant path as a new
trace. The new trace can subsequently be integrated into the original
trace tree. As a result TraceMonkey’s trace trees can contain several
type specialized traces for one loop path. Gal et al. provide some
examples on how this can look in practice which can be seen in
figure 3. Furthermore, they report that their implementation can
compete with Apple’s JavaScript interpreter SquirrelFish Extreme
(SFX) as well as Google’s V8 JavaScript VM. Their implementation
was the fastest of the three in nine of the 26 benchmarks in the

[Trace1 | | Trace 2 Trace1 | [Trace 2 |
= =~ == ——
Number Boolean Number Boolean
Number Number Boolean Number
Closed Linked Linked Linked
(a) (b)

[Trace1 | [Trace 2 Trace 3
'7\/17" "_'\\/f‘—‘ '_‘W\/r"_‘"

-
Number Boolean String
String
String
Linked Linked Closed

Linked

(c)

Figure 3: Gal et al. [10] link several traces found for a type
unstable loops to form a group of trace trees that can execute
without having to side-exit to the interpreter.

SunSpider benchmark suite. The execution of TraceMonkey was up
to 25x faster compared to their base line interpreter called Spider
Monkey [10].

Over the last years several dynamic language projects integrated
a tracing JIT compiler into their runtime environment. Bolz et al.
presented a tracing JIT compiler for their PyPy project in 2009
[5, 6]. The main difference compared to other implementations is
that the JIT compilation is not applied to the user program but
instead to the interpreter running it. Other examples are SPUR,
a tracing JIT compiler for Microsoft’s CIL [4] or Adobe’s (now
Mozilla’s discontinued) Tamarin-Tracing for trace based execution
of ActionScript [8].

4 CONCLUSION

In this work a closer look at techniques for creating dynamic lan-
guage VMs was taken. The first part focused on implementing
workload and resource efficient VMs. One presented idea showed
that several VMs can be stacked inside one another which creates a
hierarchical order and leads to modularization and layer abstraction.
Another techniques focused on using metaprogramming concepts
as they are usually seen in language compilers to automatically
transform high level language interpreter implementations into low
level VM code. Both described techniques help to significantly re-
duce the amount of complexity induced by writing and maintaining
a single low level code base for every dynamic language.

The second part of this work presented two optimizations which
help to improve the execution speed of dynamic language programs

inside VMs. Ideas were elaborated on how to use type specialization
and tree like intermediate representations like ASTs to efficiently
infer dynamic language features during interpretation at runtime.
Furthermore, trace based optimization strategies were presented
which help JIT compilers to better detect frequently used areas
throughout applications and handle type instability more robustly.

While most of the proposed techniques shown in this work have
seen successful implementation, writing a dynamic language VM
with low implementation overhead that achieves good performance
is still a big engineering challenge. All of the proposed techniques
do not come without a cost. Being it either a loss of flexibility or a
loss of runtime performance. Additionally, while some techniques
aim to drastically reduce the required amount of low level system
code which has to be written to create a VM, these solutions still
often fail to abstract all low level properties completely. There-
fore, in many cases it is just about the dynamic language creator’s
personal preferences and the required properties of a language’s
runtime environment to decide which of the shown techniques are
worthwhile to implement.

REFERENCES

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J. Choi, A. Cocchi,
S.J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,]J. C. Shepherd, S. E. Smith, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. 2000. The Jalapefio virtual machine.
IBM Systems Journal 39, 1 (2000), 211-238. https://doi.org/10.1147/sj.391.0211
Conference Name: IBM Systems Journal.

[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 1999. Transparent
dynamic optimization: the design and implementation of dynamo. Technical
Report. Hewlett Packard. 102 pages.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: a

transparent dynamic optimization system. In Proceedings of the ACM SIGPLAN

2000 conference on Programming language design and implementation (PLDI "00).

Association for Computing Machinery, New York, NY, USA, 1-12. https://doi.

org/10.1145/349299.349303

Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo,

Wolfram Schulte, Nikolai Tillmann, and Herman Venter. 2010. SPUR: a trace-

based JIT compiler for CIL. In Proceedings of the ACM international confer-

ence on Object oriented programming systems languages and applications (OOP-

SLA °10). Association for Computing Machinery, New York, NY, USA, 708-725.

https://doi.org/10.1145/1869459.1869517

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.

Tracing the meta-level: PyPy’s tracing JIT compiler. In Proceedings of the 4th

workshop on the Implementation, Compilation, Optimization of Object-Oriented

Languages and Programming Systems (ICOOOLPS 09). Association for Computing

Machinery, New York, NY, USA, 18-25. https://doi.org/10.1145/1565824.1565827

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijatkowski, Michael Leuschel, Samuele

Pedroni, and Armin Rigo. 2011. Runtime feedback in a meta-tracing JIT for

efficient dynamic languages. In Proceedings of the 6th Workshop on Implementation,

Compilation, Optimization of Object-Oriented Languages, Programs and Systems

(ICOOOLPS ’11). Association for Computing Machinery, New York, NY, USA, 1-8.

https://doi.org/10.1145/2069172.2069181

Carl Friedrich Bolz and Armin Rigo. 2007. How to not write Virtual Machines for

Dynamic Languages. 3rd Workshop on Dynamic Languages and Applications

(2007), 11.

Mason Chang, Edwin Smith, Rick Reitmaier, Michael Bebenita, Andreas Gal,

Christian Wimmer, Brendan Eich, and Michael Franz. 2009. Tracing for web

3.0: trace compilation for the next generation web applications. In Proceedings

of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution

environments (VEE ’09). Association for Computing Machinery, New York, NY,

USA, 71-80. https://doi.org/10.1145/1508293.1508304

Swapnil Gaikwad, Andy Nisbet, and Mikel Lujan. 2018. Performance analysis for

languages hosted on the truffle framework. In Proceedings of the 15th International

Conference on Managed Languages & Runtimes (ManLang ’18). Association for

Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/

3237009.3237019

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin,

Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason

Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,

[4

=

(5

=

=

=

8

=

=

[10

(1]

[12

[13

=
et

=
&

[20

[21

~
&,

[23

[24]

[25

[26

Mark Deutel

Mason Chang, and Michael Franz. 2009. Trace-based just-in-time type specializa-
tion for dynamic languages. ACM SIGPLAN Notices 44, 6 (June 2009), 465-478.
https://doi.org/10.1145/1543135.1542528

Andreas Gal, Christian W. Probst, and Michael Franz. 2006. HotpathVM: an
effective JIT compiler for resource-constrained devices. In Proceedings of the 2nd
international conference on Virtual execution environments (VEE ’06). Association
for Computing Machinery, New York, NY, USA, 144-153. https://doi.org/10.
1145/1134760.1134780

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the future: the story of Squeak, a practical Smalltalk written in itself. In
Proceedings of the 12th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA ’97). Association for Computing
Machinery, New York, NY, USA, 318-326. https://doi.org/10.1145/263698.263754
Wing Hang Li, David R. White, and Jeremy Singer. 2013. JVM-hosted languages:
they talk the talk, but do they walk the walk?. In Proceedings of the 2013 Interna-
tional Conference on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools (PPPJ ’13). Association for Computing Ma-
chinery, New York, NY, USA, 101-112. https://doi.org/10.1145/2500828.2500838
Yannis Lilis and Anthony Savidis. 2019. A Survey of Metaprogramming Lan-
guages. Comput. Surveys 52, 6 (Oct. 2019), 113:1-113:39. https://doi.org/10.1145/
3354584

Robert Lougher. 2014. JamVM — A compact Java Virtual Machine. Retrieved
2020-12-22 from http://jamvm.sourceforge.net/

Mozilla. 2005. Rhino documentation. Retrieved 2020-12-21 from https://developer.
mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Documentation

Mozilla. 2009. Tamarin:Tracing - MozillaWiki. Retrieved 2020-12-28 from https:
//wiki.mozilla.org/Tamarin:Tracing

Oracle. 2020. OpenJDK. Retrieved 2020-12-28 from https://openjdk.java.net/
Armin Rigo and Samuele Pedroni. 2006. PyPy’s approach to virtual machine
construction. In Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications (OOPSLA "06). As-
sociation for Computing Machinery, New York, NY, USA, 944-953. https:
//doi.org/10.1145/1176617.1176753

Aibek Sarimbekov, Andrej Podzimek, Lubomir Bulej, Yudi Zheng, Nathan Ricci,
and Walter Binder. 2013. Characteristics of dynamic JVM languages. In Proceed-
ings of the 7th ACM workshop on Virtual machines and intermediate languages
(VMIL °13). Association for Computing Machinery, New York, NY, USA, 11-20.
https://doi.org/10.1145/2542142.2542144

The Software Quality Company. 2021. TIOBE. Retrieved 2021-01-25 from
https://www.tiobe.com/tiobe-index/

Kevin Williams, Jason McCandless, and David Gregg. 2010. Dynamic inter-
pretation for dynamic scripting languages. In Proceedings of the 8th annual
IEEE/ACM international symposium on Code generation and optimization (CGO
’10). Association for Computing Machinery, New York, NY, USA, 278-287.
https://doi.org/10.1145/1772954.1772993

Christian Wimmer and Thomas Wiirthinger. 2012. Truffle: a self-optimizing run-
time system. In Proceedings of the 3rd annual conference on Systems, programming,
and applications: software for humanity (SPLASH °12). Association for Computing
Machinery, New York, NY, USA, 13-14. https://doi.org/10.1145/2384716.2384723
Thomas Wiirthinger, Christian Wimmer, Andreas W68, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to rule them all. In Proceedings of the 2013 ACM international
symposium on New ideas, new paradigms, and reflections on programming &
software (Onward! 2013). Association for Computing Machinery, New York, NY,
USA, 187-204. https://doi.org/10.1145/2509578.2509581

Thomas Wiirthinger, Andreas Wof3, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. 2012. Self-optimizing AST interpreters. In Proceedings of
the 8th symposium on Dynamic languages (DLS ’12). Association for Computing
Machinery, New York, NY, USA, 73-82. https://doi.org/10.1145/2384577.2384587
Alexander Yermolovich, Christian Wimmer, and Michael Franz. 2009. Op-
timization of dynamic languages using hierarchical layering of virtual ma-
chines. In Proceedings of the 5th symposium on Dynamic languages (DLS 09).
Association for Computing Machinery, New York, NY, USA, 79-88. https:
//doi.org/10.1145/1640134.1640147

https://doi.org/10.1147/sj.391.0211
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/1869459.1869517
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/2069172.2069181
https://doi.org/10.1145/1508293.1508304
https://doi.org/10.1145/3237009.3237019
https://doi.org/10.1145/3237009.3237019
https://doi.org/10.1145/1543135.1542528
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/2500828.2500838
https://doi.org/10.1145/3354584
https://doi.org/10.1145/3354584
http://jamvm.sourceforge.net/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Documentation
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Documentation
https://wiki.mozilla.org/Tamarin:Tracing
https://wiki.mozilla.org/Tamarin:Tracing
https://openjdk.java.net/
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/2542142.2542144
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/1772954.1772993
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/1640134.1640147
https://doi.org/10.1145/1640134.1640147

	Abstract
	1 Introduction
	2 Workload Efficient VM Implementation
	2.1 Hierarchical Layering of VMs
	2.2 Metaprogramming Techniques

	3 Performance Efficient VM Implementation
	3.1 Type Specialization
	3.2 Tracing JIT Compilers

	4 Conclusion
	References

